JP2018037064A - 能動的探索なしの強化学習に基づくオンライン学習法及び車両制御方法 - Google Patents

能動的探索なしの強化学習に基づくオンライン学習法及び車両制御方法 Download PDF

Info

Publication number
JP2018037064A
JP2018037064A JP2017131700A JP2017131700A JP2018037064A JP 2018037064 A JP2018037064 A JP 2018037064A JP 2017131700 A JP2017131700 A JP 2017131700A JP 2017131700 A JP2017131700 A JP 2017131700A JP 2018037064 A JP2018037064 A JP 2018037064A
Authority
JP
Japan
Prior art keywords
vehicle
cost
control
state
arrival
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017131700A
Other languages
English (en)
Other versions
JP2018037064A5 (ja
JP7036545B2 (ja
Inventor
智樹 西
Tomoki Nishi
智樹 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Engineering and Manufacturing North America Inc
Original Assignee
Toyota Motor Engineering and Manufacturing North America Inc
Toyota Engineering and Manufacturing North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Engineering and Manufacturing North America Inc, Toyota Engineering and Manufacturing North America Inc filed Critical Toyota Motor Engineering and Manufacturing North America Inc
Publication of JP2018037064A publication Critical patent/JP2018037064A/ja
Publication of JP2018037064A5 publication Critical patent/JP2018037064A5/ja
Application granted granted Critical
Publication of JP7036545B2 publication Critical patent/JP7036545B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/06Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0098Details of control systems ensuring comfort, safety or stability not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/041Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a variable is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0221Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0013Optimal controllers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0014Adaptive controllers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • B60W2050/0088Adaptive recalibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/16Pitch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/18Roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Transportation (AREA)
  • Medical Informatics (AREA)
  • Human Computer Interaction (AREA)
  • Mechanical Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Mathematical Analysis (AREA)
  • Algebra (AREA)
  • Probability & Statistics with Applications (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Feedback Control In General (AREA)
  • Business, Economics & Management (AREA)
  • Game Theory and Decision Science (AREA)

Abstract

【課題】車両の自律的動作を適応的に制御するコンピュータ実行型方法を提供する。
【解決手段】車両を自律的に制御すべく構成されたコンピュータ処理システムにおけるcriticネットワークにおいて、受動的に収集されたデータのサンプルと、状態コストとを用いて、推定平均コストと、actorネットワークにより適用されたときに車両の到達コストに対する最小値を生成する近似された到達コスト関数とを決定する段階と、criticネットワークに対して作用的に連結されたactorネットワークにおいて、車両に対して適用されて到達コストに対する最小値を生成する制御入力を決定する段階とを備え、actorネットワークは、平均コストと、近似された到達コスト関数から決定された到達コストと、車両の現在の状態に対する制御用動力学的値と、受動的に収集されたデータとを用いて、ノイズレベルを推定することにより制御入力を決定する。
【選択図】図3

Description

本発明は、車両を自律的に制御する方法に関し、更に詳細には、車両の操作を自律的に制御するために使用可能な制御ポリシー(control policy)を修正及び/又は最適化するための強化学習方法に関する。
一定形式のシステムにおいては、周囲環境を能動的に探索することにより、最適なシステム制御ポリシーを決定するために、モデルフリー(model-free)強化学習(RL)技術が採用され得る。しかし、車両が採用し得る全ての動作の膨大な能動的探索(active exploration)に伴う潜在的に否定的な結果により、車両の自律的制御に対して使用可能な制御ポリシーに対して従来のRL手法を適用することは困難であり得る。これに加え、車両安全性の確保を支援するために必要とされる態様で能動的探索を行うと、大きなコンピュータ処理コストが必要とされ得る。代替策として、車両が動作している周囲環境の正確な動力学的モデルを利用することにより、能動的探索なしで最適な制御ポリシーを決定すべく、モデルベースのRL技術が採用され得る。しかし、自律車両が動作している複雑な周囲環境は、正確にモデル化することが非常に困難なことがある。
本明細書中に記述された実施形態の一つの見地においては、車両の自律的動作を適応的に(adaptively)制御するコンピュータ実行型方法が提供される。該方法は、(a)車両を自律的に制御すべく構成されたコンピュータ処理システムにおけるcriticネットワークにおいて、受動的に収集されたデータのサンプルと、状態コストとを用いて、推定平均コストと、actorネットワークにより適用されたときに車両の到達コストに対する最小値を生成する近似された到達コスト関数とを決定する段階と、(b)コンピュータ処理システム内においてcriticネットワークに対して作用的に連結されたactorネットワークにおいて、車両に対して適用されて到達コストに対する最小値を生成する制御入力を決定する段階とを含み、actorネットワークは、平均コストと、近似された到達コスト関数から決定された到達コストと、車両の現在の状態に対する制御用動力学的値と、受動的に収集されたデータとを用いて、ノイズレベルを推定することにより制御入力を決定すべく構成される。
本明細書中に記述された実施形態の別の見地においては、車両の自律的動作を適応的に制御するように構成されたコンピュータ処理システムが提供される。該コンピュータ処理システムは、該コンピュータ処理システムの動作を制御する一つ以上のプロセッサと、該一つ以上のプロセッサにより使用可能なデータ及びプログラム命令を記憶するメモリと含み、上記一つ以上のプロセッサは、メモリ内に記憶された命令を実行して、(a)受動的に収集されたデータのサンプルと、状態コストとを用いて、推定平均コストと、車両の到達コストに対する最小値を生成する近似された到達コスト関数とを決定し、且つ(b)車両に対して適用されて到達コストに対する最小値を生成する制御入力を決定する、ように構成され、一つ以上のプロセッサは、平均コストと、到達コスト関数から決定された到達コストと、車両の現在の状態に対する制御用動力学的値と、受動的に収集されたデータのサンプルとを用いて、ノイズレベルを推定することにより制御入力を決定するように構成される。
本明細書中に記述された実施形態の別の見地においては、一時的でないコンピュータ可読媒体が提供される。該媒体は、コンピュータシステムにより実行可能な命令を該媒体内に記憶し、該コンピュータシステムに、受動的に収集されたデータのサンプルと、状態コストとを用いて、推定平均コストと、車両の到達コストに対する最小値を生成する近似された到達コスト関数とを決定することと、車両に対して適用されて到達コストに対する最小値を生成する制御入力を決定することとを備える機能を実施させ、制御入力は、到達コストに対する最小値を生成し、且つ、平均コストと、到達コスト関数から決定された到達コストと、車両の現在の状態に対する制御用動力学的値と、受動的に収集されたデータのサンプルとを用いて、ノイズレベルを推定することにより制御入力が決定される。
本明細書中に記述された実施形態に係る、(例えば自律車両などの)システムに対する制御入力を決定すべく且つシステム制御ポリシーを修正及び/又は最適化すべく構成されたコンピュータ処理システムのブロック図である。 本明細書中に記述された方法に係る、車両制御入力の決定、及び/又は、制御ポリシーの修正若しくは最適化の間における情報の流れを示す概略図である。 制御入力を決定し且つ制御ポリシーを修正及び/又は最適化する方法の実施形態の動作を示すフローチャートである。 本明細書中に記述された実施形態に係る、一つ以上の制御入力と制御ポリシーとを使用する自律的制御に向けて構成された車両であって、当該車両に対する制御入力を決定すべく且つ自律車両操作制御ポリシーを修正及び/又は最適化すべく構成されたコンピュータ処理システムが組み込まれた車両の概略的ブロック図である。 本明細書中に記述された実施形態に係る方法を用いる、高速道路合流用の制御ポリシーの最適化の例において採用された車両の構成の概略図である。 図5に示された車両の構成に関して実施される最適化のグラフ表示である。
本明細書中に記述された実施形態は、コンピュータ実行型の強化学習(RL)方法に関するものであり、この強化学習方法は、車両を自律的に制御すべく使用可能な制御入力を決定するため、及び車両の操作を自律的に制御する制御ポリシーを修正及び/又は最適化すべく制御入力を使用するために使用可能である。この方法は、(例えば、動作を実施し、且つその動作の結果を監視して制御ポリシーを決定及び改変することを伴い得る)能動的探索を使用せずに、制御入力を決定し且つ制御ポリシーを最適化し得る。本明細書中に記述された方法は、能動的探索の代わりに、受動的に収集されたデータと、部分的に既知であるシステムの動力学的モデルと、制御されている車両に関する既知の制御用動力学的モデルとを使用する。
本開示に関連して、「オンライン」とは、コンピュータ処理システムが学習し得ると共に、actor及びcriticのネットワークパラメータが、上記システムが動作するにつれて(例えば車両が移動するなどにつれて)、コンピュータ処理され且つ更新され得ることを意味する。オンラインのソルーションを用いてactorパラメータ及びcriticパラメータを決定かつ更新すると、車両及びシステムの動力学的値(dynamics)の変更が許容され得る。同様に、自律的動作とは、自律的に実施される動作である。
図1は、本明細書中に開示される種々の実施形態に係る方法を実現すべく構成されたコンピュータ処理システム14のブロック図である。更に詳細には、少なくとも一つの実施形態において、コンピュータ処理システム14は、本明細書中に記述された方法に従い、制御入力を決定すべく構成され得る。また、コンピュータ処理システムは、システム(例えば、自律車両)を制御して特定の操作若しくは機能を自律的に実施すべく使用可能な制御ポリシーを修正及び/又は最適化するようにも構成され得る。
少なくとも一つの実施形態において、コンピュータ処理システムは、車両に組み込まれ得ると共に、生成された制御入力を使用して車両の操作の制御に向けられた制御ポリシーを修正及び/又は最適化すべく構成され得る。制御入力を決定するため及び制御ポリシーを修正及び/又は最適化するためにコンピュータ処理システムにより必要とされる情報(例えば、データ、命令、及び/又は他の情報)の少なくとも幾つかは、任意の適切な手段から、例えば車両センサから又は無線接続を介して遠隔データベースのような車外情報源から、受信され且つ/又はそれにより収集され得る。幾つかの実施形態においては、制御ポリシーを修正及び/又は最適化するためにコンピュータ処理システムにより必要とされる情報(例えば、データ)の少なくとも幾つかは、車両の操作の前に(例えば、メモリ内に記憶されたデータ及び他の情報として)コンピュータ処理システムに提供され得る。また、コンピュータ処理システムは、制御入力に従って且つ/又は修正若しくは最適化された制御ポリシーに従って車両を制御することで、関連する自律的動作を実施するようにも構成され得る。
少なくとも一つの実施形態において、コンピュータ処理システムは、(例えばスタンドアロンのコンピュータ処理システムとして)車両から遠隔的に配置され得ると共に、制御入力を決定すべく且つ車両の自律的動作の実施に向けられた制御ポリシーを修正及び/又は最適化するように構成され得る。遠隔的なコンピュータ処理システムによって生成された最適化又は修正された制御ポリシーは、車両による展開のために車両のコンピュータ処理システムへロード又はインストールされて、実際の交通環境において車両を制御し得る。
図1を参照すると、コンピュータ処理システム14は、コンピュータ処理システム14及び関連する構成要素の全体的な操作を制御する(少なくとも一つのマイクロプロセッサを含み得る)一つ以上のプロセッサ58であって、メモリ54のような一時的でない(non-transitory)コンピュータ可読媒体内に記憶された命令を実行する、プロセッサ58を含み得る。本開示に関連して、コンピュータ可読記憶媒体とは、命令を実行するシステム、装置若しくはデバイスによって使用されるか又はそれに関連して使用されるプログラムを含む又は記憶し得る任意の有形媒体であり得る。プロセッサ58は、プログラムコード中に含まれた命令を実施すべく構成された少なくとも一つのハードウェア回路(例えば、集積回路)を含み得る。複数のプロセッサ58が在る構成において、斯かるプロセッサは相互から独立して作動し得るか、又は、一つ以上のプロセッサが相互に協働して作動し得る。
幾つかの実施形態において、コンピュータ処理システム14は、RAM50、ROM52、及び/又は他の任意で適切な形態のコンピュータ可読メモリを含み得る。メモリ54は、一つ以上のコンピュータ可読メモリを備え得る。一つ又は複数のメモリ54は、コンピュータ処理システム14の構成要素であり得るか、又は、一つ又は複数のメモリは、コンピュータ処理システム14に作用的に接続されてコンピュータ処理システム14に使用され得る。本説明を通して使用される「作用的に接続された」という語句は、直接的な物理接触のない接続を含め、直接的又は間接的な接続を含み得る。
一つ以上の構成において、本明細書中に記述されたコンピュータ処理システム14は、人工的又はコンピュータ的な知能要素、例えば、ニューラルネットワーク、ファジィ論理回路、又は他の機械学習アルゴリズム、を組み込み得る。更に、一つ以上の構成において、本明細書中に記述された特定の機能又は操作を実施するように構成されたハードウェア及び/又はソフトウェア要素は、複数の要素及び/又は箇所に分散され得る。コンピュータ処理システム14に加え、車両は、コンピュータ処理システム14により実施される制御機能を増強若しくは支援するために、又は他の目的のために、付加的なコンピュータ処理システム及び/又はデバイス(図示せず)を組み込み得る。
メモリ54は、データ60、及び/又は、プロセッサ58によって実行されて種々の機能を実行し得る命令(例えば、プログラムロジック)56を含み得る。データ60は、受動的に収集されたデータを含み得る。受動的に収集されたデータは、能動的探索から収集されたのではないデータとして定義され得る。受動的に収集されたデータの一例は、ビルの頂部に取付けられたカメラを用いて高速道路の入口の周りにおける車両の軌跡の獲得を記述する、http://www.fhwa.dot.gov/publications/research/operations/06137/に記述されたデータセットである。別の例において、受動的に収集されたデータは、人間の運転者により実行された操縦に応じて車両センサにより収集されたデータを含み得る。人間の運転者により実行された操縦と、この操縦が実行された車両環境条件と、この操縦に引き続き且つ/又はこの操縦に応じて車両周囲において生じた事象と、に関して、データが収集されてコンピュータ処理システムに提供され得る。或いは、コンピュータ処理システムが車両に設置されたときに、コンピュータ処理システム14は、(制御ポリシー101のような)一つ以上の車両制御ポリシーのオンラインでの修正及び/又は最適化のために、斯かる受動的に収集されたデータを収集及び/又は受信するように構成され得る。
車両制御用動力学的モデル87は、種々の入力に対して車両が如何に応答するかを記述する刺激応答モデル(stimulus-response model)であり得る。車両制御用動力学的モデル87は、本明細書中に記述されるように、車両に対する制御入力を決定する上で且つ制御ポリシー101を修正及び/又は最適化する上で使用されるべく、(受動的に収集されたデータを用いて)所定の車両状態xにおける車両に対して状態コストq(x)及び制御用動力学的値B(x)を決定するように使用され得る。与えられた任意の車両に対する車両制御用動力学的モデル87が決定されて、メモリ内に記憶され得る。
再び図1を参照すると、コンピュータ処理システムの実施形態は、2つの学習システム又は学習ネットワーク、並びに相互に作用するactorネットワーク(又は「actor」)83及びcriticネットワーク(又は「critic」)81も含み得る。これらネットワークは、例えば、人工ニューラルネットワーク(ANN)を用いて実現され得る。
本明細書中に記述された目的に対し、(変数πによっても表される)制御ポリシー101は、一群の車両の状態のうちの各状態xに応じて車両により取られるべき動作uを特定又は決定する関数又は他の関係として定義され得る。故に、自律的動作の実行中の車両の各状態xに対し、車両は、関連する動作u=π(x)を実施するように制御され得る。したがって、制御ポリシーは、車両の操作を制御して、例えば、高速道路合流などの関連する操作を自律的に実施する。actor83は、制御ポリシーに関して動作し、criticから受信した情報及び他の情報を用いて、ポリシーを修正及び/又は最適化し得る。制御ポリシーにより自律的に制御された車両操作は、高速道路への合流、又は、車線の変更のような特定の目的を達成すべく実施される一つの運転操作又は一群の運転操作として定義され得る。
コンピュータ処理システム14は、制御ポリシーの修正及び最適化に対して使用可能である新規な半モデルフリーRL方法(semi-model-free RL method)(本明細書においては受動的actor/critic(pAC)方法という)を実行するように構成される。この方法において、criticは、車両の種々の状態に対する評価関数を学習し、且つ、actorは、能動的探索なしで、代わりに受動的に収集されたデータと既知の車両制御用動力学的モデルとを用いて制御ポリシーを改善する。この方法は、部分的に既知であるシステムの動力学的モデルを使用することにより、能動的探索に対する必要性を回避する。この方法は、車両環境の制御されていない動力学的値又は過渡的なノイズレベルに関する知見を必要としない。この方法は、例えば、環境がノイズ的に如何に展開するかのサンプルは入手可能であるが車両センサにより能動的に探索することは困難であり得る自律車両に関して、実行可能である。
制御入力を決定し且つ制御ポリシーを修正及び/又は最適化する目的に対し、状態x∈Rn及び制御入力u∈Rmにより、離散時間確率論的動力学系は以下のように定義され得る。
式中、ω(t)はブラウニアン運動であり、

及び
は、それぞれ、受動的動力学的値、車両制御用動力学的値、及び、過渡的ノイズレベルである。Δtは、時間のステップサイズである。この種の系は、多くの状況において生ずる(例えば、ほとんどの機械系のモデルはこれらの動力学に従う)。関数A(x)、B(x)及びC(x)は、理解されるべく、モデル化されている特定の系に依存する。受動的動力学的値は、車両の環境における変化であって、車両システムに対する制御入力の結果ではない変化を含む。
本明細書中に記述された方法及びシステムにおいて、離散時間動力学系に対するMDPは、タプル
であり、式中、
及び
は、状態空間及び動作空間である。
は、動作による状態遷移モデルであり、且つ、
は、状態x及び動作uに関する即時コスト関数である。先に記述されたように、制御ポリシー
は、状態xから動作
へとマッピングする関数である。予期される累積コストである、ポリシーπの下での到達コスト関数(cost-to-go function)(又は価値関数)
は、無限時間区間(infinite horizon)の平均コストの最適性判断基準の下で、以下のように定義される。
式中、
は平均コストであり、kは時間インデックスであり、且つ、Δtは時間ステップである。最適な到達コスト関数は、以下の離散時間ハミルトン−ヤコビ−ベルマン方程式を満足する。
式中、
は動作価値関数であり、且つ、
は積分演算子である。MDPの目的は、以下の関係に従い、無限時間区間に亘り、平均コストを最小化する制御ポリシーを見出すことである。
ここで、最適な制御ポリシーにおける値は、上付き文字*を以て表され得る(例えば、

)。
離散時間動力学系に対する線形MDP(L−MDP)は、連続的な状態空間及び動作空間に対して厳密な解が迅速に求められ得るという利点を備えた汎用マルコフ決定過程のサブクラスである。構築された動力学的値、及び、別体的な状態コスト及び制御コストの下で、ベルマン方程式は、組み合わされた状態コスト及び制御されていない動力学的値の線形固有関数を見出すことに解が限定された線形微分方程式として再構築され得る。その後、L−MDPに対する到達コスト関数(又は、価値関数)は、正確な動力学的モデルが利用可能であるときに、二次プログラミング(QP)のような最適化方法により、効率的に求められ得る。
マルコフ決定過程の線形公式は、以下に示されるように、制御コストを定義すべく、且つ、車両動力学的値に関する条件を加えるべく使用され得る。
ここで、
は状態コスト関数であり、且つ、
はクルバック−ライブラー(KL)偏差である。式(3)は、動作のコストを、それが系に対して有する確率論的効果の量に対して関連付け、且つ、それを状態コストに対して加算する。第2の条件は、何らの動作も、受動的動力学の下では達成され得ない新たな遷移を導入しないことを確実とする。式(1)により表された確率論的動力学系は、当然、上記仮定を満足する。
ハミルトン−ヤコビ−ベルマン方程式(式(2))は、L−MDP形態において、指数的に変換された到達コスト関数に対する線形微分方程式(以下、線形化ベルマン方程式という)へと書き換えられ得る。
式中、
及びZavgは、それぞれ、Z値と称される指数的に変換された到達コスト関数、及び、最適ポリシーの下での平均コストである。(式(1))における状態遷移はガウス性であることから、制御された動力学的値と受動的な動力学的値との間のKL偏差は、
として表される。
その後、L−MDP系に対する最適な制御ポリシーは、
として表され、式中、
は、xkにおけるxに関する到達コスト関数Vの偏微分値である。Z値及び平均コストは、系の動力学的値が完全に入手可能であるとき、固有値又は固有関数を解くことにより、線形化ベルマン方程式から導かれ得る。
本明細書中に記述されたコンピュータ処理システム14の実施形態は、種々の形式の入力及び出力情報を測定、受信、及び/又は、アクセスすることによりシステム(例えば、車両)の状態x(t)を決定する。例えば、データは、このシステムに結合されたセンサ又はこのシステムと別途通信するセンサを用いて測定され得る。コンピュータ処理システム14は、制御入力uを決定することで、式(1)により特徴付けられる車両の安定性及び所望の運動を達成し且つ式(2)において記述されたエネルギに基づくコスト関数を最小化する。
本明細書中に記述されたコンピュータ処理システム14の実施形態は、相互に作用する2つの学習システム又は学習ネットワーク、すなわちactorネットワーク(又は「actor」)83及びcriticネットワーク(又は「critic」)81を含む。これらネットワークは、人工ニューラルネットワーク(ANN)を用いて実現され得る。actor83は、状態依存の制御ポリシーを使用して、車両に対して適用され且つ到達コスト(cost-to-go)に対する最小値を生成する制御入力u(x)を決定する。actorは、平均コストと、近似的到達コスト関数から決定された推定到達コストと、車両の現在の状態に対する制御用動力学的値と、受動的に収集されたデータとを用いてノイズレベルを推定することにより、制御入力を決定すべく構成される。critic81は、受動的に収集されたデータのサンプル及び状態コストを用いて、推定平均コストと、actorネットワークにより適用されたときに車両の到達コストに対する最小値を生成する近似された到達コスト関数とを決定する。本明細書中に開示される幾つかの実施形態において、actor83は内部ループフィードバックコントローラとして実現されると共に、critic81は、外部ループフィードバックコントローラとして実現される。両者ともに、制御命令をもたらすように作動可能である車両を起動可能な機構又は制御器に関するフィードフォワード経路中に配置される。
受動的に収集されたデータのサンプルと、車両制御用動力学的モデル87から受信された状態コストq(x)とを用いて、critic81は、車両の現在の状態xk、次の状態xk+1、及び、最適ポリシー下での状態コストqkを評価し、且つ、先に記述されたベルマン方程式の線形化版(式(5))を使用して、近似された到達コスト関数
(Z値)を決定し、且つ、actor83により使用される推定平均コスト
を生成する。Z値を推定するために、重み付けされた放射基底関数(RBF)の線形結合(linear combination)が使用され得る。
式中、ωは重みであり、fjは第j番目のRBFであり、且つ、NはRBFの個数である。基底関数は、車両システムの非線形の動力学に依存して適切に選択され得る。重みは、指数化された真の到達コストと推定到達コストとの間における最小二乗誤差を最小化することにより、最適化される。
及び
を真のZ値及び真の平均Z値コストとし、且つ

をそれぞれそれらの推定対応物とする。近似された到達コスト関数は、criticネットワークによりリアルタイムで学習され得る。
式中、Cは自明な解ω=0への収束を回避すべく使用される一定値である。第2及び第3の制約は、式(5)から由来する
と、
とを満足するために必要とされる。
重みω及び平均コスト
は、真の到達コストと推定到達コストとの間の誤差を、線形化ベルマン方程式(LBE)(式(5))から以下のように決定された近似的な時間差的誤差ekにより近似することにより、ラグランジュ緩和時間差(TD)学習に基づいて更新され得る。なぜなら、真の到達コスト及び真の平均コストは、pAC方法に対して使用された情報によっては決定されないからである。
式中、
及び
は、学習率であり、且つ、ekはL−MDPに対するTD誤差である。δijはディラックのデルタ関数を表している。下付き文字iは、反復の回数を表している。λ1、λ2、λ3は、制約式(9)に対するラグランジュ乗数である。ωは、式(10)による誤差を最小化すべく、且つ、式(11)による制約を満足すべく更新される。反復とは、(criticに対する重みω及びactorに対するμのような)critic及びactorのパラメータの更新として定義され得る。これに加え、criticネットワークのパラメータの更新は、車両が運動しているときに実施され得る。本明細書中に記述された方法において、criticネットワークの更新の間に使用される唯一のデータは、受動的に収集されたデータである。
各乗数の値は、以下の方程式を解くことにより算出される。
幾つかの場合、制約の部分集合は有効でないことがあり得る。斯かる場合、これらの制約に対する乗数はゼロに設定され、且つ、残りの有効な制約に対する乗数が求められる。criticは、受動的動力学の下での状態遷移サンプル
及び状態コストqkを用いて、各パラメータを更新する。重みω、推定Z値
、及び、平均コスト
は、車両が運動している間に、式(10)〜(11A)に従い、オンラインで更新され得る。
コンピュータ処理システムにおいて、criticネットワークに作用的に結合されたactor83は、制御入力を決定し、到達コストに対する最小値を生成する車両に適用され得る。criticにより生成された推定到達コスト
及び推定平均コスト
と、状態コストq(x)と、車両制御用動力学的モデル87から決定された現在の状態に対する制御用動力学的値情報B(x)と、criticにより使用されて到達コスト関数
を推定且つ推定平均コスト
を生成すべく受動的に収集されたデータのサンプルとを用い、actor83は制御入力を決定し得る。制御入力は、制御ポリシーπを修正すべく使用され得る。特定の実施形態において、ポリシーπは、上述の態様で、収束するまで反復的に修正され、その時点でそれは最適化されたと見做される。actorは、標準的なベルマン方程式を用い、且つ、能動的探索なしで、制御ポリシーを改善する。制御用動力学的値は、車両に対する既知の制御用動力学的モデルから決定され得る。
actor83はまた、制御入力u(x)を各車両システムに対してリアルタイムで適用し、所望の操作(例えば、高速道路合流、車線変更)を自律的に実施もし得る。本明細書中に開示される幾つかの実施形態において、actor83は、内部ループフィードバックコントローラにおいて具現され得ると共に、critic81は、外部ループフィードバックコントローラにおいて具現され得る。両者ともに、車両を起動し得る制御器に関するフィードフォワード経路中に配置される。
actor83は、criticからの評価値(例えば、
及び
)、受動的動力学の下でのサンプル、及び、既知の制御用動力学的値を用いて、ノイズレベルρを推定することにより、制御ポリシーを改善又は修正する。ノイズレベルは、重み付けされた各放射基底関数の線形結合により、近似的に学習される。
式中、μjは、j番目の放射基底関数gjに対する重みである。Mは、放射基底関数の個数である。
ρは、到達コストと動作−状態値との間の最小二乗誤差を最小化することにより、最適化される。
式中、

及び
は、最適な制御ポリシーの下での、真の到達コスト関数、平均コスト、及び推定された動作−状態値である。最適制御ポリシーは目的関数を最小化することにより学習され得る。なぜなら、真の動作−価値コストは、ポリシーが最適ポリシーであるとき且つそのときにのみ、
に等しいからである。
及び
は、ノイズレベルを更新するときに、以下の関係に従い、
及び
を決定すべく使用され得る。
重みμは、以下に定義される近似的な時間差的誤差dkにより更新される。標準的なベルマン方程式は近似されて誤差dkを決定する。なぜなら、真の到達コスト及び真の平均コストは算出されることができないからである。
式中、
は、受動的動力学の下での次の状態であり、且つ、
は、動作ukによる制御された動力学の下での次の状態である。推定到達コスト、平均コスト、及び、それらの微分値は、criticからの推定されたZ値及び平均Z値コストを利用することにより算出され得る。更に、
は、
により近似されて、
に関してTD誤差を線形化し得る。
は、近似されたTD誤差による時間差(TD)学習を用いて更新され得る。
式中、βiは学習率であり、且つ、Lk,k+1は、項L(xk,xk+1)の省略版である。
この手順は、与えられた状態において、受動的動力学的値、状態コストqk、及び、制御用動力学的値Bkの下で、状態遷移サンプル
を用いることにより、能動的探索なしでポリシーを改善する。標準的なactor−critic方法は、能動的探索によりポリシーを最適化する。定義されたこれらのactor及びcriticの機能により、コンピュータ処理システム14は、L−MDPを用いて、半モデルフリー強化学習を実現し得る。
本明細書中に記述された方法において、ポリシーは、受動的に収集されたデータのサンプルと、車両制御用動力学の知見とを用い、到達コストと動作−状態値との間の誤差を最小化することにより学習されるパラメータにより最適化される。本明細書中に記述された方法は、乗用車を制御すべく通常的に利用可能である車両自体の動力学的モデルにより、最適ポリシーが決定されることを可能とする。上記方法はまた、それらの動力学的モデルが通常は既知でない周囲の車両の操作に関して受動的に収集されたデータも使用する。これに加え、本明細書中に記述された方法を用いると、最適な制御ポリシーを決定する上で、車両環境の受動的動力学的値A(xt)及び過渡的ノイズレベルC(xt)は、認識される必要はない。
図2は、本明細書中に記述された方法に係る、コンピュータ処理システム14における、制御入力の決定、及び、制御ポリシーの修正又は最適化の実行中の情報の流れを示す概略図である。従来のactor−critic方法は、周囲環境から能動的に収集されたデータのサンプルを用いて動作し得る一方、本明細書中に記述されたpAC方法は、周囲環境の能動的探索なしで、代わりに、受動的に収集されたサンプル、及び、既知の車両制御用動力学的モデルを用いて、最適な制御ポリシーを決定する。critic81又はactor83において受信された一切の情報は、後で使用するためにメモリ内にバファリングされ得る。例えば、パラメータ値を算出し又は推定すべくcritic又はactorに必要とされる情報の全てが現在は入手できないという状況において、受信情報は、残りの必要な情報が受信されるまで、バッファリングされ得る。
図3は、本明細書中に開示された幾つかの実施形態に従い、制御入力を決定し且つ制御ポリシーを修正及び/又は最適化するための図1のコンピュータ処理システムの動作を示すフローチャートである。
プロセスは、ブロック310にて開始され、そこでcritic81は、推定平均コスト
と、actorネットワークにより適用されたときに車両の到達コストに対する最小値を生成する近似された到達コスト関数
とを決定し得る。
次に、ブロック320にて、actor83は、到達コスト関数
を用いて、車両に適用されて該車両の到達コストに対する最小値を生成する制御入力を決定し得る。actor83は、制御ポリシーπを修正して、このポリシーを改善し且つ/又はこの制御ポリシーを最適化し得る。
ブロック330においては、ブロック320において導かれた制御入力が車両に適用されて、例えば高速道路への合流又は車線の変更などの、車両の自律的動作が行われ得る。また、車両は、任意の改善又は最適化された制御ポリシーπに従って更に制御され得る。特定の実施形態において、車両操作は、制御ポリシーが、未だ最適化されたと考えられる点まで改善されていないとしても、ポリシーの最新版を用いてコンピュータ処理システムにより制御され得る。
ブロック340においては、actor83及びcritic81の種々のパラメータが更新され得る。この更新は、本明細書中に記述された関係に従って実施され得る。この更新に対して使用される唯一のデータは、受動的に収集されたデータであり得る。或る実施形態において、actor及びcriticは、それらのそれぞれのパラメータの更新を実施し得る。或いは、actor及びcriticのパラメータの更新は、ポリシー反復器(図示せず)又は同様の手段により実施され得る。
図4は、図1のコンピュータ処理システム14と同様の態様で構成されたコンピュータ処理システム114が組み込まれた例示的な実施形態に係る車両11を示す機能的ブロック図である。車両11は、乗用車、トラック、又は、本明細書中に記述された操作を実施し得る他の任意の車両の形態を取り得る。車両11は、完全に又は部分的に自律モードで動作すべく構成され得る。自律モードで動作している間、車両11は、人的相互作用なしで動作すべく構成され得る。例えば、高速道路の合流操作が実行されている自律モードにおいて、車両は、車両乗員からの入力なしで、高速道路上の車両から安全距離を維持すること、他の車両と速度を調和すること等を行うように、スロットル、ブレーキ及び他のシステムを動作させ得る。
車両11は、コンピュータ処理システム114に加え、且つ、相互に作用的に通信する種々のシステム、サブシステム及び構成要素、及び構成要素、例えば、センサシステム又は配列28、一つ以上の通信インタフェース16、操舵システム18、スロットルシステム20、制動システム22、電源30、動力システム26、並びに本明細書中に記述されたように車両を動作させるために必要な他のシステム及び構成要素を含み得る。車両11は、図4に示されたよりも多い又は少ないサブシステムを含み得ると共に、各サブシステムは、複数の要素を含み得る。更に、車両11のサブシステム及び要素の各々は、相互接続され得る。車両11の記述された機能及び/又は自律的動作の一つ以上の実施は、相互に協働して動作している複数の車両システム及び/又は構成要素により実行され得る。
センサシステム28は、任意の適切な形式のセンサを含み得る。本明細書中には、異なる形式のセンサの種々の例が記述される。しかし、実施形態は、記述された特定のセンサに限定されないことは理解される。
センサシステム28は、車両11の外部環境に関する情報を検知すべく構成された所定数のセンサを含み得る。例えば、センサシステム28は、全地球測位システム(GPS)のようなナビゲーションユニット、及び、例えば、慣性測定装置(IMU)(図示せず)、RADARユニット(図示せず)、レーザ測距計/LIDARユニット(図示せず)、及び車両の内部及び/又は該車両11の外部環境の複数の画像を捕捉すべく構成されたデバイスを備える一台以上のカメラ(図示せず)等の他のセンサを含み得る。カメラは、スチルカメラ又はビデオカメラであり得る。IMUは、慣性加速度に基づいて車両11の位置及び向きの変化を検知するように構成されたセンサ(例えば、加速度計及びジャイロスコープ等)の任意の組合せを組み込み得る。例えば、IMUは、車両のロール速度、ヨーレート、ピッチ速度、長手方向加速度、横方向加速度、及び、垂直加速度のようなパラメータを検知し得る。ナビゲーションユニットは、車両11の地理的位置を推定すべく構成された任意のセンサであり得る。この目的の為に、ナビゲーションユニットは、地球に対する車両11の位置に関する情報を提供するように作動可能な送受信機を含む一つ以上の送受信機を含み得る。また、ナビゲーションユニットは、業界公知の態様で、記憶され且つ/又は利用可能な地図を用いて与えられた開始点(例えば、車両の現在位置)から、選択された目的地までの走行ルートを決定又は計画するように構成され得る。
公知の態様において、車両センサ28は、種々の車両システムに対する適切な制御命令を策定且つ実行する際にコンピュータ処理システム114により使用されるデータを提供する。例えば、慣性センサ、車輪速度センサ、道路状態センサ、及び操舵角センサからのデータは、車両を旋回させるための命令を策定して操舵システム18において実行する上で、処理され得る。各車両センサ28は、車両11に組み込まれる任意の運転者支援機能及び自律的動作機能をサポートするために必要とされる任意のセンサを含み得る。センサシステム28が複数のセンサを含む構成において、センサは、相互から独立的に作動し得る。代替的に、各センサのうちの2つ以上が、相互に協働して作動し得る。センサシステム28のセンサは、コンピュータ処理システム14に対し、及び/又は車両11の他の任意の要素に対し、作用的に接続され得る。
また、各車両センサ28により収集された任意のデータは、本明細書中に記述された目的でデータを必要とし又は利用する任意の車両システム又は構成要素にも送信され得る。例えば、車両センサ28により収集されたデータは、コンピュータ処理システム114に、又は一つ以上の専用のシステム又は構成要素のコントローラ(図示せず)に送信され得る。付加的な特定の形式のセンサとしては、本明細書中に記述された機能及び操作を実施するために必要とされる他の任意の形式のセンサが挙げられる。
特定の車両センサからの情報は、一つよりも多い車両システム又は構成要素を制御すべく処理かつ使用され得る。例えば、自動化された操舵制御及び制動制御の両方を組み込んだ車両において、種々の道路状態センサは、データをコンピュータ処理システム114に提供し、このコンピュータ処理システムは、プロセッサが実行可能な記憶された命令に従って道路状態情報を処理すると共に、操舵システム及び制動システムの両方に対して適切な制御命令を策定することができるようになる。
車両11は、センサの出力信号又は他の信号が、コンピュータ処理システム114又は別の車両システム若しくは要素による使用の前に前処理を必要とするという状況、又はコンピュータ処理システムから送信された制御信号が、起動可能なサブシステム又はサブシステム構成要素(例えば、操舵システム又はスロットルシステムの構成要素)による使用の前に処理を必要とするという状況に適した、信号処理手段38を含み得る。信号処理手段は、例えば、アナログ/デジタル(A/D)変換器又はデジタル/アナログ(D/A)変換器であり得る。
センサ統合機能(sensor fusion capability)138は、センサシステム28からのデータを入力として受け入れるべく構成されたアルゴリズム(又は、アルゴリズムを記憶するコンピュータプログラム製品)の形態であり得る。上記データは、例えば、センサシステム28の各センサにて検知された情報を表すデータを含む。センサ統合アルゴリズムは、センサシステムから受信したデータを処理し、(例えば、複数の個別的なセンサの出力から形成された)統合された又は合成された信号を生成し得る。センサ統合アルゴリズム138は、例えば、カルマンフィルタ、ベイジアンネットワーク、又は、別のアルゴリズムを含む。センサ統合アルゴリズム138は更に、センサシステム28からのデータに基づく種々のアセスメントを提供し得る。例示的な実施形態において、アセスメントは、車両11の環境における個別的な物体又は特定構造の評価、特定状況の評価、及び、特定の状況に基づく可能的な影響の評価を含み得る。他のアセスメントも可能である。センサ統合アルゴリズム138は、コンピュータ処理システム114に組み込まれた又はコンピュータ処理システム114と作用的に通信する(メモリ54のような)メモリ内に記憶され得ると共に、当業界において公知の態様でコンピュータ処理システムにより実行され得る。
本明細書中に記述された任意の情報若しくはパラメータの受信、収集、監視、処理、及び/又は、決定を参照するときにおける「連続的に」という語句の使用は、コンピュータ処理システム114が、これらのパラメータに関する情報が存在し又は検出されるや否や、又は、センサの取得サイクル及びプロセッサの処理サイクルに従ってできるだけ素早く、任意の情報を受信及び/又は処理すべく構成されることを意味している。コンピュータ処理システム114が、例えば、センサからのデータ又は車両構成要素の状況に関する情報を受信すると直ちに、コンピュータ処理システムは、記憶されたプログラム命令に従って動作し得る。同様に、コンピュータ処理システム114は、センサシステム28から及び他の情報源から、同時進行的又は連続的に情報の流れを受信して処理し得る。この情報は、本明細書中に記述された態様及び目的にて、メモリ内に記憶された命令に従って処理及び/又は評価される。
また、図4は、先に記述されたように、図1のコンピュータ処理システム14と同様の態様で構成された代表的なコンピュータ処理システム114のブロック図も示している。本明細書中に記述されたようにポリシーの修正を実施すると共に制御入力を決定するために必要とされる機能を組み込むと共に、コンピュータ処理システム114は、他の車両システム及び要素に作用的に接続されると共に、その他の点では、車両11及びその構成要素の制御及び動作に影響するように構成され得る。コンピュータ処理システム114は、少なくとも幾つかのシステム及び/又は構成要素を、(ユーザ入力なしで)自律的に且つ/又は(一定程度のユーザ入力を以て)半自律的に制御すべく構成され得る。また、コンピュータ処理システムは、幾つかの機能を自律的及び/又は半自律的に制御及び/又は実行するようにも構成され得る。コンピュータ処理システム114は、種々のサブシステム(例えば、動力システム26、センサシステム28、操舵システム18)から、各通信インタフェース16のうちの任意のものから、及び/又は他の任意で適切な情報源から受信した入力及び/又は情報に基づき、車両11の機能性を制御し得る。
図4の実施形態において、コンピュータ処理システム114は、図1に関して先に記述されたように、車両制御用動力学的モデル187、critic181、actor183、及び、制御ポリシー201を含み得る。コンピュータ処理システム114は、先に記述されたように、制御入力を決定すべく、且つ自律車両の操作制御ポリシーを修正及び/又は最適化すべく構成され得る。また、コンピュータ処理システム114は、制御入力に従って、且つ、本明細書中に記述されたように修正又は最適化された制御ポリシーにも従って、車両を制御して所望操作を実施すべく構成され得る。
コンピュータ処理システム114は、図4に示された要素の幾つか又は全てを有し得る。加えて、コンピュータ処理システム114は、特定の用途に必要とされ又は所望される付加的な構成要素も含み得る。また、コンピュータ処理システム114は、複数のコントローラ又はコンピュータ処理デバイスであって、分散態様にて、情報を処理し且つ/又は車両11の個別的な構成要素若しくはサブシステムを制御するように機能する複数のコントローラ又はコンピュータ処理デバイスを表し、又は、それにより具現され得る。
メモリ54は、単一又は複数のプロセッサ58により実行されて、図1に関して上述されたものを含む、車両11の種々の機能を実行するデータ60及び/又は命令56(例えば、プログラムロジック)を収納し得る。メモリ54は、本明細書中に記述された車両システム及び/又は構成要素(例えば、動力システム26、センサシステム28、コンピュータ処理システム114、及び、通信インタフェース16)のうちの一つ以上にデータを送信し、それらからデータを受信し、それらと相互作用し、又はそれらを制御するための命令を含む、付加的な命令も含み得る。命令56に加え、メモリ54は、他の情報の中でも、道路地図、経路情報のようなデータを記憶し得る。斯かる情報は、自律的、半自律的、及び/又は手動的なモードにおける車両11の動作の間において、ルートを計画するのに且つその他にことをするのに、車両11及びコンピュータ処理システム114により使用され得る。
コンピュータ処理システム114は、(概略的に62と表される)一つ以上の自律的な機能又は動作を実施するために、種々の起動可能な車両システム及び構成要素の制御を連携調整するように構成され得る。これらの自律的な機能62は、メモリ54及び/又は他のメモリ内に記憶されると共に、プロセッサにより実行されたときに、本明細書中に記述された種々のプロセス、命令又は機能のうちの一つ以上を実現するコンピュータ可読プログラムコードの形態で実現され得る。
通信インタフェース16は、車両11と、外部センサ、他の車両、他のコンピュータシステム、(本明細書中に記述されたように、衛星システム、携帯電話/無線通信システム、種々の車両サービスセンターなどのような)種々の外部のメッセージ及び通信システム、及び/又はユーザとの間の相互作用を許容すべく構成され得る。通信インタフェース16は、車両11のユーザに情報を提供し又はユーザから入力を受信するためのユーザインタフェース(例えば、一台以上のディスプレイ(図示せず)、音声/オーディオインタフェース(図示せず)、及び/又は他のインタフェース)を含み得る。
また、通信インタフェース16は、ワイドエリアネットワーク(WAN)、無線通信ネットワーク、及び/又は他の任意で適切な通信ネットワークにおける通信を可能とするインタフェースも含み得る。通信ネットワークは、有線の通信リンク、及び/又は無線の通信リンクを含み得る。通信ネットワークは、上記のネットワーク及び/又は他の形式のネットワークの任意の組合せを含み得る。通信ネットワークは、一つ以上のルータ、スィッチ、アクセスポイント、無線アクセスポイント、及び/又は類似物を含み得る。一つ以上の構成において、通信ネットワークは、任意の近傍車両及び車両11と、任意の近傍の路側の通信ノード及び/又はインフラとの間の通信を許容し得る、車両対全て(V2X)(車両対インフラストラクチャ(V2I)技術及び車両対車両(V2V)技術を含む)の技術を包含し得る。
WANネットワーク環境において使用されたとき、コンピュータ処理システム114は、ネットワーク(例えば、インターネット)のようなWAN上での通信を確立するためのモデム又は他の手段を含み(又は、それに対して作用的に接続され)得る。無線通信ネットワークにおいて使用されたとき、コンピュータ処理システム114は、無線ネットワークにおける一つ以上のネットワークデバイス(例えば、基地送受信ステーション)を介して無線コンピュータ処理デバイス(図示せず)と通信するための一つ以上の送受信機、デジタル信号プロセッサ、及び付加的な回路機構並びにソフトウェアを含み(又は、それに対して作用的に接続され)得る。これらの構成は、種々の外部情報源から定常的な情報の流れを受信する種々の態様を提供する。
車両11は、コンピュータ処理システム114並びに他の車両システム及び/又は構成要素と作用的に通信し且つコンピュータ処理システムから受信した制御命令に応じて作用し得る、種々の起動可能なサブシステム及び要素を含み得る。種々の起動可能なサブシステム及び要素は、(例えば、ACC及び/又は車線維持などの)いずれの自律的の走行支援システムが起動されているのか且つ/又は車両が完全自律モードで駆動されているのかといった所定の走行状況のような要因に依存して、手動的又は(コンピュータ処理システム114により)自動的に制御され得る。
操舵システム18は、車両ホイール、ラック及びピニオン操舵ギア、操舵ナックル、及び/若しくは車両11の方向を調節すべく作用可能であり得る他の任意の要素(コンピュータシステムで制御可能な任意の機構又は要素を含む)、又は要素の組み合わせを含み得る。動力システム26は、車両11に動力運動を提供すべく作用可能な構成要素を含み得る。例示的な実施形態において、動力システム26は、エンジン(図示せず)、(ガソリン、ディーゼル燃料、又は、ハイブリッド車両の場合には一つ以上の電気バッテリのような)エネルギ源、及び、変速機(図示せず)を含み得る。制動システム22は、車両11を減速すべく構成された、要素及び/又はコンピュータシステムで制御可能な任意の機構の任意の組合せを含み得る。スロットルシステムは、(例えば、加速ペダル、及び/又は例えばエンジンの作動速度を制御することで車両11の速度を制御するように構成された任意のコンピュータシステム制御可能な機構などの)要素及び/又は機構を含み得る。図1は、車両に組み込まれ得る車両サブシステムの僅かな例18、20、22、26を示している。特定の車両は、これらのシステムの一つ以上、又は示されたシステムの一つ以上に加えて他のシステム(図示せず)の一つ以上を組み込み得る。
車両11は、コンピュータ処理システム114、センサシステム28、起動可能なサブシステム18、20、22、26、及び他のシステム並びにこれらの要素が、コントローラエリアネットワーク(CAN)バス33又はその類似物を用いて相互に通信し得るように構成され得る。CANバス及び/又は他の有線又は無線の機構を介し、コンピュータ処理システム14は、種々の車両システム及び構成要素に対してメッセージを送信し(且つ/又は、それらからメッセージを受信し)得る。或いは、本明細書中に記述された要素及び/又はシステムの任意のものは、バスを使用せずに相互に対して直接的に接続され得る。同様に、本明細書中に記述された要素及び/又はシステム間の接続は、(有線接続のような)別の物理的媒体を経由され得るか、又は上記接続は無線接続であり得る。
図1は、コンピュータ処理システム14、メモリ54、及び通信インタフェース16のような車両11の種々の構成要素を、車両11に一体化されているとして示しているが、これら構成要素の一つ以上は、車両11とは別体的に取付けられ、又は関連付けられ得る。例えば、メモリ54は、部分的に又は完全に、車両11とは別体的に存在し得る。したがって、車両11は、別体的又は一体的に配置され得る複数のデバイス要素の形態で提供され得る。車両11を構成するデバイス要素は、有線又は無線の態様で相互に通信的に結合され得る。
実施例
図5及び図6を参照すると、本明細書中に記述された制御入力及びポリシー修正/最適化方法の実施形態の一つの実施例において、自律的な高速道路合流操作がシミュレートされる。この操作は、4次元の状態空間、及び、1次元の動作空間を有する。動力学的値は
であり、式中、下付き文字0は、高速道路の最右側車線上で合流車両の後方の車両(「後続車両」という)を表し、1は、ランプRR上で合流している自動化車両を表し、且つ、2は、高速道路上の最右側車線上で合流車両の前方の車両(「先行車両」という)を表している。dx12及びdv12は、先行車両からの合流車両の相対的な位置及び速度を表している。例示な目的で、先行車両は一定速度v2=30メートル/秒で走行されること、及び、後続車両に対する車両制御用動力学的モデルは既知であることが仮定される。もし後続車両の速度が先行車両よりも低速である(dv02<0)場合には、α=1.55、β=1.08、γ=1.65であり、その他の場合には、α=2.15、β=−1.65、γ=−0.89である。状態コスト
は、
であり、式中、k1、k2及びk3は、状態コストに対する重みである。もし合流車両がランプ上で後続車両と先行車両との間である(すなわち、dx12<0、及びdx12>dx02という条件にある)なら、k1=1、k2=10、及びk3=10であり、さもなければ、k1=10、k2=10、及びk3=0である。コストは、自動車が、後続車両と先行車両との中間に、後続車両と同一の速度で合流することを誘起すべく設計される。初期状態は、−100<dx12<100メートル、−10<dv12<10メートル/秒、−100<dx02<−5メートル、及び−10<dv02<10メートル/秒において、ランダムに選択される。Z値を近似するのに、ガウス放射基底関数が使用された。
式中、mi及びSiは、第i番目の放射基底関数に対する平均及び逆共分散である。高速道路合流のシミュレーションに対し、Z値は、4,096個のガウス放射基底関数であって、それらの平均が、状態の次元毎に8個の値から成る格子の頂点上に設定されたガウス放射基底関数により近似された。各基底の標準偏差は、各次元において最も近い2つの基底間の距離の0.7であった。上記例において
の実際の値は一定であるため、
を推定するのにg(x)=1が使用された。上記方法は、受動的動力学的値をシミュレートすることにより収集された10,000個のサンプルから、ポリシーを最適化した。図6は、本明細書中に記述された方法により決定された順次的な制御入力を用い、125個の異なる初期状態から開始し、(収束に対して必要とされる反復の回数として表現された)30秒以内に好首尾に合流する割合を示している。
上記の詳細な説明においては、その一部を構成する添付図面に対する参照が為されている。図において、同様の記号は典型的に、状況が別様に示唆するのでなければ、同様の構成要素を特定している。詳細な説明、図、及び、請求項中に記述された代表的実施形態は、限定的であることを意味しない。本明細書中に呈示された主題の有効範囲から逸脱せずに、他の実施形態が利用され得ると共に、他の変更が為され得る。概略的に本明細書中に記述されると共に各図中に示された本開示の各見地は、全てが本明細書において明示的に企図された多様な異なる構成にて、配置、置換、結合、分離、及び、設計され得ることは容易に理解される。
本開示を読んだに当業者により理解され得るように、本明細書中に記述された種々の見地は、方法、コンピュータシステム、又は、コンピュータプログラム製品として具現され得る。従って、それらの見地は、完全にハードウェアの実施形態、完全にソフトウェアの実施形態、又は、ソフトウェア及びハードウェアの見地を組み合わせた実施形態の形態を取り得る。更に、斯かる見地は、一種類以上のコンピュータ可読記憶媒体であって、本明細書中に記述された機能を実行するために当該記憶媒体内に又は当該記憶媒体上に具現されたコンピュータ可読プログラムコード又は命令を有するコンピュータ可読記憶媒体により記憶されたコンピュータプログラム製品の形態を取り得る。これに加え、本明細書中に記述されたデータ、命令又は事象を表す種々の信号は、送信元と送信先との間にて、金属ワイヤ、光ファイバ、及び/又は、(例えば、空気及び/又は空間などの)無線送信媒体のような信号導通媒体を通して進行する電磁波の形態で伝達され得る。
本明細書中で用いられるように、「一つの(a)」及び「一つの(an)」という語句は、一つ、又は、一つより多いものとして定義される。本明細書中で用いられるように、「複数の」という語句は、2つ、又は、2つより多いものとして定義される。本明細書中で用いられるように、「別の(another)」という語句は、少なくとも第2のもの、又は、それより多いものとして定義される。本明細書中で用いられるように、「含む」及び/又は「有する」という語句は、備える(すなわち非制限的表現)として定義される。本明細書中で用いられるように、「〜及び〜の少なくとも一つ」という語句は、関連して列挙された対象物のうちの一つ以上の対象物の任意の全ての可能的な組み合わせを参照かつ包含する。一例として、「A、B及びCの少なくとも一つ」という表現は、Aのみ、Bのみ、Cのみ、又は、(例えば、AB、AC、BC又はABCなどの)それらの任意の組合せを包含する。
従って、本発明の有効範囲を表すものとしては、上述の明細書ではなく、以下の各請求項に対して参照が為されるべきである。

Claims (20)

  1. 車両の自律的動作を適応的に制御するコンピュータ実行型方法であって、該方法は、
    a)車両を自律的に制御するように構成されたコンピュータ処理システムにおけるcriticネットワークにおいて、受動的に収集されたデータのサンプルと、状態コストとを用いて、推定平均コストと、actorネットワークにより適用されたときに車両の到達コストに対する最小値を生成する近似された到達コスト関数とを決定することと、
    b)コンピュータ処理システム内においてcriticネットワークに対して作用的に連結されたactorネットワークにおいて、車両に対して適用されて到達コストに対する最小値を生成する制御入力を決定すること、とを備え、
    前記actorネットワークは、推定平均コストと、近似された到達コスト関数から決定された推定到達コストと、車両の現在の状態に対する制御用動力学的値と、受動的に収集されたデータのサンプルとを用いて、ノイズレベルを推定することにより制御入力を決定するように構成される、方法。
  2. 前記近似された到達コスト関数は、以下の関係に従い、重み付けされた放射基底関数の線形結合を用いて決定され、
    式中、ωは重みであり、fjは第j番目の放射基底関数であり、Nは近似された到達コスト関数を決定するために使用される放射基底関数の個数であり、且つ、
    は近似された到達コスト関数である、請求項1に記載の方法。
  3. 前記近似された到達コスト関数において使用される重みωは、以下の関係に従って更新され、
    式中、δijはディラックのデルタ関数を表し、上付き文字iは反復の回数を表し、λ1、λ2、λ3はラグランジュ乗数であり、且つ
    は推定平均コストである、請求項2に記載の方法。
  4. ベルマン方程式の線形化版を用いて決定された近似的な時間差的誤差を用いて前記criticネットワークのパラメータを更新する段階を更に備える、請求項1に記載の方法。
  5. 前記criticネットワークパラメータを更新する段階は、前記車両が運動しているときに実施される、請求項4に記載の方法。
  6. 前記criticネットワークにより決定された推定平均コストは、以下の関係に従って更新され、
    式中、βは学習率であり、ekは近似的な時間差的誤差であり、
    は前記近似された到達コスト関数から決定された推定コストであり、
    は状態iにおける推定平均コストであり、且つ、
    は状態i+1における推定平均コストである、請求項4に記載の方法。
  7. 前記受動的に収集されたデータは、前記criticネットワークパラメータを更新する間に使用される唯一のデータである、請求項4に記載の方法。
  8. 以下の関係に従って決定された近似的な時間差的誤差を用いて前記criticネットワークのパラメータを更新する段階を更に備え、
    式中、ekは近似的な時間差的誤差であり、
    は推定平均コストであり、
    は状態kにおける推定到達コストであり、
    は状態k+1における推定到達コストであり、且つ、qkは状態kにおける状態コストである、請求項1に記載の方法。
  9. 前記近似された到達コスト関数は、前記criticネットワークにおいてリアルタイムで学習される、請求項1に記載の方法。
  10. 前記ノイズレベルは、以下の関係に従い、重み付けされた基底関数の線形結合を用いて学習され、
    式中、ρは推定ノイズレベルであり、μjは、gjにより表された第j番目の放射基底関数に対する重みであり、且つ、Mは、ノイズレベルを推定するために使用されるべき放射基底関数の個数である、請求項1に記載の方法。
  11. 以下の関係に従って決定された近似誤差を用いて前記actorネットワークの重み付けパラメータを更新する段階を更に備え、
    式中、dkは近似誤差であり、qkは状態kにおける状態コストであり、
    は状態kにおいて近似された到達コストであり、
    は状態k+1において近似された到達コストであり、
    は近似された平均コストであり、且つ、
    であり、式中、Bkは状態kにおける制御用動力学的値である、請求項10に記載の方法。
  12. 前記actorネットワークの重み付けパラメータの更新は、前記車両が運動しているときに実施される、請求項11に記載の方法。
  13. 前記actorネットワークの重み付けパラメータは、以下の関係に従って更新され、
    式中、
    は状態i+1における重み付けパラメータの値であり、
    は状態iにおける重み付けパラメータの値であり、βiは学習率であり、dkは時間差的誤差であり、且つgは放射基底関数である、請求項11に記載の方法。
  14. 前記制御入力を用い、前記自律的動作を制御すべく使用可能な制御ポリシーを修正する段階を更に備える、請求項1に記載の方法。
  15. 前記推定平均コストが収束するまで、前記段階(a)及び(b)を反復的に実施して前記制御入力を再決定することにより、前記自律的動作を制御するために使用可能な制御ポリシーを最適化する段階を更に備える、請求項1に記載の方法。
  16. 前記制御ポリシーは、能動的探索なしで最適化される、請求項15に記載の方法。
  17. 車両の自律的動作を適応的に制御するように構成されたコンピュータ処理システムであって、該コンピュータ処理システムは、該コンピュータ処理システムの動作を制御する一つ以上のプロセッサと、該一つ以上のプロセッサにより使用可能なデータ及びプログラム命令を記憶するメモリとを備え、
    前記一つ以上のプロセッサは、前記メモリ内に記憶された命令を実行して、
    a)受動的に収集されたデータのサンプルと、状態コストとを用いて、推定平均コストと、前記車両の到達コストに対する最小値を生成する近似された到達コスト関数とを決定し、且つ、
    b)前記車両に対して適用されて前記到達コストに対する最小値を生成する制御入力を決定する、ように構成され、
    前記一つ以上のプロセッサは、前記推定平均コストと、前記近似された到達コスト関数から決定された到達コストと、前記車両の現在の状態に対する制御用動力学的値と、受動的に収集されたデータのサンプルとを用いて、ノイズレベルを推定することにより制御入力を決定するように構成される、コンピュータ処理システム。
  18. 前記一つ以上のプロセッサは、前記メモリ内に記憶された命令を実行し、前記推定平均コストが収束するまで、前記段階(a)及び(b)を反復的に実施して前記制御入力を再決定することにより、前記自律的動作を制御するために使用可能な制御ポリシーを最適化するように構成される、請求項17に記載のコンピュータ処理システム。
  19. コンピュータシステムにより実行可能な命令が自身内に記憶された、一時的でないコンピュータ可読媒体であって、
    a)受動的に収集されたデータのサンプルと、状態コストとを用いて、推定平均コストと、車両の到達コストに対する最小値を生成する近似された到達コスト関数とを決定することと、
    b)前記車両に対して適用されて前記到達コストに対する最小値を生成する制御入力を決定すること、とを備える機能を実施させ、
    前記制御入力は、前記到達コストに対する最小値を生成し、且つ前記平均コストと、前記近似された到達コスト関数から決定された到達コストと、前記車両の現在の状態に対する制御用動力学的値と、受動的に収集されたデータのサンプルとを用いて、ノイズレベルを推定することにより制御入力が決定される、一時的でないコンピュータ可読媒体。
  20. 前記命令は、前記推定平均コストが収束するまで、前記段階(a)及び(b)を反復的に繰り返して前記制御入力を再決定することにより、前記自律的動作を制御するために使用可能な制御ポリシーを最適化するように実行可能である、請求項19に記載の一時的でないコンピュータ可読媒体。
JP2017131700A 2016-07-08 2017-07-05 能動的探索なしの強化学習に基づくオンライン学習法及び車両制御方法 Active JP7036545B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/205,558 US10065654B2 (en) 2016-07-08 2016-07-08 Online learning and vehicle control method based on reinforcement learning without active exploration
US15/205,558 2016-07-08

Publications (3)

Publication Number Publication Date
JP2018037064A true JP2018037064A (ja) 2018-03-08
JP2018037064A5 JP2018037064A5 (ja) 2020-08-20
JP7036545B2 JP7036545B2 (ja) 2022-03-15

Family

ID=60892997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017131700A Active JP7036545B2 (ja) 2016-07-08 2017-07-05 能動的探索なしの強化学習に基づくオンライン学習法及び車両制御方法

Country Status (2)

Country Link
US (1) US10065654B2 (ja)
JP (1) JP7036545B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108959467A (zh) * 2018-06-20 2018-12-07 华东师范大学 一种基于强化学习的问句和答案句相关度的计算方法
CN112277558A (zh) * 2019-07-22 2021-01-29 本田技研工业株式会社 减振器控制系统、车辆、信息处理装置及它们的控制方法以及记录介质
US11294339B2 (en) 2018-12-10 2022-04-05 Fuji Electric Co., Ltd. Control device, control method, and non-transitory recording medium

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10296004B2 (en) * 2017-06-21 2019-05-21 Toyota Motor Engineering & Manufacturing North America, Inc. Autonomous operation for an autonomous vehicle objective in a multi-vehicle environment
US11130497B2 (en) 2017-12-18 2021-09-28 Plusai Limited Method and system for ensemble vehicle control prediction in autonomous driving vehicles
US20190185012A1 (en) 2017-12-18 2019-06-20 PlusAI Corp Method and system for personalized motion planning in autonomous driving vehicles
CN111758017A (zh) * 2018-02-28 2020-10-09 索尼公司 信息处理装置、信息处理方法、程序及移动体
JP7035734B2 (ja) * 2018-03-30 2022-03-15 富士通株式会社 強化学習プログラム、強化学習方法、および強化学習装置
US10990096B2 (en) * 2018-04-27 2021-04-27 Honda Motor Co., Ltd. Reinforcement learning on autonomous vehicles
US11823039B2 (en) 2018-08-24 2023-11-21 International Business Machines Corporation Safe and fast exploration for reinforcement learning using constrained action manifolds
EP3629105A1 (en) * 2018-09-27 2020-04-01 Bayerische Motoren Werke Aktiengesellschaft High-level decision making for safe and reasonable autonomous lane changing using reinforcement learning
US10940863B2 (en) * 2018-11-01 2021-03-09 GM Global Technology Operations LLC Spatial and temporal attention-based deep reinforcement learning of hierarchical lane-change policies for controlling an autonomous vehicle
CN109901572B (zh) * 2018-12-13 2022-06-28 华为技术有限公司 自动驾驶方法、训练方法及相关装置
US20210403041A1 (en) * 2018-12-13 2021-12-30 Siemens Aktiengesellschaft Automated system including reachability analysis
EP3693243A1 (en) * 2019-02-06 2020-08-12 Zenuity AB Method and system for controlling an automated driving system of a vehicle
DE102019206908B4 (de) * 2019-05-13 2022-02-17 Psa Automobiles Sa Verfahren zum Trainieren wenigstens eines Algorithmus für ein Steuergerät eines Kraftfahrzeugs, Computerprogrammprodukt, Kraftfahrzeug sowie System
CN110843746B (zh) * 2019-11-28 2022-06-14 的卢技术有限公司 一种基于强化学习的防抱死刹车控制方法及系统
CN113552869B (zh) * 2020-04-23 2023-07-07 华为技术有限公司 优化决策规控的方法、控制车辆行驶的方法和相关装置
US20210402980A1 (en) * 2020-06-26 2021-12-30 Mitsubishi Electric Research Laboratories, Inc. System and Method for Data-Driven Reference Generation
CN111796522B (zh) * 2020-07-16 2022-06-03 上海智驾汽车科技有限公司 一种车辆状态估计方法
CN112289044B (zh) * 2020-11-02 2021-09-07 南京信息工程大学 基于深度强化学习的高速公路道路协同控制系统及方法
US11682218B2 (en) 2021-03-17 2023-06-20 Geotab Inc. Methods for vehicle data collection by image analysis
US11669593B2 (en) 2021-03-17 2023-06-06 Geotab Inc. Systems and methods for training image processing models for vehicle data collection
US11886196B2 (en) * 2021-04-05 2024-01-30 Mitsubishi Electric Research Laboratories, Inc. Controlling machine operating in uncertain environment discoverable by sensing
CN113253612B (zh) 2021-06-01 2021-09-17 苏州浪潮智能科技有限公司 一种自动驾驶控制方法、装置、设备及可读存储介质
CN113359476B (zh) * 2021-07-09 2022-09-16 广东华中科技大学工业技术研究院 离散时间下多智能体系统的一致性控制算法设计方法
US11693920B2 (en) * 2021-11-05 2023-07-04 Geotab Inc. AI-based input output expansion adapter for a telematics device and methods for updating an AI model thereon
WO2023199610A1 (en) * 2022-04-14 2023-10-19 Mitsubishi Electric Corporation System and method for motion and path planning for trailer-based vehicle
CN116149262B (zh) * 2023-04-23 2023-07-04 山东科技大学 一种伺服系统的跟踪控制方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10254505A (ja) * 1997-03-14 1998-09-25 Toyota Motor Corp 自動制御装置
JP2006313512A (ja) * 2005-04-04 2006-11-16 Sony Corp 学習制御装置、学習制御方法、およびプログラム
US20130262353A1 (en) * 2012-03-30 2013-10-03 Board Of Regents, The University Of Texas System Optimal online adaptive controller
US20160092764A1 (en) * 2011-12-07 2016-03-31 Paul Burchard Sparse Neural Control

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169981B1 (en) * 1996-06-04 2001-01-02 Paul J. Werbos 3-brain architecture for an intelligent decision and control system
US6532454B1 (en) * 1998-09-24 2003-03-11 Paul J. Werbos Stable adaptive control using critic designs
US6882992B1 (en) * 1999-09-02 2005-04-19 Paul J. Werbos Neural networks for intelligent control
US6411871B1 (en) 2000-08-05 2002-06-25 American Gnc Corporation Autonomous navigation, guidance and control using LDRI
US8854199B2 (en) 2009-01-26 2014-10-07 Lytx, Inc. Driver risk assessment system and method employing automated driver log
US8812226B2 (en) * 2009-01-26 2014-08-19 GM Global Technology Operations LLC Multiobject fusion module for collision preparation system
US8380367B2 (en) 2009-03-26 2013-02-19 The University Of North Dakota Adaptive surveillance and guidance system for vehicle collision avoidance and interception
ES2474815T3 (es) * 2009-07-09 2014-07-09 Tomtom International B.V. Método para comprimir los datos de aceleración de una búsqueda de ruta
EP2681085B1 (de) 2011-03-01 2017-05-10 Continental Teves AG & Co. oHG Verfahren und vorrichtung zur prädiktion und adaption von bewegungstrajektorien von kraftfahrzeugen
US8965834B2 (en) * 2011-12-07 2015-02-24 Extendabrain Corporation Particle methods for nonlinear control
WO2013123469A1 (en) 2012-02-17 2013-08-22 Intertrust Technologies Corporation Systems and methods for vehicle policy enforcement
US20140142948A1 (en) 2012-11-21 2014-05-22 Somya Rathi Systems and methods for in-vehicle context formation
US20150370228A1 (en) * 2014-06-20 2015-12-24 Atigeo Corp. Determining control actions of decision modules
US20160202670A1 (en) * 2015-01-08 2016-07-14 Northwestern University System and method for sequential action control for nonlinear systems
US9511767B1 (en) * 2015-07-01 2016-12-06 Toyota Motor Engineering & Manufacturing North America, Inc. Autonomous vehicle action planning using behavior prediction
US9916703B2 (en) * 2015-11-04 2018-03-13 Zoox, Inc. Calibration for autonomous vehicle operation
US9568915B1 (en) * 2016-02-11 2017-02-14 Mitsubishi Electric Research Laboratories, Inc. System and method for controlling autonomous or semi-autonomous vehicle
US10061316B2 (en) * 2016-07-08 2018-08-28 Toyota Motor Engineering & Manufacturing North America, Inc. Control policy learning and vehicle control method based on reinforcement learning without active exploration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10254505A (ja) * 1997-03-14 1998-09-25 Toyota Motor Corp 自動制御装置
JP2006313512A (ja) * 2005-04-04 2006-11-16 Sony Corp 学習制御装置、学習制御方法、およびプログラム
US20160092764A1 (en) * 2011-12-07 2016-03-31 Paul Burchard Sparse Neural Control
US20130262353A1 (en) * 2012-03-30 2013-10-03 Board Of Regents, The University Of Texas System Optimal online adaptive controller

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108959467A (zh) * 2018-06-20 2018-12-07 华东师范大学 一种基于强化学习的问句和答案句相关度的计算方法
CN108959467B (zh) * 2018-06-20 2021-10-15 华东师范大学 一种基于强化学习的问句和答案句相关度的计算方法
US11294339B2 (en) 2018-12-10 2022-04-05 Fuji Electric Co., Ltd. Control device, control method, and non-transitory recording medium
CN112277558A (zh) * 2019-07-22 2021-01-29 本田技研工业株式会社 减振器控制系统、车辆、信息处理装置及它们的控制方法以及记录介质

Also Published As

Publication number Publication date
US20180009445A1 (en) 2018-01-11
US10065654B2 (en) 2018-09-04
JP7036545B2 (ja) 2022-03-15

Similar Documents

Publication Publication Date Title
JP7036545B2 (ja) 能動的探索なしの強化学習に基づくオンライン学習法及び車両制御方法
US10061316B2 (en) Control policy learning and vehicle control method based on reinforcement learning without active exploration
CN112805198B (zh) 用于自主驾驶的个人驾驶风格学习
US11493926B2 (en) Offline agent using reinforcement learning to speedup trajectory planning for autonomous vehicles
US11269329B2 (en) Dynamic model with learning based localization correction system
JP6856575B2 (ja) 能動的探索なしの強化学習に基づく制御ポリシー学習及び車両制御方法
US11467591B2 (en) Online agent using reinforcement learning to plan an open space trajectory for autonomous vehicles
US10994729B2 (en) System and method for controlling lateral motion of vehicle
WO2020243162A1 (en) Methods and systems for trajectory forecasting with recurrent neural networks using inertial behavioral rollout
US11409284B2 (en) Relaxation optimization model to plan an open space trajectory for autonomous vehicles
US11537127B2 (en) Systems and methods for vehicle motion planning based on uncertainty
US11815891B2 (en) End dynamics and constraints relaxation algorithm on optimizing an open space trajectory
US11891087B2 (en) Systems and methods for generating behavioral predictions in reaction to autonomous vehicle movement
US11673584B2 (en) Bayesian Global optimization-based parameter tuning for vehicle motion controllers
CN114846425A (zh) 移动机器人的预测和规划
US11467584B2 (en) Multi-layer grid based open space planner
KR102589587B1 (ko) 자율 주행 차량용 동적 모델 평가 패키지
US20210179097A1 (en) Lane-attention: predicting vehicles' moving trajectories by learning their attention over lanes
RU2751734C2 (ru) Способы и процессоры для управления рулением беспилотным автомобилем
US11884287B2 (en) Enhanced vehicle operation
US20230227061A1 (en) Systems and Methods for Pareto Domination-Based Learning
US11453404B2 (en) Gear based vehicle load inference system
WO2024113087A1 (en) On-board parameter tuning for control module for autonomous vehicles

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220303

R150 Certificate of patent or registration of utility model

Ref document number: 7036545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350