JP2018039758A - Assembly, inclusion compound, and light emitting material - Google Patents

Assembly, inclusion compound, and light emitting material Download PDF

Info

Publication number
JP2018039758A
JP2018039758A JP2016175615A JP2016175615A JP2018039758A JP 2018039758 A JP2018039758 A JP 2018039758A JP 2016175615 A JP2016175615 A JP 2016175615A JP 2016175615 A JP2016175615 A JP 2016175615A JP 2018039758 A JP2018039758 A JP 2018039758A
Authority
JP
Japan
Prior art keywords
formula
aggregate
compound
compound represented
phosphorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016175615A
Other languages
Japanese (ja)
Inventor
友樹 生越
Yuki Ogose
友樹 生越
啓 土田
Hiroshi Tsuchida
啓 土田
圭佑 丸山
Keisuke Maruyama
圭佑 丸山
貴洋 角田
Takahiro Kakuta
貴洋 角田
忠明 山岸
Tadaaki Yamagishi
忠明 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Original Assignee
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC filed Critical Kanazawa University NUC
Priority to JP2016175615A priority Critical patent/JP2018039758A/en
Publication of JP2018039758A publication Critical patent/JP2018039758A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a light emitting material that emits phosphorescence.SOLUTION: The present invention provides an assembly of a compound selected from the group consisting of a compound represented by formula (1) and a compound represented by formula (2).SELECTED DRAWING: None

Description

本発明は、会合体、包接体、および、発光材料に関する。   The present invention relates to an aggregate, an inclusion body, and a light emitting material.

近年、発光材料に関する検討が種々行われている。特に、燐光を発する材料(燐光発光材料)は、その発光効率の高さから、種々の材料開発がなされている。
例えば、非特許文献1においては、1,4−ジエトキシベンゼンに関して、燐光が観測される旨が記載されている。
In recent years, various studies on luminescent materials have been conducted. In particular, various materials have been developed for phosphorescent materials (phosphorescent materials) because of their high luminous efficiency.
For example, Non-Patent Document 1 describes that phosphorescence is observed for 1,4-diethoxybenzene.

Nature Mater. 2015, 14, 685.Nature Mater. 2015, 14, 685.

しかしながら、本発明者らの検討によれば、1,4−ジエトキシベンゼンに関しては燐光の発光が観測されず、燐光の強度は検出限界以下であった。   However, according to the study by the present inventors, phosphorescence was not observed for 1,4-diethoxybenzene, and the phosphorescence intensity was below the detection limit.

本発明は、上記実情に鑑みて、燐光を発光する発光材料を提供することを課題とする。   In view of the above circumstances, an object of the present invention is to provide a light emitting material that emits phosphorescence.

本発明者は、鋭意研究を重ねた結果、所定の化合物の会合体であれば、上記課題が解決できることを見出した。
つまり、以下の構成により上記目的を達成できることを見出した。
As a result of intensive studies, the present inventor has found that the above problems can be solved by an aggregate of a predetermined compound.
That is, it has been found that the above object can be achieved by the following configuration.

(1) 後述する式(1)で表される化合物、および、後述する式(2)で表される化合物からなる群から選択される化合物の会合体。
(2) mが0〜3の整数を表す、(1)に記載の会合体。
(3) nが6〜8の整数を表す、(1)または(2)に記載の会合体。
(4) R2で表されるアルキル基の炭素数が、3〜15である、(1)〜(3)のいずれかに記載の会合体。
(5) CuKα線による粉末X線回折スペクトルにおいて18.0〜22.0°の間にピークを有する、(1)〜(4)のいずれかに記載の会合体。
(6) (1)〜(5)のいずれかに記載の会合体と、会合体内部に内包されたゲスト化合物とを有する包接体。
(7) ゲスト化合物が、蛍光化合物である、(6)に記載の包接体。
(8) (1)〜(5)のいずれかに記載の会合体、または、(6)若しくは(7)に記載の包接体を含む、発光材料。
(1) An association of a compound selected from the group consisting of a compound represented by formula (1) described later and a compound represented by formula (2) described later.
(2) The aggregate according to (1), wherein m represents an integer of 0 to 3.
(3) The aggregate according to (1) or (2), wherein n represents an integer of 6 to 8.
(4) The aggregate according to any one of (1) to (3), wherein the alkyl group represented by R 2 has 3 to 15 carbon atoms.
(5) The aggregate according to any one of (1) to (4), which has a peak between 18.0 and 22.0 ° in a powder X-ray diffraction spectrum by CuKα rays.
(6) A clathrate comprising the aggregate according to any one of (1) to (5) and a guest compound encapsulated inside the aggregate.
(7) The clathrate according to (6), wherein the guest compound is a fluorescent compound.
(8) A luminescent material comprising the aggregate according to any one of (1) to (5) or the clathrate according to (6) or (7).

本発明によれば、燐光を発する発光材料を提供できる。   According to the present invention, a light emitting material that emits phosphorescence can be provided.

式(A2)で表される化合物の会合体のX線結晶構造解析図である。FIG. 3 is an X-ray crystal structure analysis diagram of an aggregate of a compound represented by formula (A2). 式(2)中のnが6である化合物の会合体のX線結晶構造解析図である。FIG. 4 is an X-ray crystal structure analysis diagram of an association product of compounds in which n in formula (2) is 6. 式(2)中のnが6である化合物の会合体の構造を示す概念図である。It is a conceptual diagram which shows the structure of the aggregate of the compound whose n in Formula (2) is 6. 式(A2)で表される化合物の会合体の励起スペクトルおよび燐光スペクトルを示す図である。It is a figure which shows the excitation spectrum and phosphorescence spectrum of the aggregate of a compound represented by Formula (A2). 式(C4)〜式(C9)で表される化合物のそれぞれの会合体の粉末X線回折スペクトルである。2 is a powder X-ray diffraction spectrum of each aggregate of compounds represented by formula (C4) to formula (C9). (A)は、式(C9)で表される化合物の会合体の粉末X線回折スペクトルである。なお、「×10」と表記するスペクトルは、無表記のスペクトルの高さを10倍に拡大したものである。(B)は、式(C9)で表される化合物のヘキサゴナルパッキングに由来する(100)面、(110)面、および、(200)面を示す模式図である。(C)は、式(C9)で表される化合物が一次元状に連なって形成される(001)面を示す模式図である。(A) is a powder X-ray diffraction spectrum of the aggregate of the compound represented by formula (C9). Note that the spectrum denoted by “× 10” is obtained by enlarging the height of the spectrum not represented by 10 times. (B) is a schematic diagram showing the (100) plane, the (110) plane, and the (200) plane derived from hexagonal packing of the compound represented by the formula (C9). (C) is a schematic diagram showing a (001) plane in which a compound represented by formula (C9) is formed in a one-dimensional manner.

以下、本発明について詳述する。
なお、本明細書において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Hereinafter, the present invention will be described in detail.
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.

本発明の会合体は、式(1)で表される化合物、および、式(2)で表される化合物からなる群から選択される化合物(以後、これらを総称して「化合物X」とも称する)の会合体である。
上記会合体とは、2分子以上の、式(1)で表される化合物または式(2)で表される化合物が会合して形成されるものであり、例えば、いわゆるH会合体が挙げられる。
The aggregate of the present invention is a compound selected from the group consisting of a compound represented by formula (1) and a compound represented by formula (2) (hereinafter, these are also collectively referred to as “compound X”). ).
The aggregate is formed by associating two or more molecules of the compound represented by the formula (1) or the compound represented by the formula (2), for example, so-called H aggregates. .

式(1)中、R1は、それぞれ独立に、アルキル基を表す。
アルキル基中の炭素数は特に制限されないが、燐光の発光効率がより優れる点で、1〜20が好ましく、1〜10がより好ましく、1〜5がさらに好ましい。
mは0以上の整数を表す。なかでも、燐光の発光効率がより優れる点で、mは0〜10の整数が好ましく、0〜5の整数がより好ましく、0〜3の整数がさらに好ましい。
In formula (1), R < 1 > represents an alkyl group each independently.
The number of carbon atoms in the alkyl group is not particularly limited, but 1 to 20 is preferable, 1 to 10 is more preferable, and 1 to 5 is more preferable in that phosphorescence efficiency is more excellent.
m represents an integer of 0 or more. Among these, m is preferably an integer of 0 to 10, more preferably an integer of 0 to 5, and even more preferably an integer of 0 to 3 in that phosphorescence efficiency is more excellent.

式(2)中、R2は、それぞれ独立に、アルキル基を表す。
アルキル基中の炭素数は特に制限されないが、燐光の発光効率がより優れる点で、1〜20が好ましく、3〜20がより好ましく、3〜15がさらに好ましい。
nは6以上の整数を表す。なかでも、燐光の発光効率がより優れる点で、nは6〜25の整数が好ましく、6〜10の整数がより好ましく、6〜8の整数がさらに好ましい。
なお、式(2)で表される化合物は、ピラーアレーンと呼ばれる化合物である。ピラーアレーンとは、ベンゼン環構造などの六員環構造を2,5位にてメチレン鎖で連結し、環状構造を形成している化合物である。式(2)で表される化合物中のnの数を変更することにより、繰り返し単位によって囲まれた内部の空間の大きさを、オングストロームレベルからナノレベルで自由に設計することが可能である。なお、後述するように、繰り返し単位によって囲まれた内部の空間には、ゲスト化合物を内包できる。
In formula (2), R 2 each independently represent an alkyl group.
The number of carbon atoms in the alkyl group is not particularly limited, but 1 to 20 is preferable, 3 to 20 is more preferable, and 3 to 15 is more preferable in that the phosphorescence efficiency is more excellent.
n represents an integer of 6 or more. Especially, the integer of 6-25 is preferable, the integer of 6-10 is more preferable, and the integer of 6-8 is more preferable at the point which the luminous efficiency of phosphorescence is more excellent.
In addition, the compound represented by Formula (2) is a compound called a pillar arene. Pillar arene is a compound in which a six-membered ring structure such as a benzene ring structure is linked by a methylene chain at the 2,5-positions to form a cyclic structure. By changing the number of n in the compound represented by the formula (2), the size of the internal space surrounded by the repeating units can be freely designed from the angstrom level to the nano level. As described later, the guest compound can be included in the internal space surrounded by the repeating units.

式(1)で表される化合物、および、式(2)で表される化合物は公知の方法で製造できる。   The compound represented by the formula (1) and the compound represented by the formula (2) can be produced by a known method.

上記会合体の製造方法としては、例えば、式(1)で表される化合物を溶融させて、凝固点において保温し、結晶化させる方法が挙げられる。   Examples of the method for producing the aggregate include a method in which the compound represented by the formula (1) is melted, kept at the freezing point, and crystallized.

化合物Xの会合体は、CuKα線による粉末X線回折スペクトルにおいて18.0〜22.0°の間にピークを有することが好ましい。上記ピークを有する場合は、会合体中において化合物Xが所定の構造でパッキング(例えば、ヘキサゴナル状にパッキング)されており、燐光の発光効率がより優れる。
粉末X線回折の測定は、リガク社製:Smart Labを用い、X線源としてCuKα線を用いて行う。
The aggregate of compound X preferably has a peak between 18.0 and 22.0 ° in the powder X-ray diffraction spectrum by CuKα ray. In the case of having the above peak, the compound X is packed in a predetermined structure in the aggregate (for example, packed in a hexagonal form), and the phosphorescence efficiency is more excellent.
Measurement of powder X-ray diffraction is performed using Rigaku Corporation: Smart Lab and CuKα rays as an X-ray source.

会合体の種類としては、H会合体が好ましく挙げられる。
H会合体の一例を、図1に示す。図1は、式(1)で表される化合物の一例である後述する式(A2)で表される化合物の会合体のX線結晶構造解析図である。図1に示すように、会合体中において、式(A2)で表される化合物は、端部のベンゼン環同士が重なるように密にパッキングされている。
また、H会合体の他の例を、図2に示す。図2は、式(2)中のnが6である化合物の会合体のX線結晶構造解析図である。図2に示すように、式(2)中のnが6である化合物は6角形状の構造を有しており、会合体中において、この化合物はベンゼン環同士が重なりπ−πスタッキングが形成されるように密にヘキサゴナル状にパッキングされている。
なお、式(2)中のnが6である化合物は、図2に示すようにヘキサゴナル状にパッキングされるとともに、図3に示すように、一次元状にも連なって配置される。
As the type of the aggregate, H aggregate is preferable.
An example of the H aggregate is shown in FIG. FIG. 1 is an X-ray crystal structure analysis diagram of an aggregate of a compound represented by the formula (A2) described later, which is an example of a compound represented by the formula (1). As shown in FIG. 1, in the aggregate, the compound represented by the formula (A2) is densely packed so that the benzene rings at the end portions overlap each other.
Another example of the H aggregate is shown in FIG. FIG. 2 is an X-ray crystal structure analysis diagram of an aggregate of a compound in which n is 6 in formula (2). As shown in FIG. 2, the compound in which n in the formula (2) is 6 has a hexagonal structure, and in the aggregate, this compound forms π-π stacking by overlapping benzene rings. As shown, it is packed in a hexagonal shape.
In addition, the compound in which n is 6 in the formula (2) is packed in a hexagonal shape as shown in FIG. 2, and is also arranged in a one-dimensional manner as shown in FIG.

上述した会合体は、燐光を発光する特性(発光特性)を有する。より具体的には、会合体に所定の波長の光(例えば、紫外線)を照射すると、所定の波長の燐光が発光する。燐光の波長は、使用される化合物Xの構造を変えることにより、調整できる。   The above-described aggregate has a property of emitting phosphorescence (luminescence property). More specifically, when the aggregate is irradiated with light having a predetermined wavelength (for example, ultraviolet rays), phosphorescence having a predetermined wavelength is emitted. The wavelength of phosphorescence can be adjusted by changing the structure of the compound X used.

本発明の会合体の用途としては、蛍光インクなどが挙げられる。   The use of the aggregate of the present invention includes fluorescent inks.

<包接体>
本発明の会合体は、その内部にゲスト化合物を内包できる。つまり、上記会合体と、会合体に内包されたゲスト分子とを有する包接体を形成し得る。
例えば、式(2)で表される化合物は、上述したように、繰り返し単位によって囲まれた内部の空間を有し、その空間に所定のゲスト化合物を内包できる。そのため、式(2)で表される化合物の会合体も、同様にゲスト化合物を内包できる。
ゲスト化合物の種類は、式(1)で表される化合物および式(2)で表される化合物の構造によって異なる。
例えば、式(2)で表される化合物の会合体は、シクロヘキサン、ヘキサン、および、フルオロベンゼンなどのゲスト化合物(例えば、置換基を有していてもよい炭化水素化合物)を内包できる。特に、式(2)中のnが6であり、R2がエチル基である化合物の会合体にフルオロベンゼンが内包される場合、会合体にフルオロベンゼンが内包される前の状態と比較して、燐光の発光効率がより優れる。
<Inclusion body>
The aggregate of the present invention can enclose a guest compound therein. That is, an inclusion body having the above-described aggregate and the guest molecule encapsulated in the aggregate can be formed.
For example, as described above, the compound represented by the formula (2) has an internal space surrounded by repeating units, and a predetermined guest compound can be included in the space. Therefore, the aggregate of the compound represented by the formula (2) can include the guest compound as well.
The kind of guest compound differs depending on the structure of the compound represented by Formula (1) and the compound represented by Formula (2).
For example, the aggregate of the compound represented by the formula (2) can include a guest compound (for example, a hydrocarbon compound which may have a substituent) such as cyclohexane, hexane, and fluorobenzene. In particular, when n in the formula (2) is 6 and the fluorobenzene is encapsulated in the association of the compound in which R 2 is an ethyl group, as compared with the state before the fluorobenzene is encapsulated in the association. , Phosphorescence efficiency is more excellent.

また、上記ゲスト化合物の他の例としては、蛍光化合物が挙げられる。
上記会合体に蛍光化合物が内包される場合、会合体から蛍光化合物へのエネルギー移動により包接体から発光される光の色調を調整できる。より具体的には、上述したように、紫外線などの光を会合体に照射すると、会合体が光を吸収し、励起状態に励起される。次に、会合体に蛍光化合物が内包される場合、会合体によって吸収されたエネルギーが蛍光化合物に移動し、蛍光化合物が発光する。その際、蛍光化合物の内包量を調整することにより、会合体からの発光と、蛍光化合物からの発光との強度を調整し、包接体から発光する光の色調を調整できる。
上記蛍光化合物としては、会合体から蛍光化合物へのエネルギー移動の効率がより優れる点で、会合体の燐光スペクトルと少なくとも一部が重なる吸収スペクトルを有する蛍光化合物が好ましい。
Moreover, a fluorescent compound is mentioned as another example of the said guest compound.
When the fluorescent compound is encapsulated in the aggregate, the color tone of light emitted from the clathrate can be adjusted by energy transfer from the aggregate to the fluorescent compound. More specifically, as described above, when the aggregate is irradiated with light such as ultraviolet rays, the aggregate absorbs the light and is excited to an excited state. Next, when the fluorescent compound is included in the aggregate, energy absorbed by the aggregate is transferred to the fluorescent compound, and the fluorescent compound emits light. At that time, by adjusting the amount of the fluorescent compound, the intensity of light emitted from the aggregate and the light emitted from the fluorescent compound can be adjusted, and the color tone of the light emitted from the clathrate can be adjusted.
As the fluorescent compound, a fluorescent compound having an absorption spectrum at least partially overlapping with the phosphorescence spectrum of the aggregate is preferable in that the efficiency of energy transfer from the aggregate to the fluorescent compound is more excellent.

上記包接体の製造方法は特に制限されず、例えば、上記会合体とゲスト化合物とを接触させる方法が挙げられ、より具体的には、上記会合体をゲスト化合物の蒸気雰囲気下にて放置する方法が挙げられる。   The method for producing the clathrate is not particularly limited, and examples thereof include a method in which the aggregate and the guest compound are brought into contact. More specifically, the aggregate is left in the vapor atmosphere of the guest compound. A method is mentioned.

上記包接体の用途は特に制限されず、上述した会合体の用途と同じ用途が挙げられる。   The use of the clathrate is not particularly limited, and examples thereof include the same use as the above-described use of the aggregate.

以下、本発明を実施例により詳しく説明するが、本発明はこれらの実施例によって、何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by these Examples.

(合成例1)
1,4−ジメトキシベンゼン(1.96g)および1,4−ビス(ブロモメチル)−2,5−ジメトキシベンゼン(0.45g)をジクロロメタン(100ml)に添加し、得られた溶液を室温で撹拌した。得られた溶液に塩化アルミニウム(0.56g)を複数回に分けて添加し、得られた溶液を室温で12時間撹拌した。得られた溶液に水を添加した後、ジクロロメタンで抽出を行った。得られた抽出液(ジクロロメタン)に硫酸マグネシウムを添加した後、ろ過により硫酸マグネシウムを分離し、得られたろ液から溶媒をエバポレーションにより除去し、残渣を得た。カラムクロマトグラフィーにより、得られた残渣から以下式(A1)〜式(A3)で表される化合物をそれぞれ分離回収した。
(Synthesis Example 1)
1,4-Dimethoxybenzene (1.96 g) and 1,4-bis (bromomethyl) -2,5-dimethoxybenzene (0.45 g) were added to dichloromethane (100 ml) and the resulting solution was stirred at room temperature. . Aluminum chloride (0.56 g) was added to the resulting solution in several portions, and the resulting solution was stirred at room temperature for 12 hours. After adding water to the resulting solution, extraction was performed with dichloromethane. After adding magnesium sulfate to the obtained extract (dichloromethane), magnesium sulfate was separated by filtration, and the solvent was removed from the obtained filtrate by evaporation to obtain a residue. The compounds represented by the following formulas (A1) to (A3) were separated and recovered from the obtained residue by column chromatography.

(合成例2)
上記式(A1)で表される化合物(0.3g)および1,4−ビス(ブロモメチル)−2,5−ジメトキシベンゼン(0.033g)をジクロロメタン(7.3ml)に添加し、得られた溶液を室温で撹拌した。得られた溶液に塩化アルミニウム(0.041g)を複数回に分けて添加し、得られた溶液を室温で12時間撹拌した。得られた溶液に水を添加した後、ジクロロメタンで抽出を行った。得られた抽出液(ジクロロメタン)に硫酸マグネシウムを添加した後、ろ過により硫酸マグネシウムを分離し、得られたろ液から溶媒をエバポレーションにより除去し、残渣を得た。カラムクロマトグラフィーにより、得られた残渣から以下式(A4)で表される化合物を分離回収した。
(Synthesis Example 2)
The compound represented by the above formula (A1) (0.3 g) and 1,4-bis (bromomethyl) -2,5-dimethoxybenzene (0.033 g) were added to dichloromethane (7.3 ml) to obtain The solution was stirred at room temperature. Aluminum chloride (0.041 g) was added to the resulting solution in several portions, and the resulting solution was stirred at room temperature for 12 hours. After adding water to the resulting solution, extraction was performed with dichloromethane. After adding magnesium sulfate to the obtained extract (dichloromethane), magnesium sulfate was separated by filtration, and the solvent was removed from the obtained filtrate by evaporation to obtain a residue. The compound represented by the following formula (A4) was separated and recovered from the obtained residue by column chromatography.

(合成例3)
Organic Letters 2012, 14, 1532に記載の方法に従って、式(B)で表される化合物を合成した。
(Synthesis Example 3)
The compound represented by the formula (B) was synthesized according to the method described in Organic Letters 2012, 14, 1532.

上記式(B)で表される化合物(500mg)および水素化ナトリウム(1.0g)をN,N−ジメチルホルムアミド(25ml)に添加して、得られた溶液を室温で10分間攪拌した。得られた溶液に1−ブロモプロパン(1.47ml)を添加して、90℃で3日間攪拌した。得られた溶液に対して、水と有機溶液(ヘキサン:酢酸エチル=4:1)とを用いた分液処理を施し、有機溶液を回収した。得られた有機溶液から溶媒をエバポレーションにより除去し、残渣を得た。カラムクロマトグラフィーにより、得られた残渣から以下式(C1)で表される化合物を分離回収した。   The compound represented by the above formula (B) (500 mg) and sodium hydride (1.0 g) were added to N, N-dimethylformamide (25 ml), and the resulting solution was stirred at room temperature for 10 minutes. 1-Bromopropane (1.47 ml) was added to the resulting solution and stirred at 90 ° C. for 3 days. The obtained solution was subjected to a liquid separation treatment using water and an organic solution (hexane: ethyl acetate = 4: 1) to recover the organic solution. The solvent was removed from the obtained organic solution by evaporation to obtain a residue. The compound represented by the following formula (C1) was separated and recovered from the obtained residue by column chromatography.

1−ブロモプロパンの代わりに、表1に示すブロモ化合物(なお、表1中の「ブロモ化合物」欄中の数値は使用量を表す)を用いた以外は、上記(合成例3)と同様の手順に従って、式(C2)〜式(C9)で表される化合物を合成した。なお、式(C2)〜式(C9)で表される化合物は、上記式(C1)中のRが表1に示す基の化合物を意図する。例えば、式(C3)で表される化合物は、以下の構造式で表される化合物である。   The same as the above (Synthesis Example 3) except that the bromo compound shown in Table 1 (the numerical value in the “bromo compound” column in Table 1 represents the amount used) was used instead of 1-bromopropane. According to the procedure, the compounds represented by formula (C2) to formula (C9) were synthesized. In addition, the compound represented by the formula (C2) to the formula (C9) intends a compound in which R in the formula (C1) is a group shown in Table 1. For example, the compound represented by the formula (C3) is a compound represented by the following structural formula.

(会合体の製造)
式(A1)で表される化合物の融点以上に式(A1)で表される化合物を加熱して溶融させた後、式(A1)で表される化合物の凝固点にて保温することで、結晶性の高い式(A1)で表される化合物の会合体を得た。
なお、式(A2)〜式(A4)で表される化合物、および、式(C1)〜式(C9)で表される化合物に関しても、同様に、各化合物の凝固点以上に加熱して溶融させた後、凝固点で保温することにより、各化合物の会合体を得た。
(Manufacture of aggregates)
By heating and melting the compound represented by the formula (A1) above the melting point of the compound represented by the formula (A1), the temperature is maintained at the freezing point of the compound represented by the formula (A1). An association product of the compound represented by the formula (A1) having high properties was obtained.
In addition, regarding the compounds represented by the formulas (A2) to (A4) and the compounds represented by the formulas (C1) to (C9), similarly, they are heated and melted to a temperature higher than the freezing point of each compound. Thereafter, the aggregate of each compound was obtained by keeping the temperature at the freezing point.

<燐光測定>
分光光度計F−7000(日立ハイテクサイエンス製)を用いて、励起波長350nmにて燐光測定を実施した。
<Phosphorescence measurement>
Using a spectrophotometer F-7000 (manufactured by Hitachi High-Tech Science), phosphorescence measurement was performed at an excitation wavelength of 350 nm.

式(A2)で表される化合物の会合体に関して、上記燐光測定を行ったところ、発光寿命20m以上の燐光が観測された。なお、図4に、式(A2)で表される化合物の会合体の励起スペクトルおよび燐光スペクトルを示す。
また、式(A1)で表される化合物、式(A3)〜式(A4)で表される化合物、および、式(C1)〜式(C9)で表される化合物のいずれの化合物の会合体も、上記式(A2)で表される化合物の会合体と同様に、燐光を発光することが確認された。
When the above phosphorescence measurement was performed on the association of the compound represented by the formula (A2), phosphorescence having an emission lifetime of 20 m or more was observed. FIG. 4 shows an excitation spectrum and a phosphorescence spectrum of the aggregate of the compound represented by the formula (A2).
In addition, an association body of any of the compound represented by formula (A1), the compound represented by formula (A3) to formula (A4), and the compound represented by formula (C1) to formula (C9) It was also confirmed that phosphors emit phosphorescence similarly to the association of the compound represented by the above formula (A2).

<粉末X線回折スペクトル測定>
リガク社製:Smart Labを用いて、粉末X線回折スペクトル測定を実施した。
<Powder X-ray diffraction spectrum measurement>
Product of Rigaku Corporation: Powder X-ray diffraction spectrum measurement was performed using Smart Lab.

式(A1)〜式(A5)で表される化合物、および、式(C1)〜式(C9)で表される化合物のいずれの化合物の会合体も、18〜22°の間にピークを有することが確認された。
一例として、図5において、式(C4)〜式(C9)で表される化合物のそれぞれの会合体の結果を示す。より詳細な解析の結果の一例として、図6(A)に、式(C9)で表される化合物の会合体の粉末X線回折スペクトルを示す。図6(A)に示すように、図6(B)に模式的に示すヘキサゴナルパッキングに由来する(100)面、(110)面、および、(200)面に由来するピークとともに、図6(C)に模式的に示す式(C9)で表される化合物が一次元状に連なって形成される(001)面に由来するピークも確認された。
The aggregate of any of the compounds represented by formula (A1) to (A5) and the compounds represented by formula (C1) to (C9) has a peak between 18 and 22 °. It was confirmed.
As an example, FIG. 5 shows the results of the aggregates of the compounds represented by formula (C4) to formula (C9). As an example of the result of the more detailed analysis, FIG. 6A shows a powder X-ray diffraction spectrum of an aggregate of the compound represented by the formula (C9). As shown in FIG. 6 (A), with peaks derived from the (100) plane, (110) plane, and (200) plane derived from the hexagonal packing schematically shown in FIG. 6 (B), FIG. A peak derived from the (001) plane, in which the compound represented by the formula (C9) schematically shown in C) is formed one-dimensionally, was also confirmed.

なお、得られた式(A2)で表される化合物の会合体は、上述したように、図2に示すような構造を有するH会合体であった。また、式(A1)で表される化合物、式(A3)で表される化合物および式(4A)で表される化合物のそれぞれの会合体も、H会合体であった。
また、式(C1)〜式(C9)で表される化合物のそれぞれの会合体は、図3に示すようなパッキング構造を有しており、H会合体を形成していた。特に、Rのアルキル基の炭素数が大きいほど、密なパッキング構造を形成していることが確認された。
In addition, the aggregate of the compound represented by the formula (A2) obtained was an H aggregate having a structure as shown in FIG. 2 as described above. In addition, each aggregate of the compound represented by formula (A1), the compound represented by formula (A3), and the compound represented by formula (4A) was also an H aggregate.
Further, each aggregate of the compounds represented by the formulas (C1) to (C9) had a packing structure as shown in FIG. 3, and formed an H aggregate. In particular, it was confirmed that a dense packing structure was formed as the carbon number of the alkyl group of R was larger.

(合成例4)
窒素雰囲気下、コリンクロリド(0.62g)および塩化鉄(1.46g)を100℃で混合した。得られた混合物に、1,4−ジエトキシベンゼン(4.98g)、パラホルムアルデヒド(2.7g)、および、ジクロロメタン(450ml)を添加して、得られた溶液を室温で4時間撹拌した。得られた溶液に水を加えて、デカンテーションにより有機相を回収した。得られた有機相を、飽和炭酸水素ナトリウム水溶液、水、および、ブロミンでそれぞれ2回ずつ洗浄した。カラムクロマトグラフィーにより、得られた溶液から、式(C10)で表される化合物を分離回収した。
(Synthesis Example 4)
Choline chloride (0.62 g) and iron chloride (1.46 g) were mixed at 100 ° C. under a nitrogen atmosphere. To the resulting mixture, 1,4-diethoxybenzene (4.98 g), paraformaldehyde (2.7 g), and dichloromethane (450 ml) were added and the resulting solution was stirred at room temperature for 4 hours. Water was added to the resulting solution, and the organic phase was recovered by decantation. The obtained organic phase was washed twice with each of a saturated aqueous sodium hydrogen carbonate solution, water, and bromine. The compound represented by the formula (C10) was separated and recovered from the obtained solution by column chromatography.

(会合体の製造)
式(C10)で表される化合物の融点以上(85℃)に式(C10)で表される化合物を加熱して溶融させた後、式(C10)で表される化合物の凝固点で保温することで、結晶性の高い式(C10)で表される化合物の会合体を得た。
(Manufacture of aggregates)
Heating and melting the compound represented by the formula (C10) to a temperature equal to or higher than the melting point of the compound represented by the formula (C10) (85 ° C.) and then keeping the temperature at the freezing point of the compound represented by the formula (C10). Thus, an association body of the compound represented by the formula (C10) having high crystallinity was obtained.

(包接体の製造)
フルオロベンゼンの飽和蒸気圧下に、式(C10)で表される化合物の会合体を12時間放置し、その後、非包接のフルオロベンゼンを除くために、さらに大気下で12時間放置し、式(C10)で表される化合物の会合体と会合体に内包されたフルオロベンゼンとを有する包接体を得た。
(Manufacture of clathrate)
Under the saturated vapor pressure of fluorobenzene, the association of the compound represented by the formula (C10) is allowed to stand for 12 hours, and then further left for 12 hours in the air to remove non-inclusion fluorobenzene. An clathrate having an aggregate of the compound represented by C10) and fluorobenzene encapsulated in the aggregate was obtained.

上記で得られた包接体に関して、上記<燐光測定>と同様の手順に従って測定を行ったところ、燐光の発光が確認された。
また、上記<粉末X線回折スペクトル測定>と同様の手順に従って測定を行ったところ、18〜22°の間にピークが確認された。
The clathrate obtained above was measured according to the same procedure as in the above <Phosphorescence measurement>, and phosphorescence was confirmed.
Moreover, when it measured according to the procedure similar to said <powder X-ray-diffraction spectrum measurement>, the peak was confirmed between 18-22 degrees.

Claims (8)

式(1)で表される化合物、および、式(2)で表される化合物からなる群から選択される化合物の会合体。
式(1)中、R1は、それぞれ独立に、アルキル基を表す。mは0以上の整数を表す。
式(2)中、R2は、それぞれ独立に、アルキル基を表す。nは6以上の整数を表す。
An association of a compound selected from the group consisting of a compound represented by formula (1) and a compound represented by formula (2).
In formula (1), R < 1 > represents an alkyl group each independently. m represents an integer of 0 or more.
In formula (2), R 2 each independently represent an alkyl group. n represents an integer of 6 or more.
mが0〜3の整数を表す、請求項1に記載の会合体。   The association according to claim 1, wherein m represents an integer of 0 to 3. nが6〜8の整数を表す、請求項1または2に記載の会合体。   The association according to claim 1 or 2, wherein n represents an integer of 6 to 8. 2で表されるアルキル基の炭素数が、3〜15である、請求項1〜3のいずれか1項に記載の会合体。 The aggregate according to any one of claims 1 to 3, wherein the alkyl group represented by R 2 has 3 to 15 carbon atoms. CuKα線による粉末X線回折スペクトルにおいて18.0〜22.0°の間にピークを有する、請求項1〜4のいずれか1項に記載の会合体。   The aggregate according to any one of claims 1 to 4, which has a peak between 18.0 and 22.0 ° in a powder X-ray diffraction spectrum by CuKα rays. 請求項1〜5のいずれか1項に記載の会合体と、前記会合体内部に内包されたゲスト化合物とを有する包接体。   An inclusion body comprising the aggregate according to any one of claims 1 to 5 and a guest compound encapsulated inside the aggregate. 前記ゲスト化合物が、蛍光化合物である、請求項6に記載の包接体。   The clathrate according to claim 6, wherein the guest compound is a fluorescent compound. 請求項1〜5のいずれか1項に記載の会合体、または、請求項6若しくは7に記載の包接体を含む、発光材料。   A luminescent material comprising the aggregate according to any one of claims 1 to 5 or the clathrate according to claim 6 or 7.
JP2016175615A 2016-09-08 2016-09-08 Assembly, inclusion compound, and light emitting material Pending JP2018039758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016175615A JP2018039758A (en) 2016-09-08 2016-09-08 Assembly, inclusion compound, and light emitting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016175615A JP2018039758A (en) 2016-09-08 2016-09-08 Assembly, inclusion compound, and light emitting material

Publications (1)

Publication Number Publication Date
JP2018039758A true JP2018039758A (en) 2018-03-15

Family

ID=61624953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016175615A Pending JP2018039758A (en) 2016-09-08 2016-09-08 Assembly, inclusion compound, and light emitting material

Country Status (1)

Country Link
JP (1) JP2018039758A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109187472A (en) * 2018-09-12 2019-01-11 西北师范大学 It is a kind of based on the supermolecule sensor of Subjective and Objective self assembly and its preparation and application
CN111871222A (en) * 2020-07-16 2020-11-03 福州大学 Preparation method of quaternary ammonium salt functionalized fluorine-containing polyfluorene ether anion exchange membrane based on pillared [5] arene
WO2021017319A1 (en) * 2019-07-26 2021-02-04 Tcl华星光电技术有限公司 Liquid crystal alignment material and display panel
CN113278416A (en) * 2021-05-24 2021-08-20 浙江理工大学 Water-soluble pillararene modified amphiphilic graphene quantum dot, and preparation method and application thereof
CN115434014A (en) * 2022-08-09 2022-12-06 浙江大学杭州国际科创中心 Supermolecule nonlinear optical eutectic material and preparation method and application thereof
WO2022265084A1 (en) * 2021-06-17 2022-12-22 国立大学法人京都大学 Fluorine-containing pillararene
WO2023218995A1 (en) * 2022-05-10 2023-11-16 ダイキン工業株式会社 Adsorption agent, molded article, composition, production method for compound, and compound

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109187472A (en) * 2018-09-12 2019-01-11 西北师范大学 It is a kind of based on the supermolecule sensor of Subjective and Objective self assembly and its preparation and application
WO2021017319A1 (en) * 2019-07-26 2021-02-04 Tcl华星光电技术有限公司 Liquid crystal alignment material and display panel
CN111871222A (en) * 2020-07-16 2020-11-03 福州大学 Preparation method of quaternary ammonium salt functionalized fluorine-containing polyfluorene ether anion exchange membrane based on pillared [5] arene
CN113278416A (en) * 2021-05-24 2021-08-20 浙江理工大学 Water-soluble pillararene modified amphiphilic graphene quantum dot, and preparation method and application thereof
CN113278416B (en) * 2021-05-24 2022-12-13 浙江理工大学 Water-soluble pillararene modified amphiphilic graphene quantum dot, and preparation method and application thereof
WO2022265084A1 (en) * 2021-06-17 2022-12-22 国立大学法人京都大学 Fluorine-containing pillararene
JP2023001080A (en) * 2021-06-17 2023-01-04 国立大学法人京都大学 Fluorine-containing pillararene
JP7292690B2 (en) 2021-06-17 2023-06-19 国立大学法人京都大学 Fluorine-containing pillar arene
WO2023218995A1 (en) * 2022-05-10 2023-11-16 ダイキン工業株式会社 Adsorption agent, molded article, composition, production method for compound, and compound
JP7417969B2 (en) 2022-05-10 2024-01-19 ダイキン工業株式会社 Adsorbents, molded bodies, compositions, methods for producing compounds, and compounds
CN115434014A (en) * 2022-08-09 2022-12-06 浙江大学杭州国际科创中心 Supermolecule nonlinear optical eutectic material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2018039758A (en) Assembly, inclusion compound, and light emitting material
JP7021332B2 (en) Light emitting elements, light emitting devices, lighting devices and electronic devices
CN109705166B (en) Metal complex, organic electroluminescent material, organic electroluminescent element, and electronic device
JP2019021925A (en) Platinum (II) emitter for OLED applications
Tu et al. Halogen-substituted triphenylamine derivatives with intense mechanoluminescence properties
CN108409720B (en) Organic light-emitting material, application of organic light-emitting material and organic electroluminescent device
JP5164902B2 (en) Method for synthesizing 9-aryl-10-iodoanthracene derivative and method for synthesizing luminescent material
Jiang et al. Insight from the old: mechanochromism and mechanoluminescence of two amine-containing tetraphenylethylene isomers
WO2015018322A1 (en) Composition and synthesis of aggregation-induced emission materials
CN109593105B (en) Metal complex, organic electroluminescent device and organic electroluminescent material
Wang et al. The selective regulation of borylation site based on one-shot electrophilic C–H borylation reaction, achieving highly efficient narrowband organic light-emitting diodes
JP2021050203A (en) Organic molecules for direct singlet capture in short emission decay time, and process of manufacturing optoelectronic products utilizing those organic molecules
CN107098891B (en) Fluorescent anti-counterfeiting material based on mechanical force response
CN107001926B (en) Aggregation-induced emission and aggregation-promoted photochromism of bis (diarylmethylene) -dihydroacenes
DE112016001149T5 (en) Heteroleptic iridium complex, light-emitting material and organic light-emitting element using a substance
JP7321530B2 (en) Condensed polycyclic compound and its production method and use
CN109912433B (en) Compound, organic electroluminescent material, organic electroluminescent device, and electronic device
JP6249210B2 (en) Organic fluorescent material
JP2007326846A (en) Azobenzene derivative, fluorescent particle and method for producing the fluorescent particle
JP2014047139A (en) Naphthobisthiadiazole derivative and method of producing the same
CN113214155B (en) Long-life pure organic room-temperature phosphorescent material and preparation method and application thereof
CN109678731B (en) Organic compound, organic electroluminescent material, and electronic device
JP2006117593A (en) New fluorescent compound and method for producing the same
KR101751784B1 (en) Novel phenylanthracene derivatives and organic electroluminescent device using the same
Zhang et al. Synthesis of Fluorene‐Bridged Arylene Vinylene Fluorophores: Effects of End‐Capping Groups on the Optical Properties, Aggregation Induced Emission

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20161004