JP2018044798A - Holding tool for measurement target object - Google Patents

Holding tool for measurement target object Download PDF

Info

Publication number
JP2018044798A
JP2018044798A JP2016178078A JP2016178078A JP2018044798A JP 2018044798 A JP2018044798 A JP 2018044798A JP 2016178078 A JP2016178078 A JP 2016178078A JP 2016178078 A JP2016178078 A JP 2016178078A JP 2018044798 A JP2018044798 A JP 2018044798A
Authority
JP
Japan
Prior art keywords
measured
measurement
holder
skin
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016178078A
Other languages
Japanese (ja)
Other versions
JP6730145B2 (en
Inventor
明菜 川岸
Akina Kawagishi
明菜 川岸
嘉之 名畑
Yoshiyuki Nahata
嘉之 名畑
未央 犬丸
Mio Inumaru
未央 犬丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2016178078A priority Critical patent/JP6730145B2/en
Publication of JP2018044798A publication Critical patent/JP2018044798A/en
Application granted granted Critical
Publication of JP6730145B2 publication Critical patent/JP6730145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a holding tool which can easily fix a measurement target object.SOLUTION: A dynamic characteristic measurement device 10 includes a device body 11 for measuring a dynamic response characteristic of a measurement target object 31 when the measurement target object is distorted. A holding tool 20 for a measurement target object is used for measuring the dynamic response characteristic of the measurement target object 31, using the device 10, while the measurement target object 31 is being held. The holding tool 20 is deformable according to the outer shape of the measurement target object 31 so that it can hold the measurement target object 31, and can hold the shape at the measurement.SELECTED DRAWING: Figure 4

Description

本発明は、被測定物の力学応答特性を計測するために用いられる保持具に関する。   The present invention relates to a holder used for measuring mechanical response characteristics of an object to be measured.

動的粘弾性測定装置を用いて皮膚の変形挙動を測定し、貯蔵弾性率G’や損失弾性率G”と筋肉の緊張状態との関係を調べる技術が知られている。例えば非特許文献1には、レオメーター下部の測定ステージに被験者の前腕部を配置し、前腕部内側にプローブを当接させてずり変形を与え、粘弾性特性値を求めることが記載されている。同文献においては、このような測定を行うことで、褥瘡周辺のひずみ分布と創の形成との関係を検討している。しかし、同文献に記載の測定方法を採用した場合、測定対象である前腕部を確実に固定しておかない場合には、測定を行っている間に前腕部が意図せず動いてしまい、精度の高い測定を行うことが容易でない。   A technique is known in which the deformation behavior of the skin is measured using a dynamic viscoelasticity measuring device, and the relationship between the storage elastic modulus G ′ and the loss elastic modulus G ″ and the muscle tension state is examined. Describes that a forearm portion of a subject is placed on a measurement stage below a rheometer, a probe is brought into contact with the inner side of the forearm portion, shear deformation is applied, and a viscoelastic characteristic value is obtained. However, the relationship between the strain distribution around pressure ulcers and the formation of wounds is examined by performing such measurements, but when the measurement method described in the same document is adopted, the forearm that is the object of measurement is reliably Otherwise, the forearm moves unintentionally during the measurement and it is not easy to perform a highly accurate measurement.

測定を行っている間にわたり測定対象を固定しておくための固定具として、特許文献1には、少なくとも一部が網状に形成された固定具本体を備える固定具であって、前記固定具本体が形状記憶樹脂からなるものが提案されている。この固定具によれば、形状記憶樹脂からなる固定具本体を加温して柔軟化させ、その状態で被測定物に密着させることで、密着が容易に行われると記載されている。   As a fixture for fixing an object to be measured while performing measurement, Patent Document 1 discloses a fixture including a fixture body formed at least partially in a net shape, and the fixture body. Have been proposed made of shape memory resin. According to this fixture, it is described that the fixture main body made of shape memory resin is heated to be softened, and is brought into close contact with the object to be measured in this state.

また特許文献2には、計測対象の外形に沿った内面形状に形成された空洞部に測定対象を収容するようにした計測対象保持具が記載されている。   Patent Document 2 describes a measurement object holder that accommodates a measurement object in a hollow portion formed in an inner surface shape along the outer shape of the measurement object.

特開平4−343845号公報JP-A-4-343845 特開2010−197381号公報JP 2010-197381 A

「実験化学」、2011年3月、Vol.11、No.1、pp.30−34“Experimental Chemistry”, March 2011, Vol. 11, no. 1, pp. 30-34

しかし、特許文献1及び2に記載の固定具や保持具を用いた場合、保持・固定に起因する測定対象部位の状態変化が起こるおそれがある。また、特許文献1及び2に記載の固定具や保持具を用いた場合、被測定物は固定できるものの、該被測定物を測定装置の決まった位置に確実に配置することまでは考慮されていない。   However, when the fixtures and holders described in Patent Documents 1 and 2 are used, there is a possibility that the state of the measurement target site may change due to the holding and fixing. Further, when the fixtures and holders described in Patent Documents 1 and 2 are used, the object to be measured can be fixed, but it is considered that the object to be measured is securely arranged at a predetermined position of the measuring device. Absent.

したがって本発明の課題は、前述した従来技術が有する欠点を解消し得る被測定物の保持具を提供することにある。   Accordingly, an object of the present invention is to provide a holding device for an object to be measured that can eliminate the drawbacks of the above-described conventional technology.

本発明は、被測定物に変形を与えたときの力学応答特性を計測する装置本体を備える力学特性計測装置を用いて、該被測定物の力学応答特性を、該被測定物を保持した状態下に計測するために用いられる被測定物の保持具であって
前記保持具は、前記被測定物の外形に合わせて該被測定物の保持が可能な形状に変形可能になされているとともに、計測時に該形状が保持可能になされている、被測定物の保持具を提供するものである。
The present invention uses a mechanical property measuring apparatus including a device main body that measures a mechanical response characteristic when a measured object is deformed, and the mechanical response characteristic of the measured object is held by the measured object. A measuring object holder used for measuring below, wherein the holding tool is deformable into a shape that can hold the measuring object in accordance with the outer shape of the object to be measured, It is an object of the present invention to provide a holder for an object to be measured, which can hold the shape during measurement.

また本発明は、被測定物に変形を与えたときの力学応答特性を計測する装置本体を備える力学特性計測装置と、前記の保持具とを備える力学特性計測システムを提供するものである。   The present invention also provides a mechanical property measuring system including a mechanical property measuring device including a device main body that measures a mechanical response property when a measured object is deformed, and the holder.

本発明によれば、被測定物を容易に固定することができ、その固定状態の被測定物を測定装置に決まった位置に確実に配置することが可能な保持具が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the to-be-measured object can be fixed easily and the holder which can arrange | position the to-be-measured object in the fixed state to the position fixed to the measuring apparatus reliably is provided.

図1は、本発明の被測定物の保持具とともに用いられる力学特性計測装置を示す模式図である。FIG. 1 is a schematic view showing a mechanical property measuring apparatus used together with a holder for an object to be measured according to the present invention. 図2は、本発明の被測定物の保持具の一実施形態を示す斜視図である。FIG. 2 is a perspective view showing an embodiment of the holder for the object to be measured according to the present invention. 図3は、本発明の被測定物の保持具を用いて被測定物を測定する状態を示す斜視図である。FIG. 3 is a perspective view showing a state in which the measurement object is measured using the measurement object holder of the present invention. 図4は、本発明の被測定物の保持具を用いて被測定物を測定する状態を示す斜視図である。FIG. 4 is a perspective view showing a state in which the measurement object is measured using the measurement object holder of the present invention. 図5は、図4に示す状態から被験者であるヒトを省略した状態を示す斜視図である。FIG. 5 is a perspective view showing a state in which the subject human is omitted from the state shown in FIG. 図6は、本発明の被測定物の保持具を、被測定物の外形に変形させ、且つ架台の載置面に配置して形状を固定化させた状態を、上面側から見た斜視図である。FIG. 6 is a perspective view of a state in which the holder of the object to be measured according to the present invention is deformed into the outer shape of the object to be measured and arranged on the mounting surface of the gantry to fix the shape from the upper surface side. It is. 図7は、本発明の被測定物の保持具を、被測定物の外形に変形させ、且つ架台の載置面に配置して形状を固定化させた状態を、下面側から見た斜視図である。FIG. 7 is a perspective view of a state in which the holder of the object to be measured of the present invention is deformed to the outer shape of the object to be measured and arranged on the mounting surface of the gantry and the shape is fixed, as viewed from the lower surface side. It is. 図8は、本発明の被測定物の保持具を用いて該被測定物の力学応答特性を測定するために用いられるプローブの一例を示す斜視図である。FIG. 8 is a perspective view showing an example of a probe used for measuring the mechanical response characteristic of the object to be measured using the object holder of the present invention. 図9(a)及び(b)は、実施例1において測定したヒトの上腕内側部を対象とする肌の力学応答特性(トルク及びtanδ)の結果を示すグラフである。FIGS. 9A and 9B are graphs showing the results of the skin dynamic response characteristics (torque and tan δ) measured on the inner side of the human upper arm measured in Example 1. FIG. 図10は、実施例2において測定した肌の力学応答特性(トルク)の結果を示すグラフである。FIG. 10 is a graph showing the results of the skin dynamic response characteristics (torque) measured in Example 2.

以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。本発明の被測定物の保持具(以下、単に「保持具」とも言う。)は、被測定物に変形を与えたときの力学応答特性を計測する装置本体を備える力学特性計測システムを用いた計測を行うときに用いられるものである。被測定物の種類に特に制限はなく、変形を与えることが可能であり、且つ力学応答特性を測定することが可能な性状を有するものである限り、例えば液状、ゲル状、ペースト状、及び固形であってもよい。また被測定物は生体でもよく、あるいは非生体でもよい。生体を被測定物とする場合、該生体としては、ヒト及びヒト以外の生物が挙げられる。ヒトを被測定物とする場合には、当該測定は非医療目的で行われる。プローブが接触する測定部位は皮膚が代表的なものとして挙げられるが、これに限られず、他の部位、例えば粘膜等であってもよい。   The present invention will be described below based on preferred embodiments with reference to the drawings. The measuring object holder of the present invention (hereinafter, also simply referred to as “holding tool”) uses a mechanical characteristic measurement system including an apparatus main body that measures a mechanical response characteristic when the measured object is deformed. It is used when measuring. There are no particular limitations on the type of the object to be measured, and any liquid, gel, paste, and solid can be used as long as it can be deformed and can have mechanical response characteristics. It may be. The object to be measured may be a living body or a non-living body. When a living body is a measurement object, examples of the living body include humans and non-human organisms. When a human being is used as a measurement object, the measurement is performed for non-medical purposes. The measurement site where the probe comes into contact is exemplified by skin, but is not limited thereto, and may be another site, such as a mucous membrane.

被測定物に与える変形の種類は、例えば圧縮、引っ張り、ねじり、及び曲げなどが挙げられるが、これに限られない。被測定物に変形を与えたときの力学応答パラメータとしては、例えば弾性率、粘度、タック力、摩擦係数、法線力、及びトルクなどが代表的なものとして挙げられる。具体的には動的粘弾性が挙げられる。   Examples of the type of deformation applied to the object to be measured include, but are not limited to, compression, pulling, twisting, and bending. Typical examples of the dynamic response parameters when the object to be measured is deformed include elastic modulus, viscosity, tack force, friction coefficient, normal force, and torque. Specifically, dynamic viscoelasticity is mentioned.

図1には、本発明の保持具とともに用いられる力学特性計測装置の一例としての動的粘弾性測定装置10が示されている。動的粘弾性測定装置10は、装置本体11を備えており、該装置本体11にはプローブ12が取り付けられている。プローブ12は、被測定物に与える変形の種類に応じ、種々の形状のものが用いられる。プローブ12は、装置本体11から鉛直下方に向けて垂下するように取り付けられている。尤も、プローブ12の取付態様はこれに限られず、例えば装置本体11から水平方向に張り出すように取り付けられてもよい。プローブ12の取付態様は、被測定物に与える変形の種類、プローブ12の形状、被測定物の種類、被測定物の形状等に応じて適宜決定される。   FIG. 1 shows a dynamic viscoelasticity measuring device 10 as an example of a mechanical property measuring device used with the holder of the present invention. The dynamic viscoelasticity measuring apparatus 10 includes an apparatus main body 11, and a probe 12 is attached to the apparatus main body 11. Probes of various shapes are used according to the type of deformation applied to the object to be measured. The probe 12 is attached so as to hang vertically downward from the apparatus main body 11. However, the attachment mode of the probe 12 is not limited to this, and for example, the probe 12 may be attached so as to protrude from the apparatus main body 11 in the horizontal direction. The attachment mode of the probe 12 is appropriately determined according to the type of deformation applied to the object to be measured, the shape of the probe 12, the type of object to be measured, the shape of the object to be measured, and the like.

動的粘弾性測定装置10は、テーブル13の載置面13a上に載置されている。動的粘弾性測定装置10に隣接した位置には架台14が設置されている。架台14は、被測定物(図示せず)が載置される。したがって架台14の載置面14aは、少なくともプローブ12の直下に位置している。   The dynamic viscoelasticity measuring device 10 is placed on the placement surface 13 a of the table 13. A gantry 14 is installed at a position adjacent to the dynamic viscoelasticity measuring apparatus 10. A measurement object (not shown) is placed on the gantry 14. Therefore, the mounting surface 14 a of the gantry 14 is at least directly below the probe 12.

図2には、図1に示す動的粘弾性測定装置10とともに用いられる保持具20が示されている。保持具20は、被測定物の外形に合わせて該被測定物の保持が可能な形状に変形可能になされている。これとともに保持具20は、計測時に該形状が保持可能になされている。このような構成を達成するために、保持具20は、変形可能な気密袋21を備えている。気密袋21は気体非透過性のシート材料から構成されている。保持具20の肌触りを良好にすることを目的として、気密袋21は高分子材料又は発泡高分子シート等のフレキシブルな素材であることが好ましい。更に気密袋21は、その外面が布で覆われていてもよい。布で覆うことは、被測定物はヒトの身体の一部である場合に特に有用である。気密袋21の内部には顆粒状物質(図示せず)が封入されている。顆粒状物質は一般にその平均的な大きさが、気密袋21内を減圧したときに、ある程度の柔軟性を保つようにする観点から、1mm以上で、被測定物の外形への追従性を維持する観点から、8mm以下の粒状体からなる。この粒状体は、被測定物の測定時に加わる荷重に対して実質的に変形しない程度の剛性を有する固体物質から構成されている。また、この粒状体は中実体であるか、又は中空体である。中実体と中空体との混合物を用いてもよい。   FIG. 2 shows a holder 20 used with the dynamic viscoelasticity measuring apparatus 10 shown in FIG. The holder 20 can be deformed into a shape capable of holding the object to be measured in accordance with the outer shape of the object to be measured. At the same time, the holder 20 can hold the shape during measurement. In order to achieve such a configuration, the holder 20 includes a deformable airtight bag 21. The airtight bag 21 is made of a gas-impermeable sheet material. For the purpose of improving the feel of the holder 20, the airtight bag 21 is preferably a flexible material such as a polymer material or a foamed polymer sheet. Furthermore, the outer surface of the airtight bag 21 may be covered with a cloth. Covering with a cloth is particularly useful when the object to be measured is a part of the human body. A granular substance (not shown) is sealed inside the airtight bag 21. In general, the granular substance has an average size of 1 mm or more from the viewpoint of maintaining a certain degree of flexibility when the inside of the airtight bag 21 is depressurized. From the viewpoint of making, it consists of a granular material of 8 mm or less. This granular material is composed of a solid substance having a rigidity that does not substantially deform with respect to a load applied during measurement of the object to be measured. In addition, the granular body is a solid body or a hollow body. A mixture of a solid body and a hollow body may be used.

顆粒状物質はその形状に特に制限はなく、例えば球状、多面体状、楕円球状、紡錘状、不定形等であり得る。これらの形状の組み合わせを用いてもよい。気密袋21の内部での顆粒状物質の充填性を高め、被測定物の測定時に保持具20の形状を確実に保持する観点からは、略球状の形状を有する顆粒状物質を用いることが好ましい。   The shape of the granular substance is not particularly limited, and may be, for example, spherical, polyhedral, elliptical, spindle, or irregular. A combination of these shapes may be used. From the viewpoint of enhancing the filling property of the granular substance inside the airtight bag 21 and securely holding the shape of the holder 20 when measuring the object to be measured, it is preferable to use a granular substance having a substantially spherical shape. .

顆粒状物質は、気密袋21内において流動可能な状態で封入されている。それによって、保持具20はその外形を自由に変形させることが可能となる。また被測定物の外形に適応して形状に容易に変形し得る点から、保持具20はその外形が、図2に示すとおり扁平体であることが好ましい。   The granular substance is sealed in a state in which it can flow in the airtight bag 21. Thereby, the holder 20 can freely deform its outer shape. Moreover, it is preferable that the outer shape of the holder 20 is a flat body as shown in FIG. 2 because it can be easily deformed into a shape in conformity with the outer shape of the object to be measured.

保持具20の気密袋21には連通部22が備えられている。連通部22は気密袋21の内部と外部とを繋ぐ部材である。図2に示す実施形態では連通部22は筒状の形状をしている。この筒には、例えば、二方弁(図示せず)が設けられている。この二方弁は、連通部22を通じての気密袋21の内部から外部への気体の排気及び外部から内部への気体の流入を調整できる構造を有している。なお、二方弁に替えて逆止弁を用いることもできる。   The airtight bag 21 of the holder 20 is provided with a communication part 22. The communication part 22 is a member that connects the inside and the outside of the airtight bag 21. In the embodiment shown in FIG. 2, the communication part 22 has a cylindrical shape. This cylinder is provided with, for example, a two-way valve (not shown). This two-way valve has a structure capable of adjusting the exhaust of gas from the inside to the outside of the airtight bag 21 through the communication portion 22 and the inflow of gas from the outside to the inside. A check valve may be used instead of the two-way valve.

以上のとおりの構成を有する保持具20は、いわゆる減圧式ビーズマットという称呼で広く知られている物品である。この種の保持具20を用いる場合には、保持具20とは別に用意しておいた排気ポンプ40の排気管41を、気密袋21に取り付けられている連通部22と接続する。この時点では、気密袋21内には空気が存在している。また気密袋21内に封入されている顆粒状物質は流動状態を保っており、保持具20も、外力によって変形可能な状態を保っている。この状態から排気ポンプ40を作動させると、気密袋21内に存在している空気が次第に排気されて気密袋21は次第に縮小していくとともに、顆粒状物質が流動性を次第に喪失していき締め固まった状態となる。そして気密袋21内を−20〜−40kPa(ゲージ圧)程度の吸引力で減圧すると、顆粒状物質は流動性をほぼ喪失し、ほぼ変形不能な締め固まった状態となる。このようにして、保持具20はその形状が保持可能になる。   The holder 20 having the configuration as described above is an article widely known as a so-called decompression type bead mat. When this type of holder 20 is used, the exhaust pipe 41 of the exhaust pump 40 prepared separately from the holder 20 is connected to the communication portion 22 attached to the airtight bag 21. At this time, air exists in the airtight bag 21. In addition, the granular substance enclosed in the airtight bag 21 is kept in a fluid state, and the holder 20 is also kept in a state where it can be deformed by an external force. When the exhaust pump 40 is operated from this state, the air present in the airtight bag 21 is gradually exhausted, and the airtight bag 21 gradually shrinks, and the granular substance gradually loses fluidity and tightens. It becomes a solid state. When the inside of the airtight bag 21 is depressurized with a suction force of about −20 to −40 kPa (gauge pressure), the granular substance almost loses its fluidity and becomes a compacted state that is almost impossible to deform. In this way, the holder 20 can hold its shape.

図3には、動的粘弾性装置10及び保持具20を用いて、被測定物を測定する状態の一例が示されている。同図においては、ヒト30を被験者とし、ヒト30の前腕部31の内側の皮膚を被測定物とした状態が示されている。図3に示す実施形態においては、例えば美容の目的、皮膚に塗布する化粧料の開発又は選定の目的、皮膚に塗布する医薬部外品の開発又は選定の目的などの非医療行為を目的として測定を行っている。   FIG. 3 shows an example of a state in which an object to be measured is measured using the dynamic viscoelastic device 10 and the holder 20. In the figure, a state is shown in which the human 30 is the subject and the skin inside the forearm portion 31 of the human 30 is the object to be measured. In the embodiment shown in FIG. 3, measurement is performed for the purpose of non-medical activities such as the purpose of cosmetics, the purpose of developing or selecting cosmetics to be applied to the skin, the purpose of developing or selecting quasi-drugs to be applied to the skin. It is carried out.

図3に、被験者であるヒト30が架台14に隣接している椅子15に腰掛け、左腕の前腕部31を、その内側がプローブ12と対向するように、架台14の載置面14aに載置している状態が示されている。前腕部31と載置面14aとの間には保持具20が配置されている。保持具20が縦長の形状をした扁平体であり、その長手方向が前腕部31の延びる方向と一致するように、前腕部31と載置面14aとの間に配置されている。   In FIG. 3, a human subject 30 sits on a chair 15 adjacent to the gantry 14 and places the forearm portion 31 of the left arm on the placement surface 14 a of the gantry 14 so that the inner side faces the probe 12. The state is shown. The holder 20 is disposed between the forearm portion 31 and the placement surface 14a. The holding tool 20 is a flat body having a vertically long shape, and is disposed between the forearm portion 31 and the placement surface 14 a so that the longitudinal direction thereof coincides with the extending direction of the forearm portion 31.

この場合、保持具20の両端域23a及び23bが、架台14の載置面14aにおける前後の端縁から外方に延出し、且つ鉛直下方に向けて垂下するように、該保持具20を配置する位置を調整する。次に、図3に示す状態にある保持具20と前腕部31とを良く馴染ませて、両者が極力密着し、両者間に隙間が極力生じないように、保持具20を変形させる。この状態下に、保持具20における連通部(図示せず)に、図2に示す排気ポンプ40を接続し、保持具20の気密袋21内の気体を脱気する。この脱気によって、保持具20の気密袋21が次第に縮小していき、顆粒状物質は流動性をほぼ喪失してほぼ変形不能な締め固まった状態となる。これによって被測定物である前腕部31の固定状態が完成する。その結果、測定の間にわたり前腕部31の動きが阻止される。また、この状態は、ヒト30が自然な姿勢になっているので、肉体的な負担が少ない。また、保持具20による前腕部31の固定状態では過度な締め付けは起こらないので、例えば血流の変化や筋肉の弛緩等、測定に影響を来すような身体的変化が生じにくい。   In this case, the holding tool 20 is arranged so that both end areas 23a and 23b of the holding tool 20 extend outward from the front and rear edges of the mounting surface 14a of the gantry 14 and hang downward vertically. Adjust the position. Next, the holder 20 and the forearm portion 31 in the state shown in FIG. 3 are well adapted to each other, and the holder 20 is deformed so that both are in close contact with each other as much as possible and no gap is generated between them. Under this state, the exhaust pump 40 shown in FIG. 2 is connected to a communication portion (not shown) in the holder 20 to degas the gas in the airtight bag 21 of the holder 20. By this deaeration, the airtight bag 21 of the holder 20 gradually shrinks, and the granular substance almost loses its fluidity and becomes a compacted state that is almost impossible to deform. As a result, the fixed state of the forearm 31 which is the object to be measured is completed. As a result, the movement of the forearm 31 is prevented during the measurement. In this state, since the human 30 is in a natural posture, the physical burden is small. In addition, since excessive tightening does not occur when the forearm 31 is fixed by the holder 20, physical changes that affect measurement, such as changes in blood flow and muscle relaxation, are unlikely to occur.

このようにして前腕部31の固定状態が完成したら、図4に示すとおり、動的粘弾性測定装置10の装置本体11に取り付けられているプローブ12を降下させて、前腕部31の皮膚に当接させる。そしてプローブ12に所定の動作を行わせる。本実施形態における所定の動作の例としては、圧縮、引っ張り、ねじり、などが挙げられるが、これらに制限されない。プローブ12の動作によって、前腕部31の皮膚に変形が加えられ、その変形に起因する力学応答特性がプローブ12によって検知されて計測される。測定の間は、前腕部31は保持具20によって確実に固定されている。したがって精度の高い測定を行うことができる。また、この際、もう一方の手である決まった箇所を掴む等することで、身体の体勢を一定に保ち、より精度の高い測定を行うことができる。   When the fixed state of the forearm portion 31 is completed in this way, the probe 12 attached to the device body 11 of the dynamic viscoelasticity measuring device 10 is lowered to contact the skin of the forearm portion 31 as shown in FIG. Make contact. Then, the probe 12 is caused to perform a predetermined operation. Examples of the predetermined operation in the present embodiment include, but are not limited to, compression, pulling, twisting, and the like. Due to the operation of the probe 12, the skin of the forearm portion 31 is deformed, and the mechanical response characteristic resulting from the deformation is detected and measured by the probe 12. During the measurement, the forearm portion 31 is securely fixed by the holder 20. Therefore, highly accurate measurement can be performed. Further, at this time, by grasping a fixed position which is the other hand, the body posture can be kept constant, and more accurate measurement can be performed.

図5には、図4に示す測定を行った後の状態が示されている。図5には被験者であるヒト30は示されていない。図5に示すとおり、脱気されて形状が固定化された保持具20は、架台14の載置面14aにおいて、その前後方向の位置が固定されている。この理由は、図6及び図7に示すとおり、形状が固定化された状態の保持具20においては、その両端域23a及び23bが鉛直下方に向けて垂下した状態でその形状が固定化されており、これら両端域23a及び23bが前後方向の位置決め手段として機能するからである。詳細には、保持具20の両端域の一方23aが架台14の載置面14aの前端部に係止され、且つ両端域の他方23bが載置面14aの後端部に係止されることで、保持具20はその前後方向の位置が一定の位置に固定される。その結果、例えば測定が一旦終了し、ヒト30が動的粘弾性測定装置10から離れた後、すなわち図5に示す状態になった後、再び計測を行う場合、既に形状が確定している保持具20の凹部20aに前腕部31を嵌め込めば、先に行った測定状態が容易に再現され、再測定を容易に行うことができる。この場合、横方向に関しては、再測定に際して位置ずれが生じている可能性があるが、そうであったとしても、保持具20を左右に平行移動させることで横方向の位置ずれは容易に修正することができる。したがって横方向に関する位置ずれは、再測定の際の精度に影響は及ぼさない。あるいは、横方向の固定もできるよう、架台14あるいは載置面14aに凸部等を設けてもよい。   FIG. 5 shows a state after the measurement shown in FIG. FIG. 5 does not show the human 30 as the subject. As shown in FIG. 5, the position of the holder 20, which has been deaerated and fixed in shape, in the front-rear direction on the placement surface 14 a of the gantry 14 is fixed. The reason for this is that, as shown in FIGS. 6 and 7, in the holder 20 in a state in which the shape is fixed, the shape is fixed in a state in which both end regions 23 a and 23 b are suspended vertically downward. This is because these both end regions 23a and 23b function as positioning means in the front-rear direction. Specifically, one end 23a of both end regions of the holder 20 is locked to the front end portion of the mounting surface 14a of the gantry 14, and the other end 23b of both end regions is locked to the rear end portion of the mounting surface 14a. Thus, the holder 20 is fixed at a fixed position in the front-rear direction. As a result, for example, when the measurement is once completed and the human 30 is separated from the dynamic viscoelasticity measuring apparatus 10, that is, after the state shown in FIG. If the forearm portion 31 is fitted in the recess 20a of the tool 20, the previously measured state can be easily reproduced, and remeasurement can be easily performed. In this case, there is a possibility that misalignment has occurred in the horizontal direction during the re-measurement, but even if so, the misalignment in the horizontal direction can be easily corrected by moving the holder 20 to the left and right. can do. Therefore, the positional deviation in the lateral direction does not affect the accuracy during remeasurement. Or you may provide a convex part etc. in the mount frame 14 or the mounting surface 14a so that fixation in a horizontal direction can also be performed.

以上の実施形態において用いられる動的粘弾性測定装置10としては、ヒトの皮膚に、制御された変形(あるいは制御された力)を加え、その応答としての力(あるいは変形)を検出するための機構を備えていることが好ましい。具体的には、以下の(1)−(3)のいずれかの装置を用いることが好ましい。
(1)皮膚測定表面部位の中心点への接面に垂直な方向への押し付け力又は押し付け変位を与えつつ、接面に平行な方向での回転振動変形又は回転変形を与えることにより力学計測を行い得る装置。
(2)皮膚測定表面部位の中心点への接面に垂直な方向への一定力や変形での押し付け、あるいは制御された押し付け力又は移動速度で押し付けや引き上げを行うことで力学計測を行い得る装置。
(3)(1)及び(2)の両方のモードを組み合わせた計測を行い得る装置。
As the dynamic viscoelasticity measuring apparatus 10 used in the above embodiment, a controlled deformation (or controlled force) is applied to human skin, and a force (or deformation) as a response is detected. A mechanism is preferably provided. Specifically, it is preferable to use any of the following devices (1) to (3).
(1) Skin measurement A mechanical measurement is performed by applying a rotational vibration deformation or a rotational deformation in a direction parallel to the contact surface while applying a pressing force or a displacement in a direction perpendicular to the contact surface to the center point of the surface portion. Possible device.
(2) Skin measurement The mechanical measurement can be performed by pressing with a constant force or deformation in a direction perpendicular to the tangent to the center point of the surface part, or by pressing or pulling up with a controlled pressing force or moving speed. apparatus.
(3) An apparatus capable of performing measurement combining both modes (1) and (2).

特に、精度の高い測定を行うためには、以下の性能を有する装置を用いることが好適である。
・検出可能な最小トルク(振動):1nNm以上1μNm以下
・検出可能な最小トルク(回転):5nNm以上1μNm以下
・計測可能な最大トルク:10mNm以上300mNm以下
・トルク分解能:0.07nNm以上100nNm以下
・設定可能角度:0.07μrad以上
・回転角分解能:7nrad以上70nrad以下
・ステップ速度(応答時間):3ms以上30ms以下
・ステップ歪み(応答時間):8ms以上50ms以下
・ステップ時間(設定値の99%):10ms以上200ms以下
・角速度範囲:10−4−1〜314s−1程度
・角周波数範囲:10−3−1〜628s−1程度
・法線力範囲:0.005N以上50N以下
・法線力分解能:0.5mN
In particular, in order to perform measurement with high accuracy, it is preferable to use an apparatus having the following performance.
・ Minimum detectable torque (vibration): 1 nNm to 1 μNm ・ Minimum detectable torque (rotation): 5 nNm to 1 μNm ・ Maximum measurable torque: 10 mNm to 300 mNm ・ Torque resolution: 0.07 nNm to 100 nNm Settable angle: 0.07 μrad or more ・ Rotational angle resolution: 7 nrad or more and 70 nrad or less ・ Step speed (response time): 3 ms or more and 30 ms or less ・ Step distortion (response time): 8 ms or more and 50 ms or less ・ Step time (99% of setting value) ): 10 ms or 200ms or less-speed range: 10 -4 s -1 ~314s -1 or level angular frequency range: 10 -3 s -1 ~628s -1 or level normal force range: 0.005 N or 50N or less- Normal force resolution: 0.5mN

本発明の保持具20を用いた計測は様々な場面で有用なものである。例えば被験体がヒトである場合、ヒトの皮膚に化粧製剤を塗布又は貼付し、その状態下に計測を行うことで、化粧製剤によって得られる皮膚の感触等の性能を客観的に評価することができる。この評価は、個人個人に適した化粧製剤の選定に有用であり、また新たな化粧製剤の開発にも有用である。この場合、装置10に取り付けられているプローブ12の種類を適切に選定することで、測定の精度、ひいては評価の精度を一層高くすることができる。例えばプローブ12を用いて粘弾性測定を行う場合には、図8に示すように、被測定物との当接面に複数条の溝25が設けられたプローブ12を用いることで、被測定物との間で滑りが発生することが効果的に防止されて、測定の精度を高めることができる。また、摩擦測定や圧縮測定を行う場合には、被測定物との当接面が平滑であり、且つ耐摩耗性の高い材料からなるプローブ12を用いることで、測定の精度を高めることができる。   Measurement using the holder 20 of the present invention is useful in various situations. For example, when the subject is a human, it is possible to objectively evaluate the performance such as skin feel obtained from the cosmetic preparation by applying or applying the cosmetic preparation to human skin and performing measurement under the condition. it can. This evaluation is useful for selecting a cosmetic preparation suitable for an individual, and also for developing a new cosmetic preparation. In this case, by appropriately selecting the type of the probe 12 attached to the apparatus 10, the accuracy of measurement, and thus the accuracy of evaluation can be further increased. For example, when the viscoelasticity measurement is performed using the probe 12, as shown in FIG. 8, the probe 12 having a plurality of grooves 25 on the contact surface with the object to be measured is used. It is possible to effectively prevent the occurrence of slipping between the two and increase the measurement accuracy. In addition, when performing friction measurement or compression measurement, the measurement accuracy can be increased by using the probe 12 made of a material having a smooth contact surface with the object to be measured and having high wear resistance. .

従来、ヒトの皮膚及び皮膚上に施された化粧製剤の塗膜のレオロジー特性を測定する機器としては、例えばキュートメーターやダーマトルクメーターが用いられてきた。またヒトの皮膚及び皮膚上に施された化粧製剤の塗膜の摩擦特性を測定する機器としては、例えばKES−SE摩擦感テスターやハンディラボマスターが用いられてきた。しかし、これらの機器には、化粧製剤を塗布した条件では測定が困難であり、また押圧を制御できないという欠点があった。これに対して、上述の保持具20を用いれば、ヒトの皮膚及び皮膚上に施された化粧製剤の塗膜のレオロジー特性を容易に計測できる。しかも、保持具20の構造は簡素なものであり、形状の固定作業も容易に行うことができる。その上、複数回の繰り返し使用が可能である。このように、上述の保持具を用いた計測は、これまでにない容易、且つ精度の高いものとなり、各種の計測分野において極めて有用なものとなる。   Conventionally, for example, a cut meter or a derma torque meter has been used as a device for measuring the rheological properties of human skin and a coating film of a cosmetic preparation applied on the skin. Further, as a device for measuring the friction characteristics of human skin and the coating film of a cosmetic preparation applied on the skin, for example, KES-SE friction tester and handy lab master have been used. However, these devices have the disadvantages that measurement is difficult under the condition that a cosmetic preparation is applied, and that pressing cannot be controlled. On the other hand, if the above-mentioned holder 20 is used, the rheological properties of the human skin and the coating film of the cosmetic preparation applied on the skin can be easily measured. Moreover, the structure of the holder 20 is simple, and the shape can be fixed easily. In addition, it can be used multiple times. As described above, the measurement using the above-described holder becomes easier and more accurate than ever, and is extremely useful in various measurement fields.

以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されない。例えば前記実施形態においては、力学特性計測装置の一例として粘弾性測定装置を挙げて本発明の保持具及び力学特性計測システムを説明したが、力学特性計測装置はこれに限られない。   As mentioned above, although this invention was demonstrated based on the preferable embodiment, this invention is not restrict | limited to the said embodiment. For example, in the above-described embodiment, the viscoelasticity measuring device has been described as an example of the mechanical property measuring device, and the holder and the mechanical property measuring system of the present invention have been described. However, the mechanical property measuring device is not limited thereto.

また、前記実施形態においては、保持具20として、いわゆる減圧式ビーズマットを例に挙げて本発明を説明したが、減圧式ビーズマット以外の保持具を用いてもよい。   In the above embodiment, the present invention has been described by taking a so-called decompression type bead mat as an example of the retainer 20, but a retainer other than the decompression type bead mat may be used.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples.

〔実施例1〕
本実施例においては、被測定物としてヒトの上腕内側部を用い、肌の力学応答特性を測定した。測定には、図1に示す動的粘弾性測定装置10及び図2に示す保持具20を用いた。保持具20としては減圧式ビーズマットを用いた。保持具20を図3に示すとおりに装置10に設置し、保持具20によってヒトの上腕内側部を保持した。動的粘弾性測定装置10に取り付けるプローブ12としては図8に示す、溝形成による滑り止め処理を施した直径8mmのアルミニウム合金製の円板セルを用いた。この測定により得られるトルク値は、ヒトの肌の硬さの指標となるものであり、tanδ値は肌の質(弾性的か、あるいは粘性的か)の指標となるものである。測定は2段階で行った。最初にセルが計測対象部位を1Nの押し付け力で押すように制御し(全5秒間)、続いて押し付け力を1Nに制御しつつ、一定の時間間隔で10点の測定を行った。測定周波数は2Hzで、振幅は0.8度とした。
[Example 1]
In this example, the inner skin of a human upper arm was used as an object to be measured, and the mechanical response characteristics of the skin were measured. For the measurement, the dynamic viscoelasticity measuring apparatus 10 shown in FIG. 1 and the holder 20 shown in FIG. 2 were used. A vacuum bead mat was used as the holder 20. The holder 20 was installed in the apparatus 10 as shown in FIG. As the probe 12 attached to the dynamic viscoelasticity measuring apparatus 10, a disk cell made of an aluminum alloy having a diameter of 8 mm and subjected to an anti-slip treatment by groove formation shown in FIG. 8 was used. The torque value obtained by this measurement is an index of human skin hardness, and the tan δ value is an index of skin quality (elastic or viscous). The measurement was performed in two stages. First, the cell was controlled so as to press the measurement target part with a pressing force of 1N (5 seconds in total), and subsequently, the measurement was performed at 10 points at regular time intervals while controlling the pressing force to 1N. The measurement frequency was 2 Hz and the amplitude was 0.8 degrees.

化粧品等の塗布をしていないブランク肌について、保持具20による保持の有無で測定を行った。その結果を図9(a)及び(b)に示す。なお、測定時間の間隔を多少変更しても結果が大きく異ならないことが判明したので、ある時期から、検討初期の頃よりも測定時間の間隔を短くした。同図中、保持具20による保持なしの結果は5秒間隔での測定結果であり、保持具20による保持ありの結果は3秒間隔での測定結果である。トルク及びtanデルタともに2回の測定結果を示しているが、トルク値及びtanδ値ともに、保持具20による保持を行った場合の方が値の変動が少ないことが判る。   About the blank skin which has not apply | coated cosmetics etc., it measured by the presence or absence of the holding | maintenance by the holder 20. FIG. The results are shown in FIGS. 9 (a) and 9 (b). In addition, since it became clear that even if the measurement time interval was slightly changed, the results did not differ greatly, the measurement time interval was shortened from a certain period of time compared to the early stage of the study. In the figure, the result without holding by the holder 20 is a measurement result at intervals of 5 seconds, and the result with holding by the holder 20 is a measurement result at intervals of 3 seconds. Both the torque and the tan delta show the measurement results twice, but it can be seen that both the torque value and the tan δ value change less when the holding by the holder 20 is performed.

測定値の変動を定量的に示すため、各測定における測定値の標準偏差を求めたところ、以下の表1に示す結果が得られた。   In order to quantitatively show the fluctuation of the measured value, the standard deviation of the measured value in each measurement was obtained, and the results shown in Table 1 below were obtained.

Figure 2018044798
Figure 2018044798

同表に示す結果から明らかなとおり、トルク値及びtanδ値ともに、保持具20による保持を行うことで、保持を行わない場合に比べて測定の精度が一桁向上することが判る。   As is clear from the results shown in the table, it can be seen that both the torque value and the tan δ value are improved by one digit when the holding tool 20 is used, compared with the case where the holding is not performed.

〔実施例2〕
本発明の方法によって市販化粧水A、B及びCの塗布に起因する肌の硬さの変化を測定した例を示す。化粧水を塗布する前のブランク肌、並びに各化粧水を塗布した直後及び塗布後一定時間経過後の肌の動的粘弾性測定を行った。化粧水の塗布に起因する肌の硬さの時間変化を知るために、ブランク肌の測定時のトルク値を基準とした変化率を、各測定点について求めた。変化率は以下の式で定義される。
変化率=(T−T)/T
式中、Tはブランク肌のトルク値を表し、Tは各化粧水を塗布してt分経過後でのトルク値を表す。
変化率の経過時間依存性を図10に示す。同図に示す結果から明らかなとおり、化粧水の塗布によって、塗布の直後ではどの化粧水でも肌の硬さは低下したが、その後の挙動は化粧水により全く異なることが計測できた。
[Example 2]
The example which measured the change of the hardness of the skin resulting from application | coating of commercially available lotion A, B, and C by the method of this invention is shown. The dynamic skin viscoelasticity measurement was performed on the blank skin before applying the skin lotion, and on the skin immediately after applying each skin lotion and after a certain period of time after application. In order to know the time change of the hardness of the skin caused by the application of the skin lotion, the rate of change based on the torque value at the time of measuring the blank skin was obtained for each measurement point. The rate of change is defined by the following equation.
Rate of change = (T t −T 0 ) / T 0
In the formula, T 0 represents the torque value of the blank skin, and T t represents the torque value after elapse of t minutes after applying each lotion.
FIG. 10 shows the dependence of the change rate on the elapsed time. As is clear from the results shown in the figure, it was possible to measure that the skin hardness decreased with any lotion immediately after the application, but the behavior after that was completely different depending on the lotion.

10 動的粘弾性測定装置
11 装置本体
12 プローブ
13 テーブル
14 架台
14a 載置面
20 保持具
20a 凹部
21 気密袋
22 連通部
30 ヒト
31 前腕部
DESCRIPTION OF SYMBOLS 10 Dynamic viscoelasticity measuring apparatus 11 Apparatus main body 12 Probe 13 Table 14 Mounting base 14a Mounting surface 20 Holder 20a Recessed part 21 Airtight bag 22 Communication part 30 Human 31 Forearm part

Claims (4)

被測定物に変形を与えたときの力学応答特性を計測する装置本体を備える力学特性計測装置を用いて、該被測定物の力学応答特性を、該被測定物を保持した状態下に計測するために用いられる被測定物の保持具であって
前記保持具は、前記被測定物の外形に合わせて該被測定物の保持が可能な形状に変形可能になされているとともに、計測時に該形状が保持可能になされている、被測定物の保持具。
Using a mechanical characteristic measuring device including a device main body that measures a mechanical response characteristic when the measured object is deformed, the mechanical response characteristic of the measured object is measured in a state where the measured object is held. A holding device for an object to be measured, wherein the holding device is deformable into a shape capable of holding the object to be measured in accordance with the outer shape of the object to be measured, and the shape at the time of measurement. A holding device for an object to be measured, which can be held.
被測定物の保持が可能な形状に変形可能な気密袋と、該気密袋の内部に封入された顆粒状物質と、該気密袋に備えられその内部と外部とを繋ぐ連通部と、該連通部に備えられた弁とを備える請求項1に記載の被測定物の保持具。   An air-tight bag that can be deformed into a shape capable of holding an object to be measured; a granular substance enclosed in the air-tight bag; a communication portion that is provided in the air-tight bag and connects the inside and the outside; and the communication The measurement object holder according to claim 1, further comprising a valve provided in the section. 前記気密袋はその外面が布で覆われている、請求項2に記載の被測定物の保持具。   The device for holding an object to be measured according to claim 2, wherein an outer surface of the airtight bag is covered with a cloth. 被測定物に変形を与えたときの力学応答特性を計測する装置本体を備える力学特性計測装置と、請求項1ないし3のいずれか一項に記載の被測定物の保持具とを備える力学特性計測システム。   A mechanical characteristic comprising a mechanical characteristic measuring device comprising a device main body for measuring a mechanical response characteristic when the measured object is deformed, and a holder for the measured object according to any one of claims 1 to 3. Measuring system.
JP2016178078A 2016-09-12 2016-09-12 Mechanical property measuring system and mechanical property measuring method Active JP6730145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016178078A JP6730145B2 (en) 2016-09-12 2016-09-12 Mechanical property measuring system and mechanical property measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016178078A JP6730145B2 (en) 2016-09-12 2016-09-12 Mechanical property measuring system and mechanical property measuring method

Publications (2)

Publication Number Publication Date
JP2018044798A true JP2018044798A (en) 2018-03-22
JP6730145B2 JP6730145B2 (en) 2020-07-29

Family

ID=61693564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016178078A Active JP6730145B2 (en) 2016-09-12 2016-09-12 Mechanical property measuring system and mechanical property measuring method

Country Status (1)

Country Link
JP (1) JP6730145B2 (en)

Also Published As

Publication number Publication date
JP6730145B2 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
Poskus et al. Influence of placement techniques on Vickers and Knoop hardness of class II composite resin restorations
Rodrigues EEMCO guidance to the in vivo assessment of tensile functional properties of the skin: part 2: instrumentation and test modes
Loumprinis et al. Viscosity and stickiness of dental resin composites at elevated temperatures
Oudry et al. Comparison of four different techniques to evaluate the elastic properties of phantom in elastography: is there a gold standard?
Kumar et al. Measurement of viscoelastic properties of polyacrylamide-based tissue-mimicking phantoms for ultrasound elastography applications
Buffinton et al. Comparison of mechanical testing methods for biomaterials: Pipette aspiration, nanoindentation, and macroscale testing
DK201300146U1 (en) Apparatus for non-invasive spectroscopic measurement of analytes and method for using the same
WO2007021771A3 (en) Force based measurement of tissue compliance
CN104107094A (en) Three-dimensional force measure system of non-trace rectification device as well as measure method
US9541491B2 (en) Test methods and device for measuring transient resistance to movement
Templeton et al. Dynamic stiffness of papillary muscle during contraction and relaxation
Arslanoglu et al. Evaluation of surface properties of four tooth-colored restorative materials
JP6940344B2 (en) How to evaluate cosmetics
JP6730145B2 (en) Mechanical property measuring system and mechanical property measuring method
Gaihede et al. In vivo areal modulus of elasticity estimation of the human tympanic membrane system: modelling of middle ear mechanical function in normal young and aged ears
CN102596022A (en) Device, system, and method for determination of oral/lip stiffness
US10132734B2 (en) Process for evaluating the mechanical performance of a filler gel
JP2007206000A (en) Lip pressure measuring device
Murata et al. The determination of working time and gelation time of temporary soft lining materials
CN116263388A (en) Soft tissue cycle torque stress strain on-line detection equipment
US9155467B1 (en) Contoured facial mask with multiple contact probes for use with tactile tonometer
Wei et al. In vivo measurement of the mechanical properties of facial soft tissue using a bi-layer material model
WO2003034012A2 (en) Rupture testing for gloves
Liang et al. Modeling and measurement of tissue elastic moduli using optical coherence elastography
JP2017053791A (en) Method of evaluating viscous cosmetics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200702

R151 Written notification of patent or utility model registration

Ref document number: 6730145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250