JP2018039692A - Self-repair concrete product - Google Patents
Self-repair concrete product Download PDFInfo
- Publication number
- JP2018039692A JP2018039692A JP2016174181A JP2016174181A JP2018039692A JP 2018039692 A JP2018039692 A JP 2018039692A JP 2016174181 A JP2016174181 A JP 2016174181A JP 2016174181 A JP2016174181 A JP 2016174181A JP 2018039692 A JP2018039692 A JP 2018039692A
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- fly ash
- self
- portland cement
- repairing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
この発明はフライアッシュを混和材としたコンクリート製品またはコンクリート製の構造物に関する。 The present invention relates to a concrete product or a concrete structure using fly ash as an admixture.
一般に、コンクリートそのものは100年以上の耐久性を有し、長期間にわたり強度を伸ばしていく素材である。コンクリートは、圧縮に対して強く、引っ張りに対して弱い。そこで、コンクリ−ト内部に鉄筋を配置し、鉄筋による引っ張りの補強を行っている。この場合、コンクリートは強アルカリ性であり、内部の鉄筋の酸化を防ぐことができる。
一方、空気中の酸素によりコンクリートの強アルカリ性が中性化され、また製造時の乾燥収縮や施工時のショックなどにより発生した微細なクラックなどから空気や水が浸入し鉄筋が錆びることがある。この結果、鉄筋が膨張し、コンクリートが破壊されるという問題があった。
すなわち、長期間にわたり使用されるコンクリート製品、コンクリート構造物においては、鉄筋の保護が、その寿命を決定する要素となる。
従来、コンクリート構造物のひび割れ(クラック)について自己修復機能を持たせた技術が知られている。例えば特許文献1に示すものである。
In general, concrete itself is a material that has a durability of 100 years or more and increases strength over a long period of time. Concrete is strong against compression and weak against tension. Therefore, reinforcing bars are arranged inside the concrete, and reinforcement of tension by the reinforcing bars is performed. In this case, the concrete is strongly alkaline and can prevent oxidation of the internal reinforcing bars.
On the other hand, the strong alkalinity of concrete is neutralized by oxygen in the air, and air and water may enter from fine cracks generated by drying shrinkage during production and shock during construction, and the rebar may rust. As a result, there is a problem that the reinforcing bars expand and the concrete is destroyed.
That is, in concrete products and concrete structures that are used over a long period of time, the protection of reinforcing bars is an element that determines the life of the reinforcing bars.
2. Description of the Related Art Conventionally, a technique that has a self-repair function for cracks in a concrete structure is known. For example, it is shown in Patent Document 1.
この特許文献1に開示された従来技術にあっては、水、セメント、骨材からなる水和硬化物において、骨材の少なくとも一部に未水和のセメントクリンカを含ませ、ひびわれ自己修復性水和硬化物としている。ひびわれ部分を補修するには、自己修復性水和硬化物のひびわれ部分に、水を浸透させて未水和のセメントクリンカと水とを反応させる。
しかしながら、このものにあっては、石膏成分が不足し、急結または瞬結のおそれがあった。また、得られる水和硬化物の流動性に悪影響をもたらすおそれがあった。
In the prior art disclosed in Patent Document 1, in a hydrated and cured product composed of water, cement and aggregate, at least a part of the aggregate includes an unhydrated cement clinker, and cracks are self-repairing. Hydrated cured product. In order to repair the cracked portion, water is permeated into the cracked portion of the self-repairing hydrated cured product to cause the unhydrated cement clinker to react with water.
However, in this case, the gypsum component was insufficient, and there was a risk of rapid or instantaneous setting. In addition, the fluidity of the resulting hydrated cured product may be adversely affected.
そこで、発明者は鋭意研究の結果、フライアッシュをコンクリート中に混入することで、組織の緻密化と自己修復能力によりクラックを補修し長寿命化が図れることを知見し、この発明を完成させた。 Therefore, as a result of earnest research, the inventor has found that by mixing fly ash into the concrete, it has been found that cracks can be repaired and the life can be extended by the densification of the structure and self-healing ability, and the present invention has been completed. .
この発明の目的は、自己修復能力を有するコンクリート製品、コンクリート構造物を提供することにある。 An object of the present invention is to provide a concrete product and a concrete structure having self-repairing ability.
請求項1に記載の発明は、ポルトランドセメントに対してフライアッシュをコンクリート混和材とし、ポルトランドセメントとフライアッシュとの合計量を100重量部としたとき当該フライアッシュを10〜60重量部の割合で混合した自己修復型コンクリート製品である。
この場合のポルトランドセメントは、普通ポルトランドセメントの他にも、低アルカリ形ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、耐硫酸塩ポルトランドセメントを含む。
ポルトランドセメントとフライアッシュとの合計量を100重量部としたときの、フライアッシュの混合量が10重量部未満では自己修復力が不十分である。フライアッシュの混合量が60重量部を超えると、自己修復力は高まるが、価額が高騰して不経済となる。
Invention of Claim 1 makes fly ash into concrete admixture with respect to Portland cement, and when the total amount of Portland cement and fly ash is 100 weight part, the said fly ash is a ratio of 10-60 weight part. It is a mixed self-healing concrete product.
The Portland cement in this case includes, in addition to ordinary Portland cement, low alkali type Portland cement, early-strength Portland cement, ultra-high strength Portland cement, moderately hot Portland cement, and sulfate-resistant Portland cement.
When the total amount of Portland cement and fly ash is 100 parts by weight, if the amount of fly ash mixed is less than 10 parts by weight, the self-healing power is insufficient. When the mixing amount of fly ash exceeds 60 parts by weight, the self-repairing power increases, but the price increases and it becomes uneconomical.
この場合のコンクリート製品には、コンクリ−ト杭、コンクリート製の側溝、擁壁、ボックスカルバート、住宅基礎などを含む。また、コンクリート製の橋梁、橋桁、基礎構造物などを含むものとする。
また、上記請求項1に記載の発明によれば、フライアッシュをコンクリート中に混入することで、組織の緻密化と自己修復能力によりクラックが補修され長寿命化を図ることができる。
コンクリート製品の耐用年数は30年〜50年とされている。これは、コンクリートのアルカリ性が空気中の酸素により酸化するからである。また、製造時の乾燥収縮や、施工時のショックなどによるクラックにより水と酸素とがコンクリート内部に供給され、鉄筋が錆びてしまうからである。
そこで、製造時にフライアッシュ(火力発電所の石炭灰)を混和材としてコンクリートに混入することで、ポゾラン反応により、組織の緻密化にて水素、酸素の侵入が防止され、自己修復化が進むとともに、長寿命化を図ることができる。
なお、ポゾラン反応とは、コンクリート中の水酸化カルシウムとフライアッシュが常温で長期間にわたって反応し、カルシウムシリケート水和物などを生成する現象である。また、コンクリートの組織が緻密になり、長期にわたって強度や水密性が向上するとは、フライアッシュに含まれるアルミやシリカが、セメント水和物に取り込まれて、極小の球体が増加し、これがセメント水和物同士の隙間を徐々に埋めていく現象である。
Concrete products in this case include concrete piles, concrete gutters, retaining walls, box culverts, and residential foundations. It also includes concrete bridges, bridge girders, foundation structures, etc.
In addition, according to the first aspect of the present invention, by mixing fly ash into the concrete, cracks are repaired by the densification of the structure and the self-healing ability, thereby extending the life.
The useful life of concrete products is 30 to 50 years. This is because the alkalinity of concrete is oxidized by oxygen in the air. In addition, water and oxygen are supplied into the concrete due to drying shrinkage during production, cracks due to shock during construction, and the like, and the steel bars rust.
Therefore, by mixing fly ash (coal ash from a thermal power plant) into concrete as an admixture during production, the pozzolanic reaction prevents the invasion of hydrogen and oxygen by densification of the structure, and self-repair progresses. It is possible to extend the life.
The pozzolanic reaction is a phenomenon in which calcium hydroxide and fly ash in concrete react at room temperature for a long period of time to produce calcium silicate hydrate and the like. In addition, the concrete structure becomes dense and the strength and water tightness are improved over a long period of time. Aluminum and silica contained in fly ash are incorporated into cement hydrate, increasing the number of extremely small spheres. It is a phenomenon that gradually fills the gaps between Japanese products.
この発明によれば、コンクリート製品の長寿命化を図ることができる。また、地震発生時のクラック発生にあっても、そのクラックを自己修復することにより、住宅の長寿命化を達成することができる。 According to this invention, it is possible to extend the life of concrete products. Even if a crack occurs when an earthquake occurs, the life of the house can be extended by self-repairing the crack.
以下、この発明に係るコンクリ−ト製品(コンクリート構造物を含む)の一実施例を具体的に説明する。 Hereinafter, an embodiment of a concrete product (including a concrete structure) according to the present invention will be described in detail.
図1は、この発明の実施例1に係るコンクリート製品における1次共鳴試験でのその材齢と動弾性係数との関係を示すグラフである。1次共鳴試験は、JIS A 1127:2010共鳴振動によるコンクリートの動弾性係数を求める試験である。
蒸気養生材齢7日の強度を同一とした条件でのセメントの水和、ポゾラン反応の進行が自己治癒性状に及ぼす影響を明らかにするためにこの試験を行った。
表1には、調合表を示す。
図1におけるPLはポルトランドセメントのみを使用した場合(フライアッシュを混入していない)であってその調合割合は、表1における「35−10」で示す通りである。
図1でFA−10は、表1の「35−10」に対応し、FA−20は表1での「35−20」に対応する。すなわち、「FA−10」,「FA−20」は、それぞれ、普通ポルトランドセメント474kgに改質型フライアッシュ53kg(全体を100重量部としたときフライアッシュは10重量部)、普通ポルトランドセメント444kgに改質型フライアッシュ111kg(全体を100重量部としたときフライアッシュは20重量部)を混和させたものである。
FIG. 1 is a graph showing the relationship between age and dynamic elastic modulus in a primary resonance test in a concrete product according to Example 1 of the present invention. The primary resonance test is a test for obtaining a kinematic elastic coefficient of concrete by JIS A 1127: 2010 resonance vibration.
This test was conducted to clarify the effects of cement hydration and the progress of pozzolanic reaction on the self-healing properties under the same strength at 7 days of age.
Table 1 shows the formulation table.
PL in FIG. 1 is a case where only Portland cement is used (no fly ash is mixed), and the blending ratio is as shown by “35-10” in Table 1.
In FIG. 1, FA-10 corresponds to “35-10” in Table 1, and FA-20 corresponds to “35-20” in Table 1. That is, “FA-10” and “FA-20” are respectively 474 kg of ordinary Portland cement and 53 kg of modified fly ash (10 parts by weight of fly ash when the whole is 100 parts by weight) and 444 kg of ordinary Portland cement. A modified fly ash (111 kg) (mixed with 100 parts by weight as a whole, fly ash is 20 parts by weight) is mixed.
具体的には、普通ポルトランドセメントとして宇部三菱社の普通ポルトランドセメントを、フライアッシュとしてゼロテクノ社のCfFAを使用した。このフライアッシュは、未燃カーボン量LOIが1.0%以下のものを使用した。
また、表1において、W/Cは水セメント比を、W/C'は水対セメント・フライアッシュ比を、CfFAは改質型フライアッシュを、寄与率とはセメントに対する、
フライアッシュによる強度発現の比率を重量比で示したものを、s/aは細骨材比を、Sは細骨材を、Gは粗骨材を、Ad1は高性能減水剤を、Ad2は空気量調整剤を、それぞれ示す。
図1において示すように、本試験にあっては、各供試品については、養生材齢28日で圧縮強度の8割の荷重を10回載荷することで劣化させ、その後、20℃水中浸漬を行ったもので動弾性係数の経時変化を示す。このグラフにより明らかなように、材齢39週が経過した後にFA10,FA20については、その動弾性係数が、フライアッシュ未混入の供試品に比較して明らかに大きな値を示している。
これはフライアッシュによる自己修復機能を示すものである。
Specifically, Ube Mitsubishi Corp. normal Portland cement was used as normal Portland cement, and Zero Techno Co. CfFA was used as fly ash. As this fly ash, an unburnt carbon amount LOI of 1.0% or less was used.
In Table 1, W / C is the water cement ratio, W / C ′ is the water to cement fly ash ratio, CfFA is the modified fly ash, and the contribution ratio is the cement.
The ratio of strength expression by fly ash is shown by weight ratio, s / a is fine aggregate ratio, S is fine aggregate, G is coarse aggregate, Ad1 is high-performance water reducing agent, Ad2 is Each air amount adjusting agent is shown.
As shown in FIG. 1, in this test, each specimen was deteriorated by loading 10 times the load of 80% of the compressive strength at a curing material age of 28 days, and then immersed in water at 20 ° C. The change with time of the dynamic elastic modulus is shown. As is clear from this graph, the dynamic modulus of elasticity of FA10 and FA20 after the lapse of 39 weeks of age is clearly larger than that of the test product not mixed with fly ash.
This shows the self-healing function by fly ash.
この発明は自己修復機能を有するコンクリート製品またはコンクリート構造物として有用である。 The present invention is useful as a concrete product or a concrete structure having a self-healing function.
Claims (1)
ポルトランドセメントとフライアッシュとの合計量を100重量部としたとき当該フライアッシュを10〜60重量部の割合で混合した自己修復型コンクリート製品。 Fly ash as a concrete admixture for Portland cement,
A self-repairing concrete product obtained by mixing 10 to 60 parts by weight of fly ash when the total amount of Portland cement and fly ash is 100 parts by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016174181A JP6899118B2 (en) | 2016-09-07 | 2016-09-07 | Self-healing concrete products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016174181A JP6899118B2 (en) | 2016-09-07 | 2016-09-07 | Self-healing concrete products |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018039692A true JP2018039692A (en) | 2018-03-15 |
JP6899118B2 JP6899118B2 (en) | 2021-07-07 |
Family
ID=61624888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016174181A Active JP6899118B2 (en) | 2016-09-07 | 2016-09-07 | Self-healing concrete products |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6899118B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113060950A (en) * | 2021-04-09 | 2021-07-02 | 嘉华特种水泥股份有限公司 | Anti-cracking self-repairing cement |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004188292A (en) * | 2002-12-10 | 2004-07-08 | Central Res Inst Of Electric Power Ind | Apparatus and method for treating fly ash |
JP2005279489A (en) * | 2004-03-30 | 2005-10-13 | Chugoku Electric Power Co Inc:The | Crushing and classifying method for unburnt carbon in fly ash and its crushing and classifying device |
WO2011108159A1 (en) * | 2010-03-01 | 2011-09-09 | 電気化学工業株式会社 | Calcium ferroaluminate compound, cement admixture and process for producing same, and cement composition |
JP2014144878A (en) * | 2013-01-26 | 2014-08-14 | Kitaokagumi:Kk | Mixed cement and method of producing concrete |
JP2015151318A (en) * | 2014-02-17 | 2015-08-24 | 太平洋セメント株式会社 | Modified fly ash-containing concrete for pavement |
JP2016002747A (en) * | 2014-06-19 | 2016-01-12 | 扶和産業株式会社 | Ready mixed concrete |
JP2016079054A (en) * | 2014-10-14 | 2016-05-16 | 株式会社大阪砕石工業所 | Ready mixed concrete |
-
2016
- 2016-09-07 JP JP2016174181A patent/JP6899118B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004188292A (en) * | 2002-12-10 | 2004-07-08 | Central Res Inst Of Electric Power Ind | Apparatus and method for treating fly ash |
JP2005279489A (en) * | 2004-03-30 | 2005-10-13 | Chugoku Electric Power Co Inc:The | Crushing and classifying method for unburnt carbon in fly ash and its crushing and classifying device |
WO2011108159A1 (en) * | 2010-03-01 | 2011-09-09 | 電気化学工業株式会社 | Calcium ferroaluminate compound, cement admixture and process for producing same, and cement composition |
WO2011108065A1 (en) * | 2010-03-01 | 2011-09-09 | 電気化学工業株式会社 | Cement admixture and cement composition |
JP2014144878A (en) * | 2013-01-26 | 2014-08-14 | Kitaokagumi:Kk | Mixed cement and method of producing concrete |
JP2015151318A (en) * | 2014-02-17 | 2015-08-24 | 太平洋セメント株式会社 | Modified fly ash-containing concrete for pavement |
JP2016002747A (en) * | 2014-06-19 | 2016-01-12 | 扶和産業株式会社 | Ready mixed concrete |
JP2016079054A (en) * | 2014-10-14 | 2016-05-16 | 株式会社大阪砕石工業所 | Ready mixed concrete |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113060950A (en) * | 2021-04-09 | 2021-07-02 | 嘉华特种水泥股份有限公司 | Anti-cracking self-repairing cement |
Also Published As
Publication number | Publication date |
---|---|
JP6899118B2 (en) | 2021-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rangan | Geopolymer concrete for environmental protection | |
Booya et al. | The influence of utilizing slag in lieu of fly ash on the performance of engineered cementitious composites | |
JP2010006662A (en) | Highly durable concrete composition and method for producing highly durable concrete | |
Mangat et al. | Sustainability of alkali-activated cementitious materials and geopolymers | |
US20180290926A1 (en) | Concrete composition | |
JP2007238380A (en) | Prestress concrete product and concrete structure | |
Yodsudjai | Application of fly ash-based geopolymer for structural member and repair materials | |
Sandhu et al. | Effect on the compressive strength of mortars using ground granulated blast furnace slag as a partial replacement of cement | |
WO2019172349A1 (en) | Acid-resistant concrete, precast concrete, and method for producing acid-resistant concrete | |
JP2012162459A (en) | Method for determining unit amount of expansive additive of concrete structure | |
JP2018039692A (en) | Self-repair concrete product | |
JP2017124950A (en) | Concrete and production method of concrete | |
JP4691381B2 (en) | High strength concrete | |
JP5863296B2 (en) | Method for producing ultra-high-strength cement-based hardened body | |
JP2015189628A (en) | Method of producing crack-reduced cement product and crack-reduced cement product | |
JP5403321B2 (en) | Cement-based material | |
JP2014189437A (en) | Cracking-reduced type blast furnace cement composition and production method thereof | |
JP2004217514A (en) | Concrete material, concrete structure, and its manufacturing method | |
JP5743650B2 (en) | Method for producing slag curing composition | |
KR102111254B1 (en) | Composition for shrinkage reduction cement, methods for manufacturing thesame and mortar composition | |
JP4137072B2 (en) | Cement composition | |
JP2009227558A (en) | Self-restorable high strength hydration hardened material | |
JP2008044806A (en) | Crack suppressing concrete and method of suppressing crack of concrete | |
KR100933224B1 (en) | Composition of polymer mortar and repair method of concrete structures using the same | |
JP2011006287A (en) | Method for estimating drying shrinkage of hardened concrete, method for manufacturing and method for suppressing drying shrinkage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20180629 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190826 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20190826 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200528 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200630 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200908 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210217 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210405 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210405 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210514 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210607 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6899118 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |