JP2018042730A - X-ray CT apparatus - Google Patents

X-ray CT apparatus Download PDF

Info

Publication number
JP2018042730A
JP2018042730A JP2016179665A JP2016179665A JP2018042730A JP 2018042730 A JP2018042730 A JP 2018042730A JP 2016179665 A JP2016179665 A JP 2016179665A JP 2016179665 A JP2016179665 A JP 2016179665A JP 2018042730 A JP2018042730 A JP 2018042730A
Authority
JP
Japan
Prior art keywords
ray
region
attenuation coefficient
image
ray detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016179665A
Other languages
Japanese (ja)
Other versions
JP6629158B2 (en
Inventor
喬 山口
Takashi Yamaguchi
喬 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2016179665A priority Critical patent/JP6629158B2/en
Publication of JP2018042730A publication Critical patent/JP2018042730A/en
Application granted granted Critical
Publication of JP6629158B2 publication Critical patent/JP6629158B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an X-ray CT apparatus that allows a clear CT image to be acquired by a successive approximation method.SOLUTION: An X-ray CT apparatus includes an X-ray tube 5 and an X-ray detector 9 disposed across a treatment table 7, and an image generation part 17 for generating a tomographic image of a patient P based on the X-ray detected by the X-ray detector 9. Representing a region where all rotated regions T to be detected are overlapped with one another when the regions T to be detected, which are regions including all line segments connecting the X-ray tube 5 and each detection pixel 9a of the X-ray detector 9, are rotated, as region R1, and representing a region defined outside region R1 as region R2, the image generation part 17 includes a smoothing processing part 17a for acquiring smoothing data by subjecting a linear attenuation coefficient of a voxel located in region R2 to smoothing processing when calculating a linear attenuation coefficient of each voxel included in a cross section, and a linear attenuation coefficient calculation part 17b for calculating a linear attenuation coefficient of a voxel located in region R1 based on the smoothing data.SELECTED DRAWING: Figure 2

Description

本発明は、X線CT装置に関するものである。   The present invention relates to an X-ray CT apparatus.

従来、このような分野の技術として、下記特許文献1に記載のCBCT(Cone BeamComputed Tomography)装置が知られている。この装置は、粒子線治療装置に搭載されたものであり、患者を挟んで配置され当該患者を中心にして回転するX線源及びX線検出器を備えている。X線源からX線が照射され、患者を通過したX線がX線検出器で検出される。CBCT装置は、X線検出器で検出されたX線に基づいて、患者のCT画像を再構成する。   Conventionally, as a technique in such a field, a CBCT (Cone Beam Computed Tomography) apparatus described in Patent Document 1 below is known. This apparatus is mounted on a particle beam therapy apparatus, and includes an X-ray source and an X-ray detector that are arranged with a patient interposed therebetween and rotate around the patient. X-rays are emitted from the X-ray source, and X-rays passing through the patient are detected by an X-ray detector. The CBCT apparatus reconstructs a CT image of a patient based on the X-ray detected by the X-ray detector.

特開2014-124206号公報JP 2014-124206 A

工藤博幸、「新方式コンピュータトモグラフィーと圧縮センシング」、精密工学会誌/Journal of the Japan Society for Precision Engineering、2016年、Vol.82、No.6、p.506-512Hiroyuki Kudo, “New Computer Tomography and Compressive Sensing”, Journal of the Japan Society for Precision Engineering, 2016, Vol.82, No.6, p.506-512

X線検出器で検出されたX線に基づいて患者のCT画像を再構成する手法として、解析的手法と逐次近似法(代数的手法)とが存在する。解析的手法が採用される場合には、鮮明な画像を得られるものの、この手法はノイズに敏感であるため、照射するX線の強度を高くする必要があり、患者に対して過剰にX線を照射しかねない。一方、逐次近似法が採用される場合にはX線の強度は低くすることができるが、鮮明な画像を得られない。このような問題に鑑み、本発明は、逐次近似法によって鮮明なCT画像を得ることができるX線CT装置を提供することを目的とする。   There are an analytical method and a successive approximation method (algebraic method) as methods for reconstructing a CT image of a patient based on X-rays detected by an X-ray detector. When an analytical method is adopted, a clear image can be obtained. However, since this method is sensitive to noise, it is necessary to increase the intensity of X-rays to be irradiated. May irradiate. On the other hand, when the successive approximation method is adopted, the X-ray intensity can be lowered, but a clear image cannot be obtained. In view of such a problem, an object of the present invention is to provide an X-ray CT apparatus capable of obtaining a clear CT image by a successive approximation method.

本発明のX線CT装置は、被照射体にX線を照射するX線源と、被照射体を載置する載置部と、載置部を挟んでX線源と反対側に配置され、被照射体を通過したX線を検出するX線検出器と、X線源及びX線検出器を載置部の周りで回転可能に支持する支持部と、X線源及びX線検出器を載置部の周りで所定の角度回転させながらX線検出器で検出したX線に基づいて、被照射体の断層の画像を生成する画像生成部と、を備え、X線源とX線検出器の各々の検出画素とを結ぶすべての線分を含む領域である被検出領域を、X線源及びX線検出器の回転経路に対応させて回転させたときに、すべての回転させた被検出領域が互いに重複する領域を第1領域とし、第1領域の外側に規定される領域を第2領域としたときに、画像生成部は、断層に含まれる各ボクセルの線減弱係数を算出するときに、第2領域に位置するボクセルの線減弱係数に平滑化処理を施して平滑化データを得る平滑化処理部と、平滑化データに基づいて、第1領域に位置するボクセルの線減弱係数を算出する線減弱係数算出部を有する。   The X-ray CT apparatus of the present invention is disposed on the opposite side of the X-ray source with an X-ray source for irradiating the irradiated body, a mounting portion for mounting the irradiated body, and the mounting portion interposed therebetween. An X-ray detector that detects X-rays that have passed through the irradiated body, an X-ray source and a support unit that rotatably supports the X-ray detector around the mounting unit, and an X-ray source and an X-ray detector An image generation unit that generates a tomographic image of an irradiated object based on X-rays detected by an X-ray detector while rotating a predetermined angle around the mounting unit, and an X-ray source and an X-ray When the detection area, which is an area including all line segments connecting each detection pixel of the detector, is rotated corresponding to the rotation path of the X-ray source and the X-ray detector, all the rotation is performed. When the area where the detection areas overlap each other is the first area and the area defined outside the first area is the second area, the image generation unit When calculating the linear attenuation coefficient of each voxel to be turned, a smoothing processing unit that obtains smoothed data by performing a smoothing process on the linear attenuation coefficient of the voxel located in the second region, A linear attenuation coefficient calculating unit that calculates a linear attenuation coefficient of the voxel located in the first region;

また、平滑化処理は、第2領域の所定の対象ボクセルの周囲のボクセルの線減弱係数を平均化して、対象ボクセルの線減弱係数を算出する演算を含むようにしてもよい。   Further, the smoothing process may include an operation of calculating a linear attenuation coefficient of the target voxel by averaging the linear attenuation coefficients of the voxels around the predetermined target voxel in the second region.

本発明によれば、逐次近似法によって鮮明なCT画像を得ることができるX線CT装置を提供することができる。   According to the present invention, it is possible to provide an X-ray CT apparatus capable of obtaining a clear CT image by a successive approximation method.

本実施形態に係るX線CT装置が組み込まれた陽子線治療システムを示す図である。It is a figure which shows the proton beam treatment system in which the X-ray CT apparatus which concerns on this embodiment was integrated. 陽子線治療システムの回転ガントリを示す斜視図である。It is a perspective view which shows the rotation gantry of a proton beam treatment system. X線CT装置の機能的な構成要素を示すブロック図である。It is a block diagram which shows the functional component of an X-ray CT apparatus. 回転軸線に直交する断面上においてX線管とX線検出器との位置関係を示す図である。It is a figure which shows the positional relationship of an X-ray tube and an X-ray detector on the cross section orthogonal to a rotating shaft line. 領域R1及び領域R2の一例を示す図である。It is a figure which shows an example of area | region R1 and area | region R2. (a)は、本発明者らによるシミュレーションに用いる対象物のデータであり、(b),(c)はシミュレーションで得られた上記対象物のCT画像である。(A) is the data of the object used for the simulation by the present inventors, and (b) and (c) are CT images of the object obtained by the simulation.

以下、図面を参照しつつ本発明に係るX線CT装置の実施形態について詳細に説明する。図1及び図2に示されるように、本実施形態のX線CT装置1は、荷電粒子線治療システムの一種である陽子線治療システム51に組み込まれている。陽子線治療システム51は、例えば、患者P(被照射体)の内部の病巣(例えば、腫瘍等)に対して、陽子線を照射して治療を行う装置である。陽子線治療システム51は、荷電粒子(水素イオン)を加速して荷電粒子線(陽子線)を出射する加速器52と、陽子線を患者Pに照射する照射部(照射ノズル)3と、照射部3を患者Pが載置される治療台7の周囲で回転軸線A周りに回転させる回転ガントリ13と、加速器52と照射部3とを接続して加速器52から出射された陽子線を照射部3まで輸送する輸送ライン54と、を備えている。   Hereinafter, embodiments of an X-ray CT apparatus according to the present invention will be described in detail with reference to the drawings. As shown in FIGS. 1 and 2, the X-ray CT apparatus 1 of the present embodiment is incorporated in a proton beam therapy system 51 that is a kind of charged particle beam therapy system. The proton beam treatment system 51 is, for example, an apparatus that performs treatment by irradiating a lesion (for example, a tumor or the like) inside the patient P (irradiated body) with a proton beam. The proton beam treatment system 51 includes an accelerator 52 that accelerates charged particles (hydrogen ions) and emits charged particle beams (proton beams), an irradiation unit (irradiation nozzle) 3 that irradiates the patient P with proton beams, and an irradiation unit. The rotating gantry 13 that rotates 3 around the treatment table 7 on which the patient P is placed around the rotation axis A, the accelerator 52 and the irradiation unit 3 are connected, and the proton beam emitted from the accelerator 52 is irradiated with the irradiation unit 3. And a transportation line 54 for transporting to the vehicle.

X線CT装置1は、CBCT装置(コーンビームCT装置)と呼ばれるタイプのCT装置であり、陽子線治療システム51の治療台7上での患者Pの位置を正確に合わせる目的で使用される。具体的には、陽子線照射治療に先立ち、治療台7にセッティングされた状態における患者Pの断層画像(CT画像)がX線CT装置1を用いて作成され、このCT画像に基づいて患者Pの病巣等の位置が認識される。このX線CT装置1によるCT画像が、事前に別のCT装置で作成された患者Pの治療計画CT画像と比較されて、治療台7上における患者Pの位置合わせが行われる。なお、治療台7上における患者Pの位置合わせが、X線CT装置1によるCT画像に基づいて直接行われてもよい。   The X-ray CT apparatus 1 is a CT apparatus of a type called a CBCT apparatus (cone beam CT apparatus), and is used for the purpose of accurately aligning the position of the patient P on the treatment table 7 of the proton beam treatment system 51. Specifically, prior to the proton beam irradiation treatment, a tomographic image (CT image) of the patient P in a state set on the treatment table 7 is created using the X-ray CT apparatus 1, and based on this CT image, the patient P The position of the lesion or the like is recognized. The CT image by the X-ray CT apparatus 1 is compared with the treatment plan CT image of the patient P created in advance by another CT apparatus, and the patient P is aligned on the treatment table 7. The patient P may be aligned on the treatment table 7 directly based on the CT image by the X-ray CT apparatus 1.

X線CT装置1は、患者PにX線を照射するX線管5(X線源)と、患者Pを載置する治療台7(載置部)と、X線を検出するX線検出器9と、を備えている。図2に示されるように本実施形態のX線CT装置1はX線管5とX線検出器9との組を2組備えているが、X線管5とX線検出器9との組は1組であってもよい。更に、X線CT装置1は、X線検出器9で検出したX線に基づいて、患者Pの内部のCT画像を生成する画像生成部17と、を備えている。また、図3に示されるように、X線CT装置1は、X線管5、X線検出器9、回転ガントリ13(支持部)、及び画像生成部17を制御する制御部10を備えている。また、画像生成部17は、平滑化処理部17aと線減弱係数算出部17bとを有する。平滑化処理部17aと線減弱係数算出部17bとの機能については後述する。   The X-ray CT apparatus 1 includes an X-ray tube 5 (X-ray source) that irradiates a patient P with X-rays, a treatment table 7 (mounting unit) on which the patient P is placed, and X-ray detection that detects X-rays. And a container 9. As shown in FIG. 2, the X-ray CT apparatus 1 of this embodiment includes two sets of an X-ray tube 5 and an X-ray detector 9. There may be one set. The X-ray CT apparatus 1 further includes an image generation unit 17 that generates a CT image inside the patient P based on the X-rays detected by the X-ray detector 9. As shown in FIG. 3, the X-ray CT apparatus 1 includes an X-ray tube 5, an X-ray detector 9, a rotating gantry 13 (support unit), and a control unit 10 that controls the image generation unit 17. Yes. The image generation unit 17 includes a smoothing processing unit 17a and a linear attenuation coefficient calculation unit 17b. Functions of the smoothing processing unit 17a and the linear attenuation coefficient calculating unit 17b will be described later.

図2に示されるように、X線管5とX線検出器9とは上記の回転ガントリ13によって支持され回転可能に構成されており、X線管5及びX線検出器9が一体として回転軸線A周りに回転する。なお、本実施形態では、X線管5及びX線検出器9が回転軸線Aを中心とする円軌道で回転する場合を例として説明する。X線管5は、当該X線管5を頂点とする円錐状のX線のビーム(コーンビーム)を治療台7に向けて照射する。X線検出器9は、FPD(Flat Panel Ditector)であり、X線管5からのX線を検出する多数の検出画素9aを有する。検出画素9aは、X線検出器9において上記の円錐の軸に直交する平面上で2次元に配置されている。   As shown in FIG. 2, the X-ray tube 5 and the X-ray detector 9 are supported by the rotating gantry 13 and configured to be rotatable, and the X-ray tube 5 and the X-ray detector 9 rotate as a unit. Rotate around axis A. In the present embodiment, the case where the X-ray tube 5 and the X-ray detector 9 rotate on a circular orbit around the rotation axis A will be described as an example. The X-ray tube 5 irradiates the treatment table 7 with a conical X-ray beam (cone beam) having the X-ray tube 5 as a vertex. The X-ray detector 9 is an FPD (Flat Panel Ditector) and has a large number of detection pixels 9 a that detect X-rays from the X-ray tube 5. The detection pixels 9 a are two-dimensionally arranged on a plane orthogonal to the cone axis in the X-ray detector 9.

X線管5とX線検出器9とは、回転ガントリ13上において、治療台7を挟んで互いに反対側の位置に配置されている。X線管5からX線が照射され、治療台7上の患者Pを通過したX線がX線検出器9に検出され、X線検出器9には患者PのX線画像データが取得される。このとき回転ガントリ13が所定の角度(例えば約180°)回転することで、投射角度を変えながら、各投射角度に対応するX線画像データを収集することができる。またこのとき、患者Pが載置される治療台7は、建物の床に固定された支持装置7aにより支持されており、回転ガントリ13の回転とは無関係に患者Pは回転軸線Aの近傍に配置される。そして、画像生成部17は、X線検出器9で収集された上記のX線画像データに基づいて、所定の演算による画像再構成処理を実行し、患者Pの内部のCT画像を生成する。   The X-ray tube 5 and the X-ray detector 9 are disposed on the rotating gantry 13 at positions opposite to each other across the treatment table 7. X-rays are emitted from the X-ray tube 5, and X-rays that have passed through the patient P on the treatment table 7 are detected by the X-ray detector 9, and X-ray image data of the patient P is acquired by the X-ray detector 9. The At this time, the rotating gantry 13 rotates by a predetermined angle (for example, about 180 °), so that X-ray image data corresponding to each projection angle can be collected while changing the projection angle. At this time, the treatment table 7 on which the patient P is placed is supported by a support device 7a fixed to the floor of the building, and the patient P is in the vicinity of the rotation axis A regardless of the rotation of the rotating gantry 13. Be placed. Then, the image generation unit 17 performs an image reconstruction process by a predetermined calculation based on the X-ray image data collected by the X-ray detector 9 to generate a CT image inside the patient P.

続いて、X線CT装置1の画像生成部17が、X線検出器9で収集されたX線画像データに基づいて患者PのCT画像(断層画像)を生成する画像再構成処理について説明する。ここでは、回転軸線Aに直交する平断面に沿った断層のCT画像が生成されるものとする。X線検出器9は、各検出画素9aで検出されたX線強度を示す検出データを電気信号として画像生成部17に出力し、画像生成部17は入力された上記検出データに基づいて所定の画像再構成処理を行い、患者PのCT画像を得る。例えば、画像生成部17は、予め準備された画像再構成処理プログラムに従って動作するコンピュータで構成される。画像生成部17が備える前述の平滑化処理部17aと線減弱係数算出部17bは、上記のようなコンピュータの動作により実現される構成要素である。この画像再構成処理では逐次近似法が用いられる。逐次近似法による画像再構成は、代数的手法または統計的手法とも呼ばれる。   Subsequently, an image reconstruction process in which the image generation unit 17 of the X-ray CT apparatus 1 generates a CT image (tomographic image) of the patient P based on the X-ray image data collected by the X-ray detector 9 will be described. . Here, it is assumed that a tomographic CT image along a plane cross-section orthogonal to the rotation axis A is generated. The X-ray detector 9 outputs detection data indicating the X-ray intensity detected by each detection pixel 9a to the image generation unit 17 as an electrical signal, and the image generation unit 17 performs a predetermined process based on the input detection data. An image reconstruction process is performed to obtain a CT image of the patient P. For example, the image generation unit 17 is configured by a computer that operates according to an image reconstruction processing program prepared in advance. The smoothing processing unit 17a and the linear attenuation coefficient calculation unit 17b included in the image generation unit 17 are components realized by the operation of the computer as described above. In this image reconstruction process, a successive approximation method is used. Image reconstruction by the successive approximation method is also called an algebraic method or a statistical method.

この種のCBCT装置においては、投射角度を変えながら(すなわち、回転ガントリ13を回転しながら)X線管5からX線検出器9にX線を照射する場合に、すべての投影角度においてX線検出器9の検出データが取得される領域R1が、X線管5とX線検出器9との間に存在する(図4参照)。   In this type of CBCT apparatus, when X-rays are irradiated from the X-ray tube 5 to the X-ray detector 9 while changing the projection angle (that is, while rotating the rotating gantry 13), X-rays are emitted at all projection angles. A region R1 in which detection data of the detector 9 is acquired exists between the X-ray tube 5 and the X-ray detector 9 (see FIG. 4).

ここで、X線検出器9の検出データが取得されるためのX線の経路は、X線管5とX線検出器9の各々の検出画素9aとを結ぶ線分で表される。これらの線分のすべてを含む領域が、ある投射角度において検出データが取得可能な被検出領域Tである。図4に示されるように、CT画像の対象となる断層に沿った平断面上で考えると、上記の被検出領域Tは、X線管5を頂点とし線分9sを底辺とする三角形で表される。なお、上記の線分9sは、X線検出器9上においてX線管5からのX線を検出する検出画素9aが存在する範囲に相当する。   Here, an X-ray path for obtaining detection data of the X-ray detector 9 is represented by a line segment connecting the X-ray tube 5 and each detection pixel 9 a of the X-ray detector 9. A region including all of these line segments is a detection region T in which detection data can be acquired at a certain projection angle. As shown in FIG. 4, when considered on a plane section along a tomographic object, the detected region T is represented by a triangle having the X-ray tube 5 as a vertex and a line segment 9 s as a base. Is done. The line segment 9s corresponds to a range where the detection pixel 9a for detecting the X-ray from the X-ray tube 5 exists on the X-ray detector 9.

そして、回転軸線Aを中心として被検出領域Tを回転させたときに、すべての回転させた被検出領域Tが互いに重複する領域は、回転させた上記三角形のすべてに内接する円Cで表される。CT画像の対象となる断層に沿った平断面上においては、この円Cで囲まれる内側の領域が上記の領域R1に相当する。なお、このような領域R1は、可視化領域、又はFOV(Field of View)などと呼ばれる場合もある。   When the detection area T is rotated around the rotation axis A, the area where all the rotated detection areas T overlap each other is represented by a circle C inscribed in all the rotated triangles. The On the plane cross section along the tomographic image, the inner area surrounded by the circle C corresponds to the area R1. Such a region R1 may be called a visualization region or FOV (Field of View).

一般的に、CBCT装置による対象物の断層を示すCT画像は、当該断層に含まれるボクセルごとの線減弱係数μを算出することにより、各ボクセルの線減弱係数μをCT画像上のピクセルの濃淡に対応させることで、得ることができる。例えば、従来の逐次近似型画像再構成法においては、当該断層に含まれるj番目のボクセル(jは自然数)の線減弱係数μは、下式(1)で算出される。
In general, a CT image showing a tomography of an object by a CBCT apparatus calculates a linear attenuation coefficient μ for each voxel included in the tomography, thereby calculating the linear attenuation coefficient μ of each voxel by the density of pixels on the CT image. It can be obtained by making it correspond to. For example, in the conventional iterative approximation type image reconstruction method, the linear attenuation coefficient μ j of the j-th voxel (j is a natural number) included in the slice is calculated by the following equation (1).

但し、式(1)中の各変数の意味は次の通りである。
nは繰返し計算回数を示し、nをインクリメントしながら式(1)の計算を予め設定された回数(例えば、100回程度)繰返すことにより、μが決定される。
sはサブセット数であり、データの分割数とも言う。s=1としてもよい。
は、測定対象物を置かない場合におけるi番目の検出画素の投射データ(ブランクデータ)である。
は、j番目のボクセルに測定対象物を置いた場合におけるi番目の検出画素の投射データである。
ijは、i番目の検出画素に対するj番目のボクセルの透過長(システムマトリクス、検出確率データとも言う)である。
k=1〜Bが、領域R1内のボクセルの全部に対応する。
i=1〜Dが、X線検出器9上でX線管5からのX線を検出する検出画素9aの全部に対応する。
However, the meaning of each variable in Formula (1) is as follows.
n indicates the number of times of repeated calculation, and μ j is determined by repeating the calculation of the expression (1) while incrementing n by a preset number of times (for example, about 100 times).
s is the number of subsets and is also called the number of data divisions. It is good also as s = 1.
d i is projection data (blank data) of the i-th detection pixel when the measurement object is not placed.
y i is the projection data of the i th detection pixel when the measurement object is placed on the j th voxel.
l ij is the transmission length (also referred to as system matrix or detection probability data) of the j-th voxel with respect to the i-th detection pixel.
k = 1 to B corresponds to all the voxels in the region R1.
i = 1 to D correspond to all the detection pixels 9 a that detect X-rays from the X-ray tube 5 on the X-ray detector 9.

ここで、CBCT装置によるCT画像の撮影において、患者Pの断面が領域R1内に納まることが好ましいが、例えば患者Pの胴囲が大きい場合などは、患者Pの断面が領域R1からはみ出すことになる。この場合、従来の逐次近似法においては、実際には領域R1の外側にはみ出した部分にX線の減弱が存在するにも関わらず、この減弱の効果を領域R1内のみで反映させようとする。従って患者Pの断面が領域R1からはみ出す場合には、従来の逐次近似法では、アーチファクトが発生するなどCT画像が不鮮明になってしまう。なお、解析的手法による特殊な画像再構成処理(例えば、微分逆投影法)であれば上記の問題は発生しない。   Here, in taking a CT image by the CBCT apparatus, it is preferable that the cross section of the patient P falls within the region R1, but when the patient P has a large waist, the cross section of the patient P protrudes from the region R1. Become. In this case, in the conventional successive approximation method, although the attenuation of X-rays actually exists outside the region R1, the attenuation effect is reflected only in the region R1. . Accordingly, when the cross section of the patient P protrudes from the region R1, the CT image becomes unclear due to the occurrence of artifacts in the conventional successive approximation method. Note that the above problem does not occur if the image reconstruction process is special (for example, the differential back projection method) using an analytical method.

上記の問題の対策として、本実施形態の画像生成部17による画像再構成処理では、図5に示されるように、上記の領域R1(第1領域)の外周を囲む領域R2(第2領域)を設定し、領域R1の線減弱係数μと領域R2の線減弱係数μとを異なる演算式で算出する。領域R2は、例えば、領域R1を完全に含む所定の矩形から領域R1の円形を除いた形状の領域として設定される。また領域R2は、X線管5及びX線検出器9の回転軌道の内側に納まる大きさに設定される。領域R2の外縁は、例えば患者Pを完全に囲むような大きさに設定されるようにしてもよい。また、本実施形態では、領域R2の外縁の形状を矩形としているが他の形状にしてもよい。   As a countermeasure for the above problem, in the image reconstruction process by the image generation unit 17 of the present embodiment, as shown in FIG. 5, a region R2 (second region) surrounding the outer periphery of the region R1 (first region). Is set, and the linear attenuation coefficient μ of the region R1 and the linear attenuation coefficient μ of the region R2 are calculated by different arithmetic expressions. The region R2 is set as, for example, a region having a shape obtained by removing the circle of the region R1 from a predetermined rectangle that completely includes the region R1. The region R2 is set to a size that fits inside the rotation trajectory of the X-ray tube 5 and the X-ray detector 9. The outer edge of the region R2 may be set to a size that completely surrounds the patient P, for example. In the present embodiment, the shape of the outer edge of the region R2 is rectangular, but other shapes may be used.

画像生成部17の機能として、前述の平滑化処理部17aは、領域R2に位置するボクセルの線減弱係数に平滑化処理を施して平滑化データを得る。また、前述の線減弱係数算出部17bは、上記の平滑化データに基づいて、領域R1に位置するボクセルの線減弱係数を算出する。本実施形態の画像生成部17による画像再構成処理では、上記の式(1)を改良し、断層の領域R1に含まれるj番目のボクセルの線減弱係数μは、線減弱係数算出部17bによって、下式(2)で算出される。また、断層の領域R2に含まれるj番目のボクセルの線減弱係数μBufferjは、平滑化処理部17aによって、下式(3)で推定される。

As a function of the image generation unit 17, the smoothing processing unit 17a described above performs smoothing processing on the linear attenuation coefficient of the voxel located in the region R2 to obtain smoothed data. Further, the above-described linear attenuation coefficient calculation unit 17b calculates the linear attenuation coefficient of the voxel located in the region R1 based on the smoothed data. In the image reconstruction processing by the image generation unit 17 of the present embodiment, the above equation (1) is improved, and the line attenuation coefficient μ j of the j-th voxel included in the tomographic region R1 is the line attenuation coefficient calculation unit 17b. Is calculated by the following equation (2). Further, the linear attenuation coefficient μ Bufferj of the j-th voxel included in the tomographic region R2 is estimated by the following equation (3) by the smoothing processing unit 17a.

式(2)、式(3)中においてk=1〜(B+Buf)が、領域R1内のボクセルと領域R2内のボクセルとを合わせたボクセルの全部に対応する。   In Equations (2) and (3), k = 1 to (B + Buf) corresponds to all the voxels obtained by combining the voxels in the region R1 and the voxels in the region R2.

また、式(3)中のFは平滑化フィルタを示す。式(3)中の平滑化フィルタFの存在により領域R2の線減弱係数には平滑化処理が施される。すなわち、領域R2のある対象のボクセルの線減弱係数は、当該対象のボクセルの周囲のボクセルの線減弱係数にも基づいて平滑化処理されて得られる。例えば、平滑化フィルタFとしては5×5×5の平滑化フィルタが用いられる。つまり、平滑化フィルタFとしては、例えば、領域R2の所定の対象ボクセルの周囲のボクセルの線減弱係数を平均化して、対象ボクセルの線減弱係数が算出されるようなフィルタであってもよい。また、平滑化フィルタFとしては、移動平均フィルタ、荷重平均フィルタ、ガウシアンフィルタ等の公知のフィルタを採用することができる。   Moreover, F in Formula (3) shows a smoothing filter. Due to the presence of the smoothing filter F in the expression (3), the linear attenuation coefficient in the region R2 is subjected to a smoothing process. That is, the line attenuation coefficient of the target voxel in the region R2 is obtained by performing the smoothing process on the basis of the linear attenuation coefficient of the voxels around the target voxel. For example, as the smoothing filter F, a 5 × 5 × 5 smoothing filter is used. That is, the smoothing filter F may be, for example, a filter that averages the linear attenuation coefficients of voxels around a predetermined target voxel in the region R2 and calculates the linear attenuation coefficient of the target voxel. Further, as the smoothing filter F, a known filter such as a moving average filter, a weighted average filter, and a Gaussian filter can be employed.

上式(2)によって領域R1のCT画像が得られ、上式(3)によって領域R2のCT画像が推定される。このうち、領域R2のCT画像は比較的信頼性が低いために不採用とし、上式(2)による領域R1のCT画像のみを採用してもよい。   The CT image of the region R1 is obtained by the above equation (2), and the CT image of the region R2 is estimated by the above equation (3). Of these, the CT image in the region R2 may not be adopted because of its relatively low reliability, and only the CT image in the region R1 according to the above equation (2) may be employed.

以上説明したX線CT装置1による作用効果について説明する。X線CT装置1の画像生成部17によれば、式(2)及び式(3)により、領域R1のCT画像と領域R2のCT画像とが得られる。ここで、式(2),(3)中のΣを含む各項を参照して理解されるように、各ボクセルの線減弱係数μには、領域R2のボクセルの線減弱係数が平滑化処理を経た上で反映される。従って、従来の逐次近似法による画像再構成に比べて、領域R1の外側の領域の影響を適切に反映させた鮮明なCT画像が取得される。例えば患者Pが領域R1の外側にはみ出す場合、逐次近似法によれば、実際には存在しない高周波成分がノイズとしてCT画像上に現れる場合がある。これに対し、式(3)の線減弱係数μBufferjには平滑化フィルタF処理が施されるので、上記のような高周波成分のノイズが適切に除去される。 The effect by the X-ray CT apparatus 1 demonstrated above is demonstrated. According to the image generation unit 17 of the X-ray CT apparatus 1, the CT image of the region R1 and the CT image of the region R2 can be obtained by the equations (2) and (3). Here, as understood with reference to the terms including Σ in the equations (2) and (3), the linear attenuation coefficient μ of the voxel in the region R2 is smoothed by the linear attenuation coefficient μ of each voxel. It is reflected after going through. Therefore, a clear CT image that appropriately reflects the influence of the region outside the region R1 is acquired as compared with the conventional image reconstruction by the successive approximation method. For example, when the patient P protrudes outside the region R1, high frequency components that do not actually exist may appear on the CT image as noise according to the successive approximation method. On the other hand, since the linear attenuation coefficient μ Bufferj in the expression (3) is subjected to the smoothing filter F process, the high-frequency component noise as described above is appropriately removed.

また、画像生成部17による画像再構成処理は、逐次近似法を用いるので、解析的手法による画像再構成に比べてノイズが抑えられる。従って、照射するX線量が抑えられ、解析的手法の場合に比べて患者Pの被爆量が抑えられる。   In addition, since the image reconstruction process by the image generation unit 17 uses a successive approximation method, noise can be suppressed as compared with image reconstruction by an analytical method. Therefore, the X-ray dose to be irradiated can be suppressed, and the exposure dose of the patient P can be suppressed as compared with the analytical method.

なお、前述の非特許文献1においても、逐次近似法で鮮明なCT画像を得ようとする技術が提案されている。しかし、この非特許文献1の技術では、画像の中に既知の部分が存在することを必要とする。これに対し、X線CT装置1ではこのような既知の情報も不要である。   In the above-mentioned Non-Patent Document 1, a technique for obtaining a clear CT image by a successive approximation method is proposed. However, the technique of Non-Patent Document 1 requires that a known part exists in the image. In contrast, the X-ray CT apparatus 1 does not require such known information.

続いて、上述した本実施形態の画像再構成処理による作用効果を確認すべく、本発明者らが行ったシミュレーションの結果について説明する。   Next, the results of a simulation performed by the present inventors will be described in order to confirm the operational effects of the image reconstruction process of the present embodiment described above.

図6(a)は、CT撮影の対象となる撮影対象物101の断層を示すシミュレーションデータである。図6(b)は、従来の式(1)を用いて撮影対象物101の画像再構成処理を行うシミュレーションで得られたCT画像である。図6(c)は、本実施形態の式(2),(3)を用いて撮影対象物101の画像再構成処理を行うシミュレーションで得られたCT画像である。   FIG. 6A is simulation data showing a tomography of the imaging object 101 that is the object of CT imaging. FIG. 6B is a CT image obtained by a simulation that performs image reconstruction processing of the object 101 using the conventional equation (1). FIG. 6C is a CT image obtained by a simulation that performs image reconstruction processing of the object 101 using the equations (2) and (3) of the present embodiment.

シミュレーション条件は次の通りとした。撮影対象物101は、回転軸線Aを中心として半径150mmの円形断面を有するものとした。領域R1は、回転軸線Aを中心とする直径170mmの円とした。領域R2の外縁は、回転軸線Aを中心とする一辺230.4mmの正方形とした。   The simulation conditions were as follows. The photographing object 101 has a circular cross section with a radius of 150 mm with the rotation axis A as the center. The region R1 was a circle having a diameter of 170 mm centered on the rotation axis A. The outer edge of the region R2 was a square with a side of 230.4 mm centered on the rotation axis A.

シミュレーションの結果、図6(b)では、特に高周波のノイズが発生しCT画像が不鮮明であるのに対し、図6(c)では、高周波のノイズも抑えられて画像が鮮明になり、図6(a)の撮影対象物101が正確に再現されていることが判る。以上より、上述した画像再構成処理によれば、鮮明なCT画像が得られることが判った。   As a result of the simulation, in FIG. 6B, particularly high-frequency noise occurs and the CT image is unclear, whereas in FIG. 6C, the high-frequency noise is also suppressed and the image becomes clear. It can be seen that the object 101 of (a) is accurately reproduced. From the above, it has been found that a clear CT image can be obtained by the above-described image reconstruction processing.

本発明は、上述した実施形態を始めとして、当業者の知識に基づいて種々の変更、改良を施した様々な形態で実施することができる。また、上述した実施形態に記載されている技術的事項を利用して、実施例の変形例を構成することも可能である。各実施形態の構成を適宜組み合わせて使用してもよい。例えば、上述の実施形態では、陽子線治療システム51に組み込まれたX線CT装置1を例として説明したが、陽子線治療システムに限られず、例えば、重粒子(重イオン)線、パイ中間子線等の荷電粒子線を用いた治療システムに対しても、本実施形態に係るX線CT装置1を適用することができる。また、X線CT装置1は、陽子線治療システム51等の放射線治療システムに取り付けられる構成に限らず、X線CT装置単体として設けられた構成としてもよい。   The present invention can be implemented in various forms including various modifications and improvements based on the knowledge of those skilled in the art including the above-described embodiments. Moreover, it is also possible to configure a modification of the example using the technical matters described in the above-described embodiment. You may use combining the structure of each embodiment suitably. For example, in the above-described embodiment, the X-ray CT apparatus 1 incorporated in the proton beam therapy system 51 has been described as an example. However, the present invention is not limited to the proton beam therapy system, and includes, for example, a heavy particle (heavy ion) beam, a pion beam. The X-ray CT apparatus 1 according to the present embodiment can also be applied to a treatment system using charged particle beams such as the above. Further, the X-ray CT apparatus 1 is not limited to the structure attached to the radiation therapy system such as the proton beam therapy system 51, and may be configured as a single X-ray CT apparatus.

1…X線CT装置、5…X線管(X線源)、7…治療台(載置部)、9…X線検出器、9a…検出画素、13…回転ガントリ(支持部)、17…画像生成部、51…陽子線治療システム、R1…第1領域、R2…第2領域、T…被検出領域、P…患者(被照射体)。   DESCRIPTION OF SYMBOLS 1 ... X-ray CT apparatus, 5 ... X-ray tube (X-ray source), 7 ... Treatment table (mounting part), 9 ... X-ray detector, 9a ... Detection pixel, 13 ... Rotating gantry (support part), 17 DESCRIPTION OF SYMBOLS ... Image generation part, 51 ... Proton therapy system, R1 ... 1st area | region, R2 ... 2nd area | region, T ... Detection area | region, P ... Patient (irradiation body).

Claims (2)

被照射体にX線を照射するX線源と、
前記被照射体を載置する載置部と、
前記載置部を挟んで前記X線源と反対側に配置され、前記被照射体を通過した前記X線を検出するX線検出器と、
前記X線源及び前記X線検出器を前記載置部の周りで回転可能に支持する支持部と、
前記X線源及び前記X線検出器を前記載置部の周りで所定の角度回転させながら前記X線検出器で検出した前記X線に基づいて、前記被照射体の断層の画像を生成する画像生成部と、を備え、
前記X線源と前記X線検出器の各々の検出画素とを結ぶすべての線分を含む領域である被検出領域を、前記X線源及び前記X線検出器の回転経路に対応させて回転させたときに、すべての回転させた前記被検出領域が互いに重複する領域を第1領域とし、前記第1領域の外側に規定される領域を第2領域としたときに、
前記画像生成部は、
前記断層に含まれる各ボクセルの線減弱係数を算出するときに、前記第2領域に位置する前記ボクセルの線減弱係数に平滑化処理を施して平滑化データを得る平滑化処理部と、
前記平滑化データに基づいて、前記第1領域に位置する前記ボクセルの線減弱係数を算出する線減弱係数算出部を有する、X線CT装置。
An X-ray source for irradiating the irradiated body with X-rays;
A placement unit for placing the irradiated body;
An X-ray detector that is disposed on the opposite side of the X-ray source across the placement unit and detects the X-ray that has passed through the irradiated body;
A support part that rotatably supports the X-ray source and the X-ray detector around the mounting part;
Based on the X-rays detected by the X-ray detector while rotating the X-ray source and the X-ray detector around the mounting portion by a predetermined angle, a tomographic image of the irradiated object is generated. An image generation unit,
Rotate a detected region, which is a region including all line segments connecting the X-ray source and each detection pixel of the X-ray detector, in correspondence with the rotation paths of the X-ray source and the X-ray detector. When all the rotated detection areas are overlapped with each other as a first area, and the area defined outside the first area as a second area,
The image generation unit
When calculating the linear attenuation coefficient of each voxel included in the fault, a smoothing processing unit that obtains smoothed data by performing a smoothing process on the linear attenuation coefficient of the voxel located in the second region;
An X-ray CT apparatus comprising: a linear attenuation coefficient calculation unit that calculates a linear attenuation coefficient of the voxel located in the first region based on the smoothed data.
前記平滑化処理は、
前記第2領域の所定の対象ボクセルの周囲のボクセルの線減弱係数を平均化して、前記対象ボクセルの線減弱係数を算出する演算を含む、請求項1に記載のX線CT装置。
The smoothing process is
The X-ray CT apparatus according to claim 1, further comprising: calculating a line attenuation coefficient of the target voxel by averaging line attenuation coefficients of voxels around a predetermined target voxel in the second area.
JP2016179665A 2016-09-14 2016-09-14 X-ray CT system Expired - Fee Related JP6629158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016179665A JP6629158B2 (en) 2016-09-14 2016-09-14 X-ray CT system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016179665A JP6629158B2 (en) 2016-09-14 2016-09-14 X-ray CT system

Publications (2)

Publication Number Publication Date
JP2018042730A true JP2018042730A (en) 2018-03-22
JP6629158B2 JP6629158B2 (en) 2020-01-15

Family

ID=61692598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016179665A Expired - Fee Related JP6629158B2 (en) 2016-09-14 2016-09-14 X-ray CT system

Country Status (1)

Country Link
JP (1) JP6629158B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108663989A (en) * 2018-04-25 2018-10-16 中国科学院合肥物质科学研究院 A kind of inverse solution engineering and trajectory planning algorithm of five axis therapeutic bed

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013085962A (en) * 2011-10-18 2013-05-13 Toshiba Corp Method and system for expanding axial coverage in successive approximation reconstruction in computer tomography (ct)
JP2013215472A (en) * 2012-04-11 2013-10-24 Shimadzu Corp Radiation tomographic image generating apparatus, radiation tomographic apparatus, and radiation tomographic image generating program
JP2015072125A (en) * 2013-10-01 2015-04-16 株式会社島津製作所 Image processing method, image reconstruction method, and tomographic imaging apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013085962A (en) * 2011-10-18 2013-05-13 Toshiba Corp Method and system for expanding axial coverage in successive approximation reconstruction in computer tomography (ct)
JP2013215472A (en) * 2012-04-11 2013-10-24 Shimadzu Corp Radiation tomographic image generating apparatus, radiation tomographic apparatus, and radiation tomographic image generating program
JP2015072125A (en) * 2013-10-01 2015-04-16 株式会社島津製作所 Image processing method, image reconstruction method, and tomographic imaging apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
工藤博幸: "新方式コンピュータトモグラフィーと圧縮センシング", 精密工学会誌, vol. 82, no. 6, JPN6019046788, 5 June 2016 (2016-06-05), JP, pages 506 - 512, ISSN: 0004164217 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108663989A (en) * 2018-04-25 2018-10-16 中国科学院合肥物质科学研究院 A kind of inverse solution engineering and trajectory planning algorithm of five axis therapeutic bed
CN108663989B (en) * 2018-04-25 2021-04-06 中国科学院合肥物质科学研究院 Inverse solution engineering and trajectory planning algorithm of five-axis treatment bed

Also Published As

Publication number Publication date
JP6629158B2 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
US11341613B2 (en) System and method for image reconstruction
US9830718B2 (en) Image processor, image processing method, and treatment system
EP2326250B1 (en) Calibration method for ring artifact correction in non-ideal isocentric 3d rotational x-ray scanner systems using a calibration phantom based rotation center finding algorithm
EP2633293B1 (en) Real-time motion tracking using tomosynthesis
US7831013B2 (en) Real-time motion tracking using tomosynthesis
KR101477543B1 (en) APPARATUS AND METHOD OF PHOTOGRAPHING USING X-ray
US10255696B2 (en) System and method for image reconstruction
US11134904B2 (en) Scattered radiation compensation for a medical imaging appliance
EP3270788B1 (en) System and method for computed tomography
JP2019111346A (en) Medical treatment apparatus and radiation diagnostic apparatus
Thompson et al. Introduction to industrial X-ray computed tomography
US10070841B2 (en) Arithmetic device, X-ray CT apparatus, and image reconstruction method
JP2010082442A (en) Apparatus and method for z-location dependent x-ray beam filtration for imaging system
JP6629158B2 (en) X-ray CT system
CN111685786B (en) X-ray CT device, image reconstruction apparatus, and image reconstruction method
JP5175573B2 (en) Radiotherapy system and radiotherapy program
US7653230B2 (en) Methods and systems for image reconstruction using low noise kernel
CN107809954B (en) Display of depth position of computer tomography slice image relative to object to be imaged
JP2013215472A (en) Radiation tomographic image generating apparatus, radiation tomographic apparatus, and radiation tomographic image generating program
Turner Erosion and dilation of edges in dimensional X-ray computed tomography images
JP5121489B2 (en) Radiotherapy system and radiotherapy program
Pearson et al. Dynamic intensity-weighted region of interest imaging for conebeam CT
JP2018196604A (en) X-ray CT apparatus
WO2018116791A1 (en) Medical image processing device and x-ray ct device provided with same, and medical image processing method
Youn et al. Deblurring in digital tomosynthesis by iterative self-layer subtraction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190122

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191204

R150 Certificate of patent or registration of utility model

Ref document number: 6629158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees