JP2018039691A - Inorganic fibrous thermal insulation material and method for producing the same - Google Patents

Inorganic fibrous thermal insulation material and method for producing the same Download PDF

Info

Publication number
JP2018039691A
JP2018039691A JP2016173934A JP2016173934A JP2018039691A JP 2018039691 A JP2018039691 A JP 2018039691A JP 2016173934 A JP2016173934 A JP 2016173934A JP 2016173934 A JP2016173934 A JP 2016173934A JP 2018039691 A JP2018039691 A JP 2018039691A
Authority
JP
Japan
Prior art keywords
sol
heat insulating
silica
alumina
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016173934A
Other languages
Japanese (ja)
Other versions
JP6795357B2 (en
Inventor
橋本 敏昭
Toshiaki Hashimoto
敏昭 橋本
篤 末吉
Atsushi Sueyoshi
篤 末吉
角村 尚紀
Hisanori Tsunomura
尚紀 角村
三宅 健
Takeshi Miyake
健 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isolite Insulating Products Co Ltd
Original Assignee
Isolite Insulating Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isolite Insulating Products Co Ltd filed Critical Isolite Insulating Products Co Ltd
Priority to JP2016173934A priority Critical patent/JP6795357B2/en
Publication of JP2018039691A publication Critical patent/JP2018039691A/en
Application granted granted Critical
Publication of JP6795357B2 publication Critical patent/JP6795357B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a lightweight inorganic fibrous thermal insulation material that hardly causes dust generation and is excellent in heat resistance.SOLUTION: A method for producing a thermal insulation material composed of an inorganic fibrous substance comprises coating or impregnating the surface of a thermal insulation base material of inorganic fibrous substance with alumina sol and silica sol separately in a total amount of 50 to 300 g in terms of solid content per 1 m, performing a treatment for drying and then wholly firing the thermal insulation base material. The alumina sol and silica sol are preferably coated or impregnated so that the mass ratio of alumina/silica is in the range of more than 65/35 to not more than 80/20.SELECTED DRAWING: None

Description

本発明は、工業炉等の断熱に使用される無機繊維質からなる断熱材及びその製造方法に関するものである。   The present invention relates to a heat insulating material made of an inorganic fiber used for heat insulation of an industrial furnace or the like, and a method for producing the same.

無機繊維質からなる断熱材は軽量で断熱性に優れていることから、各種工業炉に広く使用されている。しかし、無機繊維質からなる断熱材は発塵が多いことが問題になることがあり、電子部品等の精密部品の焼成を行う製造環境では特に清浄性が求められるため、上記無機繊維質断熱材を使用できないことがあった。また、工業炉では炉内温度が高められる傾向にあり、より高温での発塵防止とより高い耐熱性が求められている。   Insulating materials made of inorganic fibers are widely used in various industrial furnaces because they are lightweight and have excellent heat insulating properties. However, since the heat insulating material made of inorganic fibers may cause a problem that a large amount of dust is generated, cleanliness is particularly required in a manufacturing environment in which precision parts such as electronic parts are fired. Could not be used. Further, industrial furnaces tend to raise the temperature in the furnace, and there is a demand for prevention of dust generation at higher temperatures and higher heat resistance.

断熱材の発塵を防止するため、従来、断熱材の表面に塗布層を形成することが一般的に行われてきた。例えば特許文献1には、断熱材の表面にシリカゾルを塗布して表面を硬化させることで発塵を防止する技術が開示されている。また、特許文献2には鱗片状シリカゾルと無機繊維とを混合したコ―テイング液を断熱材に塗布することで発塵を防止すると共に耐熱衝撃性を向上させる技術が開示されている。更に特許文献3には、耐食性の高いムライト結晶を生成させるべく、重量比が調整されたアルミナゾルとシリカゾルとの混合液を断熱材に塗布することで、発塵を防止すると共に耐食性を向上させる技術が開示されている。   In order to prevent dust generation of the heat insulating material, it has been generally performed to form an application layer on the surface of the heat insulating material. For example, Patent Document 1 discloses a technique for preventing dust generation by applying silica sol to the surface of a heat insulating material and curing the surface. Patent Document 2 discloses a technique for preventing dust generation and improving thermal shock resistance by applying a coating liquid obtained by mixing scaly silica sol and inorganic fibers to a heat insulating material. Furthermore, Patent Document 3 discloses a technique for preventing dust generation and improving corrosion resistance by applying a mixed solution of alumina sol and silica sol, the weight ratio of which is adjusted, to a heat insulating material in order to generate mullite crystals having high corrosion resistance. Is disclosed.

実開昭61-125137公報Japanese Utility Model Publication No. 61-125137 特開2005-281400号公報Japanese Patent Laying-Open No. 2005-281400 特開平11−211357号公報JP-A-11-212357

しかしながら、特許文献1や特許文献2において使用する塗布液はシリカを主成分とするので、耐熱温度を高めるのが困難であった。耐熱温度を高めるため、シリカゾルよりも耐熱性が高いアルミナゾルを用いることが考えられるが、アルミナゾルを塗布すると発現する強度が小さくなる上、期待するほど高い耐熱温度が得られないことがあった。   However, since the coating liquid used in Patent Document 1 and Patent Document 2 is mainly composed of silica, it has been difficult to increase the heat-resistant temperature. In order to increase the heat-resistant temperature, it is conceivable to use an alumina sol that has higher heat resistance than silica sol. However, when the alumina sol is applied, the strength that appears is reduced, and a heat-resistant temperature that is as high as expected may not be obtained.

また、特許文献3は酸性ゾルであるアルミナゾルと、アルカリ性のシリカゾルとを混合して用いるためゲル化してしまい、良好に塗布できないことがあった。この場合、シリカゾルに酸性シリカゾルを選定することでゲル化を回避することが考えられるが、酸性シリカゾルはアルカリ性シリカゾルよりも強度の発現が小さいので剥がれやすく、発塵防止の効果が得られないことがあった。本発明は、上記した従来の事情に鑑みてなされたものであり、発塵しにくく且つ耐熱性に優れた軽量の無機繊維質断熱材を提供することを目的としている。   Further, in Patent Document 3, since an alumina sol, which is an acidic sol, and an alkaline silica sol are mixed and used, gelation may occur and coating may not be performed satisfactorily. In this case, it is conceivable to avoid gelation by selecting an acidic silica sol as the silica sol, but the acidic silica sol is less likely to peel off because it exhibits less strength than the alkaline silica sol, and the effect of preventing dust generation may not be obtained. there were. The present invention has been made in view of the above-described conventional circumstances, and an object thereof is to provide a lightweight inorganic fibrous heat insulating material that hardly generates dust and has excellent heat resistance.

上記目的を達成するため、本発明者らは無機繊維質断熱材からの発塵を抑える技術について鋭意検討を重ねた結果、アルミナゾルとシリカゾルとを混合液の状態で塗布又は含浸するのではなく、これらゾルを別々に塗布又は含浸することで断熱母材の表面部に良好に塗布又は含浸させ得ることを見出し、本発明を完成するに至った。   In order to achieve the above object, the present inventors have conducted extensive studies on the technology for suppressing dust generation from the inorganic fibrous heat insulating material. As a result, the alumina sol and the silica sol are not applied or impregnated in a mixed solution state, It has been found that the surface portion of the heat insulating base material can be satisfactorily applied or impregnated by separately applying or impregnating these sols, and the present invention has been completed.

即ち、本発明の断熱材の製造方法は、無機繊維質の断熱母材の表面にその1m当たり固形分換算で合計50〜300gのアルミナゾル及びシリカゾルを別々に塗布又は含浸してから乾燥する処理を行った後、全体的に焼成することを特徴としている。 That is, in the method for producing a heat insulating material of the present invention, the surface of an inorganic fibrous heat insulating base material is separately coated or impregnated with 50 to 300 g of alumina sol and silica sol in terms of solid content per 1 m 2 and then dried. After performing, it is characterized by baking entirely.

また、本発明の断熱材は、無機繊維質の断熱母材の表面部にその1m当たり合計50〜300gのアルミナ層及びシリカ層が各々少なくとも1層ずつ形成されていることを特徴としている。 In addition, the heat insulating material of the present invention is characterized in that at least one alumina layer and silica layer of 50 to 300 g in total per 1 m 2 are formed on the surface portion of the inorganic fibrous heat insulating base material.

本発明によれば、発塵しにくく且つ耐熱性に優れた軽量の無機繊維質断熱材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the lightweight inorganic fibrous heat insulating material which is hard to generate dust and was excellent in heat resistance can be provided.

以下、本発明の一具体例の無機繊維質断熱材の製造方法について説明する。この本発明の一具体例の無機繊維質断熱材の製造方法は、無機繊維質の断熱母材の表面にアルミナゾル及びシリカゾルを別々に塗布又は含浸してから乾燥する処理を行った後、全体的に焼成することを特徴としている。上記のアルミナゾルを塗布又は含浸してから乾燥する処理と、シリカゾルを塗布又は含浸してから乾燥する処理とは、各々1回ずつでもよいし、各々複数回の処理を交互に行ってもよい。   Hereinafter, the manufacturing method of the inorganic fibrous heat insulating material of one specific example of this invention is demonstrated. The method for producing an inorganic fibrous heat insulating material according to one specific example of the present invention is a method in which an alumina sol and a silica sol are separately applied or impregnated on the surface of an inorganic fibrous heat insulating base material and then dried. It is characterized by firing. The treatment of applying or impregnating the above-mentioned alumina sol and drying, and the treatment of applying or impregnating the silica sol and then drying may be performed once each, or a plurality of treatments may be alternately performed.

上記の断熱母材に使用する無機繊維質には、シリカ−アルミナ繊維、アルミナ繊維、ムライト繊維等の無機繊維で構成されたものを用いるのが好ましく、かさ密度が64〜1200kg/mであることが好ましい。これにより、軽量で且つ1000〜1300℃程度の耐熱性を有する断熱材が得られる。断熱母材の形状には特に限定がなく、ブロック状、ボード状等を用いることができる。 As the inorganic fiber used for the heat insulating base material, it is preferable to use one composed of inorganic fibers such as silica-alumina fiber, alumina fiber, mullite fiber, etc., and the bulk density is 64-1200 kg / m 3 . It is preferable. Thereby, the heat insulating material which is lightweight and has about 1000-1300 degreeC heat resistance is obtained. The shape of the heat insulating base material is not particularly limited, and a block shape, a board shape, or the like can be used.

この無機繊維質の断熱母材において、施工後に少なくとも炉内を臨む面に全面に亘って上記2種類のゾルを塗布又は含浸する処理を行う。この場合の塗布法又は含浸法には特に限定がなく、刷毛を用いた塗布法、浸漬法、スプレー噴霧法等を挙げることができる。上記のようにアルミナゾルとシリカゾルとを別々に塗布又は含浸してから乾燥する処理を行うことにより、これらゾルの塗布や含浸の段階ではアルミナゾルとシリカゾルが液体の状態で混ざらないのでゲル化が起こらず、よって極めて良好に塗布又は含浸させることができる。その結果、これらゾルに含まれる固形分を断熱母材の表面部に強固に定着させることができ、断熱材からの発塵を防止することができる。また、Naによって高い強度を発現するアルカリ性シリカゾルを、耐熱性に優れた酸性アルミナゾルと共に使用することができる。 In the inorganic fiber heat insulating base material, after the construction, at least the surface facing the inside of the furnace is applied or impregnated with the two kinds of sols. In this case, the coating method or impregnation method is not particularly limited, and examples thereof include a coating method using a brush, a dipping method, and a spray spraying method. By applying or impregnating the alumina sol and silica sol separately as described above and then drying, the gelation does not occur because the alumina sol and silica sol do not mix in the liquid state at the application or impregnation stage of these sols. Thus, it can be applied or impregnated very well. As a result, the solid content contained in these sols can be firmly fixed on the surface portion of the heat insulating base material, and dust generation from the heat insulating material can be prevented. Further, an alkaline silica sol that exhibits high strength by Na + can be used together with an acidic alumina sol having excellent heat resistance.

断熱母材の表面部に塗布又は含浸させるアルミナゾルとシリカゾルの割合は、ムライト組成になるように、アルミナ/シリカの質量比で65/35より多く80/20以下にすることが好ましく、70/30以上74/26以下がより好ましい。この質量比を65/35より多く80/20以下にすることにより、焼成時の加熱によりアルミナ層とシリカ層との界面部においてムライト結晶が生成し、加熱線収縮率がより抑制されるので耐熱温度が向上する。この重量比が65/35以下ではムライト結晶が十分に生成されなくなり、耐熱温度が向上しなくなるおそれがある。逆にこの重量比が80/20を超えると、シリカの量が少なくなり過ぎて十分な強度が発現されなくなるおそれがある。   The ratio of the alumina sol and silica sol to be applied or impregnated on the surface portion of the heat insulating base material is preferably more than 65/35 and not more than 80/20 in terms of the mass ratio of alumina / silica so as to have a mullite composition. More preferred is 74/26 or less. By making this mass ratio more than 65/35 and not more than 80/20, mullite crystals are generated at the interface between the alumina layer and the silica layer by heating during firing, and the heat shrinkage rate is further suppressed, so that heat resistance Increases temperature. If the weight ratio is 65/35 or less, mullite crystals are not sufficiently formed, and the heat resistant temperature may not be improved. On the other hand, if the weight ratio exceeds 80/20, the amount of silica is too small and sufficient strength may not be exhibited.

上記のシリカゾルには、コロイダルシリカ、水溶性シリコーン等を用いることができ、これらの中では粒径5〜100nm程度の非晶質のシリカ粒子が水や有機溶媒中に安定して分散したコロイダルシリカが好ましい。このコロイダルシリカは酸性ゾルでもよいし、アルカリ性ゾルでもよい。一方、上記のアルミナゾルにはコロイダルアルミナを用いるのが好ましい。尚、アルミナゾルは一般的に酸性ゾルである。   Colloidal silica, water-soluble silicone, and the like can be used for the above silica sol. Among these, colloidal silica in which amorphous silica particles having a particle size of about 5 to 100 nm are stably dispersed in water or an organic solvent. Is preferred. The colloidal silica may be an acidic sol or an alkaline sol. On the other hand, it is preferable to use colloidal alumina for the above-mentioned alumina sol. The alumina sol is generally an acidic sol.

本発明の一具体例の断熱材の製造方法では、上記の2種類のゾルを断熱母材の表面にその1m当たり固形分換算で合計50〜300g塗布又は含浸させる。この量が50g/m未満では発塵抑制効果はある程度得られるものの、耐熱性向上効果が得られにくくなる。逆にこの量が300g/mを超えると断熱母材が変形を生じるおそれがあるので好ましくない。 In the method for producing a heat insulating material according to one specific example of the present invention, the above-described two kinds of sols are applied or impregnated on the surface of the heat insulating base material in total 50 to 300 g in terms of solid content per 1 m 2 . If this amount is less than 50 g / m 2 , the dust generation suppressing effect is obtained to some extent, but the heat resistance improving effect is hardly obtained. Conversely, if this amount exceeds 300 g / m 2 , the heat insulating base material may be deformed, which is not preferable.

これら2種類のゾルを塗布又は含浸させる順番は、アルミナゾルとシリカゾルのどちらを先にしても良いが、粒子径の大きい方のゾルを最初に塗布又は含浸させるのが好ましい。この順序で2種類のゾルを塗布又は含浸させることで、これらゾルに含まれる粒子を断熱母材の繊維に担持させやすくなる。   The order of applying or impregnating these two types of sols may be either alumina sol or silica sol, but it is preferable to apply or impregnate the sol having the larger particle size first. By applying or impregnating two kinds of sols in this order, the particles contained in these sols can be easily carried on the fibers of the heat insulating base material.

ゾルの塗布又は含浸後は、もう一方の種類のゾルを塗布又は含浸させる前に乾燥して水分の除去を行う。乾燥法には特に限定がなく、加熱乾燥や風を当てることによる乾燥でもよいし、凍結乾燥でもよい。このように、各ゾルを個別に乾燥することにより、アルミナとシリカの微細な粒子は、各々良好に断熱材の表面部内で拡散し、繊維表面及び間隙に定着してアルミナ層とシリカ層とからなる積層膜が形成される。   After applying or impregnating the sol, moisture is removed by drying before applying or impregnating the other type of sol. There is no particular limitation on the drying method, and it may be heat drying, drying by applying air, or freeze drying. Thus, by drying each sol individually, the fine particles of alumina and silica are diffused well in the surface portion of the heat insulating material and fixed on the fiber surface and gaps, and from the alumina layer and the silica layer. A laminated film is formed.

次に、この表面部に上記積層膜が形成された断熱母材を全体的に焼成することによって、無機繊維質の断熱母材の表面部にその1m当たり合計50〜300gのアルミナ層及びシリカ層が各々少なくとも1層ずつ形成された断熱材を作製することができる。焼成温度は1100℃以上にするのが好ましく、これによりアルミナ結晶とシリカ結晶が生成されると共にアルミナ層とシリカ層の境界部ではムライト結晶が生成されるので、加熱線収縮率がより一層抑制され、耐熱性に優れた断熱材を作製することができる。 Next, a total of 50 to 300 g of alumina layer and silica per 1 m 2 are formed on the surface portion of the inorganic fibrous heat-insulating base material by firing the heat-insulating base material having the laminated film formed on the surface portion. A heat insulating material in which at least one layer is formed can be manufactured. The firing temperature is preferably set to 1100 ° C. or higher, whereby alumina crystals and silica crystals are produced, and mullite crystals are produced at the boundary between the alumina layer and the silica layer, so that the heating linear shrinkage rate is further suppressed. A heat insulating material excellent in heat resistance can be produced.

上記の本発明の一具体例で作製される断熱材は、表面にアルミナ層及びシリカ層のない断熱材に比べて耐熱温度が20℃以上高く、且つ硬度も高い。この場合の断熱材の耐熱温度はJIS R3311に準拠した加熱線収縮率に基づいて求めることができ、硬度は高分子計器株式会社製のアスカーゴム硬度計C型によって測定することができる。また、上記の本発明の一具体例で作製される断熱材は、アルミナ層とシリカ層とそれらの間に形成されるムライト層とからなる積層膜が断熱母材から剥離しにくく、これらアルミナ層、シリカ層、及びムライト層の層間の剥離も生じにくい。具体的には、工業炉の内張りとして1年間使用した後の定期修理において自然空冷後に目視にて観察しても上記の剥離が認められることはない。   The heat insulating material produced in one specific example of the present invention has a heat resistant temperature higher by 20 ° C. or more and a higher hardness than a heat insulating material having no alumina layer and silica layer on the surface. The heat-resistant temperature of the heat insulating material in this case can be determined based on the heating line shrinkage rate in accordance with JIS R3311, and the hardness can be measured with an Asker rubber hardness meter C type manufactured by Kobunshi Keiki Co., Ltd. In addition, the heat insulating material produced in one specific example of the present invention described above is a laminate film composed of an alumina layer, a silica layer, and a mullite layer formed therebetween, which is difficult to peel off from the heat insulating base material. Further, peeling between the layers of the silica layer and the mullite layer hardly occurs. Specifically, the above-mentioned peeling is not observed even when visually observed after natural air cooling in periodic repair after being used as an industrial furnace lining for one year.

1260℃クラスのシリカーアルミナ系繊維断熱ボード(イソライト工業株式会社製 イソウール1260ボード かさ密度250kg/m)の全面に、日産化学工業株式会社製のコロイダルシリカ(スノーテックス ST−40 粒子径20〜25nm)を水で希釈することで調製したシリカゾルをスプレー噴霧により塗布して含浸させた。含浸後はボードを雰囲気温度105℃の乾燥機内で24時間かけて乾燥した。 Colloidal silica (Snowtex ST-40 particle size 20 ~ 20) made by Nissan Chemical Industries, Ltd. on the entire surface of 1260 ° C class silica-alumina fiber insulation board (Isolite Industry Co., Ltd. Isowool 1260 board, bulk density 250 kg / m 3 ) The silica sol prepared by diluting 25 nm) with water was applied by spraying and impregnated. After impregnation, the board was dried for 24 hours in a drier at an ambient temperature of 105 ° C.

次に、日産化学工業株式会社製のアルミナゾル(AS−200 粒子径7〜15nm)を、既に含浸させたシリカゾルに対してアルミナ/シリカの質量比で72/28のアルミナを含むように量り取り、これを水で希釈した後、その全量をスプレー噴霧により含浸させた。含浸後はボードを上記と同様に雰囲気温度105℃で24時間かけて乾燥した。次に焼成温度725℃で焼成し、ボードに含まれていた有機バインダーを除去して無機バインダーの強度を発現させた。このようにして試料1の無機繊維質断熱材を作製した。   Next, an alumina sol (AS-200 particle size: 7 to 15 nm) manufactured by Nissan Chemical Industries, Ltd. was weighed out so as to contain 72/28 alumina in an alumina / silica mass ratio with respect to the already impregnated silica sol, After diluting this with water, the whole amount was impregnated by spraying. After impregnation, the board was dried for 24 hours at an ambient temperature of 105 ° C. as described above. Next, firing was performed at a firing temperature of 725 ° C., and the organic binder contained in the board was removed to develop the strength of the inorganic binder. Thus, the inorganic fibrous heat insulating material of Sample 1 was produced.

更に、上記のアルミナ/シリカの質量比は変えずにアルミナゾルとシリカゾルの合計含浸量を約17%程度減らしたことを除いて上記試料1と同様にして試料2の無機繊維質断熱材を作製した。また、上記のアルミナ/シリカの質量比は変えずにアルミナゾルとシリカゾルの合計含浸量を約5倍程度増やしたことを除いて上記試料1と同様にして試料3の無機繊維質断熱材を作製した。   Further, an inorganic fibrous heat insulating material of Sample 2 was prepared in the same manner as Sample 1 except that the total impregnation amount of alumina sol and silica sol was reduced by about 17% without changing the mass ratio of alumina / silica. . Further, the inorganic fibrous heat insulating material of Sample 3 was prepared in the same manner as Sample 1 except that the total impregnation amount of alumina sol and silica sol was increased by about 5 times without changing the alumina / silica mass ratio. .

比較のため、アルミナゾルとシリカゾルのスプレー噴霧を行わなかった以外は上記試料1と同様にして試料4の無機繊維質断熱材を作製した。また、シリカゾルのみを用いて同じ含浸量となるように含浸した以外は上記試料1と同様にして試料5の無機繊維質断熱材を作製し、アルミナゾルのみを用いて同じ含浸量となるように含浸した以外は上記試料1と同様にして試料6の無機繊維質断熱材を作製した。更に、上記アルミナ/シリカの質量比は変えずにアルミナゾルとシリカゾルの合計含浸量を約33%程度減らしたことを除いて上記試料1と同様にして試料7の無機繊維質断熱材を作製し、上記アルミナ/シリカの質量比は変えずにアルミナゾルとシリカゾルの合計含浸量を約5.7倍程度増やしたことを除いて上記試料1と同様にして試料8の無機繊維質断熱材を作製した。   For comparison, an inorganic fibrous heat insulating material of Sample 4 was produced in the same manner as Sample 1 except that the spraying of alumina sol and silica sol was not performed. In addition, the inorganic fibrous heat insulating material of Sample 5 was prepared in the same manner as Sample 1 except that it was impregnated using only silica sol so as to have the same impregnation amount, and impregnation was performed using only alumina sol to obtain the same impregnation amount. Except that, an inorganic fibrous heat insulating material of Sample 6 was produced in the same manner as Sample 1 described above. Further, the inorganic fibrous heat insulating material of Sample 7 was prepared in the same manner as Sample 1 except that the total impregnation amount of alumina sol and silica sol was reduced by about 33% without changing the mass ratio of alumina / silica. An inorganic fibrous heat insulating material of Sample 8 was prepared in the same manner as Sample 1 except that the total impregnation amount of alumina sol and silica sol was increased about 5.7 times without changing the mass ratio of alumina / silica.

上記の試料1〜8の無機繊維質断熱材を各々3個ずつ作製し、各試料ごとに3個の断熱材をそれぞれ1100℃、1200℃、及び1300℃の温度で8時間焼成し、加熱前後の寸法差から各加熱温度における加熱線収縮率を測定した(JIS R3311)。そして、得られた加熱温度と加熱線収縮率との相関関係から加熱線収縮率3.0%となる時の加熱温度を求め、これを耐熱温度とした。   Three inorganic fiber heat insulating materials of Samples 1 to 8 above were prepared, and three heat insulating materials were fired at temperatures of 1100 ° C., 1200 ° C., and 1300 ° C. for 8 hours for each sample, before and after heating. From the dimensional difference, the heat shrinkage rate at each heating temperature was measured (JIS R3311). And the heating temperature when it becomes 3.0% of heating linear shrinkage rate from the correlation of the obtained heating temperature and a heating linear shrinkage rate was calculated | required, and this was made into heat-resistant temperature.

次に、試料1〜8の無機繊維質断熱材の各々の表面にセロハンテープを貼り付けてから剥がし、貼り付け前後のセロハンテープの質量の差をその面積で除して単位面積当たりの塵の付着量を算出した。そして、試料4の付着量を基準値1.00として、それとの相対比で発塵の度合いとした。上記の耐熱温度と発塵の度合いの結果を、ゾルの合計塗布量と共に下記表1に示す。尚、ゾルの合計含浸量は、各ゾルの塗布前後に測定した断熱材の質量の差から各ゾルの含浸量を求め、それぞれ固形分に換算して合計した後、断熱材の表面積で除して算出した。   Next, the cellophane tape is affixed to each surface of the inorganic fibrous heat insulating materials of samples 1 to 8, and then peeled off. The difference in the mass of the cellophane tape before and after the application is divided by the area, and the dust per unit area The amount of adhesion was calculated. And the adhesion amount of the sample 4 was made into the reference value 1.00, and it was set as the degree of dust generation by relative ratio with it. The results of the heat-resistant temperature and the degree of dust generation are shown in Table 1 below together with the total amount of sol applied. The total impregnation amount of the sol is obtained by calculating the impregnation amount of each sol from the difference in mass of the heat insulation material measured before and after the application of each sol, and converting each to the solid content, and then dividing by the surface area of the heat insulation material. Calculated.

Figure 2018039691
Figure 2018039691

上記表1の結果から、本発明の要件を満たす試料1〜3の断熱材では耐熱温度及び発塵の度合いとも良好な結果が得られていることが分る。これに対して、試料4の従来品のシリカ−アルミナ系繊維断熱ボードでは、加熱線収縮率3.0%となる耐熱温度が1260℃と試料1〜3のいずれのものよりも低く、発塵の度合いも高かった。また、シリカゾルのみを含浸した試料5では発塵の度合いは低いものの耐熱温度が1100℃と低く、アルミナゾルのみを含浸した試料6では発塵の度合いが高く、耐熱温度も1260℃と低くなった。また、試料7では本発明の要件よりもゾルの含浸量が少なかったため、発塵の度合いは低いものの耐熱温度が1260℃と低くなり、試料8では本発明の要件よりもゾルの含浸量が多すぎたため降温時に破損した。   From the results of Table 1 above, it can be seen that the heat insulation materials of Samples 1 to 3 satisfying the requirements of the present invention have good results with respect to the heat-resistant temperature and the degree of dust generation. On the other hand, in the conventional silica-alumina fiber heat insulation board of Sample 4, the heat resistance temperature at which the heating linear shrinkage rate is 3.0% is 1260 ° C. lower than those of Samples 1 to 3, and dust generation The degree of was also high. In Sample 5 impregnated with only silica sol, although the degree of dust generation was low, the heat resistant temperature was as low as 1100 ° C., and in Sample 6 impregnated only with alumina sol, the degree of dust generation was high and the heat resistant temperature was also as low as 1260 ° C. In sample 7, since the amount of impregnation of sol was less than the requirement of the present invention, although the degree of dust generation was low, the heat resistance temperature was as low as 1260 ° C., and in sample 8, the amount of impregnation of sol was higher than the requirement of the present invention. It was damaged when the temperature dropped because it was too much.

Claims (5)

無機繊維質の断熱母材の表面にその1m当たり固形分換算で合計50〜300gのアルミナゾル及びシリカゾルを別々に塗布又は含浸してから乾燥する処理を行った後、全体的に焼成することを特徴とする断熱材の製造方法。 The surface of the inorganic fibrous heat-insulating base material is subjected to a process of drying by applying or impregnating a total of 50 to 300 g of alumina sol and silica sol in terms of solid content per 1 m 2 , and then firing the whole. A method for producing a heat insulating material. 前記アルミナゾルを塗布又は含浸してから乾燥する処理と、前記シリカゾルを塗布又は含浸してから乾燥する処理とが交互に複数回に亘って行われることを特徴とする、請求項1に記載の断熱材の製造方法。   The heat insulation according to claim 1, wherein the treatment of applying or impregnating the alumina sol and then drying and the treatment of applying or impregnating the silica sol and then drying are alternately performed a plurality of times. A method of manufacturing the material. 前記アルミナゾル及びシリカゾルを、アルミナ/シリカの質量比で65/35より多く80/20以下の範囲内となるように塗布又は含浸することを特徴とする、請求項1又は2に記載の断熱材の製造方法。   The alumina sol and the silica sol are coated or impregnated so that the mass ratio of alumina / silica is greater than 65/35 and not more than 80/20. The heat insulating material according to claim 1 or 2, Production method. 無機繊維質の断熱母材の表面部にその1m当たり合計50〜300gのアルミナ層及びシリカ層が各々少なくとも1層ずつ形成されていることを特徴とする断熱材。 A heat insulating material characterized in that a total of 50 to 300 g of an alumina layer and a silica layer per 1 m 2 are respectively formed on the surface portion of an inorganic fibrous heat insulating base material. 表面にアルミナ層及びシリカ層のない断熱材に比べて耐熱温度が20℃以上高く、且つ硬度が高いことを特徴とする、請求項4に記載の断熱材。   5. The heat insulating material according to claim 4, wherein the heat insulating temperature is 20 ° C. or more higher and the hardness is higher than that of a heat insulating material having no alumina layer and silica layer on the surface.
JP2016173934A 2016-09-06 2016-09-06 Inorganic fiber insulation and its manufacturing method Active JP6795357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016173934A JP6795357B2 (en) 2016-09-06 2016-09-06 Inorganic fiber insulation and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016173934A JP6795357B2 (en) 2016-09-06 2016-09-06 Inorganic fiber insulation and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018039691A true JP2018039691A (en) 2018-03-15
JP6795357B2 JP6795357B2 (en) 2020-12-02

Family

ID=61624878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016173934A Active JP6795357B2 (en) 2016-09-06 2016-09-06 Inorganic fiber insulation and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6795357B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020001942A (en) * 2018-06-26 2020-01-09 イソライト工業株式会社 Heat insulation material, and method of producing the same
JP2021058850A (en) * 2019-10-08 2021-04-15 イソライト工業株式会社 High-temperature dust collection ceramic filter element
CN114524680A (en) * 2022-01-19 2022-05-24 东华大学 Ceramic nanofiber material with nanometer film lapped inside and preparation method thereof
WO2022138664A1 (en) * 2020-12-25 2022-06-30 東ソー株式会社 Ceramic matrix composite and method for manufacturing same
JP7197654B1 (en) 2021-06-24 2022-12-27 シノスチール ルオナイ マテリアルズ テクノロジー コーポレーション Sintering aid for producing silica brick, composite silica brick and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125137U (en) * 1985-01-23 1986-08-06
JPH11211357A (en) * 1998-01-20 1999-08-06 Toshiba Monofrax Co Ltd Inorganic fiber block and furnace
JP2004123533A (en) * 2002-10-04 2004-04-22 Korea Research Inst Of Chemical Technology Method of manufacturing silica composite membrane having excellent thermal stability by soaking-rolling method
JP2006255542A (en) * 2005-03-16 2006-09-28 Ngk Insulators Ltd Ceramic honeycomb structure
JP2009029692A (en) * 2007-06-28 2009-02-12 Covalent Materials Corp Tool material for firing and its production method
JP2011162902A (en) * 2010-02-08 2011-08-25 Nichias Corp Heat insulation material and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125137U (en) * 1985-01-23 1986-08-06
JPH11211357A (en) * 1998-01-20 1999-08-06 Toshiba Monofrax Co Ltd Inorganic fiber block and furnace
JP2004123533A (en) * 2002-10-04 2004-04-22 Korea Research Inst Of Chemical Technology Method of manufacturing silica composite membrane having excellent thermal stability by soaking-rolling method
JP2006255542A (en) * 2005-03-16 2006-09-28 Ngk Insulators Ltd Ceramic honeycomb structure
JP2009029692A (en) * 2007-06-28 2009-02-12 Covalent Materials Corp Tool material for firing and its production method
JP2011162902A (en) * 2010-02-08 2011-08-25 Nichias Corp Heat insulation material and method for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020001942A (en) * 2018-06-26 2020-01-09 イソライト工業株式会社 Heat insulation material, and method of producing the same
JP2021058850A (en) * 2019-10-08 2021-04-15 イソライト工業株式会社 High-temperature dust collection ceramic filter element
JP7186687B2 (en) 2019-10-08 2022-12-09 イソライト工業株式会社 High temperature dust collection ceramic filter element
WO2022138664A1 (en) * 2020-12-25 2022-06-30 東ソー株式会社 Ceramic matrix composite and method for manufacturing same
CN116670096A (en) * 2020-12-25 2023-08-29 东曹株式会社 Ceramic matrix composite and method of making the same
JP7197654B1 (en) 2021-06-24 2022-12-27 シノスチール ルオナイ マテリアルズ テクノロジー コーポレーション Sintering aid for producing silica brick, composite silica brick and method for producing the same
CN114524680A (en) * 2022-01-19 2022-05-24 东华大学 Ceramic nanofiber material with nanometer film lapped inside and preparation method thereof
CN114524680B (en) * 2022-01-19 2023-05-02 东华大学 Ceramic nanofiber material with internally overlapped nano film and preparation method thereof

Also Published As

Publication number Publication date
JP6795357B2 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
JP2018039691A (en) Inorganic fibrous thermal insulation material and method for producing the same
Niu et al. Highly transparent and self‐healable solar thermal anti‐/deicing surfaces: when ultrathin MXene multilayers marry a solid slippery self‐cleaning coating
US10392312B2 (en) Silicon oxycarbide environmental barrier coating
US20130157024A1 (en) Coating containing pek and/or peek
TWI572567B (en) A method of manufacturing the same, and a method of manufacturing the same
CN103600530B (en) A kind of Elastic heat insulation encapsulant and preparation method thereof
WO2017073115A1 (en) Coating liquid, composition for coating liquid, and refractory article having coating layer
RU2333926C2 (en) Heat-resistant powder composition for coating with improved properties
JP5812180B2 (en) Laminated body
JPWO2018061211A1 (en) Method of producing airgel complex, airgel complex and heat-insulated body
CN103073979A (en) High temperature resistant secondary sintering curing type powdery coating
Pan et al. Superhydrophobicity and anti-icing of CF/PEEK composite surface with hierarchy structure
JP2013099937A (en) Fluorine-containing laminate and method of manufacturing the same
CN108947588A (en) A kind of C/SiC composite material and the antioxidant coating for the material and preparation method thereof
JP4480758B2 (en) Refractory mortar cured molding
RU2482146C2 (en) High-temperature heat-protective coating
BR112018001227B1 (en) Culinary item comprising a coating based on fluorocarbon resin and rare earth oxides and method for manufacturing said item
JP2016196387A (en) Heat-insulating coating liquid, heat-insulating material, and composition for heat-insulating coating liquid
JP6441519B1 (en) Thermal insulation sheet
JP6598932B1 (en) Insulating material and manufacturing method thereof
KR20170131228A (en) High Temperature Heat resistant Coating Composition For Protection of Metal Substrate With Enhanced Theraml Shock Resistance And Coating Methods Using The Same
Shi et al. Effect of precoated carbon layer on microstructure and anti‐erosion properties of SiC coating for 2D‐C/C composites
JP2021167367A (en) Liquid composition, impregnated substrate, method for producing polymer carrying substrate, and method for producing laminate
JPS62201242A (en) Silicone-resin laminated board and manufacture thereof
WO2006114897A1 (en) Coating agent for thermally insulating material and laminate for thermally insulating material using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201112

R150 Certificate of patent or registration of utility model

Ref document number: 6795357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250