JP2018044683A - Evaporator with cold storage function - Google Patents

Evaporator with cold storage function Download PDF

Info

Publication number
JP2018044683A
JP2018044683A JP2016177387A JP2016177387A JP2018044683A JP 2018044683 A JP2018044683 A JP 2018044683A JP 2016177387 A JP2016177387 A JP 2016177387A JP 2016177387 A JP2016177387 A JP 2016177387A JP 2018044683 A JP2018044683 A JP 2018044683A
Authority
JP
Japan
Prior art keywords
refrigerant flow
contact
cold storage
refrigerant
side walls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016177387A
Other languages
Japanese (ja)
Other versions
JP6684683B2 (en
JP2018044683A5 (en
Inventor
鴨志田 理
Osamu Kamoshita
理 鴨志田
基之 ▲高▼木
基之 ▲高▼木
Motoyuki Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr Thermal Systems Japan Ltd
Original Assignee
Keihin Thermal Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Thermal Technology Corp filed Critical Keihin Thermal Technology Corp
Priority to JP2016177387A priority Critical patent/JP6684683B2/en
Priority to CN201710815873.1A priority patent/CN107816826B/en
Publication of JP2018044683A publication Critical patent/JP2018044683A/en
Publication of JP2018044683A5 publication Critical patent/JP2018044683A5/ja
Application granted granted Critical
Publication of JP6684683B2 publication Critical patent/JP6684683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evaporator with a cold storage function capable of extending a cooling time while suppressing deterioration of cooling performance in normal cooling.SOLUTION: An evaporator with a cold storage function includes a heat exchange core portion 4 which has a plurality of refrigerant circulation pipes 12, 13 made of the same material, a cold storage material container 16, and outer fins 17, and in which clearances 15A, 15B are respectively formed between the refrigerant circulation pipes 12, 13 adjacent to each other. The cold storage material container 16 is disposed in the first clearance 15A, and the outer fins 17 are disposed in the second clearances 15B. In the whole refrigerant circulation pipes 12, 13, the first refrigerant circulation pipes 12 kept into contact with the outer fins 17 at right and left both side walls 12a, and the second refrigerant circulation pipes 13 kept into contact with the cold storage material container 16 at one side wall 13a, and kept into contact with the outer fins 17 at the other side wall 13b, are included. A thickness of the side walls 13a kept into contact with the cold storage material container 16 of the second refrigerant circulation pipes 13 is more than a thickness of the right and left both side walls 12a of the first refrigerant circulation pipes 12.SELECTED DRAWING: Figure 2

Description

この発明は蓄冷機能付きエバポレータに関する。   The present invention relates to an evaporator with a cold storage function.

この明細書および特許請求の範囲において、図1〜図3に矢印Xで示す通風方向の下流側から見た上下、左右(図1の上下、左右)を上下、左右というものとする。   In this specification and claims, the top and bottom, left and right (up and down, left and right in FIG. 1) viewed from the downstream side in the ventilation direction indicated by arrow X in FIGS.

たとえば、環境保護や自動車の燃費向上などを目的として、信号待ちなどの停車時にエンジンを自動的に停止させる自動車が提案されている。   For example, for the purpose of protecting the environment and improving the fuel consumption of an automobile, an automobile that automatically stops the engine when the vehicle stops, such as waiting for a signal, has been proposed.

当該自動車のカーエアコンにおいては、エバポレータに蓄冷機能を付与し、エンジンが停止して圧縮機が停止した際に、エバポレータに蓄えられた冷熱を放冷して車室内を冷却することが考えられている。   In the car air conditioner of the automobile, it is considered that the evaporator is provided with a cold storage function, and when the engine stops and the compressor stops, the cold stored in the evaporator is discharged to cool the passenger compartment. Yes.

この種の蓄冷機能付きエバポレータとして、本出願人は、先に、長手方向を上下方向に向けるとともに幅方向を通風方向に向けた複数の扁平状冷媒流通管と、蓄冷材が封入された蓄冷材容器と、アウターフィンとを有する熱交換コア部を備えており、熱交換コア部において、通風方向に並んだ2つの冷媒流通管からなる管組が左右方向に間隔をおいて複数配置されることにより、隣り合う管組どうしの間に間隙が形成され、当該全間隙のうちの一部でかつ複数の間隙に蓄冷材容器が冷媒流通管と接するように配置され、前記全間隙のうちの残りの間隙にアウターフィンが冷媒流通管と接するように配置されるとともに、アウターフィンが配置された間隙が通風間隙となされ、全冷媒流通管の材質が同じであり、全冷媒流通管の中に、左右両側壁がアウターフィンに接している第1冷媒流通管と、左右両側壁のうち少なくともいずれか一方の側壁が蓄冷材容器に接している第2冷媒流通管とがあり、第1冷媒流通管の左右両側壁の肉厚と、第2冷媒流通管の左右両側壁の肉厚が同一となっている蓄冷機能付きエバポレータを提案した(特許文献1参照)。   As an evaporator with this type of cool storage function, the present applicant has previously described a plurality of flat refrigerant flow pipes whose longitudinal direction is directed in the vertical direction and the width direction is directed in the ventilation direction, and the cool storage material in which the cool storage material is enclosed. A heat exchange core portion having a container and an outer fin is provided, and in the heat exchange core portion, a plurality of sets of two refrigerant flow tubes arranged in the ventilation direction are arranged at intervals in the left-right direction. Accordingly, a gap is formed between adjacent pipe sets, and the regenerator container is disposed in a part of the total gap and in a plurality of gaps so as to be in contact with the refrigerant flow pipe. The outer fin is disposed in contact with the refrigerant flow pipe in the gap, the gap in which the outer fin is disposed is a ventilation gap, and the material of all the refrigerant flow pipes is the same. Both left and right There are a first refrigerant flow pipe that is in contact with the outer fin, and a second refrigerant flow pipe that has at least one of the left and right side walls in contact with the cold storage material container, and both left and right sides of the first refrigerant flow pipe An evaporator with a cold storage function in which the wall thickness and the wall thickness of the left and right side walls of the second refrigerant distribution pipe are the same has been proposed (see Patent Document 1).

特許文献1記載の蓄冷機能付きエバポレータによれば、圧縮機が作動している通常の冷房時には、第1冷媒流通管内を流れる冷媒の有する冷熱が、その左右両側壁を介して両側のアウターフィンに伝わり、アウターフィンに伝わった冷熱により通風間隙を流れる空気が冷却され、冷却された空気が車室内に送り込まれるようになっている。また、圧縮機が作動している通常の冷房時には、第2冷媒流通管内を流れる冷媒の有する冷熱が、その左右両側壁のうち蓄冷材容器と接している側壁を介して蓄冷材容器内の蓄冷材に伝わって蓄冷材に蓄えられる。   According to the evaporator with a cold storage function described in Patent Document 1, during normal cooling when the compressor is operating, the cold heat of the refrigerant flowing in the first refrigerant flow pipe is transferred to the outer fins on both sides via the left and right side walls. The air flowing through the ventilation gap is cooled by the cold heat transmitted to the outer fin, and the cooled air is sent into the passenger compartment. Further, during normal cooling when the compressor is operating, the cold heat of the refrigerant flowing in the second refrigerant flow pipe is stored in the cold storage material container via the side walls of the left and right side walls that are in contact with the cold storage material container. It is transmitted to the material and stored in the cold storage material.

圧縮機が停止した際には、蓄冷材容器内の蓄冷材に蓄えられた冷熱が、左右両側壁のうち一方の側壁が蓄冷材容器に接するとともに他方の側壁がアウターフィンに接している第2冷媒流通管における蓄冷材容器と接している前記一方の側壁を介して第2冷媒流通管に伝わり、第2冷媒流通管の前記他方の側壁を介してアウターフィンに伝わり、アウターフィンに伝わった冷熱により通風間隙を流れる空気が冷却され、冷却された空気が車室内に送り込まれるようになっている。したがって、エンジンが停止して圧縮機が停止した際に、エバポレータに蓄えられた冷熱を放冷して車室内を冷却することが可能になり、エンジンが停止した際の冷房能力の急激な低下が抑制されている。   When the compressor is stopped, the cold heat stored in the regenerator material in the regenerator material container is such that one of the left and right side walls is in contact with the regenerator material container and the other side wall is in contact with the outer fin. Cold heat transferred to the second refrigerant flow pipe via the one side wall in contact with the cold storage material container in the refrigerant flow pipe, transferred to the outer fin via the other side wall of the second refrigerant flow pipe, and transferred to the outer fin Thus, the air flowing through the ventilation gap is cooled, and the cooled air is sent into the passenger compartment. Therefore, when the engine is stopped and the compressor is stopped, it is possible to cool the vehicle interior by cooling the cold stored in the evaporator, and the cooling capacity when the engine stops is drastically reduced. It is suppressed.

ところで、特許文献1記載の蓄冷機能付きエバポレータにおいては、エンジンが停止して圧縮機が停止した際の冷熱の放冷時間を長くするには、蓄冷材の量を増やすことが有効であるが、この場合、熱交換コア部の高さおよび左右方向の寸法を一定とした場合、蓄冷材容器の数を増やす必要があり、アウターフィンが配置された通風間隙の数が減少して通常の冷房時の冷房性能が低下する。   By the way, in the evaporator with a cool storage function described in Patent Document 1, it is effective to increase the amount of the cool storage material in order to lengthen the cool cooling time when the engine is stopped and the compressor is stopped. In this case, when the height and the horizontal dimension of the heat exchange core are constant, it is necessary to increase the number of cold storage material containers, and the number of ventilation gaps in which outer fins are arranged is reduced. The cooling performance is reduced.

特開2014−126307号公報JP 2014-126307 A

この発明は、上記問題を解決し、通常の冷房時の冷却性能の低下を抑制した上で放冷時間を延長しうる蓄冷機能付きエバポレータを提供することにある。   This invention solves the said problem, and provides the evaporator with a cool storage function which can extend the cooling time, suppressing the fall of the cooling performance at the time of normal cooling.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)長手方向を上下方向に向けるとともに幅方向を通風方向に向けた複数の扁平状冷媒流通管と、蓄冷材が封入された蓄冷材容器と、アウターフィンとを有する熱交換コア部を備えており、熱交換コア部において、複数の冷媒流通管が左右方向に間隔をおいて複数配置されることにより、左右方向に隣り合う冷媒流通管どうしの間に間隙が形成され、蓄冷材容器が、前記全間隙のうちの一部でかつ複数の間隙に冷媒流通管に接するように配置され、アウターフィンが、前記全間隙の残りである複数の間隙に冷媒流通管に接するように配置されている蓄冷機能付きエバポレータであって、
全冷媒流通管の材質が同じであり、全冷媒流通管の中に、左右両側壁がアウターフィンに接している第1冷媒流通管と、左右両側壁のうちいずれか一方の側壁が蓄冷材容器に接するとともに同他方の側壁がアウターフィンに接している第2冷媒流通管とが含まれ、第2冷媒流通管における蓄冷材容器に接している側壁の肉厚が、第1冷媒流通管の左右両側壁の肉厚よりも大きくなっている蓄冷機能付きエバポレータ。
1) A heat exchange core portion having a plurality of flat refrigerant flow pipes whose longitudinal direction is directed in the vertical direction and the width direction is directed in the ventilation direction, a cold storage material container enclosing the cold storage material, and an outer fin. In the heat exchange core portion, a plurality of refrigerant flow pipes are arranged at intervals in the left-right direction, so that a gap is formed between the refrigerant flow pipes adjacent in the left-right direction, and the regenerator container is A part of the entire gap and a plurality of gaps are arranged so as to be in contact with the refrigerant circulation pipe, and an outer fin is arranged so as to be in contact with the refrigerant circulation pipe in a plurality of gaps remaining in the whole gap. An evaporator with a cold storage function,
The material of all the refrigerant circulation pipes is the same, and the first refrigerant circulation pipe whose left and right side walls are in contact with the outer fins and either one of the left and right side walls are the cold storage container. And a second refrigerant circulation pipe whose other side wall is in contact with the outer fin, and the thickness of the side wall in contact with the cold storage material container in the second refrigerant distribution pipe is equal to that of the first refrigerant circulation pipe. Evaporator with cool storage function that is larger than the wall thickness on both sides.

2)第2冷媒流通管における蓄冷材容器に接している側壁の肉厚がアウターフィンに接している側壁の肉厚よりも大きくなっている上記1)記載の蓄冷機能付きエバポレータ。   2) The evaporator with a cool storage function according to 1), wherein the thickness of the side wall in contact with the cool storage material container in the second refrigerant flow pipe is larger than the thickness of the side wall in contact with the outer fin.

3)第1冷媒流通管の左右両側壁の肉厚が同一であり、第2冷媒流通管におけるアウターフィンに接している側壁の肉厚が、第1冷媒流通管の左右両側壁の肉厚と同一である上記2)記載の蓄冷機能付きエバポレータ。   3) The thickness of the left and right side walls of the first refrigerant flow pipe is the same, and the thickness of the side wall in contact with the outer fin in the second refrigerant flow pipe is equal to the thickness of the left and right side walls of the first refrigerant flow pipe. The evaporator with a cold storage function as described in 2) above, which is the same.

4)第1冷媒流通管の左右両側壁の肉厚が同一であり、第2冷媒流通管の左右両側壁の肉厚が同一であるとともに、第1冷媒流通管の左右両側壁の肉厚よりも大きくなっている上記1)記載の蓄冷機能付きエバポレータ。   4) The thickness of the left and right side walls of the first refrigerant flow pipe is the same, the thickness of the left and right side walls of the second refrigerant flow pipe is the same, and the thickness of the left and right side walls of the first refrigerant flow pipe The evaporator with a cold storage function as described in 1), which is also larger.

上記1)〜4)の蓄冷機能付きエバポレータによれば、全冷媒流通管の材質が同じであり、全冷媒流通管の中に、左右両側壁がアウターフィンに接している第1冷媒流通管と、左右両側壁のうちいずれか一方の側壁が蓄冷材容器に接するとともに同他方の側壁がアウターフィンに接している第2冷媒流通管とが含まれ、第2冷媒流通管における蓄冷材容器に接している側壁の肉厚が、第1冷媒流通管の左右両側壁の肉厚よりも大きくなっているので、第2冷媒流通管における蓄冷材容器に接している側壁の熱容量が第1冷媒流通管の左右両側壁の熱容量よりも大きくなる。したがって、第1冷媒流通管の左右両側壁の肉厚を特許文献1の第1冷媒流通管の左右両側壁の肉厚と等しくした場合、圧縮機の停止時に、蓄冷材容器内の蓄冷材に蓄えられた冷熱が、第2冷媒流通管を経てアウターフィンに伝わるまでの時間を、特許文献1記載の蓄冷機能付きエバポレータに比べて遅くすることができ、アウターフィンにより通風間隙を流れる空気を冷却する放冷時間を延長することができる。しかも、第1冷媒流通管の左右両側壁の肉厚を、通常の冷房時に第1冷媒流通管内を流れる冷媒の有する冷熱をアウターフィンに効率良く伝えうる肉厚にすることができるとともに、蓄冷材容器の数の増加を抑制してアウターフィンが配置された通風間隙の数の減少を抑制することが可能になり、通常の冷房時の冷房性能の低下を抑制することができる。   According to the evaporator with a cold storage function of the above 1) to 4), the material of all the refrigerant circulation pipes is the same, and the first refrigerant circulation pipe whose left and right side walls are in contact with the outer fins in all the refrigerant circulation pipes And a second refrigerant flow pipe in which one of the left and right side walls is in contact with the cold storage material container and the other side wall is in contact with the outer fin, and is in contact with the cold storage material container in the second refrigerant flow pipe. Since the thickness of the side wall is larger than the thickness of the left and right side walls of the first refrigerant flow pipe, the heat capacity of the side wall in contact with the cold storage material container in the second refrigerant flow pipe is the first refrigerant flow pipe. It becomes larger than the heat capacity of the left and right side walls. Therefore, when the wall thickness of the left and right side walls of the first refrigerant flow pipe is equal to the wall thickness of the left and right side walls of the first refrigerant flow pipe of Patent Document 1, when the compressor is stopped, the cold storage material in the cold storage container is used. The time until the stored cold heat is transmitted to the outer fin through the second refrigerant flow pipe can be delayed as compared with the evaporator with the cold storage function described in Patent Document 1, and the air flowing through the ventilation gap is cooled by the outer fin. The cooling time to be extended can be extended. In addition, the thickness of the left and right side walls of the first refrigerant flow pipe can be made thick enough to efficiently transfer the cold heat of the refrigerant flowing in the first refrigerant flow pipe to the outer fin during normal cooling. It is possible to suppress an increase in the number of containers and suppress a decrease in the number of ventilation gaps in which outer fins are arranged, and it is possible to suppress a decrease in cooling performance during normal cooling.

上記2)および3)の蓄冷機能付きエバポレータによれば、第2冷媒流通管におけるアウターフィンに接する側壁の肉厚を、通常の冷房時に第2冷媒流通管内を流れる冷媒の有する冷熱をアウターフィンに効率良く伝えうる肉厚にすることができ、通常の冷房時の冷房性能の低下を抑制することができる。   According to the evaporator with a cold storage function of 2) and 3) above, the thickness of the side wall in contact with the outer fin in the second refrigerant circulation pipe is set to the outer fin with the cold heat of the refrigerant flowing in the second refrigerant circulation pipe during normal cooling. The thickness can be transmitted efficiently, and a decrease in cooling performance during normal cooling can be suppressed.

この発明による蓄冷機能付きエバポレータの全体構成を示す一部切り欠き斜視図である。1 is a partially cutaway perspective view showing an overall configuration of an evaporator with a cold storage function according to the present invention. 図1のA−A線拡大断面図である。It is an AA line expanded sectional view of FIG. 図1の蓄冷機能付きエバポレータに用いられる蓄冷材容器を示す左側面図である。It is a left view which shows the cool storage material container used for the evaporator with a cool storage function of FIG. 図2の要部拡大図である。FIG. 3 is an enlarged view of a main part of FIG. 2. 図4とは異なる部分を示す図2の要部拡大図である。It is a principal part enlarged view of FIG. 2 which shows a different part from FIG. 図1の蓄冷機能付きエバポレータにおける左右両側壁のうちいずれか一方の側壁が蓄冷材容器に接するとともに同他方の側壁がアウターフィンに接している第2冷媒流通管の変形例を示す図5相当の図である。FIG. 5 shows a modified example of the second refrigerant flow pipe in which one of the left and right side walls of the evaporator with the cold storage function in FIG. 1 is in contact with the cold storage material container and the other side wall is in contact with the outer fin. FIG.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

図1はこの発明による蓄冷機能付きエバポレータの全体構成を示し、図2〜図5はその要部の構成を示す。   FIG. 1 shows the entire structure of an evaporator with a cold storage function according to the present invention, and FIGS.

図1〜図3において、蓄冷機能付きエバポレータ(1)は、長手方向を左右方向に向けるとともに幅方向を通風方向に向けた状態で上下方向に間隔をおいて配置されたアルミニウム製上ヘッダタンク(2)およびアルミニウム製下ヘッダタンク(3)と、両ヘッダタンク(2)(3)間に設けられた熱交換コア部(4)とを備えている。   1 to 3, an evaporator with a cold storage function (1) has an aluminum upper header tank (with an interval in the vertical direction with the longitudinal direction facing the left and right direction and the width direction facing the ventilation direction) 2) and an aluminum lower header tank (3), and a heat exchange core section (4) provided between the header tanks (2) and (3).

上ヘッダタンク(2)は、風下側に位置する風下側上ヘッダ部(5)と、風上側に位置しかつ風下側上ヘッダ部(5)に一体化された風上側上ヘッダ部(6)とを備えている。風下側上ヘッダ部(5)の左端部に冷媒入口(7)が設けられ、風上側上ヘッダ部(6)の左端部に冷媒出口(8)が設けられている。下ヘッダタンク(3)は、風下側に位置する風下側下ヘッダ部(9)と、風上側に位置しかつ風下側下ヘッダ部(9)に一体化された風上側下ヘッダ部(11)とを備えている。   The upper header tank (2) includes a leeward upper header portion (5) located on the leeward side and an upwind header portion (6) located on the leeward side and integrated with the leeward upper header portion (5). And. A refrigerant inlet (7) is provided at the left end of the leeward upper header portion (5), and a refrigerant outlet (8) is provided at the left end of the leeward upper header portion (6). The lower header tank (3) includes a leeward lower header portion (9) located on the leeward side and an upwind lower header portion (11) located on the leeward side and integrated with the leeward lower header portion (9). And.

熱交換コア部(4)には、長手方向を上下方向に向けるとともに幅方向を通風方向に向けた状態で通風方向に間隔をおいて配置された複数、ここでは2つのアルミニウム製扁平状冷媒流通管(12)(13)からなる複数の管組(14)が左右方向に間隔をおいて配置されており、これにより通風方向に並んだ2つの冷媒流通管(12)(13)よりなる管組(14)の隣り合うものどうしの間に間隙(15A)(15B)が形成されている。風下側に並んだ冷媒流通管(12)(13)の上端部は風下側上ヘッダ部(5)に接続されるとともに、同下端部は風下側下ヘッダ部(9)に接続されている。また、風上側に並んだ冷媒流通管(12)(13)の上端部は風上側上ヘッダ部(6)に接続されるとともに、同下端部は風上側下ヘッダ部(11)に接続されている。   In the heat exchanging core part (4), a plurality of, in this case, two aluminum flat refrigerants arranged at intervals in the ventilation direction with the longitudinal direction oriented vertically and the width direction oriented in the ventilation direction A plurality of pipe sets (14) consisting of pipes (12) and (13) are arranged at intervals in the left-right direction, and thereby pipes consisting of two refrigerant flow pipes (12) and (13) aligned in the ventilation direction A gap (15A) (15B) is formed between adjacent ones of the set (14). The upper ends of the refrigerant flow pipes (12) and (13) arranged on the leeward side are connected to the leeward upper header part (5), and the lower ends thereof are connected to the leeward lower header part (9). Further, the upper ends of the refrigerant flow pipes (12) and (13) arranged on the windward side are connected to the windward upper header part (6), and the lower ends thereof are connected to the windward lower header part (11). Yes.

全冷媒流通管(12)(13)の材質は同じである。全冷媒流通管(12)(13)の中に、左右方向に隣り合う第2間隙(15B)どうしの間に位置し、かつ左右両側壁(12a)がアウターフィン(17)に接している第1冷媒流通管(12)と、第1間隙(15A)の左右両側に位置し、かつ左右両側壁(13a)(13b)のうちいずれか一方の側壁(13a)が蓄冷材容器(16)に接するとともに同他方の側壁(13b)がアウターフィン(17)に接している第2冷媒流通管(13)とがある(図2参照)。   The materials of all the refrigerant flow pipes (12) and (13) are the same. In all the refrigerant flow pipes (12) and (13), the second gap (15B) adjacent to each other in the left-right direction is located between the left and right side walls (12a) and the outer fin (17). 1 Refrigerant flow pipe (12) and one side wall (13a) of left and right side walls (13a) (13b) located on the left and right sides of the first gap (15A) are connected to the regenerator container (16). There is a second refrigerant flow pipe (13) in contact with the other side wall (13b) in contact with the outer fin (17) (see FIG. 2).

熱交換コア部(4)における全間隙(15A)(15B)のうち一部でかつ複数の第1間隙(15A)に、蓄冷材が封入されたアルミニウム製蓄冷材容器(16)が、各管組(14)を構成する2つの第2冷媒流通管(13)に跨るように配置されて当該両冷媒流通管(13)の一方の側壁(13a)にろう材により接合されている。以下、ろう材による接合をろう付と称する。熱交換コア部(4)における全間隙(15A)(15B)のうち残りの複数の第2間隙(15B)に、両面にろう材層を有するアルミニウムブレージングシートからなり、かつ通風方向にのびる波頂部、通風方向にのびる波底部、および波頂部と波底部とを連結する連結部よりなるコルゲート状のアウターフィン(17)が、各管組(14)を構成する2つの第1および第2冷媒流通管(12)(13)に跨るように配置されており、第2間隙(15B)が通風間隙となっている。第1間隙(15A)の両隣の第2間隙(15B)に配置されたアウターフィン(17)は、第1冷媒流通管(12)の一方の側壁(12a)および第2冷媒流通管(13)の他方の側壁(13b)にろう付されて、その他の第2間隙(15B)に配置されたアウターフィン(17)は、第1冷媒流通管(12)の側壁(12a)にろう付されている。左右両端の管組(14)の外側にも、アウターフィン(17)が、管組(14)を構成する2つの第1冷媒流通管(12)に跨るように配置されて当該両冷媒流通管(12)の側壁(12a)にろう付され、さらに左右両端のアウターフィン(17)の外側にアルミニウム製サイドプレート(18)が配置されてアウターフィン(17)にろう付されている。   An aluminum regenerator container (16) in which a regenerator material is sealed in a part of the total gaps (15A) and (15B) in the heat exchange core (4) and in a plurality of first gaps (15A) It arrange | positions so that it may straddle two 2nd refrigerant | coolant flow pipes (13) which comprise a group (14), and is joined to one side wall (13a) of the said both refrigerant | coolant flow pipes (13) by the brazing material. Hereinafter, joining with a brazing material is referred to as brazing. Of the entire gap (15A) (15B) in the heat exchange core (4), the remaining plurality of second gaps (15B) are made of an aluminum brazing sheet having a brazing filler metal layer on both sides, and the wave crest extends in the ventilation direction. The corrugated outer fin (17) comprising the wave bottom portion extending in the ventilation direction and the connecting portion connecting the wave top portion and the wave bottom portion, the two first and second refrigerant circulations constituting each pipe assembly (14) It arrange | positions so that a pipe | tube (12) (13) may be straddled, and the 2nd clearance gap (15B) is a ventilation gap. The outer fins (17) disposed in the second gap (15B) adjacent to the first gap (15A) are one side wall (12a) of the first refrigerant flow pipe (12) and the second refrigerant flow pipe (13). The outer fin (17) disposed in the other second gap (15B) is brazed to the other side wall (13b) of the first refrigerant flow pipe (12) and is brazed to the side wall (12a) of the first refrigerant flow pipe (12). Yes. Outer fins (17) are also arranged outside the pipe assemblies (14) at both left and right ends so as to straddle the two first refrigerant circulation pipes (12) constituting the pipe assembly (14). An aluminum side plate (18) is disposed outside the outer fins (17) at the left and right ends, and is brazed to the outer fins (17).

左右方向に隣り合う2つの第1間隙(15A)どうしの間には複数、ここでは3つの第2間隙(15B)が存在している。なお、左右方向に隣り合う2つの第1間隙(15A)どうしの間の第2間隙(15B)の数は、2以上であることが好ましく、その上限は7であることが好ましい。また、2つの第1間隙(15A)が左右方向に並んで形成されていてもよく、左右方向に並んだ2つの第1間隙(15A)からなる対の間に2以上の第2間隙(15B)が形成されていてもよい。   There are a plurality of (here, three) second gaps (15B) between two first gaps (15A) adjacent in the left-right direction. The number of second gaps (15B) between two first gaps (15A) adjacent in the left-right direction is preferably 2 or more, and the upper limit is preferably 7. Two first gaps (15A) may be formed side by side in the left-right direction, and two or more second gaps (15B) may be formed between a pair of two first gaps (15A) arranged in the left-right direction. ) May be formed.

アウターフィン(17)の風上側端部は風上側冷媒流通管(12)(13)の風上側端部と通風方向の同一位置にあり、アウターフィン(17)の風下側端部は風下側冷媒流通管(12)(13)の風下側端部に対して若干、たとえば1mm程度風下側に突出した位置にある。アウターフィン(17)の通風方向の幅を、熱交換コア部(4)の通風方向の全幅というものとする。   The windward end of the outer fin (17) is in the same position in the ventilation direction as the windward end of the windward refrigerant flow pipe (12) (13), and the leeward end of the outer fin (17) is the leeward refrigerant. It is in a position that protrudes slightly to the leeward side, for example, about 1 mm, with respect to the leeward side end portions of the flow pipes (12) and (13). The width of the outer fin (17) in the ventilation direction is the full width of the heat exchange core (4) in the ventilation direction.

蓄冷材容器(16)は、長手方向を上下方向に向けるとともに幅方向を通風方向に向けた略縦長方形の扁平中空状であり、熱交換コア部(4)の通風方向の全幅の範囲内に位置し、かつ各管組(14)の2つの第2冷媒流通管(13)にろう付された容器本体部(19)と、容器本体部(19)の風下側縁部の一部分、ここでは上部のみに連なるとともにアウターフィン(17)の風下側端部よりも風下側に張り出すように設けられた外方張り出し部(21)とよりなる(図3参照)。   The cool storage material container (16) is a flat, hollow shape having a substantially vertical rectangular shape in which the longitudinal direction is directed in the vertical direction and the width direction is directed in the ventilation direction, and is within the full width range of the heat exchange core portion (4) in the ventilation direction. A container body part (19) brazed to the two second refrigerant flow pipes (13) of each pipe assembly (14), and a part of the leeward side edge of the container body part (19), here It consists of only an upper part and an outward projecting part (21) provided so as to project to the leeward side from the leeward side end part of the outer fin (17) (see FIG. 3).

蓄冷材容器(16)は、両面にろう材層を有するアルミニウムブレージングシートにプレス加工が施されることにより形成され、かつ一定幅を有する周縁の帯状部(22a)(23a)どうしが互いにろう付された2枚の略縦長方形状のアルミニウム製容器構成板(22)(23)よりなる。蓄冷材容器(16)には、両容器構成板(22)(23)の帯状部(22a)(23a)を除いた部分を外方に膨出させることによって、中空状の蓄冷材封入部(24)が、容器本体部(19)から外方張り出し部(21)にかけて形成され、蓄冷材封入部(24)内に蓄冷材が入れられている。   The cold storage material container (16) is formed by pressing an aluminum brazing sheet having a brazing filler metal layer on both sides, and the peripheral strips (22a) (23a) having a certain width are brazed to each other. It is composed of two substantially vertical rectangular aluminum container constituting plates (22) and (23). The cool storage material container (16) has a hollow cool storage material enclosing portion (2) by extruding the portions excluding the strips (22a) and (23a) of the container constituting plates (22) and (23) outward ( 24) is formed from the container body part (19) to the outwardly projecting part (21), and the regenerator material is placed in the regenerator material enclosing part (24).

蓄冷材容器(16)の蓄冷材封入部(24)の容器本体部(19)に存在する部分の左右両側壁(25)外面に、それぞれ上下方向に一定の流路長さを有するとともに上下両端が開口し、かつ凝縮水を上方から下方に流して下端開口から排水する複数の凝縮水排水溝(26)が通風方向に間隔をおいて形成されている(図3参照)。各凝縮水排水溝(26)は、蓄冷材容器(16)の蓄冷材封入部(24)の左右両側壁(25)における容器本体部(19)に存在する部分に設けられて外方に膨出した2つの排水溝用凸部(27)の間に形成されている。隣り合う2つの凝縮水排水溝(26)は、両凝縮水排水溝(26)間に位置する排水溝用凸部(27)を共有している。すべての排水溝用凸部(27)の膨出端の少なくとも一部が、第1間隙(15A)の左右両側の管組(14)を構成する2つの第2冷媒流通管(13)の一方の側壁(13a)にろう付されている。左側壁(25)の凝縮水排水溝(26)および排水溝用凸部(27)と、右側壁(25)の凝縮水排水溝(26)および排水溝用凸部(27)とは、全体に重複しないように、同一水平面内において通風方向にずれて設けられている。なお、凝縮水排水溝(26)内を微量の空気も流れる。   On the outer surfaces of the left and right side walls (25) of the portion of the cool storage material enclosure (24) of the cool storage material container (16) on the left and right side walls (25), the upper and lower ends have a fixed channel length in the vertical direction. And a plurality of condensate drain grooves (26) for draining condensate from above to drain from the lower end opening are formed at intervals in the ventilation direction (see FIG. 3). Each condensate drainage groove (26) is provided in a portion of the cooler material enclosure (24) of the cool storage material container (16) on the left and right side walls (25) of the container body (19) and bulges outward. It is formed between the two raised drain groove projections (27). Two adjacent condensate drainage grooves (26) share a drainage groove convex portion (27) located between the two condensate drainage grooves (26). At least a part of the bulging ends of all the drain groove projections (27) is one of the two second refrigerant flow pipes (13) constituting the pipe assemblies (14) on both the left and right sides of the first gap (15A). Are brazed to the side wall (13a). The condensate drain groove (26) and drain groove convex portion (27) on the left side wall (25) and the condensate drain groove (26) and drain groove convex portion (27) on the right side wall (25) So as not to overlap with each other in the same horizontal plane. A very small amount of air also flows in the condensed water drainage groove (26).

蓄冷材容器(16)の容器本体部(19)内には、オフセット状のアルミニウム製インナーフィン(28)が、上下方向のほぼ全体にわたって配置されている。インナーフィン(28)は、上下方向にのびる波頂部、上下方向にのびる波底部、および波頂部と波底部とを連結する連結部からなる波状帯板(29)が、上下方向に複数並べられるとともに相互に一体に連結されることにより形成され、上下方向に隣り合う2つの波状帯板(29)の波頂部どうしおよび波底部どうしが通風方向に位置ずれしているものである(図2参照)。   In the container main body portion (19) of the cold storage material container (16), an offset aluminum inner fin (28) is disposed over substantially the entire vertical direction. The inner fin (28) has a plurality of corrugated strips (29) composed of a wave crest portion extending in the vertical direction, a wave bottom portion extending in the vertical direction, and a connecting portion connecting the wave crest portion and the wave bottom portion arranged in the vertical direction. The wave crests and wave crests of two corrugated strips (29) that are formed by being integrally connected to each other in the vertical direction are displaced in the ventilation direction (see FIG. 2). .

蓄冷材容器(16)の外方張り出し部(21)には、左右両方向に膨らみ、かつ左右方向の寸法が蓄冷材封入部(24)の左右方向の寸法以上となっている膨張部(21a)が設けられており、膨張部(21a)がアウターフィン(17)の通風方向下流側端部よりも通風方向外側(通風方向下流側)に位置している。蓄冷材容器(16)の外方張り出し部(21)の上端部には蓄冷材注入部材(31)が固定されており、蓄冷材は、蓄冷材注入部材(31)を通して蓄冷材封入部(24)内に注入され、蓄冷材注入部材(31)は、蓄冷材封入部(24)内への蓄冷材の注入後に封止されている。   In the outwardly projecting portion (21) of the cold storage material container (16), the expansion portion (21a) swells in both the left and right directions, and the horizontal dimension is equal to or greater than the horizontal dimension of the cold storage material enclosure (24). Is provided, and the expansion part (21a) is positioned on the outer side in the ventilation direction (downstream side in the ventilation direction) than the downstream end of the outer fin (17) in the ventilation direction. A cool storage material injection member (31) is fixed to the upper end portion of the outwardly projecting portion (21) of the cool storage material container (16), and the cool storage material is supplied through the cool storage material injection member (31). The cool storage material injecting member (31) is sealed after the cool storage material is injected into the cool storage material enclosing portion (24).

この実施形態のエバポレータ(1)の場合、冷媒は、冷媒入口(7)を通ってエバポレータ(1)の風下側上ヘッダ部(5)内に入り、全冷媒流通管(12)(13)を通って風上側上ヘッダ部(6)の冷媒出口(8)から流出する。   In the case of the evaporator (1) of this embodiment, the refrigerant passes through the refrigerant inlet (7) and enters the leeward upper header portion (5) of the evaporator (1), and passes through all the refrigerant flow pipes (12) (13). It flows out from the refrigerant outlet (8) of the upwind header section (6).

図4および図5に示すように、第1冷媒流通管(12)の左右両側壁(12a)の肉厚(t1)は同一である。また、第2冷媒流通管(13)における蓄冷材容器(16)に接している側壁(13a)の肉厚(t2)は、第1冷媒流通管(12)の左右両側壁(12a)の肉厚(t1)、および第2冷媒流通管(13)におけるアウターフィン(17)に接している側壁(13b)の肉厚(t3)よりも大きくなっている。第2冷媒流通管(13)におけるアウターフィン(17)に接している側壁(13b)の肉厚(t3)は、第1冷媒流通管(12)の左右両側壁(12a)の肉厚(t1)と同一である。なお、第2冷媒流通管(13)におけるアウターフィン(17)に接している側壁(13b)の肉厚(t3)は、必ずしも第1冷媒流通管(12)の左右両側壁(12a)の肉厚(t1)と同一である必要はない。さらに、両冷媒流通管(12)(13)には、通風方向に並んだ複数の流路(32)(33)が仕切壁(34)(35)を介して形成されている。   As shown in FIGS. 4 and 5, the thickness (t1) of the left and right side walls (12a) of the first refrigerant flow pipe (12) is the same. The wall thickness (t2) of the side wall (13a) in contact with the cool storage material container (16) in the second refrigerant flow pipe (13) is the thickness of the left and right side walls (12a) of the first refrigerant flow pipe (12). It is larger than the thickness (t1) and the wall thickness (t3) of the side wall (13b) in contact with the outer fin (17) in the second refrigerant flow pipe (13). The thickness (t3) of the side wall (13b) in contact with the outer fin (17) in the second refrigerant flow pipe (13) is the thickness (t1) of the left and right side walls (12a) of the first refrigerant flow pipe (12). ). The wall thickness (t3) of the side wall (13b) in contact with the outer fin (17) in the second refrigerant flow pipe (13) is not necessarily the thickness of the left and right side walls (12a) of the first refrigerant flow pipe (12). It need not be the same as the thickness (t1). Further, a plurality of flow paths (32), (33) arranged in the ventilation direction are formed in both refrigerant flow pipes (12), (13) via partition walls (34), (35).

蓄冷機能付きエバポレータ(1)は、車両のエンジンを駆動源とする圧縮機、圧縮機から吐出された冷媒を冷却するコンデンサ(冷媒冷却器)、コンデンサを通過した冷媒を減圧する膨張弁(減圧器)とともに冷凍サイクルを構成し、カーエアコンとして、停車時に圧縮機の駆動源であるエンジンを一時的に停止させる車両、たとえば自動車に搭載される。   The evaporator with a cold storage function (1) is a compressor that uses a vehicle engine as a drive source, a condenser that cools the refrigerant discharged from the compressor (refrigerant cooler), and an expansion valve that reduces the refrigerant that has passed through the condenser (decompressor) ) And a refrigeration cycle, and is mounted as a car air conditioner on a vehicle, for example, an automobile, that temporarily stops an engine that is a drive source of the compressor when the vehicle stops.

圧縮機が作動している通常の冷房時には、圧縮機で圧縮されてコンデンサおよび膨張弁を通過した低圧の気液混相の2相冷媒が、冷媒入口(7)を通って蓄冷機能付きエバポレータ(1)の風下側上ヘッダ部(5)内に入り、全冷媒流通管(12)(13)を通って風上側上ヘッダ部(6)に入り、冷媒出口(8)から流出する。このとき、第1冷媒流通管(12)内を流れる冷媒の有する冷熱が、第1冷媒流通管(12)の左右両側壁(12a)を介して左右両側の第2間隙(15B)に配置されたアウターフィン(17)に伝わる。また、第2冷媒流通管(13)内を流れる冷媒の有する冷熱が、第2冷媒流通管(13)における第1間隙(15A)の両側の第2間隙(15B)に配置されたアウターフィン(17)に接している側壁(13b)を介して当該アウターフィン(17)に伝わる。そして、アウターフィン(17)に伝わった冷熱によって第2間隙(15B)を流れる空気が冷却され、冷却された空気が車室内に送り込まれて冷房に供される。一方、両冷媒流通管(12)(13)内を流れた冷媒は気相となって流出する。   During normal cooling when the compressor is operating, the low-pressure gas-liquid mixed-phase two-phase refrigerant compressed by the compressor and passed through the condenser and the expansion valve passes through the refrigerant inlet (7) and has an evaporator (1 ) Enters the leeward upper header portion (5), passes through all the refrigerant flow pipes (12) and (13), enters the windward upper header portion (6), and flows out from the refrigerant outlet (8). At this time, the cold heat of the refrigerant flowing in the first refrigerant flow pipe (12) is disposed in the second gap (15B) on both the left and right sides through the left and right side walls (12a) of the first refrigerant flow pipe (12). It is transmitted to the outer fin (17). In addition, the cold heat of the refrigerant flowing in the second refrigerant flow pipe (13) is transferred to the outer fins (15B) on both sides of the first gap (15A) in the second refrigerant flow pipe (13) ( It is transmitted to the outer fin (17) through the side wall (13b) in contact with 17). Then, the air flowing through the second gap (15B) is cooled by the cold heat transmitted to the outer fin (17), and the cooled air is sent into the passenger compartment to be cooled. On the other hand, the refrigerant that has flowed through the refrigerant flow pipes (12) and (13) flows out as a gas phase.

また、圧縮機が作動している通常の冷房時には、第2冷媒流通管(13)内を流れる冷媒の有する冷熱が、第2冷媒流通管(13)における蓄冷材容器(16)と接している側壁(13a)に伝わり、当該側壁(13a)から蓄冷材容器(16)の蓄冷材封入部(24)の左右両側壁(25)における容器本体部(19)に存在する部分に設けられた排水溝用凸部(27)の膨出頂壁を経て直接蓄冷材容器(16)内の蓄冷材に伝わるとともに、排水溝用凸部(27)の膨出頂壁から左右両側壁(25)における冷媒流通管(13)にろう付されていない部分およびインナーフィン(28)を経て蓄冷材容器(16)内の蓄冷材の全体に伝わって蓄冷材に冷熱が蓄えられる。   Further, during normal cooling when the compressor is operating, the cold heat of the refrigerant flowing in the second refrigerant flow pipe (13) is in contact with the cold storage material container (16) in the second refrigerant flow pipe (13). Drainage that is transmitted to the side wall (13a) and is provided in a portion of the left and right side walls (25) of the cool storage material enclosure part (24) of the cool storage material container (16) that exists in the container main body (19) from the side wall (13a). It is transmitted directly to the cold storage material in the cold storage material container (16) through the bulging top wall of the groove convex portion (27) and from the bulging top wall of the drain groove convex portion (27) to the left and right side walls (25). Cold energy is stored in the regenerator material by being transmitted to the whole regenerator material in the regenerator material container (16) via the portion not brazed to the refrigerant flow pipe (13) and the inner fin (28).

圧縮機が作動している通常の冷房時において全冷媒流通管(12)(13)内を流れた冷媒は気相となって流出する。   During normal cooling when the compressor is operating, the refrigerant that has flowed through all the refrigerant flow pipes (12) and (13) flows out as a gas phase.

圧縮機が作動している通常の冷房時には、蓄冷材容器(16)表面に凝縮水が発生するが、当該凝縮水は凝縮水排水溝(26)内に入る。凝縮水排水溝(26)内に溜まった凝縮水が多くなると、溜まった凝縮水に作用する重力が表面張力よりも大きくなって凝縮水排水溝(26)内を流下し、下方に排水される。   During normal cooling when the compressor is operating, condensed water is generated on the surface of the cool storage material container (16), and the condensed water enters the condensed water drain groove (26). When the amount of condensed water accumulated in the condensed water drainage groove (26) increases, the gravity acting on the accumulated condensed water becomes larger than the surface tension and flows down in the condensed water drainage groove (26) and drains downward. .

圧縮機の停止時には、蓄冷材容器(16)内の蓄冷材に蓄えられた冷熱が、蓄冷材容器(16)の蓄冷材封入部(24)の左右両側壁(25)における容器本体部(19)に存在する部分に設けられた排水溝用凸部(27)の膨出頂壁を経て第2冷媒流通管(13)における蓄冷材容器(16)に接している側壁(13a)に伝わるとともに、インナーフィン(28)から左右両側壁(25)における第2冷媒流通管(13)にろう付されていない部分および排水溝用凸部(27)の膨出頂壁を経て第2冷媒流通管(13)における蓄冷材容器(16)に接している側壁(13a)に伝わる。当該側壁(13a)に伝わった冷熱は、仕切壁(35)およびアウターフィン(17)に接している側壁(13b)を経てアウターフィン(17)に伝わり、第1間隙(15A)の両隣の第2間隙(15B)を通過する空気に伝えられる。アウターフィン(17)に伝わった冷熱は、蓄冷材容器(16)が配置されている第1間隙(15A)の両隣の第2間隙(15B)を通過する空気に伝えられる。したがって、エバポレータ(1)を通過した風の温度が上昇したとしても、当該風は冷却されるので、冷房能力の急激な低下が防止される。   When the compressor is stopped, the cold energy stored in the regenerator material in the regenerator material container (16) is transferred to the container body (19) on the left and right side walls (25) of the regenerator material enclosing part (24) of the regenerator material container (16). ) Through the bulging top wall of the drain groove convex portion (27) provided in the portion existing in the) and being transmitted to the side wall (13a) in contact with the cold storage material container (16) in the second refrigerant flow pipe (13) The second refrigerant flow pipe passes through the inner fin (28) and the left and right side walls (25) not brazed to the second refrigerant flow pipe (13) and the bulging top wall of the drain groove convex part (27). It is transmitted to the side wall (13a) in contact with the cold storage material container (16) in (13). The cold heat transmitted to the side wall (13a) is transmitted to the outer fin (17) through the side wall (13b) in contact with the partition wall (35) and the outer fin (17), and the second side of the first gap (15A). It is transmitted to the air passing through the two gaps (15B). The cold heat transmitted to the outer fin (17) is transmitted to the air passing through the second gap (15B) adjacent to the first gap (15A) where the cool storage material container (16) is disposed. Therefore, even if the temperature of the wind that has passed through the evaporator (1) rises, the wind is cooled, so that a rapid decrease in the cooling capacity is prevented.

圧縮機の停止時においては、第2冷媒流通管(13)における蓄冷材容器(16)に接している側壁(13a)の肉厚(t2)が、第1冷媒流通管(12)の左右両側壁(12a)の肉厚(t1)よりも大きくなっているので、第2冷媒流通管(13)における蓄冷材容器(16)に接している側壁(13a)の熱容量が第1冷媒流通管(12)の左右両側壁(12a)の熱容量よりも大きくなる。したがって、圧縮機が停止した際に蓄冷材容器(16)内の蓄冷材に蓄えられた冷熱が、第2冷媒流通管(13)を経てアウターフィン(17)にまで伝わる時間を比較的遅くすることができ、アウターフィン(17)から第2間隙(15B)を流れる空気への放冷時間を延長することができる。しかも、第1冷媒流通管(12)の左右両側壁(12a)の肉厚(t1)および第2冷媒流通管(13)におけるアウターフィン(17)に接している側壁(13b)の肉厚(t3)を、通常の冷房時に両冷媒流通管(12)(13)内を流れる冷媒の有する冷熱をアウターフィン(17)に効率良く伝えうる肉厚にすることができるとともに、蓄冷材容器(16)の数の増加を抑制してアウターフィン(17)が配置された第2間隙(15B)の数の減少を抑制することが可能になり、通常の冷房時の冷房性能の低下を抑制することができる。   When the compressor is stopped, the wall thickness (t2) of the side wall (13a) in contact with the cool storage material container (16) in the second refrigerant flow pipe (13) is the left and right sides of the first refrigerant flow pipe (12). Since it is larger than the wall thickness (t1) of the wall (12a), the heat capacity of the side wall (13a) in contact with the cold storage material container (16) in the second refrigerant flow pipe (13) is the first refrigerant flow pipe ( It becomes larger than the heat capacity of the left and right side walls (12a) of 12). Accordingly, when the compressor is stopped, the time for the cold heat stored in the cold storage material in the cold storage material container (16) to be transmitted to the outer fin (17) through the second refrigerant flow pipe (13) is relatively delayed. The cooling time from the outer fin (17) to the air flowing through the second gap (15B) can be extended. Moreover, the wall thickness (t1) of the left and right side walls (12a) of the first refrigerant flow pipe (12) and the wall thickness (13b) of the second refrigerant flow pipe (13) in contact with the outer fin (17) ( t3) can be made thick enough to efficiently transfer the cold heat of the refrigerant flowing in both refrigerant flow pipes (12) and (13) to the outer fin (17) during normal cooling, and the cold storage container (16 ) To suppress the decrease in the number of second gaps (15B) in which the outer fins (17) are arranged, thereby suppressing the decrease in cooling performance during normal cooling. Can do.

図6は、この発明による蓄冷機能付きエバポレータにおける第1間隙(15A)の左右両側に位置し、かつ一方の側壁が蓄冷材容器(16)に接するとともに同他方の側壁がアウターフィン(17)に接している第2冷媒流通管の変形例を示す。   FIG. 6 shows the evaporator with a cool storage function according to the present invention, which is located on both the left and right sides of the first gap (15A) and one side wall is in contact with the cool storage material container (16) and the other side wall is on the outer fin (17). The modification of the 2nd refrigerant | coolant flow pipe which is in contact is shown.

図6に示す第2冷媒流通管(40)の左右両側壁(40a)(40b)の肉厚(t4)は互いに同一であるとともに、第1冷媒流通管(12)の左右両側壁(12a)の肉厚よりも大きくなっている。すなわち、第1間隙(15A)の左右両側に位置し、かつ左右両側壁(40a)(40b)のうちいずれか一方の側壁(40a)が蓄冷材容器(16)に接するとともに同他方の側壁(40b)がアウターフィン(17)に接している第2冷媒流通管(40)の左右両側壁(40a)(40b)の肉厚(t4)は互いに同一であるとともに、第1冷媒流通管(12)の左右両側壁(12a)の肉厚よりも大きくなっている。   The wall thickness (t4) of the left and right side walls (40a) and (40b) of the second refrigerant flow pipe (40) shown in FIG. 6 is the same as each other, and the left and right side walls (12a) of the first refrigerant flow pipe (12). It is larger than the wall thickness. That is, it is located on both the left and right sides of the first gap (15A), and one of the left and right side walls (40a, 40b) is in contact with the cold storage material container (16) and the other side wall ( The wall thickness (t4) of the left and right side walls (40a) and (40b) of the second refrigerant flow pipe (40) in contact with the outer fin (17) is the same as each other, and the first refrigerant flow pipe (12 ) Larger than the wall thickness of the left and right side walls (12a).

この発明による蓄冷機能付きエバポレータは、停車時に圧縮機の駆動源であるエンジンを一時的に停止させる車両のカーエアコンを構成する冷凍サイクルに好適に用いられる。   The evaporator with a cold storage function according to the present invention is suitably used in a refrigeration cycle constituting a car air conditioner for a vehicle that temporarily stops an engine that is a drive source of a compressor when the vehicle is stopped.

(1):蓄冷機能付きエバポレータ
(4):熱交換コア部
(12):第1冷媒流通管
(12a):左右両側壁
(13)(40):第2冷媒流通管
(13a)(40a):蓄冷材容器に接している側壁
(13b)(40b):アウターフィンに接している側壁
(15A):第1間隙(通風間隙)
(15B):第2間隙
(16):蓄冷材容器
(17):アウターフィン
(1): Evaporator with cool storage function
(4): Heat exchange core
(12): First refrigerant distribution pipe
(12a): Left and right side walls
(13) (40): Second refrigerant flow pipe
(13a) (40a): Side wall in contact with cold storage container
(13b) (40b): Side wall in contact with outer fin
(15A): 1st gap (ventilation gap)
(15B): Second gap
(16): Cold storage container
(17): Outer fin

Claims (4)

長手方向を上下方向に向けるとともに幅方向を通風方向に向けた複数の扁平状冷媒流通管と、蓄冷材が封入された蓄冷材容器と、アウターフィンとを有する熱交換コア部を備えており、熱交換コア部において、複数の冷媒流通管が左右方向に間隔をおいて複数配置されることにより、左右方向に隣り合う冷媒流通管どうしの間に間隙が形成され、蓄冷材容器が、前記全間隙のうちの一部でかつ複数の間隙に冷媒流通管に接するように配置され、アウターフィンが、前記全間隙の残りである複数の間隙に冷媒流通管に接するように配置されている蓄冷機能付きエバポレータであって、
全冷媒流通管の材質が同じであり、全冷媒流通管の中に、左右両側壁がアウターフィンに接している第1冷媒流通管と、左右両側壁のうちいずれか一方の側壁が蓄冷材容器に接するとともに同他方の側壁がアウターフィンに接している第2冷媒流通管とが含まれ、第2冷媒流通管における蓄冷材容器に接している側壁の肉厚が、第1冷媒流通管の左右両側壁の肉厚よりも大きくなっている蓄冷機能付きエバポレータ。
A plurality of flat refrigerant flow pipes whose longitudinal direction is directed in the vertical direction and the width direction is directed in the ventilation direction, a cold storage material container in which a cold storage material is enclosed, and a heat exchange core portion having an outer fin, In the heat exchange core portion, a plurality of refrigerant flow pipes are arranged at intervals in the left-right direction, so that gaps are formed between the refrigerant flow pipes adjacent in the left-right direction, and the cold storage material container is A cold storage function in which a part of the gap and a plurality of gaps are arranged so as to be in contact with the refrigerant circulation pipe, and an outer fin is arranged so as to be in contact with the refrigerant circulation pipe in a plurality of gaps remaining in the entire gap. With an evaporator,
The material of all the refrigerant circulation pipes is the same, and the first refrigerant circulation pipe whose left and right side walls are in contact with the outer fins and either one of the left and right side walls are the cold storage container. And a second refrigerant circulation pipe whose other side wall is in contact with the outer fin, and the thickness of the side wall in contact with the cold storage material container in the second refrigerant distribution pipe is equal to that of the first refrigerant circulation pipe. Evaporator with cool storage function that is larger than the wall thickness on both sides.
第2冷媒流通管における蓄冷材容器に接している側壁の肉厚がアウターフィンに接している側壁の肉厚よりも大きくなっている請求項1記載の蓄冷機能付きエバポレータ。 The evaporator with a cool storage function according to claim 1, wherein the thickness of the side wall in contact with the cool storage material container in the second refrigerant circulation pipe is larger than the thickness of the side wall in contact with the outer fin. 第1冷媒流通管の左右両側壁の肉厚が同一であり、第2冷媒流通管におけるアウターフィンに接している側壁の肉厚が、第1冷媒流通管の左右両側壁の肉厚と同一である請求項2記載の蓄冷機能付きエバポレータ。 The thickness of the left and right side walls of the first refrigerant flow pipe is the same, and the thickness of the side wall in contact with the outer fin in the second refrigerant flow pipe is the same as the thickness of the left and right side walls of the first refrigerant flow pipe. The evaporator with a cool storage function according to claim 2. 第1冷媒流通管の左右両側壁の肉厚が同一であり、第2冷媒流通管の左右両側壁の肉厚が同一であるとともに、第1冷媒流通管の左右両側壁の肉厚よりも大きくなっている請求項1記載の蓄冷機能付きエバポレータ。
The wall thickness of the left and right side walls of the first refrigerant flow pipe is the same, the wall thickness of the left and right side walls of the second refrigerant flow pipe are the same, and larger than the wall thickness of the left and right side walls of the first refrigerant flow pipe. The evaporator with a cool storage function according to claim 1.
JP2016177387A 2016-09-12 2016-09-12 Evaporator with cold storage function Active JP6684683B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016177387A JP6684683B2 (en) 2016-09-12 2016-09-12 Evaporator with cold storage function
CN201710815873.1A CN107816826B (en) 2016-09-12 2017-09-12 Evaporator with cold accumulation function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016177387A JP6684683B2 (en) 2016-09-12 2016-09-12 Evaporator with cold storage function

Publications (3)

Publication Number Publication Date
JP2018044683A true JP2018044683A (en) 2018-03-22
JP2018044683A5 JP2018044683A5 (en) 2019-05-23
JP6684683B2 JP6684683B2 (en) 2020-04-22

Family

ID=61606922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016177387A Active JP6684683B2 (en) 2016-09-12 2016-09-12 Evaporator with cold storage function

Country Status (2)

Country Link
JP (1) JP6684683B2 (en)
CN (1) CN107816826B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2847973B1 (en) * 2002-11-29 2006-01-27 Valeo Climatisation THERMAL INERTIAL HEAT EXCHANGER FOR A HEAT PUMP CIRCUIT, IN PARTICULAR A MOTOR VEHICLE.
JP5796531B2 (en) * 2012-04-09 2015-10-21 株式会社デンソー Vehicle heat exchanger with cold storage function
JP6088818B2 (en) * 2012-12-27 2017-03-01 株式会社ケーヒン・サーマル・テクノロジー Evaporator with cool storage function

Also Published As

Publication number Publication date
CN107816826A (en) 2018-03-20
JP6684683B2 (en) 2020-04-22
CN107816826B (en) 2020-11-03

Similar Documents

Publication Publication Date Title
JP5923262B2 (en) Evaporator with cool storage function
JP6427636B2 (en) Evaporator with cold storage function
JP5868088B2 (en) Cooling unit for vehicle air conditioner
JP5574819B2 (en) Evaporator with cool storage function
JP2013061136A5 (en)
JP5624761B2 (en) Evaporator with cool storage function
JP5542576B2 (en) Evaporator with cool storage function
JP6329806B2 (en) Evaporator with cool storage function
JP5574700B2 (en) Evaporator with cool storage function
JP6410660B2 (en) Evaporator with cool storage function
JP6596327B2 (en) Evaporator with cool storage function
JP6578169B2 (en) Evaporator with cool storage function
JP6097520B2 (en) Evaporator with cool storage function
JP6182442B2 (en) Evaporator with cool storage function
JP5501494B2 (en) Evaporator with cool storage function
JP2018044683A (en) Evaporator with cold storage function
JP2015148404A (en) Evaporator with cold storage function
JP2017155969A (en) Evaporator with cold storage function
JP6605338B2 (en) Evaporator with cool storage function
CN107606822B (en) Evaporator with cold accumulation function
JP2013200073A (en) Evaporator with cooling storage function
JP6214242B2 (en) Heat exchanger
JP2015034684A (en) Evaporator having a cold storage function
JP2018035975A (en) Evaporator with cold storage function
JP2016020754A (en) Evaporator with cold storage function and its manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200330

R150 Certificate of patent or registration of utility model

Ref document number: 6684683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250