JP2018035427A - Manufacturing method of platinum nanocolloid, single nano platinum colloid solution narrow in particle size distribution and high in stability - Google Patents

Manufacturing method of platinum nanocolloid, single nano platinum colloid solution narrow in particle size distribution and high in stability Download PDF

Info

Publication number
JP2018035427A
JP2018035427A JP2016171956A JP2016171956A JP2018035427A JP 2018035427 A JP2018035427 A JP 2018035427A JP 2016171956 A JP2016171956 A JP 2016171956A JP 2016171956 A JP2016171956 A JP 2016171956A JP 2018035427 A JP2018035427 A JP 2018035427A
Authority
JP
Japan
Prior art keywords
aqueous solution
platinum
platinum nanocolloid
particle size
size distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016171956A
Other languages
Japanese (ja)
Other versions
JP6536997B2 (en
Inventor
悦雄 野村
Etsuo Nomura
悦雄 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suntec Inc
Original Assignee
Suntec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntec Inc filed Critical Suntec Inc
Priority to JP2016171956A priority Critical patent/JP6536997B2/en
Publication of JP2018035427A publication Critical patent/JP2018035427A/en
Application granted granted Critical
Publication of JP6536997B2 publication Critical patent/JP6536997B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a platinum nanocolloid solution having no aggregate for long time.SOLUTION: There are provided a manufacturing method of a platinum nanocolloidal solution containing 100% of the platinum nanocolloid solution in a range of particle diameter of 4.1 nm±1.9 nm, regardless of high concentration even after 4 or more months or 10 or more months have passed after manufacturing at a particle size distribution measurement point, and the platinum nanocolloidal solution capable of keeping a transparent state over 1 year or more and having easiness of storage control without aggregation and deposition for long time when manufactured by the manufacturing method.SELECTED DRAWING: Figure 2

Description

本発明は、粒度分布幅の狭いシングル白金ナノコロイド水溶液に関するものである。   The present invention relates to a single platinum nanocolloid aqueous solution having a narrow particle size distribution width.

白金コロイドの凝集を防ぐためには、保護剤が一般的であるが、特開2009-228067号公報では、界面活性剤等の保護剤なしで、水溶液のpHを7.0〜8.5に調整しつつ、電気伝導度の製造条件の調整により、1カ月間以上凝集しない白金コロイドの製造方法等が示されている。また、特開2011-195931号公報では、白金ナノ粒子が凝集することなく、安定的に分散することが可能な白金ナノ粒子水溶液、白金ナノ粒子担持体及びその製造方法が開示されているが、凝集しない期間等は具体的に示されていない。また、特開2002-285207号公報には、白金コロイド水溶液を用いて得られる白金担持物が種々の酸化還元触媒等の用途に用いることができることが示されている。白金ナノコロイドの用途として、健康や美容効果を期待した製品等が多くみられるが、長期間凝集せずに保管が可能な白金ナノコロイド水溶液の製造方法の開示は見られない。金コロイドであれば、トーマス・グラハムが合成した金コロイドが150年以上経った現在でも英国国立研究所に保管されているという事が非特許文献1に記載されている。   In order to prevent agglomeration of platinum colloid, a protective agent is generally used. However, in JP 2009-228067 A, the pH of an aqueous solution is adjusted to 7.0 to 8.5 without a protective agent such as a surfactant. However, a method for producing a platinum colloid that does not aggregate for more than one month by adjusting the production conditions of electrical conductivity is shown. JP 2011-195931 discloses a platinum nanoparticle aqueous solution, a platinum nanoparticle carrier, and a method for producing the same, which can be stably dispersed without aggregation of platinum nanoparticles. The period of not aggregating is not specifically shown. Japanese Patent Application Laid-Open No. 2002-285207 discloses that a platinum support obtained using a platinum colloid aqueous solution can be used for various applications such as a redox catalyst. As a use of platinum nanocolloid, there are many products that are expected to have health and beauty effects, but no disclosure of a method for producing an aqueous solution of platinum nanocolloid that can be stored without agglomeration for a long period of time has been found. In the case of gold colloid, it is described in Non-Patent Document 1 that gold colloid synthesized by Thomas Graham is still stored at the British National Laboratory even after 150 years.

しかし、白金ナノコロイドは保護剤を含まない場合、ブラウン運動により、ナノ粒子同士の衝突を繰り返して、造粒されて大きくなり、凝集しやすく、一度、凝集し沈殿してしまった白金ナノコロイド水溶液は、ナノコロイド状態に戻すことが困難であり、また、白金はそれ自体高価な貴金属であるため、白金ナノコロイド水溶液の保存管理には、注意が必要であるという問題があった。   However, when the platinum nanocolloid does not contain a protective agent, the platinum nanocolloid aqueous solution that has been agglomerated and aggregated by repeating the collision of the nanoparticles due to Brownian motion, and has been aggregated and precipitated once. However, since it is difficult to return to the nanocolloid state, and platinum is an expensive noble metal in itself, there is a problem that precautions are required in the storage management of the platinum nanocolloid aqueous solution.

また、白金ナノコロイド水溶液を購入した場合でも、凝集しない様に厳重な保管・管理が必要であり、開封後の使用期限を守る必要性など、長期間のストックができないことに伴うランニングコストが増大するといった問題があった。   In addition, even if you purchase a platinum nanocolloid aqueous solution, strict storage and management are necessary so that it does not agglomerate, and the running cost increases due to the inability to stock for a long period, such as the need to keep the expiration date after opening There was a problem such as.

この改善策として、さまざまなナノコロイドの安定化法が開発されているが、溶液中のナノコロイド表面を帯電させて凝集を防ぐ方法や、界面活性剤などの添加剤により凝集を防ぐ方法が一般的である。しかし、添加剤の種類によっては、得られるコロイド特性に大きく影響する場合があり、その用途に対して注意が必要となるという問題もあった。   Various methods for stabilizing nanocolloids have been developed as measures to improve this, but methods that prevent aggregation by charging the surface of the nanocolloid in solution and methods that prevent aggregation using additives such as surfactants are generally used. Is. However, depending on the type of additive, there are cases where the resulting colloidal characteristics are greatly affected, and there is a problem that attention is required for its use.

特開2011−195931号公報JP2011-195931A 特開2009−228067号公報JP 2009-228067 A 特開2002−285207号公報JP 2002-285207 A 特開昭57 −149801号公報JP-A-57-149801

ナノ学会編 「ナノコロイド 合成・物性・機能」 寺西利治編著、島本司・山田真実共著、株式会社近代科学社発行"Nano colloid synthesis, physical properties, and functions" edited by Toshiharu Teranishi, Tsukasa Shimamoto and Mami Yamada, published by Modern Science Co., Ltd.

解決しようとする問題点は、製造工程から改善し、長期間凝集しない白金ナノコロイドの開発する点である。   The problem to be solved is to develop platinum nanocolloids that improve from the manufacturing process and do not aggregate for a long time.

本発明は、塩化白金酸の1種であるヘキサクロロ白金酸六水和物〔HClPt・6HO〕を主原料とした水溶液に過酸化水素〔H〕を加えて、温度管理及び水溶液色管理を行いながら、最終工程で有機還元剤を入れて製造された白金ナノコロイド水溶液であることを最も主要な特徴とする。 In the present invention, hydrogen peroxide [H 2 O 2 ] is added to an aqueous solution mainly composed of hexachloroplatinic acid hexahydrate [H 2 Cl 6 Pt · 6H 2 O], which is one type of chloroplatinic acid, The main feature is that it is a platinum nanocolloid aqueous solution manufactured by adding an organic reducing agent in the final step while performing temperature control and aqueous solution color control.

本発明の白金ナノコロイド水溶液は、明細書作成の時点において、半年以上あるいは1年以上の長期間に亘って、室内の常温状態に置いた経過観察並びに粒度分布測定においても、白金ナノコロイド水溶液が凝集せず、沈降物も見られないため、長期の保管ができるという利点がある。さらに、本発明の白金ナノコロイド水溶液は、天然由来の食品添加物である糖アルコールを用いたことにより、多種の用途に使用が可能であり、特に人体に触れる用途に適しているという利点もある。   The platinum nanocolloid aqueous solution of the present invention can be used in the follow-up observation and particle size distribution measurement at room temperature for a long period of more than six months or one year at the time of specification preparation. There is an advantage that it can be stored for a long time because it does not aggregate and no sediment is seen. Furthermore, the platinum nanocolloid aqueous solution of the present invention can be used for various applications by using sugar alcohol, which is a naturally derived food additive, and has an advantage that it is particularly suitable for applications that touch the human body. .

図1は本発明の白金ナノコロイド水溶液の写真である。FIG. 1 is a photograph of the aqueous platinum nanocolloid solution of the present invention. 図2は粒度分布測定時点で10カ月経過した本発明の白金ナノコロイド水溶液1(500ppm)の粒度分布を測定したグラフである。FIG. 2 is a graph obtained by measuring the particle size distribution of the platinum nanocolloid aqueous solution 1 (500 ppm) of the present invention after 10 months at the time of measuring the particle size distribution. 図3は粒度分布測定時点で4カ月経過した本発明の白金ナノコロイド水溶液2(500ppm)の粒度分布を測定したグラフである。FIG. 3 is a graph obtained by measuring the particle size distribution of the platinum nanocolloid aqueous solution 2 (500 ppm) of the present invention after 4 months at the time of measuring the particle size distribution. 図4は可視光応答特性を有する市販の三酸化タングステン水溶液と本発明の白金ナノコロイド水溶液を加えた三酸化タングステン水溶液のホルムアルデヒド分解性能の比較試験に使用した試料写真である。(実施例1)FIG. 4 is a sample photograph used for a comparative test of formaldehyde decomposition performance of a commercially available tungsten trioxide aqueous solution having visible light response characteristics and a tungsten trioxide aqueous solution to which the platinum nanocolloid aqueous solution of the present invention is added. Example 1 比較のため、過酸化水素を加えない場合のヘキサクロロ白金酸六水和物0.5gと水500mlを加えて、マグネットスターらで撹拌した時の開始時の写真である。For comparison, it is a photograph at the start when 0.5 g of hexachloroplatinic acid hexahydrate and 500 ml of water without adding hydrogen peroxide and stirring with a magnetic star are added. 図5の水溶液の撹拌開始後、15分経過後の水溶液の写真である。It is the photograph of the aqueous solution after progress for 15 minutes after the start of stirring of the aqueous solution of FIG. 図5の水溶液の撹拌開始後、30分経過後の水溶液の写真である。It is the photograph of the aqueous solution after 30-minute progress after the stirring start of the aqueous solution of FIG. 図5の水溶液の撹拌開始後、45分経過後の水溶液の写真である。6 is a photograph of the aqueous solution after 45 minutes from the start of stirring of the aqueous solution in FIG. 5.

(製造方法1)
第1工程 ヘキサクロロ白金酸六水和物〔HPtCl・6HO〕0.5gと水〔HO〕500ml(=1000ppm)をビーカーに入れて、マグネットホットスターラで撹拌し、過酸化水素(H)3%溶液20mlを加えた水溶液を造る。
第2工程 20℃〜25℃の上記の水溶液の温度を80℃〜90℃まで加熱上昇させ、さらに水〔HO〕を200ml加える。
第3工程 クエン酸三ナトリウム〔CNa・2HO〕1%溶液を50ml加えて、一旦、水溶液温度を現在温度65℃〜70℃に調整する。
第4工程 加熱して、温度を95℃〜98℃(沸騰状態)で約10分間保持しつつ、水溶液色を観察しながら攪拌し、黄色の水溶液が急に赤みを帯びた黄金色に変化したことを確認して、水〔HO〕260mlを入れて、水溶液の温度を65℃〜70℃に調整する。
第5工程 糖アルコール1%溶液を40ml加え、自然冷却により水溶液温度を下げる。
第6工程 残存する過酸化水素〔H〕中の余分な酸素分を飛ばす目的で、さらに1〜2時間攪拌を継続する。
(Manufacturing method 1)
The first step of hexachloroplatinic acid hexahydrate [H 2 PtCl 6 · 6H 2 O] 0.5g of water [H 2 O] 500 ml (= 1000 ppm) was placed in a beaker and stirred with a magnetic hot stirrer, peroxide An aqueous solution is made by adding 20 ml of a 3% solution of hydrogen (H 2 O 2 ).
It was heated increase the temperature of the aqueous solution of the second step 20 ° C. to 25 ° C. to 80 ° C. to 90 ° C., further added 200ml of water [H 2 O].
A third step of trisodium citrate [C 6 H 5 Na 3 O 7 · 2H 2 O ] 1% solution was added 50 ml, once to adjust the temperature of the aqueous solution to the current temperature 65 ° C. to 70 ° C..
Step 4 Heating and maintaining the temperature at 95 ° C. to 98 ° C. (boiling state) for about 10 minutes while stirring while observing the color of the aqueous solution, the yellow aqueous solution suddenly changed to a reddish golden color After confirming this, 260 ml of water [H 2 O] is added, and the temperature of the aqueous solution is adjusted to 65 ° C to 70 ° C.
5th step 40 ml of 1% sugar alcohol solution is added, and the temperature of the aqueous solution is lowered by natural cooling.
Step 6 Stirring is continued for an additional 1-2 hours for the purpose of removing excess oxygen in the remaining hydrogen peroxide [H 2 O 2 ].

上記の第3工程において、クエン酸三ナトリウムが好ましいが、ポリビニルピロリドン(CON)やアスコルビン酸ナトリウム(CNaO)のようなC〜Cの有機還元剤も同様に用いることができる。 In the third step, trisodium citrate is preferred, but organic reducing agents of C 4 to C 6 such as polyvinylpyrrolidone (C 4 H 7 ON) and sodium ascorbate (C 6 H 7 NaO 6 ) are also the same. Can be used.

上記の第5工程で使用される糖アルコールとして、とりわけ、ペンチトール〔C(OH)〕、ヘキシトール〔C(OH)〕が有力であるが、その中でもマンニトール、ソルビトール、ガラクチトールが適している。ナノ粒子のブラウン運動による衝突から粒成長に繋がらないように、長期間、凝集・沈降しない安定化処理のために、種々の界面活性剤を用いる代わりに、本発明の白金ナノコロイド水溶液の製造には、天然由来の糖アルコールを用いることにより、種々の用途に適している。 Among the sugar alcohols used in the fifth step, pentitol [C 5 H 7 (OH) 5 ] and hexitol [C 6 H 8 (OH) 6 ] are particularly prominent, among which mannitol and sorbitol. Galactitol is suitable. Instead of using various surfactants for the stabilization treatment that does not aggregate and settle for a long time so as not to lead to particle growth from collision due to Brownian motion of nanoparticles, instead of using various surfactants, the aqueous solution of platinum nanocolloid of the present invention is used. Is suitable for various uses by using naturally derived sugar alcohols.

(製造方法2)
第1工程 ヘキサクロロ白金酸六水和物〔HPtCl・6HO〕0.1gと水〔HO〕100ml(=1000ppm)をビーカーに入れて、マグネットホットスターラで撹拌し、過酸化水素(H)2%溶液10mlを加えた水溶液を造る。
第2工程 20℃〜25℃の上記の水溶液の温度を80℃〜90℃まで加熱上昇させ、さらに水〔HO〕を80ml加える。
第3工程 アスコルビン酸〔C〕1%水溶液を20ml加えて、一旦、水溶液温度を現在温度65℃〜70℃に調整する。
第4工程 加熱して、温度を95℃〜98℃(沸騰状態)で約10分間保持しつつ、水溶液色を観察しながら攪拌し、黄色の水溶液が急に赤みを帯びた黄金色に変化したことを確認して、水〔HO〕50mlを入れて、水溶液の温度を65℃〜70℃に調整する。
第5工程 残存する過酸化水素〔H〕中の余分な酸素分を飛ばす目的で、さらに1〜2時間攪拌を継続すれば、400ppmの濃度の白金ナノコロイド水溶液が250ml製造できる。当該水溶液のpH値は、約3.5である。
(Manufacturing method 2)
The first step of hexachloroplatinic acid hexahydrate [H 2 PtCl 6 · 6H 2 O] 0.1g of water [H 2 O] 100 ml (= 1000 ppm) was placed in a beaker and stirred with a magnetic hot stirrer, peroxide An aqueous solution is made with 10 ml of a 2% solution of hydrogen (H 2 O 2 ).
Was heated increase the temperature of the aqueous solution of the second step 20 ° C. to 25 ° C. to 80 ° C. to 90 ° C., further added 80ml of water [H 2 O].
Third step 20 ml of 1% aqueous solution of ascorbic acid [C 6 H 8 O 6 ] is added, and the temperature of the aqueous solution is once adjusted to a current temperature of 65 ° C to 70 ° C.
Step 4 Heating and maintaining the temperature at 95 ° C. to 98 ° C. (boiling state) for about 10 minutes while stirring while observing the color of the aqueous solution, the yellow aqueous solution suddenly changed to a reddish golden color After confirming this, 50 ml of water [H 2 O] is added, and the temperature of the aqueous solution is adjusted to 65 ° C to 70 ° C.
Fifth Step If the stirring is continued for 1 to 2 hours for the purpose of removing excess oxygen in the remaining hydrogen peroxide [H 2 O 2 ], 250 ml of a platinum nanocolloid aqueous solution having a concentration of 400 ppm can be produced. The pH value of the aqueous solution is about 3.5.

上記の製造方法2の第3工程において、アスコルビン酸に替えて、C〜Cの果実酸であるリンゴ酸(C)1%水溶液20ml、クエン酸(C)1%水溶液20ml、あるいは有機還元剤であるポリビニルピロリドン(CON)1%水溶液30mlを使用しても、pH値が3.5〜4.0である400ppmの白金ナノコロイド水溶液が製造できる。 In the third step of the production method 2 described above, instead of ascorbic acid, 20 ml of a 1% aqueous solution of malic acid (C 4 H 6 O 5 ) that is a C 4 to C 6 fruit acid, citric acid (C 6 H 8 O 7 ) Even when 20 ml of 1% aqueous solution or 30 ml of polyvinylpyrrolidone (C 4 H 7 ON) as an organic reducing agent is used, a 400 ppm platinum nanocolloid aqueous solution having a pH value of 3.5 to 4.0 Can be manufactured.

当該製造方法2の様に、第4工程と第5工程の間に、糖アルコールによる白金ナノコロイド水溶液の安定化工程を入れないでも所望の効果が得られる場合があるが、ナノ粒子のブラウン運動による衝突から粒成長に繋がることを防止する上でも、長期間、凝集・沈降を防止するためには、水溶液のナノ状態の安定化処理のために糖アルコールとして、とりわけ、ペンチトール〔C(OH)〕、ヘキシトール〔C(OH)〕が有力であるが、その中でもマンニトール、ソルビトール、ガラクチトールを加えることが好ましい。 Like the production method 2, a desired effect may be obtained even if the step of stabilizing the platinum nanocolloid aqueous solution with sugar alcohol is not inserted between the fourth step and the fifth step. In order to prevent agglomeration and sedimentation for a long period of time even from preventing collision due to collision, the pentitol [C 5 H] is particularly used as a sugar alcohol for the nano-state stabilization treatment of the aqueous solution. 7 (OH) 5 ] and hexitol [C 6 H 8 (OH) 6 ] are effective, but among them, mannitol, sorbitol, and galactitol are preferably added.

(粒度分布)
図1は、粒度分布測定に使用した白金ナノコロイド水溶液の写真であり、容器の中は、実際の色味は黄金色の透明な液体である。図1の右の容器の中の白金ナノコロイド水溶液1は、平成27年7月27日に製造した物であり、左の容器の白金ナノコロイド水溶液2は、平成28年1月26日に製造した物である。粒度分布の測定は、株式会社マイクロトラックベル製の動的光散乱式(DLS:Dynamic Light Scattering)粒子径分布測定装置を使って、粒子分布を測定した。粒度分布測定は、平成28年5月24日であったので、図2は、粒度測定時点において、既に10カ月経過した本発明の白金ナノコロイド水溶液1(500ppm)の粒度分布を示したグラフであり、図3は、粒度測定時点において、既に4カ月経過した本発明の白金ナノコロイド水溶液2(500ppm)の粒度分布を示している。
(Particle size distribution)
FIG. 1 is a photograph of an aqueous solution of platinum nanocolloid used for particle size distribution measurement. In the container, the actual color is a golden transparent liquid. The platinum nanocolloid aqueous solution 1 in the right container in FIG. 1 was manufactured on July 27, 2015, and the platinum nanocolloid aqueous solution 2 in the left container was manufactured on January 26, 2016. It is a thing. The particle size distribution was measured by using a dynamic light scattering (DLS) particle size distribution measuring device manufactured by Microtrack Bell Co., Ltd. Since the particle size distribution measurement was on May 24, 2016, FIG. 2 is a graph showing the particle size distribution of the aqueous platinum nanocolloid solution 1 (500 ppm) of the present invention that has already passed 10 months at the time of particle size measurement. FIG. 3 shows the particle size distribution of the aqueous platinum nanocolloid solution 2 (500 ppm) of the present invention that has already passed 4 months at the time of particle size measurement.

図2から、本発明の白金ナノコロイド水溶液1は、10カ月経過しているにもかかわらず、凝集・沈降はなく、粒径が4.1nm±1.9nmの範囲内に100%含まれていることを示しており、図3から、本発明の白金ナノコロイド水溶液2は、4カ月経過しているにもかかわらず、同様に凝集・沈降もなく、粒径が4.2nm±2.2nmの範囲内に100%含まれていることを示している。   From FIG. 2, the platinum nanocolloid aqueous solution 1 of the present invention has no aggregation / sedimentation even though 10 months have passed, and the particle diameter is 100% within the range of 4.1 nm ± 1.9 nm. FIG. 3 shows that the platinum nanocolloid aqueous solution 2 of the present invention has no agglomeration / sedimentation and the particle size is 4.2 nm ± 2.2 nm even though 4 months have passed. It is shown that it is included in the range of 100%.

過酸化水素を添加しない場合のヘキサクロロ白金酸六水和物の水溶液の凝集しやすさを調べるため、ヘキサクロロ白金酸六水和物0.5gと水500mlを加えて、マグネットスターラ7で撹拌した時の状態変化の図面代用写真を図5〜図8に示す。撹拌開始直後の写真が図5であり、撹拌開始から15分経過した写真が図6であり、撹拌開始から30分経過した写真が図7であり、撹拌開始から45分経過した写真が図8である。
図5の水溶液は、ほぼ透明であるが、15分経過した時点の図6では、本発明の白金ナノコロイド水溶液と同じ程度の透明性を有していたが、30分経過した時点の図7では、凝集が始まり、45分経過した時点の図8では、水溶液が黒色不透明な状態となり、ヘキサクロロ白金酸六水和物の水溶液は凝集し易いことが分かる。
In order to investigate the ease of aggregation of the aqueous solution of hexachloroplatinic acid hexahydrate without adding hydrogen peroxide, 0.5 g of hexachloroplatinic acid hexahydrate and 500 ml of water were added and stirred with a magnetic stirrer 7 FIGS. 5 to 8 show photographs substituted for drawings of the state changes. FIG. 5 is a photograph immediately after the start of stirring, FIG. 6 is a photograph of 15 minutes after the start of stirring, FIG. 7 is a photograph of 30 minutes after the start of stirring, and FIG. 8 is a photograph of 45 minutes after the start of stirring. It is.
The aqueous solution of FIG. 5 is almost transparent, but in FIG. 6 at the time when 15 minutes passed, it had the same degree of transparency as the platinum nanocolloid aqueous solution of the present invention. Then, in FIG. 8 when 45 minutes have passed since the aggregation started, it can be seen that the aqueous solution is in a black opaque state and the aqueous solution of hexachloroplatinic acid hexahydrate tends to aggregate.

市販の三酸化タングステン水溶液(濃度0.1重量%)と、当該市販の三酸化タングステン水溶液(濃度0.1重量%)230mlに本発明の白金ナノコロイド水溶液(500ppm)20mlを添加して全体量が250mlになるように調整した水溶液の2種類を用意して、ホルムアルデヒドの除去性能比較試験を行なった。図4に示すように、縦10cm×横10cm×厚さ1mmの市販の壁紙(光触媒機能なし)の片側表面に約20g/mの量をスポンジでまんべんなく塗布した試料1と試料2を用意した。試料1は、市販の三酸化タングステン水溶液を塗布した壁紙試料で、試料2は、市販の三酸化タングステン水溶液に本発明の白金ナノコロイド水溶液を添加した水溶液を塗布した壁紙試料である。それぞれの試料を5リットルのテドラーバッグ(近江オドエアーサービス社製)に入れ、初期濃度40ppmとなるように調整した測定対象ガスであるホルムアルデヒドガスを3リットル注入し、蛍光灯(1000ルクス〔lx〕)照射下に静置して、初期濃度、2時間後、4時間後及び6時間後のホルムアルデヒド濃度を検知管により測定した。使用ガス検知管は、株式会社ガステック社製で、検知管ナンバー91Lで、ホルムアルデヒド短時間検知管を使用した。 Add 20 ml of the platinum nanocolloid aqueous solution (500 ppm) of the present invention to 230 ml of a commercially available tungsten trioxide aqueous solution (concentration 0.1 wt%) and 230 ml of the commercially available tungsten trioxide aqueous solution (concentration 0.1 wt%). Two types of aqueous solutions adjusted to 250 ml were prepared and a formaldehyde removal performance comparison test was conducted. As shown in FIG. 4, sample 1 and sample 2 were prepared in which an amount of about 20 g / m 2 was evenly applied with a sponge to one side surface of a commercial wallpaper (no photocatalytic function) 10 cm long × 10 cm wide × 1 mm thick. . Sample 1 is a wallpaper sample obtained by applying a commercially available tungsten trioxide aqueous solution, and sample 2 is a wallpaper sample obtained by applying an aqueous solution obtained by adding the platinum nanocolloid aqueous solution of the present invention to a commercially available tungsten trioxide aqueous solution. Put each sample in a 5 liter Tedlar bag (Omi Odo Air Service Co., Ltd.), inject 3 liters of formaldehyde gas, which is the measurement target gas adjusted to an initial concentration of 40 ppm, and fluorescent light (1000 lux [lx]) After standing still under irradiation, the initial concentration, the formaldehyde concentration after 2, 4 and 6 hours were measured with a detector tube. The gas detector tube used was manufactured by Gastec Co., Ltd., and the detector tube number 91L was used, and a short formaldehyde detector tube was used.

表1は、試料1と試料2のホルムアルデヒド除去性能試験を示しているが、テドラーバッグ等への吸着の影響を調べるために、ブランク(空試験)も行い、ホルムアルデヒド濃度を測定した。この結果から、試料1の市販の三酸化タングステンのみの場合、2時間後のホルムアルデヒド濃度は6.2ppmであり、4時間後と6時間後は、当該検知管の検知限界近くの5ppm以下となっているのに対して、本発明の白金ナノコロイド水溶液を添加した試料2は、2時間後には、検知管の検知限界近くの5ppm以下となって、ホルムアルデヒド除去性能が、三酸化タングステン水溶液のみと比較して向上していることが分かる。また、ブランク(空試験)のホルムアルデヒド濃度に略変化は見られず、テドラーバッグ等への吸着はないものと考えられ、表1の数値は試料1及び試料2の可視光活性によるホルムアルデヒド除去性能を示していると考えられる。   Table 1 shows the formaldehyde removal performance test of Sample 1 and Sample 2. In order to examine the effect of adsorption on a Tedlar bag or the like, a blank (blank test) was also performed to measure the formaldehyde concentration. From this result, in the case of only commercially available tungsten trioxide of sample 1, the formaldehyde concentration after 2 hours is 6.2 ppm, and after 4 hours and 6 hours, it becomes 5 ppm or less near the detection limit of the detector tube. On the other hand, the sample 2 to which the platinum nanocolloid aqueous solution of the present invention was added became 5 ppm or less near the detection limit of the detector tube after 2 hours, and the formaldehyde removal performance was only the tungsten trioxide aqueous solution. It can be seen that the comparison is improved. In addition, the formaldehyde concentration in the blank (blank test) is not substantially changed, and it is considered that there is no adsorption to the Tedlar bag, etc. The numerical values in Table 1 indicate the formaldehyde removal performance of Sample 1 and Sample 2 by the visible light activity. It is thought that.

本発明の白金ナノコロイド水溶液の原料であるヘキサクロロ白金酸六水和物は、白金自体の価格4,004円/g(平成28年8月16日時点)よりも3〜4倍も高価であり、当該原料から白金ナノコロイド水溶液を製造した場合、長期期間、凝集せずにナノコロイド状態を維持できれば、維持費用の削減に大いに貢献できる。本発明の白金ナノコロイド水溶液は、粒度分布測定時点では、その製造から4カ月〜10カ月経過した物を使用し、当該特許出願時点では製造から12カ月経過しているが、沈降物は観察されず、透明な水溶液の状態を保っている。また、実施例1で示したように、可視光活性光触媒への修飾物質として使用すれば、可視光活性の特性向上に寄与できると考えられる。   Hexachloroplatinic acid hexahydrate, which is a raw material for the aqueous platinum nanocolloid solution of the present invention, is 3 to 4 times more expensive than the price of platinum itself of 4,004 yen / g (as of August 16, 2016). When a platinum nanocolloid aqueous solution is produced from the raw material, if the nanocolloid state can be maintained without agglomerating for a long period of time, it can greatly contribute to the reduction of maintenance costs. The platinum nanocolloid aqueous solution of the present invention uses a product that has passed from 4 months to 10 months from its production at the time of particle size distribution measurement, and 12 months from its production at the time of the patent application, but sediment is observed. In other words, a transparent aqueous solution is maintained. Further, as shown in Example 1, it can be considered that if it is used as a modifying substance for the visible light active photocatalyst, it can contribute to the improvement of visible light activity characteristics.

消臭・抗菌機能としての用途として、ペット臭、ノネナール、室内のタバコ臭、靴下や下着の臭い、トイレ、クローゼット、下駄箱の臭い、寝具、ジュータンの消臭、抗菌、アレルギーの元であるカビやダニ、花粉などのアレルゲンの分解除去や、大腸菌、黄色ブドウ球菌、O-157、鳥インフルエンザ、サーズ、ノロウイルス、その他の細菌の滅菌等に応用が期待できる。さらには、酸化チタンや酸化タングステンへの修飾により、ビルの外壁の防汚や、室内のホルムアルデヒド、アセトアルデヒド等の有害ガスの分解除去への応用が可能である。また、常温での保管であっても、長期間、凝集・沈降しないナノコロイド状態を保持できるため、施工に必要な時にすぐに白金ナノコロイド水溶液として提供可能であることから、コスト削減効果が高いと言える。   Deodorant and antibacterial functions include pet odor, nonenal, indoor cigarette odor, sock and underwear odor, toilet, closet, clog box odor, bedding, deutan odor, antibacterial, allergic mold It can be expected to be applied to the decomposition and removal of allergens such as mites, mites and pollen, and the sterilization of Escherichia coli, Staphylococcus aureus, O-157, avian influenza, thers, norovirus, and other bacteria. Furthermore, the modification to titanium oxide or tungsten oxide can be applied to the antifouling of the outer wall of the building and the decomposition and removal of harmful gases such as formaldehyde and acetaldehyde in the room. In addition, even when stored at room temperature, it can maintain a nanocolloidal state that does not aggregate or settle for a long period of time, so it can be immediately provided as an aqueous solution of platinum nanocolloid when needed for construction, which is highly cost-effective It can be said.

1 平成27年7月27日に製造した白金ナノコロイド水溶液
2 平成28年1月26日に製造した白金ナノコロイド水溶液
3 市販の三酸化タングステン水溶液のみを塗布した壁紙(試料1)
4 市販の三酸化タングステン水溶液に本発明の白金ナノコロイド水溶液を添加した水溶液を塗布した壁紙(試料2)
5 ビーカー
6 温度計
7 マグネットホットスターラ
8 回転子
9 ガラス板
1 Platinum nanocolloid aqueous solution manufactured on July 27, 2015 2 Platinum nanocolloid aqueous solution manufactured on January 26, 2016 3 Wall paper coated only with a commercially available tungsten trioxide aqueous solution (Sample 1)
4 Wall paper coated with an aqueous solution of platinum nanocolloid solution of the present invention added to a commercially available tungsten trioxide aqueous solution (Sample 2)
5 Beaker 6 Thermometer 7 Magnet Hot Stirrer 8 Rotor 9 Glass Plate

Claims (6)

塩化白金酸を過酸化水素存在下で、温度を調整しながら、C〜Cの果実酸又はC〜Cの還元性を示す有機還元剤で還元する白金ナノコロイド水溶液の製造方法。 A method for producing an aqueous platinum nanocolloid solution in which chloroplatinic acid is reduced with a C 4 to C 6 fruit acid or an organic reducing agent exhibiting C 4 to C 6 reducing properties while adjusting the temperature in the presence of hydrogen peroxide. 塩化白金酸を過酸化水素存在下で、温度を調整しながら、C〜Cの果実酸又はC〜Cの還元性を示す有機還元剤で還元し、糖アルコールで安定化処理する白金ナノコロイド水溶液の製造方法。 Chloroplatinic acid in the presence of hydrogen peroxide, while adjusting the temperature, is reduced with an organic reducing agent indicating reduction of fruit acids or C 4 -C 6 of C 4 -C 6, treating stabilized with a sugar alcohol A method for producing an aqueous platinum nanocolloid solution. 〜Cの果実酸が、リンゴ酸、アスコルビン酸又はクエン酸である請求項1乃至請求項2記載の白金ナノコロイド水溶液の製造方法。 The method for producing an aqueous platinum nanocolloid solution according to claim 1 or 2, wherein the C 4 to C 6 fruit acid is malic acid, ascorbic acid or citric acid. 〜Cの有機還元剤が、クエン酸三ナトリウム、ポリビニルピロリドン又はアスコルビン酸ナトリウムである請求項1乃至請求項2記載の白金ナノコロイド水溶液の製造方法。 The method for producing an aqueous platinum nanocolloid solution according to claim 1 or 2, wherein the C 4 to C 6 organic reducing agent is trisodium citrate, polyvinylpyrrolidone or sodium ascorbate. 製造後10カ月以上経過した後の粒度分布の範囲が、粒径4.0±2.0nm近辺にあり、沈降・凝集が見られない請求項1乃至請求項4記載の製造方法で製造された白金ナノコロイド水溶液。 The range of the particle size distribution after the lapse of 10 months or more after the production is in the vicinity of the particle size of 4.0 ± 2.0 nm, and no sedimentation / aggregation is observed. Platinum nanocolloid aqueous solution. 光触媒に添加して可視光活性を向上させる請求項5記載の白金ナノコロイド水溶液。 The platinum nanocolloid aqueous solution according to claim 5, which is added to a photocatalyst to improve visible light activity.
JP2016171956A 2016-09-02 2016-09-02 Manufacturing method of platinum nanocolloid and single nano platinum colloid aqueous solution having high stability and narrow particle size distribution width Active JP6536997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016171956A JP6536997B2 (en) 2016-09-02 2016-09-02 Manufacturing method of platinum nanocolloid and single nano platinum colloid aqueous solution having high stability and narrow particle size distribution width

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016171956A JP6536997B2 (en) 2016-09-02 2016-09-02 Manufacturing method of platinum nanocolloid and single nano platinum colloid aqueous solution having high stability and narrow particle size distribution width

Publications (2)

Publication Number Publication Date
JP2018035427A true JP2018035427A (en) 2018-03-08
JP6536997B2 JP6536997B2 (en) 2019-07-03

Family

ID=61565441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016171956A Active JP6536997B2 (en) 2016-09-02 2016-09-02 Manufacturing method of platinum nanocolloid and single nano platinum colloid aqueous solution having high stability and narrow particle size distribution width

Country Status (1)

Country Link
JP (1) JP6536997B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162485A1 (en) * 2019-02-06 2020-08-13 大阪ガスケミカル株式会社 Antivirus agent and method for removing virus
US11179781B2 (en) 2018-10-15 2021-11-23 Tripod Nano Technology Corporation Method of making colloidal platinum nanoparticles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113795260A (en) * 2019-08-20 2021-12-14 宫本有正 Malodor reducing agent for buttocks and/or feces

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5492588A (en) * 1977-12-12 1979-07-21 United Technologies Corp Manufacture of platinum dispersed solution and platinum catalyst
JP2004100040A (en) * 2002-07-16 2004-04-02 Nippon Sheet Glass Co Ltd Production method for colloidal solution, and support having colloidal particle fixed on surface thereof
JP2009228067A (en) * 2008-03-24 2009-10-08 Tanaka Kikinzoku Kogyo Kk Colloidal solution of platinum and production process therefor
JP2016023323A (en) * 2014-07-17 2016-02-08 日本エレクトロプレイテイング・エンジニヤース株式会社 Pretreatment liquid for electroless plating, and electroless plating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5492588A (en) * 1977-12-12 1979-07-21 United Technologies Corp Manufacture of platinum dispersed solution and platinum catalyst
JP2004100040A (en) * 2002-07-16 2004-04-02 Nippon Sheet Glass Co Ltd Production method for colloidal solution, and support having colloidal particle fixed on surface thereof
JP2009228067A (en) * 2008-03-24 2009-10-08 Tanaka Kikinzoku Kogyo Kk Colloidal solution of platinum and production process therefor
JP2016023323A (en) * 2014-07-17 2016-02-08 日本エレクトロプレイテイング・エンジニヤース株式会社 Pretreatment liquid for electroless plating, and electroless plating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11179781B2 (en) 2018-10-15 2021-11-23 Tripod Nano Technology Corporation Method of making colloidal platinum nanoparticles
WO2020162485A1 (en) * 2019-02-06 2020-08-13 大阪ガスケミカル株式会社 Antivirus agent and method for removing virus
JPWO2020162485A1 (en) * 2019-02-06 2021-02-18 大阪ガスケミカル株式会社 Antiviral agents and virus removal methods

Also Published As

Publication number Publication date
JP6536997B2 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
Wei et al. Synthesis of stable, low-dispersity copper nanoparticles and nanorods and their antifungal and catalytic properties
Abebe et al. A review on enhancing the antibacterial activity of ZnO: Mechanisms and microscopic investigation
US20210161777A1 (en) Methods of making silver nanoparticles and their applications
EP3177142B1 (en) A process for preparing an antimicrobial particulate composition
Varaprasad et al. Antibiotic copper oxide-curcumin nanomaterials for antibacterial applications
Besinis et al. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays
Vijayakumar et al. Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica
CN102548901B (en) There is the colloidal dispersion killed livestock of the silica dioxide granule being adsorbed on silver ion thereon
Liu et al. Ion release kinetics and particle persistence in aqueous nano-silver colloids
Rahisuddin et al. Biosynthesis of silver nanoparticles and its antibacterial and antifungal activities towards Gram-positive, Gram-negative bacterial strains and different species of Candida fungus
JP4564263B2 (en) Ultrafine metal particle-containing photocatalyst and method for producing the same
JP6536997B2 (en) Manufacturing method of platinum nanocolloid and single nano platinum colloid aqueous solution having high stability and narrow particle size distribution width
Sahni et al. Controlled green synthesis of silver nanoparticles by Allium cepa and Musa acuminata with strong antimicrobial activity
Younis et al. Titanium dioxide nanoparticles: Recent progress in antimicrobial applications
Ahmad et al. A kinetic study of silver nanoparticles formation from paracetamol and silver (I) in aqueous and micellar media
Seku et al. Hydrothermal synthesis of Copper nanoparticles, characterization and their biological applications
KR20210062899A (en) Composition for antibacterial and deodorization
Darroudi et al. Preparation, characterization, and antibacterial activity of γ-irradiated silver nanoparticles in aqueous gelatin
Ayati et al. Rate redox-controlled green photosynthesis of gold nanoparticles using H 3+ x PMo 12− x V x O 40
JP2013525426A (en) Liquid form composition for maintaining contact lenses and medical materials
Saha et al. Study of synergistic effects of antibiotics and triangular shaped silver nanoparticles, synthesized using uv-light irradiation, on s. aureus and p. aeruginosa
KR20140032080A (en) Hydrogen peroxide sensitive metal nanoparticles, method for producing the same and hydrogen peroxide detection system comprising the same
Basseem et al. Photocatalytic activity of co‐doped NPs based on ZnO as a new class of anti‐microbial agents: Synthesis, characterization, kinetics, isotherm, and in silico molecular docking simulation
JP6441541B2 (en) Beekeeping member and manufacturing method thereof
JP2020059706A (en) Cosmetic composition and method for producing the same, and cosmetics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190524

R150 Certificate of patent or registration of utility model

Ref document number: 6536997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250