JP2018043186A - Gas separation equipment - Google Patents

Gas separation equipment Download PDF

Info

Publication number
JP2018043186A
JP2018043186A JP2016179103A JP2016179103A JP2018043186A JP 2018043186 A JP2018043186 A JP 2018043186A JP 2016179103 A JP2016179103 A JP 2016179103A JP 2016179103 A JP2016179103 A JP 2016179103A JP 2018043186 A JP2018043186 A JP 2018043186A
Authority
JP
Japan
Prior art keywords
pressure
tank
air
gas
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016179103A
Other languages
Japanese (ja)
Other versions
JP6823979B2 (en
Inventor
広明 齋藤
Hiroaki Saito
広明 齋藤
勝本 武
Takeshi Katsumoto
武 勝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2016179103A priority Critical patent/JP6823979B2/en
Publication of JP2018043186A publication Critical patent/JP2018043186A/en
Application granted granted Critical
Publication of JP6823979B2 publication Critical patent/JP6823979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide gas separation equipment in which useless power consumption is suppressed by avoiding exhaustion of compressed air in a pressure equalization process time.SOLUTION: The gas separation equipment is provided that comprises: a compressor for compressing air; an air tank for storing the compressed air; pressure detection means for detecting pressure of the air tank; a plurality of adsorption tanks each of which is filled with an adsorbent inside, separates one gas among compressed air supplied from the air tank and separates the other gas as product gas; and a control part for controlling operation-stopping of a compressor body and a gas separation process in the adsorption tank. The control part controls the compressor in such a manner that the compressor maintains normal operation in a pressure equalization process time for communicating the plurality of adsorption tanks with each other.SELECTED DRAWING: Figure 1

Description

本発明は気体分離装置に関する。   The present invention relates to a gas separation device.

本技術分野の背景として、特許文献1がある。特許文献1には、吸着槽23, 24が均圧工程のとき排気弁15を閉弁させてコンプレッサ13をアンロード運転させる気体分離装置が記載されている。   There exists patent document 1 as a background of this technical field. Patent Document 1 describes a gas separation device that closes the exhaust valve 15 and unloads the compressor 13 when the adsorption tanks 23 and 24 are in a pressure equalization process.

特開平9−24231JP-A-9-24231

特許文献1によれば吸着工程時にコンプレッサからの圧縮空気の供給を連続して受けることができるが、均圧工程時にコンプレッサにより作られた圧縮空気を排気してしまうため、その分コンプレッサの運転に必要な電力を無駄に消費してしまう。また、排気を行うための機構も必要となる。   According to Patent Document 1, the supply of compressed air from the compressor can be continuously received during the adsorption process, but the compressed air produced by the compressor is exhausted during the pressure equalization process, so that the compressor is operated accordingly. The necessary power is wasted. In addition, a mechanism for exhausting is required.

本発明では均圧工程時に圧縮空気を排気することなく、無駄な電力消費を抑制した気体分離装置を提供することを目的とする。   It is an object of the present invention to provide a gas separation device that suppresses wasteful power consumption without exhausting compressed air during the pressure equalization step.

上記課題を解決するため、本発明は、空気を圧縮する圧縮機と、圧縮された空気を貯留する空気槽と、前記空気槽の圧力を検出する圧力検出手段と、内部に吸着剤が充填され、前記空気槽から供給された圧縮空気のうち一の気体を分離して他の気体を製品ガスとして分離する複数の吸着槽と、前記圧縮機本体の運転・停止と前記吸着槽における気体分離工程を制御する制御部とを備え、前記制御部は、複数の前記吸着槽を連通させる均圧工程時に前記圧縮機が通常運転を維持するように前記圧縮機を制御することを特徴とする気体分離装置を提供する。   In order to solve the above problems, the present invention provides a compressor for compressing air, an air tank for storing compressed air, a pressure detection means for detecting the pressure of the air tank, and an adsorbent inside. A plurality of adsorption tanks for separating one gas from the compressed air supplied from the air tank and separating the other gas as a product gas; operation and stop of the compressor body; and a gas separation step in the adsorption tank And a control unit that controls the compressor so that the compressor maintains normal operation during a pressure equalization step that allows the plurality of adsorption tanks to communicate with each other. Providing the device.

本発明によれば、均圧工程時に圧縮空気を排気することなく、無駄な電力消費を抑制した気体分離装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the gas separation apparatus which suppressed wasteful power consumption can be provided, without exhausting compressed air at the time of a pressure equalization process.

本発明の実施例1における気体分離装置を示す全体構成図である。It is a whole block diagram which shows the gas separation apparatus in Example 1 of this invention. 本発明の実施例1における気体分離装置の各工程を示す図である。It is a figure which shows each process of the gas separation apparatus in Example 1 of this invention. 従来例における空気槽、吸着槽の圧力変化を示すグラフである。It is a graph which shows the pressure change of the air tank and adsorption tank in a prior art example. 本発明の実施例1における空気槽、吸着槽の圧力変化を示すグラフである。It is a graph which shows the pressure change of the air tank and adsorption tank in Example 1 of this invention. 本発明の実施例2における気体分離装置の各工程を示す図である。It is a figure which shows each process of the gas separation apparatus in Example 2 of this invention.

本発明の実施例1について図1を用いて説明する。本実施例における気体分離装置の全体構成について図1を用いて説明する。   A first embodiment of the present invention will be described with reference to FIG. The whole structure of the gas separation apparatus in a present Example is demonstrated using FIG.

図1に示す気体分離装置1はPSA式の気体分離装置である。気体分離装置1は、空気を供給する空気供給ユニット2と、製品ガスを生成するPSAユニット3で構成される。
本実施例では、一例として空気供給ユニット2とPSAユニット3は別筐体に分かれて格納されているが、上記二つのユニットが同じ筐体内に格納されていてもよい。
A gas separation device 1 shown in FIG. 1 is a PSA type gas separation device. The gas separation device 1 includes an air supply unit 2 that supplies air and a PSA unit 3 that generates product gas.
In the present embodiment, as an example, the air supply unit 2 and the PSA unit 3 are stored separately in separate housings, but the two units may be stored in the same housing.

この空気供給ユニットは、空気を圧縮する圧縮機4と、圧縮機4を駆動する電動モータ(図示省略)と圧縮空気を貯留させる空気槽5と、空気槽5の圧力を検出する圧力検出手段8と、圧縮空気を除湿するエアードライヤー6と、析出したドレン水を回収しながら不純物を除去するドレンフィルタ7を有している。圧縮機4は圧力検出手段8による検出信号が制御部60に出力され、制御部60により設定された運転圧力と制御圧力により運転制御がなされる。即ち、圧縮機4は空気槽5の圧力が運転圧力以下になると通常運転を開始する。そして、空気槽5の圧力が運転圧力から上昇し、制御圧力以上になると圧縮機4は通常運転状態から停止状態またはアンロード運転状態になるように制御される。なお、制御圧力に到達した場合、圧縮機4の通常運転状態を維持し、空気槽5の空気を排気してもよい。本実施例では、一例として、これら圧縮機4と、空気槽5と、エアードライヤー6とドレンフィルタ7とは筐体に格納されている。一方、PSAユニット3は、空気供給ユニット2から供給される圧縮空気から所定の気体を分離することにより、製品ガスを生成する吸着槽19a、19bと、製品ガス(窒素)を貯留する窒素槽(製品ガス貯留タンク)41を有している。   The air supply unit includes a compressor 4 that compresses air, an electric motor (not shown) that drives the compressor 4, an air tank 5 that stores compressed air, and pressure detection means 8 that detects the pressure of the air tank 5. And an air dryer 6 for dehumidifying the compressed air, and a drain filter 7 for removing impurities while collecting the drain water deposited. The compressor 4 outputs a detection signal from the pressure detection means 8 to the control unit 60, and the operation is controlled by the operation pressure and the control pressure set by the control unit 60. That is, the compressor 4 starts normal operation when the pressure in the air tank 5 becomes equal to or lower than the operation pressure. When the pressure in the air tank 5 rises from the operating pressure and becomes equal to or higher than the control pressure, the compressor 4 is controlled so as to change from the normal operation state to the stop state or the unload operation state. When the control pressure is reached, the normal operation state of the compressor 4 may be maintained and the air in the air tank 5 may be exhausted. In the present embodiment, as an example, the compressor 4, the air tank 5, the air dryer 6, and the drain filter 7 are stored in a casing. On the other hand, the PSA unit 3 separates a predetermined gas from the compressed air supplied from the air supply unit 2, thereby generating adsorption tanks 19 a and 19 b that generate product gas, and a nitrogen tank that stores product gas (nitrogen). Product gas storage tank) 41.

空気槽5で貯留された圧縮空気は後述の吸着槽19a、19bに供給され、空気槽5で貯留された圧縮空気から所定の気体が分離される。本実施例では、吸着槽19a、19bで酸素を吸着することにより、窒素を分離する場合について説明するが、窒素を吸着することにより酸素を分離してもよいし、大気以外の圧縮空気から他の気体を分離するものであってもよい。また、本実施例では吸着槽19a,19bの2本の吸着槽により気体分離装置を構成しているが、3本以上の吸着槽により構成される気体分離装置であってもよい。   The compressed air stored in the air tank 5 is supplied to adsorption tanks 19 a and 19 b described later, and a predetermined gas is separated from the compressed air stored in the air tank 5. In the present embodiment, a case where nitrogen is separated by adsorbing oxygen in the adsorption tanks 19a and 19b will be described. However, oxygen may be separated by adsorbing nitrogen, or other air may be separated from compressed air other than the atmosphere. The gas may be separated. In the present embodiment, the gas separation device is constituted by the two adsorption tanks 19a and 19b. However, the gas separation apparatus may be constituted by three or more adsorption tanks.

圧縮機4として、往複動式、スクリュー式あるいはスクロール式等の圧縮機や、外部から1次圧を供給され再圧縮するブースタ圧縮機等が用いられている。   As the compressor 4, a double-acting type, screw type or scroll type compressor, a booster compressor for supplying a primary pressure from the outside and recompressing the compressor, or the like is used.

空気槽5には、空気槽5からの圧縮空気を流す配管16が接続されており、この配管16の端末位置には2系統に分岐した配管17a、17bが接続されている。配管17a、17bには、それぞれ流路を開閉する供給弁18a、18bが途中に設けられており、酸素分子を吸着して窒素ガスを製品ガスとして取り出すための吸着槽19a,19bがそれぞれ接続されている。この吸着槽は容積一定である。また、配管17a、17bには、それぞれ供給弁18a、18bと吸着槽19a,19bとの間位置に配管21a、21bが接続されており、これら配管21a、21bには、途中に流路を開閉する排気弁22a、22bが、端末に消音用のフィルタ付きの排気サイレンサ23が設けられている。この排気サイレンサは各吸着槽19a、19b毎に設けられていてもよい。また、配管17a、17bには、互いの配管21a、21bと吸着槽19a、19bとの間位置を結ぶように配管25a、25bが接続されており、この配管25a、25bには流路を開閉する下均圧弁26a、26bが設けられている。   A pipe 16 through which compressed air from the air tank 5 flows is connected to the air tank 5, and pipes 17 a and 17 b branched into two systems are connected to the terminal position of the pipe 16. Supply pipes 18a and 18b for opening and closing the flow paths are provided in the middle of the pipes 17a and 17b, respectively, and adsorption tanks 19a and 19b for adsorbing oxygen molecules and taking out nitrogen gas as product gas are respectively connected. ing. This adsorption tank has a constant volume. The pipes 17a and 17b are connected to pipes 21a and 21b at positions between the supply valves 18a and 18b and the adsorption tanks 19a and 19b, respectively. Exhaust valves 22a and 22b are provided with an exhaust silencer 23 with a filter for silencing at the terminal. This exhaust silencer may be provided for each of the adsorption tanks 19a and 19b. Pipes 25a and 25b are connected to the pipes 17a and 17b so as to connect the positions between the pipes 21a and 21b and the adsorption tanks 19a and 19b. Lower pressure equalizing valves 26a and 26b are provided.

吸着槽19a,19bには、例えば、酸素分子を吸着する吸着手段である吸着剤が充填されている。吸着剤は、具体的には分子ふるいカーボンやゼオライト等を用いている。吸着槽19a、19bには、互いに合流する配管31a、31bがそれぞれ接続されている。これら配管31a、31bには、互いの吸着槽19a、19b側同士を結ぶように配管32a、32bが接続されており、この配管32a、32bには絞り33が設けられている。また、配管31a、31bには、配管35a、35bが接続されておりこの配管35a、35bには流路を開閉する上均圧弁36a、36bが設けられている。また、配管31a、31bには、それぞれの配管35a、35bよりも吸着槽19a、19bとは反対側に流路を開閉する取出し弁38a、38bがそれぞれ設けられている。配管31a、31bの合流位置には配管40が接続されており、この配管40には窒素ガスを貯留させる製品ガス貯留タンクとしての窒素槽41が接続されている。この窒素槽41には、吐出口42が設けられた配管43が接続されており、この配管43の途中位置には窒素槽41側から順に、塵埃等を除去するとともにガスの圧力を調整するフィルタレギュレータ44、流路を開閉する吐出弁45、製品ガスの流量を調整する流量調整弁46、製品ガスの流量をセンシングする流量センサ61が設けられている。また、流量センサ61は必要に応じて構成すれば良い。配管43のフィルタレギュレータ44と吐出弁45との間位置には配管48および配管49が接続されており、配管48には、配管43側から順に、流路を開閉する開閉弁50と、ガスの流量を調整する流量調整弁51と、サイレンサ52とが設けられている。配管49には、配管43側から順に、流路を開閉する開閉弁54と、ガスの流量を調整する流量調整弁55と、酸素濃度を検出する酸素センサ56とが設けられている。酸素センサ56および流量センサ61は制御部60に通信可能に接続されており、検出信号を制御部60に出力する。制御部60は検出信号を受けて、吸着槽19a、19bにおける窒素ガスの生成を制御する。   The adsorption tanks 19a and 19b are filled with, for example, an adsorbent that is an adsorbing means for adsorbing oxygen molecules. Specifically, molecular sieve carbon or zeolite is used as the adsorbent. Pipes 31a and 31b that join each other are connected to the adsorption tanks 19a and 19b, respectively. Pipes 32a and 32b are connected to the pipes 31a and 31b so as to connect the adsorption tanks 19a and 19b to each other, and a throttle 33 is provided in the pipes 32a and 32b. Further, pipes 35a and 35b are connected to the pipes 31a and 31b, and upper pressure equalizing valves 36a and 36b for opening and closing the flow paths are provided in the pipes 35a and 35b. The pipes 31a and 31b are provided with take-off valves 38a and 38b for opening and closing the flow paths on the opposite side of the adsorption tanks 19a and 19b from the pipes 35a and 35b, respectively. A pipe 40 is connected to the joining position of the pipes 31a and 31b, and a nitrogen tank 41 as a product gas storage tank for storing nitrogen gas is connected to the pipe 40. A pipe 43 provided with a discharge port 42 is connected to the nitrogen tank 41, and a filter that removes dust and the like and adjusts the gas pressure in order from the nitrogen tank 41 side in the middle of the pipe 43. A regulator 44, a discharge valve 45 for opening and closing the flow path, a flow rate adjusting valve 46 for adjusting the flow rate of the product gas, and a flow rate sensor 61 for sensing the flow rate of the product gas are provided. Moreover, what is necessary is just to comprise the flow sensor 61 as needed. A pipe 48 and a pipe 49 are connected to the pipe 43 between the filter regulator 44 and the discharge valve 45. The pipe 48 has an opening / closing valve 50 for opening and closing the flow path in order from the pipe 43 side, A flow rate adjusting valve 51 for adjusting the flow rate and a silencer 52 are provided. The pipe 49 is provided with an open / close valve 54 that opens and closes the flow path, a flow rate adjustment valve 55 that adjusts the flow rate of gas, and an oxygen sensor 56 that detects the oxygen concentration in order from the pipe 43 side. The oxygen sensor 56 and the flow sensor 61 are communicably connected to the control unit 60 and output detection signals to the control unit 60. The control unit 60 receives the detection signal and controls the generation of nitrogen gas in the adsorption tanks 19a and 19b.

具体的には、供給弁18a、18b、排気弁22a、22b、下均圧弁26a、26b、上均圧弁36a、36b、取出し弁38a、38b、吐出弁45、開閉弁50および54は、制御部60に通信可能に接続されており、制御部60からの指令で作動する。   Specifically, the supply valves 18a and 18b, the exhaust valves 22a and 22b, the lower pressure equalizing valves 26a and 26b, the upper pressure equalizing valves 36a and 36b, the take-off valves 38a and 38b, the discharge valve 45, and the on-off valves 50 and 54 are controlled by a control unit. 60 is communicably connected, and operates in response to a command from the control unit 60.

ここまで、気体分離装置1の構成を説明してきたが、ここで気体分離装置において行われる気体分離方法について説明する。   Up to now, the configuration of the gas separation device 1 has been described. Here, a gas separation method performed in the gas separation device will be described.

気体分離装置1では、圧縮機4によって空気を圧縮する圧縮工程、圧縮工程により圧縮された空気を空気槽5に貯留する貯蔵工程、圧縮空気をエアードライヤー6により除湿する除湿工程、除湿工程により除湿された空気から気体を分離する分離工程が行われる。   In the gas separation device 1, the compression process of compressing air by the compressor 4, the storage process of storing the air compressed by the compression process in the air tank 5, the dehumidification process of dehumidifying the compressed air by the air dryer 6, and dehumidification by the dehumidification process A separation step for separating the gas from the air is performed.

気体分離装置1の分離工程では、図2のように以下の(a)〜(d)の工程が順次繰り返される。   In the separation step of the gas separation device 1, the following steps (a) to (d) are sequentially repeated as shown in FIG.

(a)吸着・還流工程:圧縮機4により圧縮され空気槽5に貯留された圧縮空気を、供給弁18を開くことで、吸着剤が充填された吸着槽19に供給するとともに、窒素槽41内に残存する窒素ガスを、取出し弁38を開くことで吸着槽19に還流して吸着槽19内を昇圧させ、圧力を利用して吸着剤に酸素分子を吸着させる工程。   (A) Adsorption / refluxing process: The compressed air compressed by the compressor 4 and stored in the air tank 5 is supplied to the adsorption tank 19 filled with the adsorbent by opening the supply valve 18, and the nitrogen tank 41. A step of recirculating the nitrogen gas remaining therein to the adsorption tank 19 by opening the extraction valve 38 to increase the pressure in the adsorption tank 19 and adsorbing oxygen molecules to the adsorbent using the pressure.

(b)取出し工程:吸着工程から引き続いて、空気槽5から圧縮空気を吸着槽19に供給し続けると同時に、吸着剤により分離生成された窒素ガスを吸着槽19より取出して窒素槽41に貯留させる工程。   (B) Extraction process: Continuing from the adsorption process, the compressed air is continuously supplied from the air tank 5 to the adsorption tank 19, and at the same time, the nitrogen gas separated and generated by the adsorbent is extracted from the adsorption tank 19 and stored in the nitrogen tank 41. Process.

(c)均圧工程:上均圧弁36および下均圧弁26を開くことにより、取出し工程終了後の一対の吸着槽19を連通させて均圧化を図り、次回の吸着工程の吸着効率を高めて、より高純度の窒素ガスを生成するための工程。   (C) Pressure equalization step: By opening the upper pressure equalization valve 36 and the lower pressure equalization valve 26, the pair of adsorption tanks 19 after the take-out step is communicated to equalize the pressure, thereby increasing the adsorption efficiency of the next adsorption step. And a process for generating higher purity nitrogen gas.

(d)再生工程:均圧工程終了後の吸着槽19内を、排気弁22を開くことにより配管21を介して、吸着剤に吸着された酸素分子を脱着することにより吸着剤を再生する工程。なお、この再生工程において、排気弁22以外の吸着槽19に関連する供給弁18、下均圧弁26、上均圧弁36および取出し弁38は、閉状態とする。   (D) Regeneration step: A step of regenerating the adsorbent by desorbing oxygen molecules adsorbed by the adsorbent through the pipe 21 by opening the exhaust valve 22 in the adsorption tank 19 after completion of the pressure equalization step. . In this regeneration step, the supply valve 18, the lower pressure equalizing valve 26, the upper pressure equalizing valve 36 and the take-off valve 38 related to the adsorption tank 19 other than the exhaust valve 22 are closed.

図2の(1)(2)で示す通り、吸着槽19aで吸着工程・取出し工程(工程(a)(b))が行われている間に吸着槽19bでは、再生工程(工程(d))が行われる。その後、図2の(3)で示す通り、(c)均圧工程が同時に行われ、吸着槽19a、19bを入れ替えて吸着工程・取出し工程(工程(a)(b))と再生工程(工程(d))が行われる。   As shown by (1) and (2) in FIG. 2, the adsorption tank 19b performs the regeneration process (process (d)) while the adsorption process and the removal process (process (a) and (b)) are performed in the adsorption tank 19a. ) Is performed. After that, as shown in FIG. 2 (3), (c) pressure equalization step is performed simultaneously, and the adsorption tanks 19a and 19b are replaced and the adsorption step / removal step (steps (a) and (b)) and the regeneration step (step). (D)) is performed.

上記の吸着工程(a)、取出し工程(b)、均圧工程(c)の時間を併せてサイクルタイムと呼ぶ。   The time of said adsorption | suction process (a), extraction process (b), and pressure equalization process (c) is collectively called cycle time.

図3に、従来例における空気槽5、吸着槽19a、19bの圧力変化のグラフを示す。均圧工程時は吸着槽19への空気供給弁18を閉状態にするため、空気槽5の圧力は急激に上昇する。この時、もし空気槽5の圧力が、圧縮機がアンロードまたは停止する所定の制御圧力P1に達すると、圧縮機4が停止してしまう。このとき、均圧工程の次工程である吸着工程に切替わる時に、圧縮機運転による圧力復帰に時間がかかる。そのため、この圧力が復帰する間に空気槽5の圧力は低下し、次の吸着工程での製品ガスの圧力、濃度低下につながる。   In FIG. 3, the graph of the pressure change of the air tank 5 and adsorption tank 19a, 19b in a prior art example is shown. Since the air supply valve 18 to the adsorption tank 19 is closed during the pressure equalization process, the pressure in the air tank 5 increases rapidly. At this time, if the pressure in the air tank 5 reaches a predetermined control pressure P1 at which the compressor is unloaded or stopped, the compressor 4 stops. At this time, when switching to the adsorption process, which is the next process of the pressure equalization process, it takes time to restore the pressure by operating the compressor. Therefore, the pressure in the air tank 5 decreases while the pressure is restored, leading to a decrease in the pressure and concentration of the product gas in the next adsorption step.

また、従来は圧縮機4がアンロードまたは停止するのを回避するために排気弁により圧縮空気を排気することもあった。しかし、これによって無駄なエネルギーを消費していた。   Conventionally, compressed air is sometimes exhausted by an exhaust valve in order to avoid unloading or stopping the compressor 4. However, this was wasted energy.

図4に、本実施例における空気槽5、吸着槽19a、19bの圧力変化のグラフを示す。本実施例では、均圧工程の間に図4のように圧縮機4の制御圧力の閾値をP1からP2に上げる。これにより、均圧工程時の供給弁18が閉状態から、空気槽5の圧力が上昇してP1以上になってもP2以下であれば、圧縮機4がアンロードおよび停止するのを回避し、圧縮機4の通常運転状態を維持しやすくなる。また、均圧工程時に排気弁22によって吸着槽19a、19bの圧縮空気を排気する必要がなく、無駄なエネルギー消費を抑えることができる。   In FIG. 4, the graph of the pressure change of the air tank 5 and adsorption tank 19a, 19b in a present Example is shown. In this embodiment, the control pressure threshold of the compressor 4 is increased from P1 to P2 as shown in FIG. 4 during the pressure equalization process. This prevents the compressor 4 from being unloaded and stopped if the supply valve 18 during the pressure equalization step is closed and the pressure in the air tank 5 rises to become P1 or more and is P2 or less. It becomes easy to maintain the normal operation state of the compressor 4. Further, it is not necessary to exhaust the compressed air in the adsorption tanks 19a and 19b by the exhaust valve 22 during the pressure equalization process, and wasteful energy consumption can be suppressed.

本実施例によれば、従来、排気弁により圧縮空気を排気することで圧縮機4のアンロードおよび停止を回避していた制御を無くすことができる。また、均圧工程時に排気弁22によって吸着槽19a、19bの圧縮空気を排気しないため、無駄なエネルギーを押させることができる。また、高圧の空気を供給できるので精製効率を上げることもできる。   According to the present embodiment, it is possible to eliminate the control that has conventionally avoided the unloading and stopping of the compressor 4 by exhausting the compressed air with the exhaust valve. Further, since the compressed air in the adsorption tanks 19a and 19b is not exhausted by the exhaust valve 22 during the pressure equalizing process, useless energy can be pushed. Moreover, since high-pressure air can be supplied, purification efficiency can be increased.

本発明の実施例2について説明する。気体分離装置の構成については前述した図1と同様である。実施例1と同一の構成については同一の符号を付し、その説明を省略する。   A second embodiment of the present invention will be described. The configuration of the gas separation device is the same as that shown in FIG. The same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

本実施例2では均圧工程時P1とP2の圧力幅が少ない場合、または精製ガスの使用が少ない場合など容易に空気槽圧力がP2に達する状態のとき、吸着槽へ空気槽5に貯留している圧縮空気を供給することで排気することなく、圧縮機4を連続運転させることができる。   In Example 2, when the pressure range of P1 and P2 during the pressure equalization process is small, or when the use of purified gas is small, the air tank pressure is easily stored in the air tank 5 when it reaches P2. The compressor 4 can be continuously operated without exhausting by supplying compressed air.

本実施例における気体分離装置1の分離工程は、図5の(1)〜(4)のようになる。(1)〜(3)までは、実施例1と同様である。図5の(3)に示す均圧工程時に図5の(2)に示す取出し工程後の吸着槽19aと次に吸着工程となる吸着槽19bは上均圧弁35、下均圧弁26を開状態にすることにより連通させて19aから19bに窒素ガスを送る。   The separation process of the gas separation device 1 in the present embodiment is as shown in (1) to (4) of FIG. (1) to (3) are the same as in the first embodiment. In the pressure equalization process shown in FIG. 5 (3), the adsorption tank 19a after the take-out process shown in FIG. 5 (2) and the adsorption tank 19b to be the next adsorption process are in the open state of the upper pressure equalization valve 35 and the lower pressure equalization valve. To communicate nitrogen gas from 19a to 19b.

圧力検出手段8により検出された圧力が均圧時変更制御圧力P2に達するt秒前に、空気槽5に貯留している圧縮空気を使用するため、図5の(4)のように供給弁18aを開状態とし、さらに空気槽5側にある下均圧弁26を閉状態にする。一方、空気槽5とは反対側(窒素槽41側)にある上均圧弁36は開状態のままである。即ち、均圧工程の前の工程で取出し工程を行っていた方の吸着槽19a側の供給弁18aを開く。これにより、圧縮空気を吸着槽19aに送り吸着槽19aにて精製した窒素ガスを下から押し上げる。さらに、上均圧弁36を介して吸着槽19bに送り込むことで、次吸着工程となる吸着槽19bの槽内状態を好条件(高圧かつ高純度)にすることができる。   Since the compressed air stored in the air tank 5 is used t seconds before the pressure detected by the pressure detection means 8 reaches the equalization change control pressure P2, the supply valve as shown in (4) of FIG. 18a is opened, and the lower pressure equalizing valve 26 on the air tank 5 side is closed. On the other hand, the upper pressure equalizing valve 36 on the side opposite to the air tank 5 (on the nitrogen tank 41 side) remains open. That is, the supply valve 18a on the side of the adsorption tank 19a that has been performing the extraction process in the process before the pressure equalization process is opened. Thereby, compressed air is sent to the adsorption tank 19a, and the nitrogen gas refine | purified in the adsorption tank 19a is pushed up from the bottom. Furthermore, by sending it to the adsorption tank 19b via the upper pressure equalizing valve 36, the internal state of the adsorption tank 19b, which is the next adsorption step, can be brought into favorable conditions (high pressure and high purity).

本実施例によれば、空気槽5の圧力の増加率が大きく、P2以上になりそうな場合でも圧縮機4の停止を回避し、圧縮空気を無駄にすることなく気体分離を行うことができる。   According to the present embodiment, the increase rate of the pressure in the air tank 5 is large, and even when the pressure is likely to be P2 or more, it is possible to avoid the stop of the compressor 4 and perform gas separation without wasting compressed air. .

t秒は固定でもよい。または圧力の上昇状態により決定してもよい。   t seconds may be fixed. Or you may determine by the raise state of a pressure.

圧力の上昇を促すのは精製ガスの使用流量が少ない場合なので流量センサ61による監視、または窒素槽41、吸着槽19の圧力変動より監視することが可能である。   The increase in pressure is promoted when the flow rate of the purified gas used is small, so that it can be monitored by the flow rate sensor 61 or the pressure fluctuations in the nitrogen tank 41 and the adsorption tank 19.

これまで説明してきた実施例は、何れも本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されない。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。また、本発明は複数の実施例を組み合わせることによって実施してもよい。   The embodiments described so far are merely examples of implementation in carrying out the present invention, and the technical scope of the present invention is not limitedly interpreted by these. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof. Further, the present invention may be implemented by combining a plurality of embodiments.

1・・・PSA式気体分離装置
2・・・圧縮機部
3・・・PSA部
4・・・空気圧縮機
5・・・空気槽
6・・・エアードライヤー
7・・・ドレンフィルタ
8・・・圧力検出手段
18・・・供給弁
19・・・吸着槽
22・・・排気弁
23・・・排気口
26・・・下均圧弁
36・・・上均圧弁
38・・・取出し弁
41・・・窒素槽
60・・・制御部
DESCRIPTION OF SYMBOLS 1 ... PSA type gas separation device 2 ... Compressor part 3 ... PSA part 4 ... Air compressor 5 ... Air tank 6 ... Air dryer 7 ... Drain filter 8 ... Pressure detecting means 18 ... supply valve 19 ... adsorption tank 22 ... exhaust valve 23 ... exhaust port 26 ... lower pressure equalizing valve 36 ... upper pressure equalizing valve 38 ... removal valve 41 ..Nitrogen tank 60 ... Control unit

Claims (6)

空気を圧縮する圧縮機と、
圧縮された空気を貯留する空気槽と、
内部に吸着剤が充填され、前記空気槽から供給された圧縮空気のうち一の気体を分離して他の気体を製品ガスとして分離する複数の吸着槽と、
前記圧縮機本体の運転・停止と前記吸着槽における気体分離工程を制御する制御部とを備え、
前記制御部は、前記空気槽の圧力が制御圧力以上になると、前記圧縮機を通常運転状態からアンロード運転状態または停止状態に切り替え、前記吸着槽が前記均圧工程時に前記制御圧力を上昇させることを特徴とする請求項1に記載の気体分離装置。
A compressor for compressing air;
An air tank for storing compressed air;
A plurality of adsorption tanks filled with an adsorbent and separating one gas of compressed air supplied from the air tank and separating the other gas as product gas;
A controller that controls operation and stop of the compressor main body and a gas separation step in the adsorption tank;
When the pressure of the air tank becomes equal to or higher than the control pressure, the control unit switches the compressor from a normal operation state to an unload operation state or a stop state, and the adsorption tank increases the control pressure during the pressure equalization process. The gas separation device according to claim 1.
前記制御部は、前記吸着槽が前記均圧工程時に前記空気槽の圧力が前記制御圧力に達した場合、前記空気槽から前記吸着槽へ圧縮空気を供給することを特徴とする請求項1に記載の気体分離装置。   The said control part supplies compressed air to the said adsorption tank from the said air tank, when the pressure of the said air tank reaches the said control pressure at the time of the said pressure equalization process of the said adsorption tank. The gas separation device as described. 前記制御部は前記均圧工程時に前記吸着槽内の気体を排気しないことを特徴とする請求項1に記載の気体分離装置。   The gas separation device according to claim 1, wherein the control unit does not exhaust the gas in the adsorption tank during the pressure equalization step. 前記制御部は、分離した前記製品ガスを取り出す取出し工程を前記均圧工程前に行っていた前記吸着槽へ前記空気槽から圧縮空気を供給することを特徴とする請求項2に記載の気体分離装置。   3. The gas separation according to claim 2, wherein the control unit supplies compressed air from the air tank to the adsorption tank in which the extraction process for extracting the separated product gas is performed before the pressure equalization process. apparatus. 前記制御部は、前記空気槽側にある均圧弁を閉じることを特徴とする請求項2に記載の気体分離装置。   The gas separation device according to claim 2, wherein the control unit closes a pressure equalizing valve on the air tank side. 前記制御部は前記空気槽と反対側にある均圧弁は開状態とすることを特徴とする請求項5に記載の気体分離装置。   6. The gas separation device according to claim 5, wherein the control unit opens a pressure equalizing valve on the side opposite to the air tank.
JP2016179103A 2016-09-14 2016-09-14 Gas separator Active JP6823979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016179103A JP6823979B2 (en) 2016-09-14 2016-09-14 Gas separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016179103A JP6823979B2 (en) 2016-09-14 2016-09-14 Gas separator

Publications (2)

Publication Number Publication Date
JP2018043186A true JP2018043186A (en) 2018-03-22
JP6823979B2 JP6823979B2 (en) 2021-02-03

Family

ID=61694105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016179103A Active JP6823979B2 (en) 2016-09-14 2016-09-14 Gas separator

Country Status (1)

Country Link
JP (1) JP6823979B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0924231A (en) * 1995-07-14 1997-01-28 Tokico Ltd Gas separation apparatus
JP2002045635A (en) * 2000-08-07 2002-02-12 Tokico Ltd Gas separation device
JP2013043117A (en) * 2011-08-24 2013-03-04 Hitachi Industrial Equipment Systems Co Ltd Gas separation device
JP2015202476A (en) * 2014-04-16 2015-11-16 株式会社日立産機システム Gas separator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0924231A (en) * 1995-07-14 1997-01-28 Tokico Ltd Gas separation apparatus
JP2002045635A (en) * 2000-08-07 2002-02-12 Tokico Ltd Gas separation device
JP2013043117A (en) * 2011-08-24 2013-03-04 Hitachi Industrial Equipment Systems Co Ltd Gas separation device
JP2015202476A (en) * 2014-04-16 2015-11-16 株式会社日立産機システム Gas separator

Also Published As

Publication number Publication date
JP6823979B2 (en) 2021-02-03

Similar Documents

Publication Publication Date Title
US9732297B2 (en) Gas purification method
KR20120112401A (en) Oxygen enrichment device
JP2014030776A (en) Gas separation apparatus
JP5814145B2 (en) Gas separation device
JP6568396B2 (en) Gas separation device and compressor cooling method used therefor
JP2013043117A (en) Gas separation device
JP7064835B2 (en) Gas separator
JP5864994B2 (en) Gas separation apparatus and method
JP6280715B2 (en) Gas separation device
JP2009082782A (en) Gas separation system
JP6823979B2 (en) Gas separator
JP6231363B2 (en) Gas separation apparatus and method
JP6239435B2 (en) Gas separation device
JP5939917B2 (en) Gas separation device
TWI634263B (en) Gas booster compression device and gas compressor
JP3867229B2 (en) Gas separation device
JP4203716B2 (en) Gas separation device
JP2006015221A (en) Gas separator
JP4594223B2 (en) Nitrogen gas generator
JP6313638B2 (en) Compressor and gas separation device using the same
JP7037040B2 (en) Low oxygen concentration air supply device
JP7216517B2 (en) gas separation system
JP2010234345A (en) Gas separator
JP2011183256A (en) Gas separator and gas separation method
JP2004148258A (en) Gas separation equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210112

R150 Certificate of patent or registration of utility model

Ref document number: 6823979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150