JP2018041873A - Method for producing L10 type FeNi ordered alloy - Google Patents

Method for producing L10 type FeNi ordered alloy Download PDF

Info

Publication number
JP2018041873A
JP2018041873A JP2016175873A JP2016175873A JP2018041873A JP 2018041873 A JP2018041873 A JP 2018041873A JP 2016175873 A JP2016175873 A JP 2016175873A JP 2016175873 A JP2016175873 A JP 2016175873A JP 2018041873 A JP2018041873 A JP 2018041873A
Authority
JP
Japan
Prior art keywords
feni
substrate
alloy
thin film
ordered alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016175873A
Other languages
Japanese (ja)
Inventor
将輝 水口
Masateru Mizuguchi
将輝 水口
敬之 田代
Noriyuki Tashiro
敬之 田代
弘毅 高梨
Koki Takanashi
弘毅 高梨
良雄 三浦
Yoshio Miura
良雄 三浦
雅人 辻川
Masahito Tsujikawa
雅人 辻川
白井 正文
Masabumi Shirai
正文 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2016175873A priority Critical patent/JP2018041873A/en
Publication of JP2018041873A publication Critical patent/JP2018041873A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an L1type FeNi ordered alloy which can produce a thin film type L1type FeNi ordered alloy in a relatively simple method.SOLUTION: Fe, Ni, and a third element are simultaneously sputtered on a surface of a rotating substrate in an inert gas atmosphere to produce a FeNi alloy thin film. After heating the FeNi alloy thin film in a vacuum atmosphere or an inert gas atmosphere at a temperature rising rate of 0.1°C/sec or more to a predetermined temperature of 310°C or more and less than 500°C, the substrate is held for 1 second or more at the predetermined temperature. The substrate is made of a MgO single crystal substrate, and a surface of the substrate is preferably a (001) plane.SELECTED DRAWING: Figure 1

Description

本発明は、第三元素添加法によるL1型FeNi規則合金の製造方法に関する。 The present invention relates to a process for the production of L1 0 type FeNi ordered alloy according to the third element addition method.

近年、大きい一軸磁気異方性を有し、貴金属やレアアースを含まない材料として、L1型の結晶構造を有するFeNi規則合金が注目されている。このL1型FeNi規則合金を製造する方法として、従来、MgO単結晶基板の(001)面上に複雑な組成を有する多層膜を形成し、その多層膜の上に、Fe単原子層とNi単原子層とを繰り返し積層する方法(例えば、非特許文献1参照)や、鉄とニッケルとを含有する前駆体粒子を、水素雰囲気下で加熱して還元し、合金粒子の構造をL1型に規則化する方法(例えば、特許文献1参照)がある。また、不活性ガス雰囲気中で、回転するMgO基板にFeとNiとを同時にスパッタしてFeNi合金薄膜を製造し、規則不規則変態温度近傍で熱処理する方法(例えば、特許文献2参照)もある。 Recently, a large uniaxial magnetic anisotropy, as a material that does not contain precious metals and rare earths, FeNi ordered alloy having an L1 0 type crystal structure has been attracting attention. As a method of manufacturing the L1 0 type FeNi ordered alloy, conventionally, a multilayer film having a complex composition on the (001) plane of MgO single crystal substrate, on top of the multilayer film, Fe monoatomic layer and Ni method for laminating repeatedly the monolayer (e.g., see non-Patent Document 1) and, the precursor particles containing iron and nickel, was reduced by heating in a hydrogen atmosphere, the structure of L1 0 type of the alloy particles There is a method of regularization (see, for example, Patent Document 1). In addition, there is a method in which Fe and Ni are simultaneously sputtered on a rotating MgO substrate in an inert gas atmosphere to produce a FeNi alloy thin film and heat-treated near the regular irregular transformation temperature (see, for example, Patent Document 2). .

T. Kojima, M. Mizuguchi, T. Koganezawa, K. Osaka, M. Kotsugi, and K. Takanashi, “Magnetic Anisotropy and Chemical Order of Artificially Synthesized L10-Ordered FeNi Films on Au-Cu-Ni Buffer Layers”, Japanese Journal of Applied Physics (Rapid Communication), 2012, 51, 010204T. Kojima, M. Mizuguchi, T. Koganezawa, K. Osaka, M. Kotsugi, and K. Takanashi, “Magnetic Anisotropy and Chemical Order of Artificially Synthesized L10-Ordered FeNi Films on Au-Cu-Ni Buffer Layers”, Japanese Journal of Applied Physics (Rapid Communication), 2012, 51, 010204

国際公開WO2012/141205号International Publication WO2012 / 141205 国際公開WO2015/053006号International Publication WO2015 / 053006

しかしながら、非特許文献1に記載の方法は、特殊な装置を必要とし、製造工程が複雑であるという課題があった。また、特許文献1に記載の方法では、L1型FeNi合金の粒子を製造することはできるが、より体積の大きい物質として製造することはできない。このため、例えば、薄膜を製造する場合には、水素雰囲気下で、粒子から薄膜を製造する工程が必要となり、煩雑であるという課題があった。また、特許文献2に記載の方法では、薄膜状のL1型FeNi合金を比較的簡便な方法で体積の大きい物質として製造することはできるが、規則相を製造するための温度が400℃未満に限られていた。 However, the method described in Non-Patent Document 1 has a problem that a special apparatus is required and the manufacturing process is complicated. Further, in the method described in Patent Document 1, although it is possible to produce particles of L1 0 type FeNi alloy, it can not be manufactured as a more volume of large material. For this reason, for example, when manufacturing a thin film, the process which manufactures a thin film from particle | grains in a hydrogen atmosphere is needed, and there existed a subject that it was complicated. Further, in the method described in Patent Document 2, although it is possible to manufacture a thin-film L1 0 type FeNi alloy as the volume of large material in a relatively simple method, the temperature for the production of ordered phase is less than 400 ° C. It was limited to.

本発明は、このような課題に着目してなされたもので、比較的簡便な方法で薄膜状のL1型FeNi規則合金を製造することができる、L1型FeNi規則合金の製造方法を提供することを目的とする。 The present invention has been made in view of such problems, it is possible to manufacture a thin-film L1 0 type FeNi ordered alloy in a relatively simple method, a manufacturing method of the L1 0 type FeNi ordered alloy The purpose is to do.

上記目的を達成するために、本発明に係るL1型FeNi規則合金の製造方法は、真空雰囲気中または不活性ガス雰囲気中で、FeNiに遷移金属元素を添加した合金薄膜を所定の温度まで加熱した後、前記所定の温度で所定の時間保持する加熱工程を有することを特徴とする。 To achieve the above object, a manufacturing method of the L1 0 type FeNi ordered alloy according to the present invention, in a vacuum atmosphere or an inert gas atmosphere, heating the alloy film obtained by adding a transition metal element in FeNi to a predetermined temperature Then, the method has a heating step of holding at the predetermined temperature for a predetermined time.

本発明に係るL1型FeNi規則合金の製造方法は、FeNiの合金薄膜の作製時に、同時にTi、V、Cr、Mn、Co、Cu、Znなどの第一遷移金属元素を第三元素として0%より多く、20%以下の原子濃度で添加することが好ましい。 Manufacturing method of L1 0 type FeNi ordered alloy according to the present invention, during the production of the alloy thin film of FeNi, simultaneously Ti, V, Cr, Mn, Co, Cu, a first transition metallic element such as Zn as the third element 0 It is preferable to add at an atomic concentration of more than 20% and 20% or less.

本発明に係るL1型FeNi規則合金の製造方法は、前記FeNi合金薄膜を0.1℃/秒以上の昇温速度で加熱することが好ましい。昇温速度は、50℃/秒以上であることが特に好ましい。 Manufacturing method of L1 0 type FeNi ordered alloy according to the present invention, it is preferable to heat the FeNi alloy thin film at 0.1 ° C. / sec or more Atsushi Nobori rate. The heating rate is particularly preferably 50 ° C./second or more.

本発明に係るL1型FeNi規則合金の製造方法は、FeNi合金薄膜を急速昇温加熱することにより、結晶構造をL1型にすることができ、大きい一軸磁気異方性などの優れた磁気特性を有するL1型FeNi規則合金を製造することができる。FeNi合金薄膜を急速昇温加熱するだけの比較的簡便な方法で、薄膜状のL1型FeNi規則合金を製造することができる。急速昇温加熱は、例えば、ランプ加熱により行うことができる。また、FeNi合金薄膜の膜厚は、5nm以上、100nm以下であることが好ましい。 Manufacturing method of L1 0 type FeNi ordered alloy according to the present invention, by rapid thermal heating of the FeNi alloy thin film, the crystal structure can be L1 0 type, such as a large uniaxial magnetic anisotropy excellent magnetic it is possible to manufacture an L1 0 type FeNi ordered alloy having characteristics. The FeNi alloy thin film with a relatively simple method that only rapid thermal annealing, it is possible to manufacture a thin-film L1 0 type FeNi ordered alloy. The rapid heating and heating can be performed by, for example, lamp heating. The thickness of the FeNi alloy thin film is preferably 5 nm or more and 100 nm or less.

本発明に係るL1型FeNi規則合金の製造方法で、前記所定の温度は310℃以上、500℃未満であることが好ましい。この場合、特に優れた磁気特性を有するL1型FeNi規則合金を得ることができる。所定の温度は450℃程度が特に好ましい。所定の温度が500℃以上では、L1型FeNi規則合金が安定して存在できなくなる。また、所定の温度が310℃未満では、結晶構造がL1型にならない。 In the production method of the L1 0 type FeNi ordered alloy according to the present invention, the predetermined temperature is 310 ° C. or more and less than 500 ° C.. In this case, it is possible to obtain a particularly excellent L1 0 type FeNi ordered alloy with magnetic properties. The predetermined temperature is particularly preferably about 450 ° C. The predetermined temperature is 500 ° C. or higher, L1 0 type FeNi ordered alloy can not be present stably. Further, it is less than a predetermined temperature is 310 ° C., the crystal structure does not become L1 0 type.

本発明に係るL1型FeNi規則合金の製造方法は、前記加熱工程の前に、不活性ガス雰囲気中で、回転する基板の表面にFeとNiと第三元素とを同時にスパッタして前記FeNi合金薄膜を得る薄膜製造工程を有していてもよい。この場合、原料のFeとNiとから、容易にFeNi合金薄膜を得ることができる。薄膜製造工程も加熱工程も、既存の技術を応用して実施することができ、比較的簡便な方法で、薄膜状のL1型FeNi規則合金を製造することができる。なお、FeのスパッタとNiのスパッタと第三元素のスパッタとを同時に行ってもよいが、FeNi合金と第三元素をスパッタ、あるいはFeNiおよび第三元素の合金をスパッタしてもよい。また、Feと第三元素を同時にスパッタし、Niと交互に作製する方法でもよく、これが最も好ましい。 Manufacturing method of L1 0 type FeNi ordered alloy according to the present invention, the prior heating step, in an inert gas atmosphere, the surface of the rotating substrate by simultaneously sputtering Fe and Ni and a third element said FeNi You may have the thin film manufacturing process which obtains an alloy thin film. In this case, an FeNi alloy thin film can be easily obtained from the raw materials Fe and Ni. Thin film manufacturing process heating step also can be carried out by applying the existing technology, a relatively simple method, it is possible to manufacture a thin-film L1 0 type FeNi ordered alloy. Note that Fe sputtering, Ni sputtering, and third element sputtering may be performed simultaneously, but FeNi alloy and third element may be sputtered, or FeNi and third element alloy may be sputtered. Alternatively, a method of sputtering Fe and a third element at the same time and alternately producing Ni may be used, and this is most preferable.

この場合、前記基板は、単結晶基板、多結晶基板またはアモルファス基板であることが好ましい。特に、前記基板はMgO単結晶基板から成り、前記基板の表面が(001)面であることが好ましい。この場合、特に効率良く、L1型FeNi規則合金を製造することができる。 In this case, the substrate is preferably a single crystal substrate, a polycrystalline substrate, or an amorphous substrate. In particular, the substrate is preferably composed of a MgO single crystal substrate, and the surface of the substrate is preferably a (001) plane. In this case, particularly efficient, it is possible to produce the L1 0 type FeNi ordered alloy.

本発明によれば、比較的簡便な方法で薄膜状のL1型FeNi規則合金を製造することができる、L1型FeNi規則合金の製造方法を提供することができる。 According to the present invention, it is possible to manufacture a thin-film L1 0 type FeNi ordered alloy in a relatively simple method, it is possible to provide a manufacturing method of the L1 0 type FeNi ordered alloy.

本発明の実施の形態のL1型FeNi規則合金の製造方法の、(a)スパッタによる薄膜製造を行う装置を示す側面図、(b)急速昇温加熱を行う装置を示す側面図である。The manufacturing method of the L1 0 type FeNi ordered alloy embodiment of the present invention, a side view of an apparatus for performing the thin film production by (a) sputtering a side view showing an apparatus for performing rapid thermal annealing (b). 本発明の実施の形態のL1型FeNi規則合金の製造方法により、(a)Tiを1.6%添加して得られた試料の、熱処理温度に対するFeNi(110)およびFeNi(220)回折線のX線回折強度曲線、(b)Tiを添加して得られた試料と、Tiを添加していない試料のL1型FeNi規則度の加熱温度依存性である。The manufacturing method of L1 0 type FeNi ordered alloy embodiment of the present invention, (a) Ti of samples obtained by adding 1.6%, FeNi for the heat treatment temperature (110) and FeNi (220) diffraction line X-ray diffraction intensity curve of a (b) a sample obtained by adding Ti, the heating temperature dependence of L1 0 type FeNi rules of the sample without the addition of Ti. 第三元素ごとに第一原理計算法により計算した、本発明の実施の形態のL1型FeNi規則合金の製造方法により得られたL1型FeNi規則合金の生成エネルギーと、A1型FeNi不規則合金の生成エネルギーとの差分である。Was calculated by first-principles calculation method for each third element, and generating energy L1 0 type FeNi ordered alloy obtained by a method for manufacturing a L1 0 type FeNi ordered alloy embodiment of the present invention, A1 type FeNi irregular It is the difference from the formation energy of the alloy.

以下、図面に基づき、本発明の実施の形態について説明する。
図1(a)に示すように、本発明の実施の形態のL1型FeNi規則合金の製造方法では、まず、不活性ガス雰囲気中で、回転台11に設置された基板1の表面に、基板1を回転させながら、FeとNiと第三元素とを同時にスパッタしてFeNi合金薄膜を製造する。また、Feと第三元素とを同時にスパッタし、Niと交互に作製する方法でもよく、これが最も好ましい。なお、具体的な一例では、基板1は、表面が(001)面のMgO単結晶基板から成っているが、他の単結晶基板や多結晶基板、アモルファス基板から成っていてもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1 (a), in the manufacturing method of the L1 0 type FeNi ordered alloy embodiment of the present invention, first, in an inert gas atmosphere, to the installation surface of the substrate 1 to the turntable 11, While rotating the substrate 1, Fe, Ni, and a third element are sputtered simultaneously to produce a FeNi alloy thin film. Further, a method of simultaneously sputtering Fe and a third element and alternately producing Ni may be used, and this is most preferable. In a specific example, the substrate 1 is made of an MgO single crystal substrate having a (001) surface, but may be made of another single crystal substrate, a polycrystalline substrate, or an amorphous substrate.

FeNi合金薄膜を製造した後、図1(b)に示すように、FeNi合金薄膜が載った基板1を、内面12aが回転楕円体形状を成す金製の鏡から成る加熱容器12の下部に設置し、加熱容器12の頂部に設置された赤外線ランプ13により、加熱容器12の内面12aからの近赤外線の反射も利用して、FeNi合金薄膜を急速昇温加熱する。このとき、真空雰囲気中または不活性ガス雰囲気中で行い、310℃以上500℃未満の温度まで、0.1℃/秒以上の昇温速度で急速昇温加熱する。また、熱が逃げないよう、基板1の表面を透明な水晶板14で覆うとともに、基板1の温度を熱電対15で測定しながら温度を調整する。急速昇温加熱の後、到達した温度で2時間以上保持する。こうして、L1型FeNi規則合金を製造することができる。 After the FeNi alloy thin film is manufactured, as shown in FIG. 1B, the substrate 1 on which the FeNi alloy thin film is placed is placed below the heating container 12 made of a gold mirror having an inner surface 12a having a spheroid shape. Then, the FeNi alloy thin film is rapidly heated by the infrared lamp 13 installed at the top of the heating container 12 using the reflection of near infrared rays from the inner surface 12a of the heating container 12. At this time, it is performed in a vacuum atmosphere or an inert gas atmosphere, and is rapidly heated to a temperature of 310 ° C. or higher and lower than 500 ° C. at a temperature rising rate of 0.1 ° C./second or higher. Further, the surface of the substrate 1 is covered with a transparent quartz plate 14 so that heat does not escape, and the temperature is adjusted while measuring the temperature of the substrate 1 with a thermocouple 15. After rapid heating and heating, hold at the reached temperature for 2 hours or more. Thus, it is possible to produce the L1 0 type FeNi ordered alloy.

このように、本発明の実施の形態のL1型FeNi規則合金の製造方法は、FeNi合金薄膜を昇温加熱することにより、結晶構造をL1型にすることができ、大きい一軸磁気異方性などの優れた磁気特性を有するL1型FeNi規則合金を製造することができる。スパッタによりFeNi合金薄膜を製造し、そのFeNi合金薄膜を急速昇温加熱するという、既存の技術を応用した比較的簡便な方法で、薄膜状のL1型FeNi規則合金を容易に製造することができる。製造されたL1型FeNi規則合金は、レアアースを使用したネオジム磁石等の磁石に代わるものとして期待できる。 Thus, the production method of the L1 0 type FeNi ordered alloy embodiment of the present invention, by increasing the temperature heating the FeNi alloy thin film, the crystal structure can be L1 0 type, a large uniaxial magnetic anisotropy it is possible to manufacture an L1 0 type FeNi ordered alloy having excellent magnetic characteristics such as gender. By sputtering to produce a FeNi alloy thin film, the FeNi alloy thin film that rapid thermal annealing, a relatively simple method of applying existing technology, is possible to easily produce a thin-film L1 0 type FeNi ordered alloy it can. L1 0 type FeNi rules prepared alloy can be expected as an alternative to magnet neodymium magnet or the like using rare earth.

本発明の実施の形態のL1型FeNi規則合金の製造方法により、FeNi合金を製造し、各種の試験を行った。FeNi合金を製造では、FeとNiと第三元素のTiとのスパッタを、マグネトロンスパッタリングにより、0.2Paのアルゴンガス雰囲気中で、室温で行った。Feと第三元素とを同時にスパッタし、Niと交互に作製した。Fe−Ti層およびNi層の膜厚は、どちらも0.3nmである。基板1は、表面が(001)面のMgO単結晶基板から成り、縦横がそれぞれ1cm、厚みが0.5mmとした。急速昇温加熱を、5×10−4Pa以下の真空雰囲気中で行い、昇温速度は0.17℃/秒および50℃/秒とした。 The manufacturing method of L1 0 type FeNi ordered alloy embodiment of the present invention, to produce a FeNi alloy was subjected to various tests. In producing the FeNi alloy, sputtering of Fe, Ni, and the third element Ti was performed at room temperature in an argon gas atmosphere of 0.2 Pa by magnetron sputtering. Fe and a third element were simultaneously sputtered and alternately formed with Ni. The film thicknesses of the Fe—Ti layer and the Ni layer are both 0.3 nm. The substrate 1 was composed of a MgO single crystal substrate having a (001) surface, and the length and width were 1 cm and the thickness was 0.5 mm, respectively. Rapid temperature increase heating was performed in a vacuum atmosphere of 5 × 10 −4 Pa or less, and the temperature increase rate was 0.17 ° C./second and 50 ° C./second.

試験用の試料として、急速昇温加熱の到達温度での保持時間を1時間、到達温度を300℃、350℃、400℃、450℃、および500℃としたもの、到達温度を400℃、保持時間を1秒としたものを製造した。また、比較のために、熱処理前のFeNi合金薄膜の試料(as−depo.または、as−deposited)も使用した。なお、得られたFeNi合金は、厚さが約15nmである。   As a test sample, the holding time at the ultimate temperature of the rapid heating and heating is 1 hour, the ultimate temperature is 300 ° C., 350 ° C., 400 ° C., 450 ° C., and 500 ° C., and the ultimate temperature is 400 ° C. A product with a time of 1 second was produced. For comparison, a FeNi alloy thin film sample (as-depo. Or as-deposited) before heat treatment was also used. The obtained FeNi alloy has a thickness of about 15 nm.

まず、X線回折(XRD)により、In−Plane測定を行い、その結果を図2に示す。測定には、保持時間が1時間の異なる到達温度の試料を用いた。図2(a)に示すように、全ての試料において、FeNi(220)ピークが確認され、FeNiが結晶配向していることが確認された。また、到達温度が350℃、400℃および450℃の試料の、FeNi(110)ピークが大きく、L1型FeNiの規則化が促進されていることが確認された。 First, In-Plane measurement was performed by X-ray diffraction (XRD), and the results are shown in FIG. For the measurement, samples having different holding temperatures with holding times of 1 hour were used. As shown to Fig.2 (a), in all the samples, the FeNi (220) peak was confirmed and it was confirmed that FeNi has crystal orientation. Further, the reaching temperature of 350 ° C., 400 ° C. and 450 ° C. sample, FeNi (110) peak is large, it was confirmed that L1 0 type FeNi regularization is promoted.

図2(b)に示すように、Tiを添加しない試料と比較して、Tiを1.6%添加した試料では、規則度(Order parameter)のピークが350℃〜450℃付近にある。これは、この温度で加熱を行うことにより、L1型FeNiの規則化が進むことを表しており、Tiを添加することにより、より高い温度で熱処理ができることが分かった。一般に、高い温度での熱処理はより原子移動を促進する効果があり、規則度を、向上させることができる。また、到達温度を400℃、保持時間を1秒としたものについて、XRDのIn−Plane測定を行った結果、FeNi(110)ピークがより大きく確認され、規則度は0.3程度であることが分かった。これは、Tiを添加しない場合の値を大きく超える値である。 As shown in FIG. 2 (b), the order parameter peak is in the vicinity of 350 ° C. to 450 ° C. in the sample added with 1.6% Ti as compared to the sample without added Ti. This is by heating at this temperature, and indicates that the L1 0 type FeNi regularization progresses, by the addition of Ti, it was found that it is heat-treated at higher temperatures. In general, heat treatment at a high temperature has an effect of promoting atom migration, and can improve the degree of order. In addition, as a result of XRD In-Plane measurement with an arrival temperature of 400 ° C. and a holding time of 1 second, a larger FeNi (110) peak was confirmed, and the degree of ordering was about 0.3. I understood. This is a value that greatly exceeds the value when Ti is not added.

図3に、第一原理計算法により、L1型FeNi規則合金およびA1型FeNi不規則合金の生成エネルギーの差分(L10 to A1 energy difference)を計算した結果を示す。5%の第三元素がFeあるいはNiを置換した時の例を示す。TiやV、Ga、Al、Si、Geなどの遷移金属がFe層を置換したときに、エネルギー差が大きくなり、L1型FeNiの規則化がおきやすいことを示している。この結果は、上記の実施例に一致していると考えられる。 3, the first-principles calculation method, shows the results of calculating the L1 0 type FeNi ordered alloy and type A1 FeNi generation energy disordered alloy difference (L1 0 to A1 energy difference) . An example when 5% of the third element replaces Fe or Ni is shown. Ti and V, Ga, Al, Si, when the transition metals such as Ge is substituted with Fe layer, the energy difference becomes large, indicating that easily place the ordering of the L1 0 type FeNi. This result is considered to be consistent with the above example.

1 基板
11 回転台
12 加熱容器
12a 内面
13 赤外線ランプ
14 水晶板
15 熱電対
DESCRIPTION OF SYMBOLS 1 Board | substrate 11 Turntable 12 Heating container 12a Inner surface 13 Infrared lamp 14 Crystal plate 15 Thermocouple

Claims (6)

真空雰囲気中または不活性ガス雰囲気中で、FeNi合金薄膜を所定の温度まで加熱した後、前記所定の温度で所定の時間保持する加熱工程を有することを特徴とするL1型FeNi規則合金の製造方法。 In a vacuum atmosphere or an inert gas atmosphere, after heating the FeNi alloy thin film to a predetermined temperature, the production of L1 0 type FeNi ordered alloy characterized by having a heating step for a predetermined time at the predetermined temperature Method. 前記FeNi合金薄膜を0.1℃/秒以上の昇温速度で加熱することを特徴とする請求項1記載のL1型FeNi規則合金の製造方法。 Manufacturing method of L1 0 type FeNi ordered alloy of claim 1, wherein heating the FeNi alloy thin film at 0.1 ° C. / sec or more Atsushi Nobori rate. 前記所定の温度は310℃以上、500℃未満であることを特徴とする請求項1または2記載のL1型FeNi規則合金の製造方法。 Wherein the predetermined temperature is 310 ° C. or higher, the production method according to claim 1 or 2 L1 0 type FeNi ordered alloy, wherein the less than 500 ° C.. 前記加熱工程の前に、不活性ガス雰囲気中で、回転する基板の表面にFeとNiと第三元素とを同時にスパッタして前記FeNi合金薄膜を得る薄膜製造工程を有することを特徴とする請求項1乃至3のいずれか1項に記載のL1型FeNi規則合金の製造方法。 Before the heating step, there is provided a thin film manufacturing step of obtaining the FeNi alloy thin film by simultaneously sputtering Fe, Ni and a third element on the surface of a rotating substrate in an inert gas atmosphere. manufacturing method of L1 0 type FeNi ordered alloy according to any one of claim 1 to 3. 前記基板は、単結晶基板、多結晶基板またはアモルファス基板であることを特徴とする請求項4記載のL1型FeNi規則合金の製造方法。 The substrate is a single crystal substrate, a manufacturing method of claim 4 L1 0 type FeNi ordered alloy, wherein the polycrystalline substrate or an amorphous substrate. 前記基板はMgO単結晶基板から成り、前記基板の表面が(001)面であることを特徴とする請求項4記載のL1型FeNi規則合金の製造方法。
The substrate consists of MgO single crystal substrate, a manufacturing method of claim 4 L1 0 type FeNi ordered alloy, wherein a surface of the substrate is a (001) plane.
JP2016175873A 2016-09-08 2016-09-08 Method for producing L10 type FeNi ordered alloy Pending JP2018041873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016175873A JP2018041873A (en) 2016-09-08 2016-09-08 Method for producing L10 type FeNi ordered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016175873A JP2018041873A (en) 2016-09-08 2016-09-08 Method for producing L10 type FeNi ordered alloy

Publications (1)

Publication Number Publication Date
JP2018041873A true JP2018041873A (en) 2018-03-15

Family

ID=61626482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016175873A Pending JP2018041873A (en) 2016-09-08 2016-09-08 Method for producing L10 type FeNi ordered alloy

Country Status (1)

Country Link
JP (1) JP2018041873A (en)

Similar Documents

Publication Publication Date Title
WO2015053006A1 (en) METHOD FOR PRODUCING L10-TYPE FeNi ORDERED ALLOY
US9767836B2 (en) Method for making an ordered magnetic alloy
Spada et al. X-ray diffraction and Mössbauer studies of structural changes and L1 ordering kinetics during annealing of polycrystalline Fe 51 Pt 49 thin films
Park et al. Growth mechanism of the copper oxide nanowires from copper thin films deposited on CuO-buffered silicon substrate
Wang et al. Promotion of [001]-oriented L1-FePt by rapid thermal annealing with light absorption layer
Espejo et al. Magnetic and electrical characterization of nickel-rich NiFe thin films synthesized by atomic layer deposition and subsequent thermal reduction
Vladymyrskyi et al. Influence of the substrate choice on the L1 phase formation of post-annealed Pt/Fe and Pt/Ag/Fe thin films
JP5641452B2 (en) Magnetic recording medium and method for producing magnetic recording medium
CN105374374B (en) A kind of high density, low cost magnetic recording media FeNi alloys and preparation method thereof
Katona et al. Diffusion and solid state reactions in Fe/Ag/Pt and FePt/Ag thin-film systems
JP2018041873A (en) Method for producing L10 type FeNi ordered alloy
Torres et al. Grain boundary enrichment in the FePt polymorphic A1 to L10 phase transformation
Louzguine‐Luzgin et al. Optically transparent magnetic and electrically conductive Fe–Cr–Zr ultra‐thin films
US10685781B2 (en) Synthesis of tetrataenite thin films via rapid thermal annealing
Dawi et al. Irradiation induced elongation of Fe nanoparticles embedded in silica films
Nayak et al. Microstructure and dielectric functions of Ge nanocrystals embedded between amorphous Al2O3 films: study of confinement and disorder
Bagmut et al. Structure and magnetic state of the films deposited by laser ablation of composite nickel and palladium targets
Tran et al. Suppressed silicide formation in FePt thin films by nitrogen addition
Caesario et al. Effect of nitrogen incorporation on the ordering transformation of CoPt in CoPt/TiN bilayer films
Gaikwad et al. Evolution of embedded lithium nanoclusters in lithium implanted alumina
JP2015017022A (en) Method for producing graphene
Borza et al. Single step nanocrystallization of FeCuNbSiB/CoPt (Cu) soft/hard magnetic multilayer microwires
Yang et al. Current-Induced Fast-Ordering of L1 $ _ {0} $-FePt Films With Small Grain Size
Krupinski et al. EXAFS and XRD studies of crystallographic grains in nanocrystalline FePd: Cu thin films
Shamis et al. L1 0 FePt phase formation in Fe 50 Pt 50 (15 nm) and Ag (7.5 nm)/Fe 50 Pt 50 (15 nm) films on SiO 2/Si (001) substrates

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160909

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190909