JP2018037168A - Induction heating device and induction heating method - Google Patents

Induction heating device and induction heating method Download PDF

Info

Publication number
JP2018037168A
JP2018037168A JP2016167217A JP2016167217A JP2018037168A JP 2018037168 A JP2018037168 A JP 2018037168A JP 2016167217 A JP2016167217 A JP 2016167217A JP 2016167217 A JP2016167217 A JP 2016167217A JP 2018037168 A JP2018037168 A JP 2018037168A
Authority
JP
Japan
Prior art keywords
induction heating
heated
movement path
heating coil
temperature distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016167217A
Other languages
Japanese (ja)
Other versions
JP6796971B2 (en
Inventor
森 俊二
Shunji Mori
俊二 森
哲弘 丸尾
Tetsuhiro Maruo
哲弘 丸尾
章浩 竹内
Akihiro Takeuchi
章浩 竹内
克明 永松
Katsuaki Nagamatsu
克明 永松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Chubu Electric Power Co Inc
Original Assignee
Fuji Electric Co Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Chubu Electric Power Co Inc filed Critical Fuji Electric Co Ltd
Priority to JP2016167217A priority Critical patent/JP6796971B2/en
Publication of JP2018037168A publication Critical patent/JP2018037168A/en
Application granted granted Critical
Publication of JP6796971B2 publication Critical patent/JP6796971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Induction Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an induction heating device and an induction heating method that can easily make the temperature distribution of a whole heated surface even by flattening the central portion of a temperature distribution profile vertical to a travel direction.SOLUTION: An induction heating device heats a heating object 1 by moving, without contact, the heating object 1 including a heated surface 1u relative to an induction heating coil 2 including a heating surface smaller than the heated surface 1u and having a hole 2a formed at a central portion. The induction heating device controls heating of the heating object 1 using a travel path RT1, i.e. a first travel path of the induction heating coil 2 and a travel path RT2, i.e. a second travel path of the induction heating coil 2 shifted by a prescribed distance Δd in a direction vertical to the travel path RT1 as one combination travel path. The prescribed distance Δd is a value obtained by adding or subtracting an allowable distance to/from half of a hole diameter d of the induction heating coil 2.SELECTED DRAWING: Figure 2

Description

本発明は、加熱対象物の被加熱面に比して小さい加熱面を有し、中央部分に穴が形成された誘導加熱コイルを移動して加熱対象物を加熱によって昇温させる場合、移動方向に垂直な温度分布プロファイルの中央部分を平坦化して被加熱面全体の温度分布の均一化を容易に行うことができる誘導加熱装置及び誘導加熱方法に関する。   The present invention has a heating surface that is smaller than the surface to be heated of the object to be heated, and moves the induction heating coil having a hole formed in the central portion to raise the temperature of the object to be heated. The present invention relates to an induction heating apparatus and an induction heating method capable of easily flattening a central portion of a temperature distribution profile perpendicular to the surface to make the temperature distribution of the entire heated surface uniform.

従来から、加熱対象物の被加熱面を非接触で加熱する方法として、高温の気体を吹き付けて被加熱面の熱伝達を使って加熱する方法、電熱線ヒータ等の高温の発熱体を加熱対象物の被加熱面に接近させ、発熱体からの輻射熱で加熱する方法、ランプヒータ等の赤外線を被加熱面に当て、赤外線による輻射熱で加熱する方法、電磁誘導コイルを用いて被加熱面に誘導電流を誘起させ、加熱対象物の材質による抵抗熱で被加熱面を加熱する方法などがある。   Conventionally, as a method of heating the heated surface of the object to be heated in a non-contact manner, a method in which a high-temperature gas is blown and heated using heat transfer of the heated surface, a heating element such as a heating wire heater is heated. A method of heating an object close to the surface to be heated and radiant heat from a heating element, a method of applying infrared rays such as a lamp heater to the surface to be heated and heating with radiant heat by infrared rays, and induction to the surface to be heated using an electromagnetic induction coil There is a method of inducing an electric current and heating a surface to be heated by resistance heat due to the material of the object to be heated.

ここで、誘導加熱コイルを用いて被加熱面を加熱する場合、誘導加熱コイルを移動して被加熱面を満遍なく撫でるように加熱している。この誘導加熱コイルを移動させる方法としては、ロボットアーム先端の手首部に誘導加熱コイルを装着し、ロボットのプログラムに従って誘導加熱コイルを被加熱面の形状に合わせて移動している。   Here, when the surface to be heated is heated using the induction heating coil, the induction heating coil is moved to heat the surface to be heated evenly. As a method of moving the induction heating coil, an induction heating coil is attached to the wrist portion at the tip of the robot arm, and the induction heating coil is moved in accordance with the shape of the surface to be heated in accordance with the program of the robot.

なお、特許文献1には、誘導加熱コイルを用いて薄板状の被加熱対象物を加熱する際、被加熱対象物の幅に応じて、2つの略V字形状コイルを合成して形成される合成コイル形状を可変にし、被加熱対象物のエッジ部での過剰加熱を小さくするものが記載されている。   In Patent Document 1, when a thin plate-like object to be heated is heated using an induction heating coil, two substantially V-shaped coils are synthesized according to the width of the object to be heated. There is a description that the synthetic coil shape is made variable to reduce overheating at the edge of the object to be heated.

特開2010−245029号公報JP 2010-245029 A

ところで、誘導加熱コイルが加熱対象物の被加熱面に比して小さい加熱面を有し、この誘導加熱コイルを用いて加熱対象物を加熱する場合、上述したように、誘導加熱コイルは加熱対象物の被加熱面を満遍なく撫でるように移動する。   By the way, when the induction heating coil has a heating surface that is smaller than the surface to be heated of the object to be heated and the object to be heated is heated by using this induction heating coil, the induction heating coil is heated as described above. Move so that the heated surface of the object is evenly stroked.

誘導加熱コイルの移動によって生じる温度分布は、移動方向に垂直な方向に対して釣鐘状のプロファイルとなる。この温度分布プロファイルは、左右対称であるが、中央部分が凹状となり、温度が下がった形状となる。この温度分布プロファイルの中央部分に凹状の温度低下部分が形成されるのは、誘導加熱コイルの加熱は、コイル形状に対応した直下の部分のみであり、誘導加熱コイルがコイル中央部分に穴が形成される渦巻き状コイルであり、穴の直下部分は加熱されないからである。   The temperature distribution generated by the movement of the induction heating coil has a bell-shaped profile with respect to the direction perpendicular to the moving direction. This temperature distribution profile is symmetrical, but has a concave shape at the center and a shape in which the temperature decreases. A concave temperature-decreasing part is formed in the central part of this temperature distribution profile. The induction heating coil is heated only in the part directly under the coil shape, and the induction heating coil forms a hole in the coil central part. This is because the portion directly below the hole is not heated.

この結果、誘導加熱コイルの移動によって形成される温度分布プロファイルは、中央部分で温度差のある形状が形成され、均一な温度分布が形成されず、被加熱面全体の温度分布を均一化する加熱制御が難しくなる。   As a result, in the temperature distribution profile formed by the movement of the induction heating coil, a shape having a temperature difference is formed in the central portion, a uniform temperature distribution is not formed, and heating that makes the temperature distribution of the entire heated surface uniform. It becomes difficult to control.

本発明は、上記に鑑みてなされたものであって、加熱対象物の被加熱面に比して小さい加熱面を有し、中央部分に穴が形成された誘導加熱コイルを移動して加熱対象物を加熱によって昇温させる場合、移動方向に垂直な温度分布プロファイルの中央部分を平坦化して被加熱面全体の温度分布の均一化を容易に行うことができる誘導加熱装置及び誘導加熱方法を提供することを目的とする。   The present invention has been made in view of the above, and has a heating surface that is smaller than the surface to be heated of the object to be heated, and moves the induction heating coil in which a hole is formed in the center portion to be heated. Provided is an induction heating apparatus and an induction heating method capable of easily flattening the central portion of a temperature distribution profile perpendicular to the moving direction and making the temperature distribution of the entire surface to be heated uniform when heating an object by heating. The purpose is to do.

上述した課題を解決し、目的を達成するために、本発明にかかる誘導加熱装置は、被加熱面を有する加熱対象物と前記被加熱面に比して小さい加熱面を有し、中央部分に穴が形成された誘導加熱コイルとを非接触で相対的に移動させて前記加熱対象物を加熱する誘導加熱装置であって、前記誘導加熱コイルの第1の移動経路と、前記第1の移動経路に垂直な方向に所定距離シフトした前記誘導加熱コイルの第2の移動経路とを1つの合成移動経路として前記加熱対象物を加熱制御することを特徴とする。   In order to solve the above-described problems and achieve the object, an induction heating apparatus according to the present invention has a heating object having a surface to be heated and a heating surface smaller than the surface to be heated. An induction heating device that heats the object to be heated by relatively moving an induction heating coil having a hole formed in a non-contact manner, the first movement path of the induction heating coil, and the first movement Heating control of the heating object is performed using the second movement path of the induction heating coil shifted by a predetermined distance in a direction perpendicular to the path as one synthetic movement path.

また、本発明にかかる誘導加熱装置は、上記の発明において、前記所定距離は、前記誘導加熱コイルの穴の直径の1/2に許容距離を増減した値であることを特徴とする。   The induction heating apparatus according to the present invention is characterized in that, in the above invention, the predetermined distance is a value obtained by increasing or decreasing the allowable distance to ½ of the diameter of the hole of the induction heating coil.

また、本発明にかかる誘導加熱装置は、上記の発明において、前記許容距離は、前記第1の移動経路に垂直な方向の第1の温度分布プロファイルと前記所定距離シフトした前記第2の移動経路に垂直な方向の第2の温度分布プロファイルとを合成した合成温度分布プロファイルの中央部分における温度差が所定範囲内となる距離であることを特徴とする。   In the induction heating apparatus according to the present invention, in the above invention, the permissible distance is a second temperature path shifted by a predetermined distance from the first temperature distribution profile in a direction perpendicular to the first distance. The temperature difference in the center portion of the combined temperature distribution profile obtained by combining the second temperature distribution profiles in the direction perpendicular to the distance is a distance within a predetermined range.

また、本発明にかかる誘導加熱装置は、上記の発明において、前記加熱対象物は、樹脂に炭素繊維が編み込まれたCFRP板材であることを特徴とする。   The induction heating apparatus according to the present invention is characterized in that, in the above invention, the object to be heated is a CFRP plate material in which carbon fibers are knitted into a resin.

また、本発明にかかる誘導加熱方法は、被加熱面を有する加熱対象物と前記被加熱面に比して小さい加熱面を有し、中央部分に穴が形成された誘導加熱コイルとを非接触で相対的に移動させて前記加熱対象物を加熱する誘導加熱方法であって、前記誘導加熱コイルの第1の移動経路と、前記第1の移動経路に垂直な方向に所定距離シフトした前記誘導加熱コイルの第2の移動経路とを1つの合成移動経路として前記加熱対象物を加熱制御することを特徴とする。   In addition, the induction heating method according to the present invention is a non-contact method between an object to be heated having a surface to be heated and an induction heating coil having a heating surface smaller than the surface to be heated and having a hole formed in the central portion. The induction heating method of heating the object to be heated by relatively moving the induction object, wherein the induction heating coil is shifted by a predetermined distance in a direction perpendicular to the first movement path of the induction heating coil and the first movement path. Heating control of the heating object is performed using the second moving path of the heating coil as one synthetic moving path.

また、本発明にかかる誘導加熱方法は、上記の発明において、前記所定距離は、前記誘導加熱コイルの穴の直径の1/2に許容距離を増減した値であることを特徴とする。   In the induction heating method according to the present invention as set forth in the invention described above, the predetermined distance is a value obtained by increasing or decreasing the allowable distance to ½ of the diameter of the hole of the induction heating coil.

本発明によれば、誘導加熱コイルの第1の移動経路と、前記第1の移動経路に垂直な方向に所定距離シフトした前記誘導加熱コイルの第2の移動経路とを1つの合成移動経路として加熱対象物を加熱制御するようにしているので、移動方向に垂直な温度分布プロファイルの中央部分を平坦化して被加熱面全体の温度分布の均一化を容易に行うことができる。   According to the present invention, the first movement path of the induction heating coil and the second movement path of the induction heating coil shifted by a predetermined distance in a direction perpendicular to the first movement path are used as one synthetic movement path. Since the heating object is controlled to be heated, the central portion of the temperature distribution profile perpendicular to the moving direction can be flattened, and the temperature distribution of the entire heated surface can be made uniform easily.

図1は、本発明の実施の形態である誘導加熱装置の全体構成を示す模式図である。FIG. 1 is a schematic diagram showing an overall configuration of an induction heating apparatus according to an embodiment of the present invention. 図2は、第1の移動経路と第2の移動経路との位置関係を示す図である。FIG. 2 is a diagram illustrating a positional relationship between the first movement route and the second movement route. 図3は、第1の移動経路で加熱した場合の第1の温度分布プロファイルと第2の移動経路で加熱した場合の第2の温度分布プロファイルと合成温度分布プロファイルとを示す図である。FIG. 3 is a diagram showing a first temperature distribution profile when heated by the first movement path, a second temperature distribution profile when heated by the second movement path, and a combined temperature distribution profile. 図4は、具体的な第1の温度分布プロファイルと第2の温度分布プロファイルとを示す図である。FIG. 4 is a diagram showing a specific first temperature distribution profile and second temperature distribution profile. 図5は、所定距離シフトしない場合の合成温度分布プロファイルを示す図である。FIG. 5 is a diagram showing a combined temperature distribution profile when the predetermined distance is not shifted. 図6は、具体的な合成温度分布プロファイルを示す図である。FIG. 6 is a diagram showing a specific synthesis temperature distribution profile. 図7は、穴径を変数とし、所定距離を変化させた場合における中央部分の温度分布の凹凸比の変化を示す図である。FIG. 7 is a diagram showing a change in the unevenness ratio of the temperature distribution in the central portion when the hole diameter is a variable and the predetermined distance is changed.

以下、添付図面を参照してこの発明を実施するための形態について説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.

(全体構成)
図1は、本発明の実施の形態である誘導加熱装置の全体構成を示す模式図である。図1に示すように、誘導加熱装置は、先端の手首部に誘導加熱コイル2が取り付けられたロボットアーム3、制御部5、表示部6、操作部7、及び、記憶部8を有する。
(overall structure)
FIG. 1 is a schematic diagram showing an overall configuration of an induction heating apparatus according to an embodiment of the present invention. As shown in FIG. 1, the induction heating apparatus includes a robot arm 3 having an induction heating coil 2 attached to the wrist at the tip, a control unit 5, a display unit 6, an operation unit 7, and a storage unit 8.

誘導加熱コイル2は、例えば、円状に巻かれた渦巻状円板コイルである。誘導加熱コイル2は、ロボットアーム3によって位置及び姿勢を変えることができる。この誘導加熱コイル2の位置及び姿勢を含む移動経路、移動速度、及び出力は、制御部5のもとに制御される。誘導加熱コイル2は、樹脂に炭素繊維が編み込まれた平板状のCFRP板材である加熱対象物1を誘導加熱する。誘導加熱コイル2は、加熱対象物1の被加熱面である上面1uに接近させて移動しつつ、加熱対象物1を加熱する。   The induction heating coil 2 is, for example, a spiral disk coil wound in a circular shape. The position and posture of the induction heating coil 2 can be changed by the robot arm 3. The movement path, the movement speed, and the output including the position and posture of the induction heating coil 2 are controlled under the control unit 5. The induction heating coil 2 induction-heats the heating object 1 which is a flat CFRP plate material in which carbon fibers are knitted into resin. The induction heating coil 2 heats the heating object 1 while moving close to the upper surface 1 u that is the heated surface of the heating object 1.

誘導加熱コイル2は、図示しない電源から供給される高周波電流によって磁界を発生し、加熱対象物1に渦電流を発生させ、その抵抗熱によって加熱対象物1を加熱する。上面1uは、誘導加熱コイル2の寸法よりも大きいため、誘導加熱コイル2を移動させ、上面1uを満遍なく撫でるように加熱する。なお、本実施の形態では、誘導加熱コイル2を上面1uに対して移動させるようにしているが、加熱対象物1とともに上面1uを誘導加熱コイル2に対して移動させるようにしてもよい。さらに、誘導加熱コイル2及び加熱対象物1の双方を移動させてもよい。すなわち、上面1uと誘導加熱コイル2との位置関係が相対的に移動できる機構であればよい。   The induction heating coil 2 generates a magnetic field by a high-frequency current supplied from a power source (not shown), generates an eddy current in the heating object 1, and heats the heating object 1 by the resistance heat. Since the upper surface 1u is larger than the size of the induction heating coil 2, the induction heating coil 2 is moved to heat the upper surface 1u so that it is evenly stroked. In this embodiment, the induction heating coil 2 is moved with respect to the upper surface 1u. However, the upper surface 1u may be moved with respect to the heating target 1 with respect to the induction heating coil 2. Further, both the induction heating coil 2 and the heating object 1 may be moved. That is, any mechanism can be used as long as the positional relationship between the upper surface 1u and the induction heating coil 2 can be relatively moved.

表示部6は、上面1u、誘導加熱コイル2の移動経路及び移動状態、図示しない赤外線サーモグラフィーなどによって温度検出された加熱対象物1の温度分布状態などの各種情報を表示出力する。   The display unit 6 displays and outputs various information such as the upper surface 1 u, the movement path and movement state of the induction heating coil 2, and the temperature distribution state of the heating object 1 detected by infrared thermography (not shown).

操作部7は、制御部5に対する制御指示を行う。操作部7は、キーボードやポインティングデバイスによって実現される。   The operation unit 7 issues a control instruction to the control unit 5. The operation unit 7 is realized by a keyboard or a pointing device.

(誘導加熱コイルの移動経路)
上述したように、誘導加熱コイル2は、加熱対象物1の上面1uを満遍なく撫でるように移動しつつ、加熱対象物1を加熱する。例えば、図2(a)に示すように、誘導加熱コイル2は、中心C1がX方向の位置d1でY方向に移動する移動経路RT1を含む第1の移動経路で上面1u全体を移動しつつ加熱する。第1の移動経路による加熱後、図2(b)に示すように、誘導加熱コイル2は、中心C1がX方向の位置d2でY方向に移動する移動経路RT2を含む第2の移動経路で上面1u全体を移動しつつ加熱する。
(Movement path of induction heating coil)
As described above, the induction heating coil 2 heats the heating object 1 while moving so as to evenly stroke the upper surface 1u of the heating object 1. For example, as shown in FIG. 2A, the induction heating coil 2 moves on the entire upper surface 1u along a first movement path including a movement path RT1 in which the center C1 moves in the Y direction at the position d1 in the X direction. Heat. After heating by the first movement path, as shown in FIG. 2B, the induction heating coil 2 is a second movement path including a movement path RT2 in which the center C1 moves in the Y direction at the position d2 in the X direction. The entire upper surface 1u is heated while moving.

第2の移動経路は、第1の移動経路に垂直な方向に所定距離Δdシフトした移動経路である。例えば図2に示すように、移動経路RT2は移動経路RT1からX方向に所定距離Δdシフトしている。   The second movement route is a movement route shifted by a predetermined distance Δd in a direction perpendicular to the first movement route. For example, as shown in FIG. 2, the travel route RT2 is shifted from the travel route RT1 by a predetermined distance Δd in the X direction.

(合成温度分布プロファイル)
誘導加熱コイル2の移動方向に垂直な温度分布プロファイルは釣鐘状を形成し、中央部分が温度低下した凹形状となる。これは、図2に示すように、誘導加熱コイル2の中央部分はコイルが巻かれず、穴径がdである穴2aが形成され、この穴2aに対応する直下部分の上面1uには誘導電流が流れず、加熱されないからである。例えば、図3(a)に示すように、移動経路RT1を通った後の移動経路RT1に垂直な方向の第1の温度分布プロファイルPF1は位置d1の周囲が凹状となる。
(Synthetic temperature distribution profile)
The temperature distribution profile perpendicular to the moving direction of the induction heating coil 2 forms a bell shape, and has a concave shape in which the temperature is lowered at the center. As shown in FIG. 2, the center portion of the induction heating coil 2 is not wound with a coil, a hole 2a having a hole diameter d is formed, and an induction is formed on the upper surface 1u of the portion directly below the hole 2a. This is because current does not flow and is not heated. For example, as shown in FIG. 3A, the first temperature distribution profile PF1 in the direction perpendicular to the movement route RT1 after passing through the movement route RT1 has a concave shape around the position d1.

一方、移動経路RT2を通った後の移動経路RT2に垂直な方向の第2の温度分布プロファイルPF2も位置d2の周囲が凹状となる。ここで、移動経路RT2は移動経路RT1に対して所定距離Δdシフトしているため、第2の温度分布プロファイルPF2も第1の温度分布プロファイルPF1に対して所定距離Δdシフトしている。したがって、誘導加熱コイル2が、1回目に移動経路RT1を通り、2回目に移動経路RT2を通ると、図3(b)に示すように、第1の温度分布プロファイルPF1と第2の温度プロファイルPF2とを合成した合成温度分布プロファイルPF3を形成することができる。なお、誘導加熱コイル2の移動速度、周波数、電流量は同一であることを前提としている。また、合成温度分布プロファイルPF3が示す最大温度は、第1の温度分布プロファイルPF1及び第2の温度分布プロファイルPF2の最大温度の約2倍となる。   On the other hand, the second temperature distribution profile PF2 in the direction perpendicular to the movement path RT2 after passing through the movement path RT2 is also concave around the position d2. Here, since the movement path RT2 is shifted by a predetermined distance Δd with respect to the movement path RT1, the second temperature distribution profile PF2 is also shifted by a predetermined distance Δd with respect to the first temperature distribution profile PF1. Therefore, when the induction heating coil 2 passes through the movement path RT1 for the first time and the movement path RT2 for the second time, as shown in FIG. 3B, the first temperature distribution profile PF1 and the second temperature profile are obtained. A combined temperature distribution profile PF3 obtained by combining PF2 can be formed. It is assumed that the moving speed, frequency, and current amount of the induction heating coil 2 are the same. The maximum temperature indicated by the combined temperature distribution profile PF3 is about twice the maximum temperature of the first temperature distribution profile PF1 and the second temperature distribution profile PF2.

この合成温度分布プロファイルPF3の中央部分では、温度差が相殺されて均一な温度分布が形成される。したがって、合成温度分布プロファイルPF3の中央部分が平坦化しているので被加熱面1u全体の温度分布の均一化を容易に行うことができる。すなわち、制御部5は、第1の移動経路と、第1の移動経路に垂直な方向に所定距離Δdシフトし、時間的にもずれた第2の移動経路とを1つの合成移動経路として加熱制御することによって被加熱面1u全体の温度分布の均一化を容易に行うことができる。1つの合成移動経路は、制御上、第1の移動経路と第2の移動経路とを一対に移動経路として取り扱われることになる。   In the central portion of the synthesized temperature distribution profile PF3, the temperature difference is canceled out and a uniform temperature distribution is formed. Accordingly, since the central portion of the synthesized temperature distribution profile PF3 is flattened, the temperature distribution of the entire heated surface 1u can be easily made uniform. That is, the control unit 5 heats the first movement path and the second movement path shifted by a predetermined distance Δd in the direction perpendicular to the first movement path as a single combined movement path. By controlling, the temperature distribution of the entire heated surface 1u can be made uniform easily. One combined movement route is treated as a movement route with a pair of the first movement route and the second movement route for control.

(所定距離Δd)
ここで、図4は、具体的な誘導加熱コイル2を用いた場合における第1の温度分布プロファイルPF11と第2の温度分布プロファイルPF12を示している。この誘導加熱コイル2は、コイル外径Dが200mm、穴径dが70mmであり、シフト量である所定距離Δdを穴径dの1/2の35mmとしている。所定距離Δdを穴径dの1/2としたのは、第1の温度分布プロファイルPF11及び第2の温度分布プロファイルPF12のそれぞれの1つの極大値P1,P2間の距離が穴径dにほぼ等しく、極大値P1部分が中央部分の凹部を相殺すると考えられるからである。
(Predetermined distance Δd)
Here, FIG. 4 shows a first temperature distribution profile PF11 and a second temperature distribution profile PF12 when a specific induction heating coil 2 is used. The induction heating coil 2 has a coil outer diameter D of 200 mm and a hole diameter d of 70 mm, and a predetermined distance Δd as a shift amount is set to 35 mm which is ½ of the hole diameter d. The reason why the predetermined distance Δd is ½ of the hole diameter d is that the distance between the maximum values P1 and P2 of the first temperature distribution profile PF11 and the second temperature distribution profile PF12 is almost equal to the hole diameter d. This is because the maximum value P1 portion is considered to cancel out the concave portion in the central portion.

図5では、所定距離Δdを0とした場合における合成温度分布プロファイルPF21を示している。この合成温度分布プロファイルPF21は、全体の温度が2倍、すなわち合成前に対する合成後の温度比が2倍になるのみで、形状は変わっておらず、中央部分の温度差が大きい。   FIG. 5 shows the combined temperature distribution profile PF21 when the predetermined distance Δd is zero. This combined temperature distribution profile PF21 has a total temperature that is doubled, that is, the temperature ratio after synthesis with respect to that before synthesis is only doubled, the shape is not changed, and the temperature difference in the central portion is large.

これに対し、図6は、所定距離Δdを穴径dの1/2とした場合における合成温度分布プロファイルPF13を示している。図6に示すように合成温度分布プロファイルPF13は、中央部分Eにおける温度差が小さくなり、ほぼ平坦な形状となっている。   On the other hand, FIG. 6 shows the combined temperature distribution profile PF13 when the predetermined distance Δd is ½ of the hole diameter d. As shown in FIG. 6, the synthesized temperature distribution profile PF13 has a substantially flat shape with a small temperature difference at the central portion E.

図7は、コイル外径Dを200mm一定とし、50mm、70mm、90mmの穴径dに対して所定距離Δdが変化したときの温度分布の凹凸比(中央部分Eの温度差)の変化を示している。なお、凹凸比は、中央部分Eの最大値に対する中央の凹量を示し、凹凸比が負の値ときは中央に凸形状が生じ、凹凸比が正の値のときは中央に凹形状が生じていることを示す。図7に示した結果から、50mm、70mm、90mmの穴径dに対して所定距離Δdがそれぞれ、23mm、32mm、49mmで凹凸比が0となっている。すなわち、所定距離Δdは、ほぼ穴径dの1/2で凹凸比が0近傍になっている。したがって、穴径dの1/2を所定距離Δdとすることによって中央部分Eの凹凸比が小さい合成温度分布プロファイルを得ることができる。   FIG. 7 shows changes in the unevenness ratio of the temperature distribution (temperature difference of the central portion E) when the coil outer diameter D is constant at 200 mm and the predetermined distance Δd changes with respect to the hole diameter d of 50 mm, 70 mm, and 90 mm. ing. The concave / convex ratio indicates the central concave amount with respect to the maximum value of the central portion E. When the concave / convex ratio is negative, a convex shape is generated at the center, and when the concave / convex ratio is positive, a concave shape is generated at the center. Indicates that From the results shown in FIG. 7, the predetermined distance Δd is 23 mm, 32 mm, and 49 mm with respect to the hole diameter d of 50 mm, 70 mm, and 90 mm, and the unevenness ratio is 0. That is, the predetermined distance Δd is approximately ½ of the hole diameter d, and the unevenness ratio is close to zero. Therefore, by setting 1/2 of the hole diameter d to the predetermined distance Δd, it is possible to obtain a combined temperature distribution profile with a small unevenness ratio of the central portion E.

なお、所定距離Δdは、穴径dの1/2に限らず、許容距離Δαを増減した値、すなわち、(d/2)±Δαの範囲であれば凹凸比を小さくすることができる。   The predetermined distance Δd is not limited to ½ of the hole diameter d, and the concave / convex ratio can be reduced if the allowable distance Δα is increased or decreased, that is, within a range of (d / 2) ± Δα.

また、上述した実施の形態では、加熱対象物1をCFRP板材として説明したが、加熱対象物1は金属平板などであっても同様に適用できる。   In the above-described embodiment, the heating object 1 is described as a CFRP plate. However, the heating object 1 can be similarly applied even if it is a metal flat plate.

なお、加熱対象物1がCFRP板材である場合、複数のCFRP板材を重ね合わせた状態で加熱すると効率的である。誘導加熱コイル2から発した磁力線は、CFRP板材の主材質が樹脂であるため、透過しやすいからである。磁力線は、CFRP板材の樹脂内にある編み込まれた炭素繊維に誘導電流を流し、渦電流を生成することによって炭素繊維を発熱させる。この炭素繊維の発熱によって周囲の樹脂温度も昇温する。CFRP板材の昇温は、樹脂軟化温度に達するまで行う。樹脂軟化温度まで昇温するのは、CFRP板材に対してその後、プレス加工などの成形加工を行うためである。   In addition, when the heating target 1 is a CFRP plate material, it is efficient to heat in a state where a plurality of CFRP plate materials are overlapped. This is because the lines of magnetic force emitted from the induction heating coil 2 are easily transmitted because the main material of the CFRP plate is resin. The magnetic field lines generate an eddy current by causing an induced current to flow through the woven carbon fiber in the resin of the CFRP plate material, thereby heating the carbon fiber. The surrounding resin temperature is also raised by the heat generated by the carbon fibers. The temperature of the CFRP plate is increased until the resin softening temperature is reached. The reason for raising the temperature to the resin softening temperature is that the CFRP plate material is then subjected to a molding process such as a press process.

また、上述した実施の形態では、加熱対象物が矩形であったが、これに限らず、円形や楕円形などの各種形状であってもよい。   In the above-described embodiment, the heating object is rectangular, but is not limited thereto, and may be various shapes such as a circle and an ellipse.

1 加熱対象物
1u 上面
2 誘導加熱コイル
2a 穴
3 ロボットアーム
5 制御部
6 表示部
7 操作部
8 記憶部
D コイル外径
d 穴径
E 中央部分
PF1,PF11 第1の温度分布プロファイル
PF2,PF12 第2の温度分布プロファイル
PF3,PF13 合成温度分布プロファイル
RT1,RT2 移動経路
Δd 所定距離
DESCRIPTION OF SYMBOLS 1 Heating object 1u Upper surface 2 Induction heating coil 2a Hole 3 Robot arm 5 Control part 6 Display part 7 Operation part 8 Storage part D Coil outer diameter d Hole diameter E Center part PF1, PF11 1st temperature distribution profile PF2, PF12 1st 2 temperature distribution profile PF3, PF13 Composite temperature distribution profile RT1, RT2 Movement path Δd Predetermined distance

Claims (6)

被加熱面を有する加熱対象物と前記被加熱面に比して小さい加熱面を有し、中央部分に穴が形成された誘導加熱コイルとを非接触で相対的に移動させて前記加熱対象物を加熱する誘導加熱装置であって、
前記誘導加熱コイルの第1の移動経路と、前記第1の移動経路に垂直な方向に所定距離シフトした前記誘導加熱コイルの第2の移動経路とを1つの合成移動経路として前記加熱対象物を加熱制御することを特徴とする誘導加熱装置。
A heating object having a surface to be heated and an induction heating coil having a heating surface smaller than the surface to be heated and having a hole formed in a central portion thereof are relatively moved in a non-contact manner to form the heating object. An induction heating device for heating
The heating object is defined as a single combined movement path including a first movement path of the induction heating coil and a second movement path of the induction heating coil shifted by a predetermined distance in a direction perpendicular to the first movement path. An induction heating apparatus characterized by controlling heating.
前記所定距離は、前記誘導加熱コイルの穴の直径の1/2に許容距離を増減した値であることを特徴とする請求項1に記載の誘導加熱装置。   The induction heating apparatus according to claim 1, wherein the predetermined distance is a value obtained by increasing or decreasing an allowable distance to ½ of a diameter of a hole of the induction heating coil. 前記許容距離は、前記第1の移動経路に垂直な方向の第1の温度分布プロファイルと前記所定距離シフトした前記第2の移動経路に垂直な方向の第2の温度分布プロファイルとを合成した合成温度分布プロファイルの中央部分における温度差が所定範囲内となる距離であることを特徴とする請求項2に記載の誘導加熱装置。   The allowable distance is a combination of a first temperature distribution profile in a direction perpendicular to the first movement path and a second temperature distribution profile in a direction perpendicular to the second movement path shifted by the predetermined distance. The induction heating apparatus according to claim 2, wherein the temperature difference in the central portion of the temperature distribution profile is a distance within a predetermined range. 前記加熱対象物は、樹脂に炭素繊維が編み込まれたCFRP板材であることを特徴とする請求項1〜3のいずれか一つに記載の誘導加熱装置。   The induction heating apparatus according to any one of claims 1 to 3, wherein the heating object is a CFRP plate material in which carbon fibers are knitted into a resin. 被加熱面を有する加熱対象物と前記被加熱面に比して小さい加熱面を有し、中央部分に穴が形成された誘導加熱コイルとを非接触で相対的に移動させて前記加熱対象物を加熱する誘導加熱方法であって、
前記誘導加熱コイルの第1の移動経路と、前記第1の移動経路に垂直な方向に所定距離シフトした前記誘導加熱コイルの第2の移動経路とを1つの合成移動経路として前記加熱対象物を加熱制御することを特徴とする誘導加熱方法。
A heating object having a surface to be heated and an induction heating coil having a heating surface smaller than the surface to be heated and having a hole formed in a central portion thereof are relatively moved in a non-contact manner to form the heating object. An induction heating method for heating
The heating object is defined as a single combined movement path including a first movement path of the induction heating coil and a second movement path of the induction heating coil shifted by a predetermined distance in a direction perpendicular to the first movement path. An induction heating method characterized by controlling heating.
前記所定距離は、前記誘導加熱コイルの穴の直径の1/2に許容距離を増減した値であることを特徴とする請求項5に記載の誘導加熱方法。   The induction heating method according to claim 5, wherein the predetermined distance is a value obtained by increasing or decreasing the allowable distance to ½ of the diameter of the hole of the induction heating coil.
JP2016167217A 2016-08-29 2016-08-29 Induction heating device and induction heating method Active JP6796971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016167217A JP6796971B2 (en) 2016-08-29 2016-08-29 Induction heating device and induction heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016167217A JP6796971B2 (en) 2016-08-29 2016-08-29 Induction heating device and induction heating method

Publications (2)

Publication Number Publication Date
JP2018037168A true JP2018037168A (en) 2018-03-08
JP6796971B2 JP6796971B2 (en) 2020-12-09

Family

ID=61567545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016167217A Active JP6796971B2 (en) 2016-08-29 2016-08-29 Induction heating device and induction heating method

Country Status (1)

Country Link
JP (1) JP6796971B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011104980A1 (en) * 2010-02-23 2011-09-01 東レ株式会社 Preform and method for manufacturing the same
JP2014026884A (en) * 2012-07-27 2014-02-06 Tokuden Co Ltd Induction heating apparatus
JP2015156296A (en) * 2014-02-20 2015-08-27 中部電力株式会社 induction heating method
JP2015209989A (en) * 2014-04-24 2015-11-24 富士電機株式会社 Coating and drying device and coating and drying method
JP2016049646A (en) * 2014-08-28 2016-04-11 国立大学法人岐阜大学 Carbon fiber-reinforced composite material molding and method for producing the same, and method for repairing carbon fiber-reinforced composite material molding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011104980A1 (en) * 2010-02-23 2011-09-01 東レ株式会社 Preform and method for manufacturing the same
JP2014026884A (en) * 2012-07-27 2014-02-06 Tokuden Co Ltd Induction heating apparatus
JP2015156296A (en) * 2014-02-20 2015-08-27 中部電力株式会社 induction heating method
JP2015209989A (en) * 2014-04-24 2015-11-24 富士電機株式会社 Coating and drying device and coating and drying method
JP2016049646A (en) * 2014-08-28 2016-04-11 国立大学法人岐阜大学 Carbon fiber-reinforced composite material molding and method for producing the same, and method for repairing carbon fiber-reinforced composite material molding

Also Published As

Publication number Publication date
JP6796971B2 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
JP6300928B2 (en) Equipment for manufacturing three-dimensional objects
JP2016534902A5 (en)
JP2018531324A (en) Heating device and heating chamber
JP2018531324A6 (en) Heating device and heating chamber
US20160288209A1 (en) Method and device for additively manufacturing at least one component region of a component
KR102110410B1 (en) Electric Heater
KR102056084B1 (en) Electric Heater
JP6213265B2 (en) Paint drying apparatus and paint drying method
KR101585633B1 (en) Method of manufacturing window by induction heating and apparatus of manufacturing the same
CN106903311A (en) A kind of electromagnetic induction selective laser fusing powder bed on-line heating system and method
JP2011198730A (en) Movable heating system
JP6796971B2 (en) Induction heating device and induction heating method
JP6243252B2 (en) Induction heating method
JP6725216B2 (en) Surface temperature measuring method, heating method, surface temperature measuring device, and heating device
JP3326406B2 (en) Electromagnetic induction heating method for cylindrical mold and electromagnetic induction heating apparatus
JP6369109B2 (en) Paint drying apparatus and paint drying method
JP6830775B2 (en) Induction heating device and induction heating method
JP2017527459A (en) Method and apparatus for injection molding or embossing / pressing
JP6745681B2 (en) Induction heating coil unit and induction heating device
JP6830776B2 (en) Induction heating device and induction heating method
JP2011198591A (en) Induction heating apparatus
JP2007015157A (en) Apparatus for producing rubber covered roll, method for producing rubber covered roll, and rubber covered roll
JP6987601B2 (en) Induction heating device
JP2020009603A (en) Induction heating apparatus
JP6387559B1 (en) Hot press apparatus and sublimation transfer apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201117

R150 Certificate of patent or registration of utility model

Ref document number: 6796971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250