JP2018035990A - melting furnace - Google Patents

melting furnace Download PDF

Info

Publication number
JP2018035990A
JP2018035990A JP2016168814A JP2016168814A JP2018035990A JP 2018035990 A JP2018035990 A JP 2018035990A JP 2016168814 A JP2016168814 A JP 2016168814A JP 2016168814 A JP2016168814 A JP 2016168814A JP 2018035990 A JP2018035990 A JP 2018035990A
Authority
JP
Japan
Prior art keywords
gas
premixed
melting
melting furnace
gas ejection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016168814A
Other languages
Japanese (ja)
Other versions
JP6868985B2 (en
Inventor
亮太 河井
Ryota Kawai
亮太 河井
等 大堀
Hitoshi Ohori
等 大堀
愼輔 柳樂
Shinsuke Yagira
愼輔 柳樂
井上 仁司
Hitoshi Inoue
仁司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2016168814A priority Critical patent/JP6868985B2/en
Publication of JP2018035990A publication Critical patent/JP2018035990A/en
Application granted granted Critical
Publication of JP6868985B2 publication Critical patent/JP6868985B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a melting furnace that can melt a melting object with high-heat efficiency while generating a homogeneous and fine melting product material by preferably convecting melting object in a dissolver.SOLUTION: A melting furnace includes: a combustion device N for heating a melting object G loaded into a dissolver 11 with a flame K formed in a combustion space S in an upper part of the dissolver 11; a gas injection hole 30a for injecting a gas into the melting object G loaded into the dissolver 11; and a premixed gas introduction mechanism for leading a premixed gas premixed an oxygen-containing gas A with a fuel gas F with an air ratio within a combustible range into the gas injection hole 30a.SELECTED DRAWING: Figure 1

Description

本発明は、溶解槽に投入された溶解対象物を前記溶解槽上部の燃焼空間に形成する火炎により加熱する燃焼装置を備え、前記溶解槽に投入された前記溶解対象物の内部へ気体を噴出する気体噴出孔を備える溶解炉に関する。   The present invention includes a combustion device that heats a melting target charged in a melting tank with a flame that forms in a combustion space above the melting tank, and jets gas into the melting target charged in the melting tank The present invention relates to a melting furnace having a gas ejection hole.

従来、溶解炉として、例えば、特許文献1に示されるように、溶解槽に投入された溶解対象物の進行方向に沿う一対の側壁の夫々に複数のバーナ及び蓄熱室が設けられ、一方の側壁に設けられるバーナと他方の側壁に設けられるバーナとを交互に燃焼させる、所謂、交番燃焼する形態で、溶解対象物を溶解するものが知られている。   Conventionally, as a melting furnace, for example, as shown in Patent Document 1, a plurality of burners and a heat storage chamber are provided on each of a pair of side walls along a traveling direction of a melting target charged in a melting tank. It is known that a burner provided on the other side wall and a burner provided on the other side wall are alternately burned, that is, a so-called alternating combustion mode is used to dissolve a melting object.

ここで、溶解炉において、溶解対象物を効率よく溶解すると共に、均質で清澄な溶解生成物を得るには、溶解対象物(又は溶解対象物とそれを溶解した溶解生成物との混合物)を溶解槽内にて対流させることが好ましい。
そこで、例えば、特許文献2に示されるように、溶解槽の下部に気体噴出孔を設け、当該気体噴出孔から溶解槽の溶解対象物中へ空気を噴出し、溶解対象物の内部にて多数の気泡を発生させ、当該気泡により、溶解対象物を対流させる技術が知られている。
Here, in the melting furnace, in order to efficiently dissolve the melting object and obtain a homogeneous and clear melting product, the melting object (or a mixture of the melting object and the melting product in which the melting object is dissolved) is used. It is preferable to convection in the dissolution tank.
Therefore, for example, as shown in Patent Document 2, a gas ejection hole is provided in the lower part of the dissolution tank, and air is ejected from the gas ejection hole into the dissolution object of the dissolution tank, and a large number of objects are dissolved inside the dissolution object. There is known a technique for generating a bubble and convection of an object to be dissolved by the bubble.

他の技術としては、特許文献3に示されるように、溶解槽の下部から溶解槽の内部へ向けて燃焼火炎を形成する状態で液中燃焼バーナを設け、当該液中燃焼バーナにて形成される燃焼火炎により、溶解対象物に対流を生じさせる溶解炉が知られている。   As another technique, as shown in Patent Document 3, a submerged combustion burner is provided in a state in which a combustion flame is formed from the lower part of the dissolution tank to the inside of the dissolution tank, and is formed by the submerged combustion burner. There is known a melting furnace in which convection is generated in an object to be melted by a combustion flame.

特開2009−243853号公報JP 2009-243853 A 特開平08−297198号公報JP 08-297198 A 特開2014―189429号公報JP 2014-189429 A

上記特許文献2に開示の技術にあっては、溶解槽の溶解対象物を、空気により対流させることができるが、当該空気が炉内温度を低下させるため、熱効率が低下することとなり、改善の余地があった。因みに、特許文献2に開示の技術では、溶解槽へ送り込む空気を予熱する電気ヒータを備えているが、当該電気ヒータにより予熱する場合、電力を消費することとなり、トータルとしてのエネルギ効率が低下する。
一方、特許文献3に開示の技術にあっては、液中燃焼バーナの燃焼火炎により、溶解対象物を対流させている。しかしながら、このように液中燃焼バーナの燃焼火炎を溶解対象物の内部で形成する場合、燃焼火炎が形成される部位に、火炎の形状に沿う中空状の空洞が形成される虞がある。このような状況にあっては、燃焼火炎及び燃焼排ガスが素抜けすることとなるため、溶解対象物の対流を十分に促進することができないと共に、燃焼火炎により溶解対象物を十分に加熱できず、熱効率の観点から改善の余地があった。
In the technique disclosed in Patent Document 2, the object to be melted in the melting tank can be convected by air. However, since the air lowers the temperature in the furnace, the thermal efficiency is lowered, and the improvement is achieved. There was room. Incidentally, the technique disclosed in Patent Document 2 includes an electric heater that preheats the air sent to the dissolution tank. However, when the electric heater preheats, electric power is consumed, and the total energy efficiency is reduced. .
On the other hand, in the technique disclosed in Patent Document 3, the object to be dissolved is convected by the combustion flame of the submerged combustion burner. However, when the combustion flame of the submerged combustion burner is formed inside the object to be melted in this way, there is a possibility that a hollow cavity that conforms to the shape of the flame may be formed at the site where the combustion flame is formed. In such a situation, the combustion flame and the combustion exhaust gas will escape, so that the convection of the object to be dissolved cannot be sufficiently promoted and the object to be dissolved cannot be sufficiently heated by the combustion flame. There was room for improvement in terms of thermal efficiency.

本発明は、上述の課題に鑑みてなされたものであり、その目的は、溶解槽の溶解対象物を良好に対流させて均質で清澄な溶解対象物を生成しながらも、高い熱効率で溶解対象物の溶解を実現できる溶解炉を提供することにある。   The present invention has been made in view of the above-mentioned problems, and the object thereof is to dissolve the object to be dissolved with high thermal efficiency while generating a homogeneous and clear object to be dissolved by convection the object to be dissolved in the dissolution tank. An object of the present invention is to provide a melting furnace capable of melting an object.

上記目的を達成するための溶解炉は、溶解槽に投入された溶解対象物を前記溶解槽上部の燃焼空間に形成する火炎により加熱する燃焼装置を備え、前記溶解槽に投入された前記溶解対象物の内部へ気体を噴出する気体噴出孔を備える溶解炉であって、その特徴構成は、
酸素含有ガスと燃料ガスとを可燃範囲の空気比で予混合した予混合ガスを前記気体噴出孔へ導く予混合ガス導入機構を備える点にある。
A melting furnace for achieving the above object comprises a combustion device that heats a melting target charged in a melting tank by a flame that forms in a combustion space above the melting tank, and the melting target charged in the melting tank A melting furnace having a gas ejection hole for ejecting gas into an object, the characteristic configuration of which is
There exists a premixed gas introduction mechanism which leads the premixed gas which premixed oxygen-containing gas and fuel gas by the air ratio of the combustible range to the said gas ejection hole.

上記特徴構成によれば、溶解槽に備えられる気体噴出孔から、酸素含有ガスと燃料ガスとを可燃範囲の空気比で予混合した予混合ガスを溶解対象物内へ噴出するから、当該予混合ガスにより、溶解槽にて溶解される溶解対象物を良好に対流させて、溶解対象物の全体を略均一に溶解でき、均質で清澄な溶解対象物を得ることができる。
また、燃焼装置にて形成される火炎により溶解槽内が可燃温度域まで昇温することで、溶解槽の底部から噴出している可燃範囲の空気比の予混合ガスを、溶解対象物の内部で燃焼させることができ、空気を導入する場合に比べ、溶解対象物の温度低下を低減でき、熱効率の向上を図ることができる。
更に、このように、予混合ガスを溶解槽へ噴出する構成によれば、予混合ガスを噴出する噴出速度を適切に調整することで、液中バーナにて燃焼火炎を溶解槽の底部に形成する場合に比べ、燃焼ガスの溶解対象物中での滞留時間を長くとることができ、熱効率のより一層の向上を期待できる。
以上より、溶解槽の溶解対象物を良好に対流させて均質で清澄な溶解対象物を生成しながらも、高い熱効率で溶解対象物を溶解できる溶解炉を実現できる。
According to the above characteristic configuration, the premixed gas in which the oxygen-containing gas and the fuel gas are premixed at an air ratio in the combustible range is ejected from the gas ejection hole provided in the dissolution tank into the object to be dissolved. With the gas, the dissolution target dissolved in the dissolution tank can be convected well, so that the entire dissolution target can be dissolved substantially uniformly, and a homogeneous and clear dissolution target can be obtained.
In addition, the temperature of the melting tank is raised to the flammable temperature range by the flame formed by the combustion device, so that the premixed gas having an air ratio in the flammable range ejected from the bottom of the melting tank is Compared with the case where air is introduced, the temperature drop of the object to be dissolved can be reduced and the thermal efficiency can be improved.
Furthermore, according to the configuration in which the premixed gas is ejected to the dissolution tank in this way, the combustion flame is formed at the bottom of the dissolution tank by the submerged burner by appropriately adjusting the ejection speed for ejecting the premixed gas. Compared with the case where it does, the residence time in the melt | dissolution target object of combustion gas can be taken long, and the further improvement of thermal efficiency can be anticipated.
As described above, it is possible to realize a melting furnace capable of melting a melting target object with high thermal efficiency while generating a homogeneous and clear melting target object by successfully convection of the melting target object in the melting tank.

溶解炉の更なる特徴構成は、
前記予混合ガス導入機構は、前記気体噴出孔へ導かれる前記予混合ガスの空気比を調整する空気比調整部を備えている点にある。
Further features of the melting furnace
The premixed gas introduction mechanism includes an air ratio adjusting unit that adjusts an air ratio of the premixed gas guided to the gas ejection hole.

溶解炉は、溶解槽の空気比を適切に調整することで、溶解対象物の生産量や品種に応じた加熱・溶解状態を実現することができる。例えば、溶解対象物がガラスの場合、溶解槽を酸化雰囲気に調整することで、透明ガラスを生産することができ、溶解槽を還元雰囲気に調整することで、色ガラスを生産できる。
上記特徴構成によれば、予混合ガス導入機構の空気比調整部が、気体噴出孔へ導かれる予混合ガスの空気比を調整することで、溶解槽の溶解対象物の内部にて適切に燃焼しながらも、その燃焼を酸化雰囲気から還元雰囲気まで、様々な酸化還元雰囲気にて実現できるから、溶解対象物の生産量や品種に応じた燃焼状態を適切に実現することができる。
しかも、このような調整を、火炎が形成される燃焼空間のみならず、溶解対象物の内部から実現できるから、例えば、溶解対象物としてガラスを採用する場合、溶解対象物の全体で色ムラのない均一な製品を生産することができる。
The melting furnace can realize the heating / melting state according to the production amount and the type of the melting object by appropriately adjusting the air ratio of the melting tank. For example, when the melting object is glass, transparent glass can be produced by adjusting the melting tank to an oxidizing atmosphere, and colored glass can be produced by adjusting the melting tank to a reducing atmosphere.
According to the above characteristic configuration, the air ratio adjusting unit of the premixed gas introduction mechanism adjusts the air ratio of the premixed gas guided to the gas ejection holes, so that it appropriately burns inside the dissolution target in the melting tank. However, since the combustion can be realized in various oxidation-reduction atmospheres from the oxidation atmosphere to the reduction atmosphere, the combustion state according to the production amount and the type of the object to be dissolved can be appropriately realized.
Moreover, such adjustment can be realized not only from the combustion space in which the flame is formed, but also from the inside of the object to be melted. Can produce no uniform product.

溶解炉の更なる特徴構成は、
複数の前記気体噴出孔の全てから前記溶解槽へ導入される前記予混合ガスの最大投入熱量に関連する最大投入熱量関連値に対する、複数の前記気体噴出孔の全てから前記溶解槽へ導入される前記予混合ガスの部分投入熱量の割合である予混合投入熱量割合が、溶解炉毎に予め決定される特定の熱量割合判定閾値以下の場合、
前記空気比調整部は、前記予混合ガスの空気比を低下側に設定する点にある。
Further features of the melting furnace
Introduced from all of the plurality of gas ejection holes to the dissolution tank with respect to the maximum input heat amount related value related to the maximum input heat quantity of the premixed gas introduced into the dissolution tank from all of the plurality of gas ejection holes. When the premixed input heat amount ratio, which is the ratio of the partial input heat amount of the premixed gas, is equal to or less than a specific heat amount ratio determination threshold predetermined for each melting furnace,
The air ratio adjusting unit is in the point of setting the air ratio of the premixed gas to the lower side.

本願の発明者らは、鋭意検討することにより、図4のグラフ図に示すように、複数の気体噴出孔の全てから溶解槽へ導入される予混合ガスの最大投入熱量に関連する最大投入熱量関連値に対する、複数の気体噴出孔の全てから溶解槽へ導入される予混合ガスの部分投入熱量の割合である予混合投入熱量割合が、溶解炉毎に予め決定される特定の熱量割合判定閾値以下の場合、複数の気体噴出孔から導入される予混合ガスの空気比が小さい方が、熱効率が高くなることを見出した。
上記特徴構成によれば、複数の気体噴出孔の全てから溶解槽へ導入される予混合ガスの最大投入熱量に関連する最大投入熱量関連値に対する、複数の気体噴出孔の全てから溶解槽へ導入される予混合ガスの部分投入熱量の割合である予混合投入熱量割合が、特定の熱量割合判定閾値以下の場合、空気比調整部が予混合ガスの空気比を低下側に設定することで、熱効率のより一層の向上を図ることができる。
因みに、『複数の気体噴出孔の全てから溶解槽へ導入される予混合ガスの最大投入熱量に関連する最大投入熱量関連値』とは、例えば、複数の気体噴出孔の全てから溶解槽へ導入可能な予混合ガスの最大投入熱量の80%程度の熱量を意味するものである。尚、当該最大投入熱量関連値は、80%程度に限定されず、複数の気体噴出孔の全てから溶解槽へ導入可能な予混合ガスの最大投入熱量の80%程度以上100%以下の値を含むものである。
また、『特定の熱量割合判定閾値』は、溶解炉の大きさ等に基づいて溶解炉毎に個別に決まる閾値であり、溶解炉毎に予め試験等を行って決定され記憶部等に記憶される値である。
As shown in the graph of FIG. 4, the inventors of the present application have intensively studied, and as shown in the graph of FIG. 4, the maximum input heat amount related to the maximum input heat amount of the premixed gas introduced into the dissolution tank from all of the plurality of gas ejection holes. A specific heat amount ratio determination threshold in which a premixed input heat amount ratio, which is a ratio of the partial input heat amount of the premixed gas introduced from all of the plurality of gas ejection holes to the melting tank, is determined in advance for each melting furnace. In the following cases, it has been found that the heat efficiency is higher when the air ratio of the premixed gas introduced from the plurality of gas ejection holes is smaller.
According to the above characteristic configuration, the plurality of gas ejection holes are introduced into the dissolution tank from the plurality of gas ejection holes with respect to the maximum input heat amount related value related to the maximum input heat quantity of the premixed gas introduced into the dissolution tank from all of the plurality of gas ejection holes. When the premixed input heat amount ratio, which is the ratio of the partial input heat amount of the premixed gas, is equal to or less than a specific heat amount ratio determination threshold, the air ratio adjustment unit sets the air ratio of the premixed gas to the lower side, The thermal efficiency can be further improved.
Incidentally, the “maximum input heat amount related value related to the maximum input heat amount of the premixed gas introduced into the dissolution tank from all of the plurality of gas ejection holes” is, for example, introduced into the dissolution tank from all of the plurality of gas ejection holes. This means a heat quantity of about 80% of the maximum input heat quantity of the possible premixed gas. The value related to the maximum input heat amount is not limited to about 80%, and is a value of about 80% to 100% of the maximum input heat amount of the premixed gas that can be introduced into the dissolution tank from all of the plurality of gas ejection holes. Is included.
The “specific heat ratio determination threshold value” is a threshold value that is individually determined for each melting furnace based on the size of the melting furnace and the like, is determined by performing a test or the like in advance for each melting furnace, and is stored in a storage unit or the like. Value.

これまで説明してきた溶解炉としては、
前記熱量割合判定閾値は、前記最大投入熱量関連値に基づいて決定される値であり、当該値を予め記憶する記憶部が設けられていることが好ましい。
As a melting furnace that has been explained so far,
The heat amount ratio determination threshold is a value determined based on the maximum input heat amount related value, and it is preferable that a storage unit for storing the value in advance is provided.

溶解炉の更なる特徴構成は、
前記気体噴出孔は、前記溶解槽の底部に複数設けられ、
複数の前記気体噴出孔から噴出される前記予混合ガスの噴出量の夫々を、各別に調整自在な噴出量調整部を備えている点にある。
Further features of the melting furnace
A plurality of the gas ejection holes are provided at the bottom of the dissolution tank,
Each of the ejection amounts of the premixed gas ejected from the plurality of gas ejection holes is provided with an ejection amount adjusting section that can be adjusted individually.

上記特徴構成によれば、噴出量調整部が、溶解槽の底部に複数設けられる気体噴出孔からの予混合ガスの噴出量の夫々を、各別に調整自在に構成されているから、溶解対象物の種類、生産量、及び溶解炉の種類等に応じて、溶解槽での溶解対象物の対流状態を適宜、適切なものに調整できる。   According to the above characteristic configuration, the ejection amount adjustment unit is configured to be able to individually adjust each of the ejection amounts of the premixed gas from the gas ejection holes provided at the bottom of the dissolution tank. The convection state of the object to be melted in the melting tank can be appropriately adjusted to an appropriate one in accordance with the type, production amount, melting furnace type, and the like.

溶解炉の更なる特徴構成は、
前記気体噴出孔は、前記溶解槽の底部に複数設けられ、
複数の前記気体噴出孔のうち少なくとも一対の前記気体噴出孔の噴出方向は、複数の前記気体噴出孔の上方において、互いの前記気体噴出孔から噴出された前記予混合ガスが拡散する拡散方向に向けて設けられている点にある。
Further features of the melting furnace
A plurality of the gas ejection holes are provided at the bottom of the dissolution tank,
The ejection direction of at least a pair of the gas ejection holes among the plurality of gas ejection holes is in a diffusion direction in which the premixed gas ejected from the gas ejection holes is diffused above the plurality of gas ejection holes. It is in the point provided for.

上記特徴構成の如く、複数の気体噴出孔のうち少なくとも一対の気体噴出孔の噴出方向を、複数の気体噴出孔の上方において、互いの気体噴出孔から噴出された予混合ガスが拡散する拡散方向に向けて設けることで、溶解槽の平面視で、より広い領域で予混合ガスの気泡による対流促進が可能となる。
また、溶解槽の平面視で、より広い領域へ予混合ガスを噴出して、当該予混合ガスの燃焼により溶解対象物を加熱できるから、溶解対象物の全体を適切に加熱でき、より一層、熱効率の向上を図ることができる。
As in the above characteristic configuration, the diffusion direction in which the premixed gas ejected from each gas ejection hole is diffused in the ejection direction of at least one pair of gas ejection holes among the plurality of gas ejection holes above the plurality of gas ejection holes. By providing for the convection, it becomes possible to promote convection by bubbles of the premixed gas in a wider area in a plan view of the dissolution tank.
Further, in the plan view of the dissolution tank, the premixed gas is ejected to a wider area, and the object to be dissolved can be heated by the combustion of the premixed gas, so that the entire object to be dissolved can be appropriately heated. Thermal efficiency can be improved.

溶解炉の更なる特徴構成は、
前記気体噴出孔は、前記溶解槽の底部に複数設けられ、
複数の前記気体噴出孔のうち少なくとも一対の前記気体噴出孔の噴出方向は、複数の前記気体噴出孔の上方において、互いの前記気体噴出孔から噴出された前記予混合ガスが収束する収束方向に向けて設けられている点にある。
Further features of the melting furnace
A plurality of the gas ejection holes are provided at the bottom of the dissolution tank,
The ejection direction of at least one pair of the gas ejection holes among the plurality of gas ejection holes is in a convergence direction in which the premixed gas ejected from the gas ejection holes converges above the plurality of gas ejection holes. It is in the point provided for.

溶解槽の溶解対象物の対流を促進する観点からは、気体噴出孔から噴出される予混合ガスの溶解対象物の中に形成される気泡は大径であることが好ましい。
ただし、大径の気泡を形成するべく、一の気体噴出孔からの予混合ガスの噴出量を増加させる場合、気体噴出孔の孔径が一定であると仮定すると、予混合ガスの噴出速度が増加するため、必ずしも大径の気泡を形成できるとは限らない。例えば、予混合ガスの噴出速度が所定速度以上になる場合、噴出された予混合ガスが気泡を形成することなく、溶解槽の上部まで連続して気体通流路を形成し、対流促進の観点からは好ましいとは言えない状態になる虞がある。
上記特徴構成の如く、複数の気体噴出孔のうち少なくとも一対の気体噴出孔の噴出方向を、複数の気体噴出孔の上方において、互いの気体噴出孔から噴出された予混合ガスが収束する収束方向に向けて設けることで、気体噴出孔からの気体噴出速度を必要以上に速めることなく、少なくとも一対の気体噴出孔から噴出された予混合ガスにて溶解対象物中に形成される気泡を合流させ、大径の気泡を形成でき、当該大径の気泡にて対流を促進できる。
From the viewpoint of promoting the convection of the dissolution target in the dissolution tank, it is preferable that the bubbles formed in the dissolution target of the premixed gas ejected from the gas ejection holes have a large diameter.
However, when increasing the amount of premixed gas ejected from one gas ejection hole to form a large-diameter bubble, assuming that the diameter of the gas ejection hole is constant, the ejection speed of the premixed gas increases. Therefore, it is not always possible to form a large diameter bubble. For example, when the ejection speed of the premixed gas is equal to or higher than a predetermined speed, the ejected premixed gas forms a gas flow path continuously up to the upper part of the dissolution tank without forming bubbles, so that convection is promoted. There is a possibility that it may become an unpreferable state.
As in the above characteristic configuration, the convergence direction in which the premixed gas ejected from each gas ejection hole converges in the ejection direction of at least a pair of the gas ejection holes among the plurality of gas ejection holes above the plurality of gas ejection holes. By providing it toward the surface, the bubbles formed in the object to be dissolved are joined by at least the premixed gas ejected from the pair of gas ejection holes without increasing the gas ejection speed from the gas ejection holes more than necessary. , Large diameter bubbles can be formed, and convection can be promoted by the large diameter bubbles.

溶解炉の更なる特徴構成は、
前記予混合ガス導入機構は、前記予混合ガスを通流して前記気体噴出孔へ連接する予混合ガス通流管を備え、
当該予混合ガス通流管の管内径が、燃料ガスの消炎距離以下である点にある。
Further features of the melting furnace
The premixed gas introduction mechanism includes a premixed gas flow pipe that flows through the premixed gas and is connected to the gas ejection hole,
The inner diameter of the premixed gas flow pipe is less than the extinguishing distance of the fuel gas.

上記特徴構成によれば、予混合ガス通流管を通流する燃料ガスが逆火することを防止して、安全に予混合ガスを気体噴出孔から噴出できる。   According to the above characteristic configuration, the fuel gas flowing through the premixed gas flow pipe is prevented from backfire, and the premixed gas can be safely ejected from the gas ejection holes.

実施形態に係る溶解炉であり、図2に示す溶解炉のI-I断面図II sectional view of the melting furnace shown in FIG. 2, which is the melting furnace according to the embodiment 実施形態に係る溶解炉の平面断面図Plan sectional drawing of the melting furnace concerning an embodiment 実施形態に係る溶解炉であり、図2に示す溶解炉のIII−III断面図III-III sectional view of the melting furnace according to the embodiment, which is the melting furnace shown in FIG. 空気比毎において予混合投入熱量割合を変更したときの熱効率を示すグラフ図Graph showing thermal efficiency when changing the premixed input heat rate for each air ratio 別実施形態に係る溶解炉の縦断面図Longitudinal sectional view of a melting furnace according to another embodiment 別実施形態に係る溶解炉の縦断面図Longitudinal sectional view of a melting furnace according to another embodiment

本発明の実施形態に係る溶解炉100は、図1〜3に示すように、溶解槽11の溶解対象物を良好に対流させて均質で清澄な溶解生成物を生成しながらも、高い熱効率で溶解対象物を溶解できる溶解炉100に関する。
以下、図1〜4に基づいて、当該溶解炉100について説明する。
As shown in FIGS. 1 to 3, the melting furnace 100 according to the embodiment of the present invention generates a homogeneous and clear melted product with good convection by melting the melted object in the melting tank 11 with high thermal efficiency. The present invention relates to a melting furnace 100 that can melt a melting object.
Hereinafter, the melting furnace 100 will be described with reference to FIGS.

図1〜3に示すように、溶解炉100は、ガラス原料G(溶解対象物の一例)を溶解するガラス溶解用の溶解炉であり、所謂、スルーポート式の溶解炉として構成されている。説明を加えると、溶解槽11に投入されたガラス原料Gを溶解槽11の上部の燃焼空間Sに形成する火炎により加熱する燃焼装置Nを備え、溶解槽11に投入されたガラス原料Gの内部へ気体を噴出する気体噴出孔30aを備えており、酸素含有ガスA(例えば、空気)と燃料ガスF(例えば、都市ガス13A)とを可燃範囲の空気比で予混合した予混合ガスを気体噴出孔30aへ導く予混合ガス導入機構を備えて構成されている。
溶解炉100は、平面視において、長手方向(図2で矢印Xに沿う方向)を有する矩形状の炉本体10を備えており、当該溶解炉本体10の上方には、ガラス原料G及びそれが溶解した溶解ガラスGを保持しつつ移送する溶解槽11が設けられ、当該溶解槽11の上方には、燃焼空間Sが形成されている。
As shown in FIGS. 1 to 3, the melting furnace 100 is a melting furnace for melting a glass raw material G (an example of an object to be melted), and is configured as a so-called through-port type melting furnace. If it adds, the inside of the glass raw material G thrown into the melting tank 11 will be provided with the combustion apparatus N which heats the glass raw material G thrown into the melting tank 11 with the flame which forms in the combustion space S of the upper part of the melting tank 11. A gas ejection hole 30a for ejecting gas to the gas is provided, and a premixed gas obtained by premixing oxygen-containing gas A (for example, air) and fuel gas F (for example, city gas 13A) at an air ratio in the combustible range is provided. A premixed gas introduction mechanism that leads to the ejection holes 30a is provided.
The melting furnace 100 includes a rectangular furnace body 10 having a longitudinal direction (a direction along an arrow X in FIG. 2) in a plan view. Above the melting furnace body 10, a glass raw material G and A melting tank 11 for transferring the molten glass G that has been melted is provided, and a combustion space S is formed above the melting tank 11.

溶解槽11には、平面視において、長手方向の一方端の壁面11aにガラス原料Gを受け入れる受入口(図示せず)が設けられていると共に、長手方向の他方端の壁面11bに溶解ガラスGを吐出する吐出口(図示せず)が設けられている。
溶解槽11の側方には、溶解槽11の長手方向に沿って、蓄熱用の煉瓦等が設けられる一対の蓄熱室Tが設けられており、当該一対の蓄熱室Tと溶解炉本体10の燃焼空間Sとは、気体を通流する気体通流路12にて連通接続されている。尚、一方の蓄熱室Tと溶解炉本体10の燃焼空間Sとを繋ぐ気体通流路12aと、他方の蓄熱室Tと溶解炉本体10の燃焼空間Sとを繋ぐ気体通流路12bとは、両者の燃焼空間Sに臨む流路開口端が、互いに対向する状態で設けられており、更に、一方の蓄熱室Tと溶解炉本体10の燃焼空間Sとを繋ぐ気体通流路12aと、他方の蓄熱室Tと溶解炉本体10の燃焼空間Sとを繋ぐ気体通流路12bとの組みが、溶解槽11の長手方向に沿って、複数設けられている。
In the plan view, the melting tank 11 is provided with a receiving port (not shown) for receiving the glass raw material G on the wall surface 11a at one end in the longitudinal direction, and the molten glass G on the wall surface 11b at the other end in the longitudinal direction. Is provided with a discharge port (not shown).
A pair of heat storage chambers T provided with heat storage bricks and the like are provided along the longitudinal direction of the melting tank 11 on the side of the melting tank 11, and the pair of heat storage chambers T and the melting furnace body 10 are provided. The combustion space S is communicatively connected by a gas passage 12 through which gas flows. In addition, the gas flow path 12a which connects one heat storage chamber T and the combustion space S of the melting furnace main body 10, and the gas flow path 12b which connects the other heat storage chamber T and the combustion space S of the melting furnace main body 10 are The flow path opening ends facing both combustion spaces S are provided in a state of facing each other, and further, a gas flow path 12a connecting one heat storage chamber T and the combustion space S of the melting furnace body 10; A plurality of sets of gas passages 12 b that connect the other heat storage chamber T and the combustion space S of the melting furnace body 10 are provided along the longitudinal direction of the melting tank 11.

当該実施形態に係る溶解炉100は、交番燃焼を実現するべく、図1に示すように、ファンF1にて圧送される酸素含有ガスAを通流する酸素含有ガス流路L0と、排ガスEを外部へ排出する排ガス排出路L3と、流路切換弁V0と、流路切換弁V0と一方の蓄熱室Tとを繋ぐ第1通流路L1と、流路切換弁V0と他方の蓄熱室Tとを繋ぐ第2通流路L2とが設けられ、流路切換弁V0は、酸素含有ガス流路L0を第1通流路L1に接続すると共に排ガス排出路L3を第2通流路L2に接続する第1通流状態と、酸素含有ガス流路L0を第2通流路L2と接続すると共に排ガス排出路L3を第1通流路L1と接続する第2通流状態とを切り換え可能に構成されている。
当該構成により、酸素含有ガス流路L0、排ガス排出路L3、第1通流路L1、第2通流路L2、流路切換弁V0、及び当該流路切換弁V0の切り換えを制御する運転制御部(図示せず)が、一方の蓄熱室Tを通過した酸素含有ガスAを気体通流路12aを介して燃焼空間Sへ供給すると共に燃焼空間Sからの排ガスEを気体通流路12bを介して他方の蓄熱室Tを通過させた後に外部へ排出する第1通流状態と、他方の蓄熱室Tを通過した酸素含有ガスAを気体通流路12bを介して燃焼空間Sへ供給すると共に燃焼空間Sからの排ガスEを気体通流路12aを介して一方の蓄熱室Tを通過させた後に外部へ排出する第2通流状態とを切り換える。
As shown in FIG. 1, the melting furnace 100 according to this embodiment includes an oxygen-containing gas flow path L0 that flows through an oxygen-containing gas A that is pumped by a fan F1 and an exhaust gas E, as shown in FIG. Exhaust gas discharge path L3 for discharging to the outside, flow path switching valve V0, first flow path L1 connecting flow path switching valve V0 and one heat storage chamber T, flow path switching valve V0 and the other heat storage chamber T And a flow switching valve V0 connects the oxygen-containing gas flow path L0 to the first flow path L1 and the exhaust gas discharge path L3 to the second flow path L2. The first flow state to be connected and the second flow state to connect the oxygen-containing gas flow path L0 to the second flow path L2 and connect the exhaust gas discharge path L3 to the first flow path L1 can be switched. It is configured.
With this configuration, operation control for controlling the switching of the oxygen-containing gas flow path L0, the exhaust gas discharge path L3, the first flow path L1, the second flow path L2, the flow path switching valve V0, and the flow path switching valve V0. (Not shown) supplies the oxygen-containing gas A that has passed through one of the heat storage chambers T to the combustion space S through the gas flow passage 12a, and the exhaust gas E from the combustion space S through the gas flow passage 12b. And the oxygen-containing gas A that has passed through the other heat storage chamber T is supplied to the combustion space S through the gas flow passage 12b. At the same time, the second exhaust state where the exhaust gas E from the combustion space S is passed through one heat storage chamber T via the gas passage 12a and then discharged to the outside is switched.

一方の蓄熱室Tと溶解炉本体10の燃焼空間Sとを繋ぐ気体通流路12aと、他方の蓄熱室Tと溶解炉本体10の燃焼空間Sとを繋ぐ気体通流路12bとの間には、その流路部位から燃焼空間Sへ向けて火炎Kを形成する燃焼装置Nが設けられている。
説明を追加すると、当該燃焼装置Nは、燃焼空間Sへ燃料ガスFを噴出する燃料ガス噴出部(図示せず)が形成される頂部を、気体通流路12の流路部位に突出する突出姿勢と、気体通流路12の流路部位から流路外へ引退する引退姿勢とで切り換える昇降機構(図示せず)を備えている。運転制御部(図示せず)は、燃焼装置Nのうち、酸素含有ガスAが通流する気体通流路12に設けられる燃焼装置Nを突出姿勢にすると共に、排ガスEが通流する気体通流路12に設けられる燃焼装置Nを引退姿勢とし、突出姿勢にある燃焼装置Nに火炎Kを形成させる。即ち、運転制御部は、酸素含有ガスA及び排ガスEの第1通流状態と第2通流状態とを切り換えに対応して、燃焼装置Nの突出姿勢と引退姿勢とを切り換える形態で、交番燃焼を実行する。当該交番燃焼を実行することにより、溶解対象物としてガラス原料Gを溶解する場合、溶解炉本体10の内部は、1500℃程度の温度に保たれ、ガラス原料Gが溶解される。
Between a gas flow path 12 a that connects one heat storage chamber T and the combustion space S of the melting furnace body 10, and a gas flow path 12 b that connects the other heat storage chamber T and the combustion space S of the melting furnace body 10. Is provided with a combustion device N that forms a flame K from the flow path portion toward the combustion space S.
If a description is added, the said combustion apparatus N will project the top part in which the fuel gas injection part (not shown) which injects the fuel gas F to the combustion space S is formed in the flow-path part of the gas flow path 12 An elevating mechanism (not shown) is provided that switches between the posture and a retraction posture that retreats from the flow path portion of the gas passage 12 to the outside of the flow path. The operation control unit (not shown) sets the combustion device N provided in the gas flow path 12 through which the oxygen-containing gas A flows, of the combustion device N, to a projecting posture, and allows the gas flow through which the exhaust gas E flows. The combustion device N provided in the flow path 12 is set to a retreat posture, and a flame K is formed in the combustion device N in a protruding posture. That is, the operation control unit alternates between a protruding posture and a retracting posture of the combustion apparatus N in response to switching between the first flow state and the second flow state of the oxygen-containing gas A and the exhaust gas E. Perform combustion. When the glass raw material G is melted as an object to be melted by performing the alternating combustion, the inside of the melting furnace body 10 is maintained at a temperature of about 1500 ° C., and the glass raw material G is melted.

さて、当該実施形態に係る溶解炉100は、溶解槽11のガラス原料G及び溶解ガラスGを良好に対流させて均質で清澄な溶解ガラスGを生成しながらも、高い熱効率でガラス原料Gを溶解するべく、酸素含有ガスAと燃料ガスFとを可燃範囲の空気比で予混合した予混合ガスを気体噴出孔30aへ導く予混合ガス導入機構を備えている。因みに、当該実施形態にあっては、一の気体噴出孔30aを有する気体噴出部30が、溶解槽11の底部に気体噴出孔30aを臨ませる形態で、複数設けられており、複数の気体噴出部30の夫々に対し各別に予混合ガスを供給する構成を採用している。
説明を追加すると、図1、2に示すように、酸素含有ガスAを通流する酸素含有ガス通流路L4と、燃料ガスFを通流する燃料ガス通流路L5と、酸素含有ガス通流路L4と燃料ガス通流路L5との下流側の接続部位と気体噴出部30とを接続する予混合ガス通流路L6、L7とが設けられており、当該実施形態にあっては、予混合ガス通流路L6、L7(予混合ガス通流管の一例)は、上流側で予混合ガスを通流する上流側予混合ガス通流路L6と、当該上流側予混合ガス通流路L6から分岐する複数の下流側予混合ガス通流路L7とから構成されており、複数の下流側予混合ガス通流路L7の夫々は、複数の気体噴出部30の夫々に各別に連通接続されている。
Now, the melting furnace 100 according to the embodiment melts the glass raw material G with high thermal efficiency while convectioning the glass raw material G and the molten glass G in the melting tank 11 well to produce a homogeneous and clear molten glass G. Therefore, a premixed gas introduction mechanism is provided that guides a premixed gas in which the oxygen-containing gas A and the fuel gas F are premixed at an air ratio in the combustible range to the gas ejection holes 30a. Incidentally, in this embodiment, a plurality of gas ejection portions 30 having one gas ejection hole 30a are provided in such a form that the gas ejection holes 30a face the bottom of the dissolution tank 11, and a plurality of gas ejections are provided. A configuration in which a premixed gas is supplied to each of the sections 30 is adopted.
When the description is added, as shown in FIGS. 1 and 2, the oxygen-containing gas passage L4 through which the oxygen-containing gas A flows, the fuel gas passage L5 through which the fuel gas F flows, and the oxygen-containing gas passage Premixed gas passages L6 and L7 are provided to connect the downstream portion of the passage L4 and the fuel gas passage L5 and the gas ejection portion 30, and in this embodiment, The premixed gas flow paths L6 and L7 (an example of the premixed gas flow pipe) are an upstream premixed gas flow path L6 through which the premixed gas flows on the upstream side and the upstream premixed gas flow path. The plurality of downstream premixed gas flow paths L7 branch from the path L6, and each of the plurality of downstream premixed gas flow paths L7 communicates with each of the plurality of gas ejection portions 30. It is connected.

更に、酸素含有ガス通流路L4には、当該酸素含有ガス通流路L4を通流する酸素含有ガスAの流量を制御する第1流量制御弁V1が設けられ、燃料ガス通流路L5には、当該燃料ガス通流路L5を通流する燃料ガスFの流量を制御する第2流量制御弁V2が設けられ、複数の下流側予混合ガス通流路L7の夫々には、当該下流側予混合ガス通流路L7を通流する予混合ガスの流量を制御する第3流量制御弁V3が設けられている。
そして、第1流量制御弁V1、第2流量制御弁V2、及び第3流量制御弁V3の弁開度は、図示しない運転制御部にて制御され、第1流量制御弁V1及び第2流量制御弁V2の弁開度を制御することにより、供給される予混合ガスの空気比が可燃範囲の空気比に適切に調整される。また、複数の第3流量制御弁V3の開度を各別に制御することで、複数の気体噴出孔30aから噴出される予混合ガスの噴出量の夫々が、各別に調整される。
即ち、第1流量制御弁V1、第2流量制御弁V2、及び運転制御部が、空気比調整部として働き、第3流量制御弁V3及び運転制御部が、噴出量調整部として働く。更に、酸素含有ガス通流路L4、燃料ガス通流路L5、予混合ガス通流路L6、L7、第1流量制御弁V1、第2流量制御弁V2、第3流量制御弁V3、及び運転制御部が、予混合導入機構として働く。
Further, the oxygen-containing gas passage L4 is provided with a first flow control valve V1 for controlling the flow rate of the oxygen-containing gas A flowing through the oxygen-containing gas passage L4. Is provided with a second flow rate control valve V2 for controlling the flow rate of the fuel gas F flowing through the fuel gas flow path L5, and each of the plurality of downstream premixed gas flow paths L7 includes the downstream side. A third flow rate control valve V3 for controlling the flow rate of the premixed gas flowing through the premixed gas flow path L7 is provided.
And the valve opening degree of the 1st flow control valve V1, the 2nd flow control valve V2, and the 3rd flow control valve V3 is controlled by the operation control part which is not illustrated, and the 1st flow control valve V1 and the 2nd flow control By controlling the valve opening degree of the valve V2, the air ratio of the supplied premixed gas is appropriately adjusted to the air ratio in the combustible range. Further, by controlling the opening degree of the plurality of third flow rate control valves V3 separately, each of the ejection amounts of the premixed gas ejected from the plurality of gas ejection holes 30a is adjusted individually.
That is, the first flow control valve V1, the second flow control valve V2, and the operation control unit function as an air ratio adjustment unit, and the third flow control valve V3 and the operation control unit function as an ejection amount adjustment unit. Furthermore, the oxygen-containing gas passage L4, the fuel gas passage L5, the premixed gas passages L6 and L7, the first flow control valve V1, the second flow control valve V2, the third flow control valve V3, and the operation The control unit functions as a premixing introduction mechanism.

尚、当該実施形態にあっては、複数の気体噴出部3の夫々に設けられる気体噴出孔30aは、図1〜3に示すように、溶解槽11でガラス原料Gの受入口(図示せず)から吐出口(図示せず)への全体としての流れ方向(図1、2、3で矢印Xに沿う方向)に直交する方向(図1、2、3で矢印Zに沿う方向)に沿って、列をなす形態で、等間隔に設けられている。当該実施形態にあっては、複数の気体噴出部30aは、受入口と吐出口とから略等距離にある部位に設けられている。
当該配置構成を採用することにより、ガラス原料G及び溶解ガラスGの混合物は、溶解槽11において受入口から吐出口へ向かう全体としての流れ方向(図1、2、3で矢印Xに沿う方向)での流れに加え、図3に示すように、気体噴出孔30aから噴出される複数の気泡Bの下方から上方への移動に沿って、溶解槽11の下方に存在する比較的低温のガラス原料G及び溶解ガラスGの混合物が、溶解槽11の下方から上方へ対流する。当該対流により、溶解槽11の下方の比較的低温のガラス原料G及び溶解ガラスGの混合物が、燃焼空間Sの近傍まで上昇し、燃焼空間Sにて火炎Kにより加熱される。これにより、ガラス原料G及び溶解ガラスGの混合物の全体をより均一に加熱でき、熱効率の向上を図ることができる。
更に、当該実施形態にあっては、複数の気体噴出孔30aから噴出される予混合ガスの空気比は、空気比調整部により可燃範囲に調整され噴出されるので、溶解槽11でガラス原料G及び溶解ガラスGの混合物の内部にて、着火温度域まで昇温する。これにより、複数の気泡Bの内部にて予混合ガスを自己着火させることができ、ガラス原料G及び溶解ガラスGの混合物を内部から加熱できる。結果、ガラス原料G及び溶解ガラスGの混合物の全体をより均一に加熱でき、熱効率の向上を図ることができる。
In addition, in the said embodiment, as shown in FIGS. 1-3, the gas ejection hole 30a provided in each of the several gas ejection part 3 is the receiving port (not shown) of the glass raw material G in the melting tank 11. As shown in FIG. ) Along the direction (direction along arrow Z in FIGS. 1, 2, and 3) perpendicular to the flow direction (direction along arrow X in FIGS. 1, 2, and 3) from the discharge port (not shown) as a whole. In the form of rows, they are provided at equal intervals. In the present embodiment, the plurality of gas ejection portions 30a are provided at portions that are substantially equidistant from the receiving port and the discharge port.
By adopting the arrangement configuration, the mixture of the glass raw material G and the molten glass G flows in the melting tank 11 from the receiving port to the discharge port as a whole (the direction along the arrow X in FIGS. 1, 2 and 3). In addition to the flow in FIG. 3, as shown in FIG. 3, a relatively low temperature glass raw material present below the melting tank 11 along the movement from the bottom to the top of the plurality of bubbles B ejected from the gas ejection holes 30a. A mixture of G and molten glass G convects from the lower side of the melting tank 11 to the upper side. Due to the convection, the mixture of the relatively low temperature glass raw material G and the molten glass G below the melting tank 11 rises to the vicinity of the combustion space S and is heated by the flame K in the combustion space S. Thereby, the whole mixture of the glass raw material G and the molten glass G can be heated more uniformly, and the improvement of thermal efficiency can be aimed at.
Furthermore, in the present embodiment, the air ratio of the premixed gas ejected from the plurality of gas ejection holes 30a is adjusted to the combustible range by the air ratio adjusting unit and ejected. And the temperature is raised to the ignition temperature range inside the mixture of the molten glass G. Thereby, the premixed gas can be self-ignited inside the plurality of bubbles B, and the mixture of the glass raw material G and the molten glass G can be heated from the inside. As a result, the whole mixture of the glass raw material G and the molten glass G can be heated more uniformly, and the thermal efficiency can be improved.

尚、予混合ガス通流路L6、L7において、空気比を可燃範囲に調整した予混合ガスを通流することに伴って逆火が発生することを防止するべく、予混合ガス通流路L6、L7である予混合ガス通流管の管内径は、燃料ガスFの消炎距離以下に設定されている。当該実施形態の如く、燃料ガスFとして都市ガス13Aを用いる場合であって、空気比を1.1に設定する場合、予混合ガス通流管の管内径は、1.7mm以下に設定することが好ましい。   In the premixed gas flow channels L6 and L7, the premixed gas flow channel L6 is used to prevent backfire from occurring due to the flow of the premixed gas whose air ratio is adjusted to the flammable range. The inner diameter of the premixed gas flow pipe which is L7 is set to be equal to or shorter than the flame extinguishing distance of the fuel gas F. As in this embodiment, when the city gas 13A is used as the fuel gas F and the air ratio is set to 1.1, the pipe inner diameter of the premixed gas flow pipe should be set to 1.7 mm or less. Is preferred.

因みに、製品として透明ガラスを生産する場合、運転制御部は、複数の気体噴出孔30aから噴出する予混合ガスの空気比が、酸化雰囲気となるように空気比調整部を調整すると共に、気体通流路12から供給される酸素含有ガスAと燃焼装置Nの燃料ガス噴出部(図示せず)から噴出される燃料ガスFとの流量比を、燃焼空間Sが酸化雰囲気となるように、ファンF1の回転数等を調整する。
一方、製品として色つきガラスを生産する場合、運転制御部は、複数の気体噴出孔30aから噴出する予混合ガスの空気比が、還元雰囲気となるように空気比調整部を調整すると共に、気体通流路12から供給される酸素含有ガスAと燃焼装置Nの燃料ガス噴出部(図示せず)から噴出される燃料ガスFとの流量比を、燃焼空間Sが還元雰囲気となるように、ファンF1の回転数等を調整する。
当該制御を実行することにより、火炎Kが形成される燃焼空間Sのみならず、溶解対象物の内部から、酸化還元雰囲気の調整を実現できるから、例えば、溶解対象物としてガラス原料Gを採用する場合、ガラス原料Gの全体で色ムラのない均一な製品を生産できる。
Incidentally, when producing transparent glass as a product, the operation control unit adjusts the air ratio adjustment unit so that the air ratio of the premixed gas ejected from the plurality of gas ejection holes 30a becomes an oxidizing atmosphere, The flow rate ratio between the oxygen-containing gas A supplied from the flow path 12 and the fuel gas F ejected from the fuel gas ejection section (not shown) of the combustion apparatus N is set so that the combustion space S becomes an oxidizing atmosphere. Adjust the rotational speed of F1.
On the other hand, when producing colored glass as a product, the operation control unit adjusts the air ratio adjustment unit so that the air ratio of the premixed gas ejected from the plurality of gas ejection holes 30a becomes a reducing atmosphere, and gas The flow rate ratio between the oxygen-containing gas A supplied from the flow passage 12 and the fuel gas F ejected from the fuel gas ejection portion (not shown) of the combustion apparatus N is set so that the combustion space S becomes a reducing atmosphere. The number of rotations of the fan F1 is adjusted.
By executing the control, not only the combustion space S in which the flame K is formed, but also the adjustment of the oxidation-reduction atmosphere can be realized from the inside of the object to be melted. For example, the glass raw material G is employed as the object to be melted. In this case, a uniform product with no color unevenness can be produced with the entire glass raw material G.

さて、本願の発明者らは、鋭意検討することにより、図4のグラフ図に示すように、複数の気体噴出孔30aの全てから溶解槽11へ導入される予混合ガスの最大投入熱量に関連する最大投入熱量関連値に対する、複数の気体噴出孔30aの全てから溶解槽11へ導入される予混合ガスの部分投入熱量の割合である予混合投入熱量割合が、溶解炉毎に予め決定される特定の熱量割合判定閾値(図4で一点鎖線で示す閾値)以下の場合、複数の気体噴出孔30aから導入される予混合ガスの空気比が小さい方が、熱効率が高くなることを見出した。
因みに、図4は、テスト炉にて実施した実際の試験結果を示すグラフ図であり、当該テスト炉においては、図4のグラフ図に示すように、熱量割合判定閾値は、予混合投入熱量割合が60%であるときであり、予混合ガス投入熱量割合が当該熱量割合判定閾値以下の場合、空気比2.0の場合よりも空気比1.5の場合の方が、熱効率が高いという知見が得られている。
Now, the inventors of the present application, by earnestly examining, relate to the maximum input heat amount of the premixed gas introduced into the dissolution tank 11 from all of the plurality of gas ejection holes 30a as shown in the graph of FIG. The premixed input heat amount ratio, which is the ratio of the partial input heat amount of the premixed gas introduced from all of the plurality of gas ejection holes 30a to the melting tank 11 with respect to the maximum input heat amount related value to be determined, is determined in advance for each melting furnace. It has been found that when the heat ratio is not more than a specific threshold value determination threshold value (threshold value indicated by a one-dot chain line in FIG. 4), the smaller the air ratio of the premixed gas introduced from the plurality of gas ejection holes 30a, the higher the thermal efficiency.
Incidentally, FIG. 4 is a graph showing the actual test results performed in the test furnace. In the test furnace, as shown in the graph of FIG. 4, the heat amount ratio determination threshold is the premixed input heat amount ratio. That the heat efficiency is higher in the case of the air ratio of 1.5 than in the case of the air ratio of 2.0 when the premixed gas input heat amount ratio is equal to or less than the heat ratio determination threshold. Is obtained.

そこで、当該実施形態にあっては、複数の気体噴出孔30aの全てから溶解槽11へ導入される予混合ガスの最大投入熱量に関連する最大投入熱量関連値に対する、複数の気体噴出孔30aの全てから溶解槽11へ導入される予混合ガスの部分投入熱量の割合である予混合投入熱量割合が、溶解炉毎に予め決定される特定の熱量割合判定閾値(図4で一点鎖線で示される値:図4では予混合投入熱量割合が60%)以下の場合、空気比調整部としての運転制御部は、予混合ガスの空気比を低下側に設定する。
これにより、溶解炉100の熱効率のより一層の向上を図ることができる。
因みに、『複数の気体噴出孔30aの全てから溶解槽11へ導入される予混合ガスの最大投入熱量に関連する最大投入熱量関連値』とは、例えば、複数の気体噴出孔30aの全てから溶解槽11へ導入可能な予混合ガスの最大投入熱量の80%程度の熱量を意味するものである。尚、当該最大投入熱量関連値は、80%程度に限定されず、複数の気体噴出孔30aの全てから溶解槽11へ導入可能な予混合ガスの最大投入熱量の80%程度以上100%以下の値であっても構わない。
また、『特定の熱量割合判定閾値』は、溶解炉の大きさ等に基づいて溶解炉毎に個別に決まる閾値であり、溶解炉100毎に予め試験等を行って決定され、運転制御部の記憶部(図示せず)に記憶される。
Therefore, in this embodiment, the plurality of gas ejection holes 30a with respect to the maximum input heat amount related value related to the maximum input heat amount of the premixed gas introduced into the dissolution tank 11 from all of the plurality of gas ejection holes 30a. A premixed input heat amount ratio, which is a ratio of the partial input heat amount of the premixed gas introduced into the melting tank 11 from all, is a specific heat amount ratio determination threshold value determined in advance for each melting furnace (indicated by a one-dot chain line in FIG. 4). Value: In FIG. 4, when the premixed input heat ratio is 60% or less, the operation control unit as the air ratio adjusting unit sets the air ratio of the premixed gas to the lower side.
Thereby, the further improvement of the thermal efficiency of the melting furnace 100 can be aimed at.
Incidentally, the “maximum input heat amount related value related to the maximum input heat amount of the premixed gas introduced into the dissolution tank 11 from all of the plurality of gas ejection holes 30a” is, for example, dissolved from all of the plurality of gas ejection holes 30a This means a heat quantity of about 80% of the maximum input heat quantity of the premixed gas that can be introduced into the tank 11. The maximum input heat amount related value is not limited to about 80%, but is about 80% or more and 100% or less of the maximum input heat amount of the premixed gas that can be introduced into the dissolution tank 11 from all of the plurality of gas ejection holes 30a. It may be a value.
The “specific heat ratio determination threshold” is a threshold determined individually for each melting furnace based on the size of the melting furnace and the like, and is determined by performing a test or the like for each melting furnace 100 in advance. It is stored in a storage unit (not shown).

尚、発明者らは、予混合ガス投入熱量割合が熱量割合判定閾値を超える場合、空気比が低くなるほど熱効率が高くなる傾向にあることを確認している。即ち、図4のグラフ図において、予混合ガス投入熱量割合が熱量割合判定閾値を超える場合、空気比2.0の値が、空気比1.5のグラフよりも熱効率が高い値で推移する傾向があることを確認している。   The inventors have confirmed that when the premixed gas input heat rate exceeds the heat rate determination threshold, the thermal efficiency tends to increase as the air ratio decreases. That is, in the graph of FIG. 4, when the premixed gas input heat amount ratio exceeds the heat amount ratio determination threshold, the value of the air ratio 2.0 tends to change at a higher thermal efficiency than the graph of the air ratio 1.5. Make sure that there is.

〔別実施形態〕
(1)上記実施形態において、溶解対象物は、ガラス原料Gである例を示した。しかしながら、当該溶解対象物は、ガラス原料G以外の金属等であっても構わない。
[Another embodiment]
(1) In the above embodiment, an example in which the object to be melted is the glass raw material G is shown. However, the melting object may be a metal other than the glass raw material G.

(2)上記実施形態にあっては、溶解炉100は、スルーポート式の溶解炉を例として説明した。しかしながら、溶解炉100は、アンダーポート式の溶解炉や、エンドーポート式の溶解炉であっても、本発明の作用効果を良好に発揮し得る。 (2) In the above embodiment, the melting furnace 100 has been described by taking a through-port type melting furnace as an example. However, even if the melting furnace 100 is an under-port type melting furnace or an end-port type melting furnace, the effects of the present invention can be exhibited well.

(3)上記実施形態においては、燃焼装置N及び気体噴出孔30aに対し、酸素含有ガスAとして空気を供給する例を示したが、別に、酸素を富化した酸素濃度が21%以上の酸素富化ガスを供給しても構わない。
また、燃焼装置N及び気体噴出孔30aに対し、燃料ガスFとして、都市ガス13Aを供給する例を挙げたが、例えば、メタンガスや天然ガス等の可燃性ガスを供給しても構わない。
(3) In the above embodiment, an example is shown in which air is supplied as the oxygen-containing gas A to the combustion device N and the gas ejection hole 30a. Separately, oxygen enriched with oxygen having an oxygen concentration of 21% or more An enriched gas may be supplied.
Moreover, although the example which supplies city gas 13A as fuel gas F was given with respect to the combustion apparatus N and the gas ejection hole 30a, for example, you may supply combustible gas, such as methane gas and natural gas.

(4)上記実施形態では、一の気体噴出孔30aを有する気体噴出部30を、複数設ける構成例を示したが、一の気体噴出部30に対し複数の気体噴出孔30aを設ける構成を採用しても構わない。
当該構成にあっても、夫々の気体噴出孔30aに対して、各別に下流側予混合ガス通流路L7が連通接続され、各別に予混合ガスを供給する構成を採用することが好ましい。
また、一の気体噴出部30に対し一の気体噴出孔30aを設ける構成を採用しても構わない。
(4) In the above-described embodiment, a configuration example in which a plurality of gas ejection portions 30 having one gas ejection hole 30 a is provided has been described. However, a configuration in which a plurality of gas ejection holes 30 a is provided for one gas ejection portion 30 is employed. It doesn't matter.
Even in this configuration, it is preferable to employ a configuration in which the downstream premixed gas passage L7 is connected to each gas ejection hole 30a and the premixed gas is supplied to each gas ejection hole 30a.
Moreover, you may employ | adopt the structure which provides the one gas ejection hole 30a with respect to the one gas ejection part 30. FIG.

(5)上記実施形態において、複数の気体噴出孔30aは、溶解槽11の底部に設けられる構成例を示した。しかしながら、複数の気体噴出孔30aの一部を、溶解槽11の側壁に設ける構成を採用しても構わない。 (5) In the said embodiment, the some gas ejection hole 30a showed the structural example provided in the bottom part of the dissolution tank 11. As shown in FIG. However, a configuration in which a part of the plurality of gas ejection holes 30 a is provided on the side wall of the dissolution tank 11 may be adopted.

(6)図5に示すように、複数の気体噴出孔30aのうち少なくとも一対の気体噴出孔30aの噴出方向(図5では、3つ)は、複数の気体噴出孔30aの上方において、互いの気体噴出孔30aから噴出された予混合ガスが拡散する拡散方向に向けて設けられる構成を採用しても構わない。
当該構成により、溶解槽11の平面視で、より広い領域で予混合ガスの気泡Bによる対流促進が可能となる。また、溶解槽11の平面視で、より広い領域へ予混合ガスを噴出して、当該予混合ガスの燃焼により溶解対象物を加熱でき、溶解対象物の全体を適切に加熱でき、熱効率の向上を図ることができる。
(6) As shown in FIG. 5, the ejection direction (three in FIG. 5) of at least one pair of gas ejection holes 30a among the plurality of gas ejection holes 30a is mutually above the plurality of gas ejection holes 30a. You may employ | adopt the structure provided toward the diffusion direction in which the premixed gas ejected from the gas ejection hole 30a diffuses.
With this configuration, it is possible to promote convection by the bubbles B of the premixed gas in a wider area in a plan view of the dissolution tank 11. Further, in the plan view of the dissolution tank 11, the premixed gas can be ejected to a wider area, and the melting target object can be heated by the combustion of the premixed gas, the entire melting target object can be appropriately heated, and the thermal efficiency is improved. Can be achieved.

(7)図6に示すように、複数の気体噴出孔30aのうち少なくとも一対の気体噴出孔30a(図6では、3つ)の噴出方向は、複数の気体噴出孔30aの上方において、互いの気体噴出孔30aから噴出された予混合ガスが収束する収束方向に向けて設けられる構成を採用しても構わない。
当該構成により、気体噴出孔30aからの気体噴出速度を必要以上に早くすることなく、少なくとも一対の気体噴出孔30aから噴出された予混合ガスにて溶解対象物中に形成される気泡Bを合流させ、大径の気泡Bを形成でき、当該大径の気泡Bにて対流を促進できる。
(7) As shown in FIG. 6, at least a pair of gas ejection holes 30a (three in FIG. 6) out of the plurality of gas ejection holes 30a are arranged above each other above the plurality of gas ejection holes 30a. You may employ | adopt the structure provided toward the convergence direction where the premixed gas ejected from the gas ejection hole 30a converges.
With this configuration, the bubbles B formed in the object to be dissolved are joined by the premixed gas ejected from at least the pair of gas ejection holes 30a without making the gas ejection speed from the gas ejection holes 30a faster than necessary. The large-sized bubble B can be formed, and convection can be promoted by the large-sized bubble B.

(8)複数の気体噴出孔30aは、図1〜3に示すように、溶解槽11でガラス原料Gの受入口(図示せず)から吐出口(図示せず)への全体としての流れ方向(図1、2、3で矢印Xに沿う方向)に直交する方向(図1、2、3で矢印Zに沿う方向)に沿って、列をなす形態で、等間隔に設けられる構成例を示した。
しかしながら、複数の気体噴出孔30aは、例えば、溶解槽11でガラス原料Gの全体としての流れ方向(図1、2、3で矢印Xに沿う方向)に直交する方向(図1、2、3で矢印Zに沿う方向)に沿って、2列以上の列をなす形態で、設けられる構成を採用しても構わない。また、複数の気体噴出部30a同士の間隔は、等間隔でなくても構わない。
(8) As shown in FIGS. 1 to 3, the plurality of gas ejection holes 30 a are flow directions as a whole from the glass material G receiving port (not shown) to the discharge port (not shown) in the melting tank 11. A configuration example provided at equal intervals in a form that forms a row along a direction (direction along the arrow Z in FIGS. 1, 2, and 3) orthogonal to the direction (direction along the arrow X in FIGS. 1, 2, and 3). Indicated.
However, the plurality of gas ejection holes 30a are formed in, for example, a direction (FIGS. 1, 2, 3) orthogonal to the flow direction of the glass raw material G as a whole (the direction along the arrow X in FIGS. 1, 2, 3) in the melting tank 11. The configuration provided in the form of two or more rows along the direction of the arrow Z) may be adopted. Further, the intervals between the plurality of gas ejection portions 30a may not be equal.

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。   The configuration disclosed in the above embodiment (including another embodiment, the same shall apply hereinafter) can be applied in combination with the configuration disclosed in the other embodiment, as long as no contradiction occurs. The embodiment disclosed in this specification is an exemplification, and the embodiment of the present invention is not limited to this. The embodiment can be appropriately modified without departing from the object of the present invention.

本発明の溶解炉は、溶解槽の溶解対象物を良好に対流させて均質で清澄な溶解生成物を生成しながらも、高い熱効率で溶解対象物を溶解できる溶解炉として、有効に利用可能である。   The melting furnace of the present invention can be effectively used as a melting furnace capable of melting a melting target object with high thermal efficiency while producing a homogeneous and clear melting product by convection the melting target object in a melting tank. is there.

10 :溶解炉本体
11 :溶解槽
30a :気体噴出孔
100 :溶解炉
A :酸素含有ガス
F :燃料ガス
G :ガラス原料、溶解ガラス
L6、L7:予混合ガス通流路
N :燃焼装置
V1 :第1流量制御弁
V2 :第2流量制御弁
V3 :第3流量制御弁
10: Melting furnace body 11: Melting tank 30a: Gas injection hole 100: Melting furnace A: Oxygen-containing gas F: Fuel gas G: Glass raw material, melting glass L6, L7: Premixed gas flow path N: Combustion device V1: First flow control valve V2: Second flow control valve V3: Third flow control valve

Claims (8)

溶解槽に投入された溶解対象物を前記溶解槽上部の燃焼空間に形成する火炎により加熱する燃焼装置を備え、前記溶解槽に投入された前記溶解対象物の内部へ気体を噴出する気体噴出孔を備える溶解炉であって、
酸素含有ガスと燃料ガスとを可燃範囲の空気比で予混合した予混合ガスを前記気体噴出孔へ導く予混合ガス導入機構を備える溶解炉。
A gas ejection hole that includes a combustion device that heats a melting target charged in the melting tank with a flame that forms in a combustion space above the melting tank, and jets gas into the melting target that is charged in the melting tank A melting furnace comprising:
A melting furnace comprising a premixed gas introduction mechanism that guides a premixed gas obtained by premixing an oxygen-containing gas and a fuel gas at an air ratio in a combustible range to the gas ejection hole.
前記予混合ガス導入機構は、前記気体噴出孔へ導かれる前記予混合ガスの空気比を調整する空気比調整部を備えている請求項1に記載の溶解炉。   The melting furnace according to claim 1, wherein the premixed gas introduction mechanism includes an air ratio adjusting unit that adjusts an air ratio of the premixed gas guided to the gas ejection hole. 複数の前記気体噴出孔の全てから前記溶解槽へ導入される前記予混合ガスの最大投入熱量に関連する最大投入熱量関連値に対する、複数の前記気体噴出孔の全てから前記溶解槽へ導入される前記予混合ガスの部分投入熱量の割合である予混合投入熱量割合が、溶解炉毎に予め決定される特定の熱量割合判定閾値以下の場合、
前記空気比調整部は、前記予混合ガスの空気比を低下側に設定する請求項2に記載の溶解炉。
Introduced from all of the plurality of gas ejection holes to the dissolution tank with respect to the maximum input heat amount related value related to the maximum input heat quantity of the premixed gas introduced into the dissolution tank from all of the plurality of gas ejection holes. When the premixed input heat amount ratio, which is the ratio of the partial input heat amount of the premixed gas, is equal to or less than a specific heat amount ratio determination threshold predetermined for each melting furnace,
The melting furnace according to claim 2, wherein the air ratio adjusting unit sets an air ratio of the premixed gas to a lower side.
前記熱量割合判定閾値は、前記最大投入熱量関連値に基づいて決定される値であり、当該値を予め記憶する記憶部が設けられている請求項3に記載の溶解炉。   The melting furnace according to claim 3, wherein the heat amount ratio determination threshold is a value determined based on the maximum input heat amount related value, and a storage unit that stores the value in advance is provided. 前記気体噴出孔は、前記溶解槽の底部に複数設けられ、
複数の前記気体噴出孔から噴出される前記予混合ガスの噴出量の夫々を、各別に調整自在な噴出量調整部を備えている請求項1〜4の何れか一項に記載の溶解炉。
A plurality of the gas ejection holes are provided at the bottom of the dissolution tank,
The melting furnace as described in any one of Claims 1-4 provided with the ejection amount adjustment part which can adjust each of the ejection amount of the said premixed gas ejected from the said several gas ejection hole separately for each.
前記気体噴出孔は、前記溶解槽の底部に複数設けられ、
複数の前記気体噴出孔のうち少なくとも一対の前記気体噴出孔の噴出方向は、複数の前記気体噴出孔の上方において、互いの前記気体噴出孔から噴出された前記予混合ガスが拡散する拡散方向に向けて設けられている請求項1〜5の何れか一項に記載の溶解炉。
A plurality of the gas ejection holes are provided at the bottom of the dissolution tank,
The ejection direction of at least a pair of the gas ejection holes among the plurality of gas ejection holes is in a diffusion direction in which the premixed gas ejected from the gas ejection holes is diffused above the plurality of gas ejection holes. The melting furnace as described in any one of Claims 1-5 provided toward.
前記気体噴出孔は、前記溶解槽の底部に複数設けられ、
複数の前記気体噴出孔のうち少なくとも一対の前記気体噴出孔の噴出方向は、複数の前記気体噴出孔の上方において、互いの前記気体噴出孔から噴出された前記予混合ガスが収束する収束方向に向けて設けられている請求項1〜5の何れか一項に記載の溶解炉。
A plurality of the gas ejection holes are provided at the bottom of the dissolution tank,
The ejection direction of at least one pair of the gas ejection holes among the plurality of gas ejection holes is in a convergence direction in which the premixed gas ejected from the gas ejection holes converges above the plurality of gas ejection holes. The melting furnace as described in any one of Claims 1-5 provided toward.
前記予混合ガス導入機構は、前記予混合ガスを通流して前記気体噴出孔へ連接する予混合ガス通流管を備え、
当該予混合ガス通流管の管内径が、燃料ガスの消炎距離以下である請求項1〜7の何れか一項に記載の溶解炉。
The premixed gas introduction mechanism includes a premixed gas flow pipe that flows through the premixed gas and is connected to the gas ejection hole,
The melting furnace according to any one of claims 1 to 7, wherein a pipe inner diameter of the premixed gas flow pipe is equal to or less than a flame extinguishing distance of the fuel gas.
JP2016168814A 2016-08-31 2016-08-31 melting furnace Active JP6868985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016168814A JP6868985B2 (en) 2016-08-31 2016-08-31 melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016168814A JP6868985B2 (en) 2016-08-31 2016-08-31 melting furnace

Publications (2)

Publication Number Publication Date
JP2018035990A true JP2018035990A (en) 2018-03-08
JP6868985B2 JP6868985B2 (en) 2021-05-12

Family

ID=61565692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016168814A Active JP6868985B2 (en) 2016-08-31 2016-08-31 melting furnace

Country Status (1)

Country Link
JP (1) JP6868985B2 (en)

Also Published As

Publication number Publication date
JP6868985B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
TWI588416B (en) Selective oxy-fuel boost burner system and method for a regenerative furnace
ES2703734T3 (en) Cyclic stoichiometric variation of oxygen-fuel burners in glass furnaces
KR101904221B1 (en) Method and device for melting melting stock
US10288285B2 (en) Self-regenerating industrial burner and industrial furnace for carrying out self-regenerating combustion processes
JP5122369B2 (en) Combustion equipment for glass melting furnace
JP5421728B2 (en) Combustion apparatus and melting furnace for melting furnace
JP4516873B2 (en) Combustion equipment for heating furnace
ES2684818T3 (en) Method to homogenize the heat distribution as well as to reduce the amount of NOx
JP5689128B2 (en) Combustion apparatus for glass melting furnace and glass melting furnace
JP6868985B2 (en) melting furnace
JP5892809B2 (en) Combustion equipment for heating furnace
JP2002286225A (en) Operating method and device of combustion device for heating furnace
JP6121024B1 (en) Combustion apparatus for melting furnace and melting furnace provided with the same
JP6494329B2 (en) heating furnace
JP4836399B2 (en) Combustion equipment for heating furnace
JP5202594B2 (en) Regenerative combustion apparatus and heating furnace
KR101729201B1 (en) Oxy fuel burner
JP2020051710A (en) heating furnace
JP6124643B2 (en) Glass melting furnace
JP4139525B2 (en) Combustion equipment for heating furnace
JP7144484B2 (en) Glass melting furnace and method of operating the glass melting furnace
JP5808120B2 (en) Alternating combustion apparatus and alternating combustion method using the alternating combustion apparatus
KR20240089504A (en) Combustion apparatus, combustion system, and combustion method
JP6395364B2 (en) Combustion method and combustion apparatus
JP2000266305A (en) Combustion method by means of collision and agitation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210413

R150 Certificate of patent or registration of utility model

Ref document number: 6868985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150