JP2018035375A - Method for manufacturing metal thin film by atomic layer deposition method - Google Patents

Method for manufacturing metal thin film by atomic layer deposition method Download PDF

Info

Publication number
JP2018035375A
JP2018035375A JP2016166582A JP2016166582A JP2018035375A JP 2018035375 A JP2018035375 A JP 2018035375A JP 2016166582 A JP2016166582 A JP 2016166582A JP 2016166582 A JP2016166582 A JP 2016166582A JP 2018035375 A JP2018035375 A JP 2018035375A
Authority
JP
Japan
Prior art keywords
thin film
metal
atom
hydrogen
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016166582A
Other languages
Japanese (ja)
Other versions
JP6855191B2 (en
Inventor
佐藤 宏樹
Hiroki Sato
宏樹 佐藤
雄太郎 青木
Yutaro Aoki
雄太郎 青木
翼 白鳥
Tsubasa Shiratori
翼 白鳥
一樹 原野
Kazuki Harano
一樹 原野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Adeka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp filed Critical Adeka Corp
Priority to JP2016166582A priority Critical patent/JP6855191B2/en
Publication of JP2018035375A publication Critical patent/JP2018035375A/en
Application granted granted Critical
Publication of JP6855191B2 publication Critical patent/JP6855191B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a metal molybdenum thin film, a metal vanadium thin film, a metal cobalt thin film, a metal nickel thin film, a metal copper thin film and a metal chromium thin film, having less residual carbon and excellent quality.SOLUTION: A method for manufacturing a metal thin film comprises the steps of: (A) vaporizing an organic metal compound including one kind of metal atoms selected from a group consisting of a molybdenum atom, a vanadium atom, a cobalt atom, a nickel atom, a copper atom and a chromium atom and introducing the vaporized organic metal compound into a reaction chamber having a placed base to deposit a film on the base; (B) introducing at least one kind of first reactive gases selected from a group consisting of hydrogen chloride, hydrogen bromide, hydrogen iodide, monochloro silane, dichloro silane, trichloro silane, tetrachloro silane, boron trichloride, boron tribromide, methyl iodide and methyl bromide into the reaction chamber to react the organic metal compound; and (C) introducing at least one kind of second reactive gases selected from hydrogen, mono-silane, disilane and diborane into the reaction chamber to react the reaction product obtained in the (B) step.SELECTED DRAWING: None

Description

本発明は、原子層堆積法による金属モリブデン薄膜、金属バナジウム薄膜、金属コバルト薄膜、金属ニッケル薄膜、金属銅薄膜又は金属クロム薄膜の製造方法に関する。   The present invention relates to a method for producing a metal molybdenum thin film, a metal vanadium thin film, a metal cobalt thin film, a metal nickel thin film, a metal copper thin film, or a metal chromium thin film by atomic layer deposition.

金属モリブデン薄膜、金属バナジウム薄膜、金属コバルト薄膜、金属ニッケル薄膜、金属銅薄膜及び金属クロム薄膜は、電子材料、表示材料、被覆材、耐熱材、超合金、航空機の部材などに使用することができることが知られている。   Metal molybdenum thin film, metal vanadium thin film, metal cobalt thin film, metal nickel thin film, metal copper thin film and metal chromium thin film can be used for electronic materials, display materials, coating materials, heat-resistant materials, superalloys, aircraft components, etc. It has been known.

上記の薄膜の製造法としては、スパッタリング法、イオンプレーティング法、塗布熱分解法やゾルゲル法等のMOD法、CVD法、原子層堆積法(以下、ALD法と記載することもある)が挙げられ、得られる薄膜の品質が良好なことからCVD法やALD法が主に用いられる。   Examples of the method for producing the thin film include a sputtering method, an ion plating method, a MOD method such as a coating pyrolysis method and a sol-gel method, a CVD method, and an atomic layer deposition method (hereinafter sometimes referred to as an ALD method). The CVD method and the ALD method are mainly used because the quality of the obtained thin film is good.

非特許文献1には、Mo(NR)(NR’を用いたALD法による窒化モリブデン薄膜の製造方法が開示されており、特許文献1には、Mo(NR)(NHR’)を用いたALD法によるモリブデンを含有する薄膜の製造方法が開示されている。非特許文献1及び特許文献1で開示される方法のように、有機モリブデン錯体を還元剤と直接反応させることで金属モリブデン薄膜を製造した場合、薄膜中に炭素成分が残留してしまい、品質の良い金属モリブデン薄膜を製造することができない。特許文献2には、Cp(RV(NR (=NR)を用いたALD法によるバナジウムを含有する薄膜の製造方法が開示されている。特許文献2で開示される方法のように、有機バナジウム錯体を還元剤と直接反応させることで金属バナジウム薄膜を製造した場合、薄膜中に炭素成分が残留してしまい、品質の良い金属バナジウム薄膜を製造することができなかった。このように、従来、ALD法の金属供給源として知られているALD法用原料を還元剤と直接反応させることで金属薄膜を製造しようとした場合、薄膜中に残留炭素成分が残ってしまうことから高品質な金属薄膜を製造することが困難だった。 Non-Patent Document 1 discloses a method for producing a molybdenum nitride thin film by an ALD method using Mo (NR) 2 (NR ′ 2 ) 2 , and Patent Document 1 discloses Mo (NR) 2 (NHR ′ ) A method for producing a molybdenum-containing thin film by ALD using 2 is disclosed. When a metal molybdenum thin film is produced by directly reacting an organic molybdenum complex with a reducing agent as in the methods disclosed in Non-Patent Document 1 and Patent Document 1, carbon components remain in the thin film, and the quality A good metal molybdenum thin film cannot be produced. Patent Document 2, Cp (R 1) m V (NR 2 2) 2 (= NR 3) manufacturing method of a thin film of vanadium by the ALD method using are disclosed. When a metal vanadium thin film is produced by directly reacting an organic vanadium complex with a reducing agent as in the method disclosed in Patent Document 2, a carbon component remains in the thin film, and a high quality metal vanadium thin film is formed. Could not be manufactured. Thus, when an attempt is made to produce a metal thin film by directly reacting an ALD method raw material, which is conventionally known as a metal supply source for the ALD method, with a reducing agent, residual carbon components remain in the thin film. It was difficult to produce high-quality metal thin films.

特許文献3には、被処理基板を配置した減圧雰囲気の処理容器内に、モリブデン原料としてのMoClガス及び還元ガスを、同時に又は処理容器内のパージを挟んで交互に供給し、被処理基板を加熱しつつ被処理基板上でMoClガス及び還元ガスを反応させてモリブデン膜を成膜する方法が開示されている。しかし、MoClは融点が190〜200℃であるため、液体状態で輸送するためには非常に高い温度に加温する必要があることから輸送性が悪く、MoClを使用した金属モリブデン薄膜の製造は著しく生産性が悪いことが問題であった。さらに、MoClは沸点が270℃であるため、MoClを原料容器内で気化させて処理容器にMoClガスを供給する場合、原料容器内のMoClを均一に温めることが難しく、MoClを安定的に気化させることができず、均一な厚さの膜を得ることが難しいことが問題であった。 In Patent Document 3, MoCl 5 gas and a reducing gas as a molybdenum raw material are alternately supplied simultaneously or with a purge inside the processing container into a processing container in a reduced pressure atmosphere in which the processing target substrate is arranged. A method of forming a molybdenum film by reacting a MoCl 5 gas and a reducing gas on a substrate to be processed while heating the substrate is disclosed. However, since MoCl 5 has a melting point of 190 to 200 ° C., it needs to be heated to a very high temperature in order to be transported in a liquid state. Therefore, the transportability is poor, and the metal molybdenum thin film using MoCl 5 has a poor transportability. The problem was that the productivity was extremely poor. Furthermore, MoCl 5 since a boiling point of 270 ° C., when supplying MoCl 5 gas MoCl 5 into the processing chamber is vaporized in the source container, it is difficult to warm the MoCl 5 in the raw material container uniformly, MoCl 5 The problem is that it is difficult to stably vaporize the film and it is difficult to obtain a film having a uniform thickness.

特表2016−516892号公報JP-T-2006-516892 特表2012−505177号公報Special table 2012-505177 gazette 特開2016−098406号公報JP 2006-098406 A

MIIKKULAINEN,CHEM.VAP.DEPOSITION(2008)14,71−77MIIKKULAINEN, CHEM. VAP. DEPOSITION (2008) 14, 71-77

従来知られた方法では、残留炭素が少なく品質の良い金属モリブデン薄膜、金属バナジウム薄膜、金属コバルト薄膜、金属ニッケル薄膜、金属銅薄膜及び金属クロム薄膜を製造することが困難だった。   It has been difficult to produce a metal molybdenum thin film, a metal vanadium thin film, a metal cobalt thin film, a metal nickel thin film, a metal copper thin film, and a metal chromium thin film with low residual carbon and good quality by a conventionally known method.

本発明者等は、検討を重ねた結果、特定の工程を有する原子層堆積法による、金属薄膜の製造方法が上記課題を解決し得ることを知見し、本発明に到達した。   As a result of repeated studies, the present inventors have found that a method for producing a metal thin film by an atomic layer deposition method having a specific process can solve the above problems, and have reached the present invention.

本発明は、原子層堆積法による金属薄膜の製造方法において、(A)モリブデン原子、バナジウム原子、コバルト原子、ニッケル原子、銅原子及びクロム原子からなる群から選ばれる1種の金属原子を含有する有機金属化合物を気化させ、これを基体が設置された反応室に導入し、前記基体上に堆積させる工程(以下、(A)工程と略す場合がある)、(B)塩化水素、臭化水素、ヨウ化水素、モノクロロシラン、ジクロロシラン、トリクロロシラン、テトラクロロシラン、三塩化ホウ素、三臭化ホウ素、ヨウ化メチル及び臭化メチルからなる群から選ばれる少なくとも1種の第一の反応性ガスを前記反応室に導入し前記有機金属化合物と反応させる工程(以下、(B)工程と略す場合がある)、及び(C)水素、モノシラン、ジシラン及びジボランから選ばれる少なくとも1種の第二の反応性ガスを反応室に導入し前記(B)で得られた反応生成物と更に反応させる工程(以下、(C)工程と略す場合がある)を含む金属薄膜の製造方法を提供するものである。   The present invention, in a method for producing a metal thin film by atomic layer deposition, contains (A) one metal atom selected from the group consisting of molybdenum atom, vanadium atom, cobalt atom, nickel atom, copper atom and chromium atom. A process of vaporizing an organometallic compound, introducing it into a reaction chamber provided with a substrate, and depositing on the substrate (hereinafter sometimes abbreviated as (A)), (B) hydrogen chloride, hydrogen bromide At least one first reactive gas selected from the group consisting of hydrogen iodide, monochlorosilane, dichlorosilane, trichlorosilane, tetrachlorosilane, boron trichloride, boron tribromide, methyl iodide and methyl bromide A step of introducing into the reaction chamber and reacting with the organometallic compound (hereinafter sometimes abbreviated as (B) step), and (C) hydrogen, monosilane, disilane and Introducing at least one second reactive gas selected from borane into the reaction chamber and further reacting with the reaction product obtained in (B) (hereinafter sometimes abbreviated as (C)). The manufacturing method of the metal thin film containing is provided.

本発明によれば、残留炭素が少なく品質の良い金属モリブデン薄膜、金属バナジウム薄膜、金属コバルト薄膜、金属ニッケル薄膜、金属銅薄膜及び金属クロム薄膜を製造することができる。   According to the present invention, it is possible to manufacture a metal molybdenum thin film, a metal vanadium thin film, a metal cobalt thin film, a metal nickel thin film, a metal copper thin film, and a metal chromium thin film with little residual carbon and good quality.

図1は、本発明に係る金属薄膜の製造方法に用いられるALD法用装置の一例を示す概要図である。FIG. 1 is a schematic diagram showing an example of an apparatus for ALD used in the method for producing a metal thin film according to the present invention. 図2は、本発明に係る金属薄膜の製造方法に用いられるALD法用装置の別の例を示す概要図である。FIG. 2 is a schematic view showing another example of an apparatus for ALD method used in the method for producing a metal thin film according to the present invention. 図3は、本発明に係る金属薄膜の製造方法に用いられるALD法用装置の別の例を示す概要図である。FIG. 3 is a schematic view showing another example of an apparatus for ALD method used in the method for producing a metal thin film according to the present invention. 図4は、本発明に係る金属薄膜の製造方法に用いられるALD法用装置の別の例を示す概要図である。FIG. 4 is a schematic view showing another example of an ALD method apparatus used in the method for producing a metal thin film according to the present invention.

本発明の原子層堆積法による金属薄膜の製造方法は、周知一般の原子層堆積法と同様の手順を用いることができるが、後述する(B)工程を必須とすることが本発明の特徴である。   The method for producing a metal thin film by the atomic layer deposition method of the present invention can use the same procedure as that of a known general atomic layer deposition method, but the feature of the present invention is that step (B) described later is essential. is there.

本発明の製造方法における(A)工程は、モリブデン原子、バナジウム原子、コバルト原子、ニッケル原子、銅原子及びクロム原子からなる群から選ばれる1種の金属原子を含有する有機金属化合物を気化させ、これを基体が設置された反応室に導入し、基体上に堆積させる工程である。本発明の製造方法は、(A)工程の前に、基板を反応室に設置する工程を含んでもよい。基体を反応室に設置する方法は、特に限定されるものではなく、周知一般の方法によって基体を反応室に設置すればよい。上記基体の材質としては、例えば、シリコン;インジウムヒ素、インジウムガリウム砒素、酸化ケイ素、窒化ケイ素、炭化ケイ素、窒化チタン、酸化タンタル、窒化タンタル、酸化チタン、窒化チタン、酸化ルテニウム、酸化ジルコニウム、酸化ハフニウム、酸化ランタン、窒化ガリウム等のセラミックス;ガラス;白金ルテニウム、アルミニウム、銅、ニッケル、コバルト、タングステン、モリブデン等の金属が挙げられる。基体の形状としては、板状、球状、繊維状、鱗片状が挙げられる。基体表面は、平面であってもよく、トレンチ構造等の三次元構造となっていてもよい。   The step (A) in the production method of the present invention vaporizes an organometallic compound containing one metal atom selected from the group consisting of molybdenum atom, vanadium atom, cobalt atom, nickel atom, copper atom and chromium atom, This is a step of introducing this into a reaction chamber provided with a substrate and depositing it on the substrate. The production method of the present invention may include a step of placing the substrate in the reaction chamber before the step (A). The method for installing the substrate in the reaction chamber is not particularly limited, and the substrate may be installed in the reaction chamber by a known general method. Examples of the material of the substrate include silicon; indium arsenide, indium gallium arsenide, silicon oxide, silicon nitride, silicon carbide, titanium nitride, tantalum oxide, tantalum nitride, titanium oxide, titanium nitride, ruthenium oxide, zirconium oxide, and hafnium oxide. And ceramics such as lanthanum oxide and gallium nitride; glass; metals such as platinum ruthenium, aluminum, copper, nickel, cobalt, tungsten, and molybdenum. Examples of the shape of the substrate include a plate shape, a spherical shape, a fiber shape, and a scale shape. The substrate surface may be a flat surface or a three-dimensional structure such as a trench structure.

上記モリブデン原子、バナジウム原子、コバルト原子、ニッケル原子、銅原子及びクロム原子からなる群から選ばれる1種の金属原子を含有する有機金属化合物は特に限定されるものではなく、所望とする金属薄膜の金属原子をその構造中に有する有機金属化合物であればよい。モリブデン原子、バナジウム原子、コバルト原子、ニッケル原子、銅原子及びクロム原子からなる群から選ばれる1種の金属原子を含有する有機金属化合物としては、例えば、アルキル、アルケニル、シクロアルキル、アリール、アルキニル、アルキルイミノ、アミノ、ジアルキルアミノアルキル、モノアルキルアミノ、ジアルキルアミノ、ジアミン、ジ(シリル−アルキル)アミノ、ジ(アルキル−シリル)アミノ、ジシリルアミノ、アルコキシ、アルコキシアルキル、ヒドラジド、ホスフィド、ニトリル、ジアルキルアミノアルコキシ、アルコキシアルキルジアルキルアミノ、シロキシ、ジケトナート、シクロペンタジエニル、シリル、ピラゾレート、グアニジネート、ホスホグアニジネート、アミジナート、ホスホアミジナート、ケトイミナート、ジケチミナート、カルボニル及びホスホアミジナートを配位子として有する有機金属化合物を挙げることができる。後述する(B)工程で用いられる第一の反応性ガスとの反応性が良好であり、高品質な金属薄膜を形成することができることから、アルキルイミノ、モノアルキルアミノ及びジアルキルアミノからなる群から選ばれる少なくとも1つの配位子を有する有機金属化合物であることが好ましい。   The organometallic compound containing one metal atom selected from the group consisting of the molybdenum atom, vanadium atom, cobalt atom, nickel atom, copper atom and chromium atom is not particularly limited, Any organometallic compound having a metal atom in its structure may be used. Examples of the organometallic compound containing one metal atom selected from the group consisting of molybdenum atom, vanadium atom, cobalt atom, nickel atom, copper atom and chromium atom include alkyl, alkenyl, cycloalkyl, aryl, alkynyl, Alkylimino, amino, dialkylaminoalkyl, monoalkylamino, dialkylamino, diamine, di (silyl-alkyl) amino, di (alkyl-silyl) amino, disilylamino, alkoxy, alkoxyalkyl, hydrazide, phosphide, nitrile, dialkylaminoalkoxy , Alkoxyalkyldialkylamino, siloxy, diketonate, cyclopentadienyl, silyl, pyrazolate, guanidinate, phosphoguanidinate, amidinate, phosphoamidinate, keto Minato, Jikechiminato, carbonyl and phosphoamidinato can be exemplified organic metal compound having as a ligand. Since the reactivity with the 1st reactive gas used at the (B) process mentioned later is favorable and a high quality metal thin film can be formed, it is from the group which consists of alkylimino, monoalkylamino, and dialkylamino. An organometallic compound having at least one selected ligand is preferable.

本発明の製造方法において、金属モリブデン薄膜又は金属バナジウム薄膜を製造する場合は、下記一般式(1)で表される化合物及び下記一般式(2)で表される化合物からなる群から選ばれる少なくとも1種の化合物を用いた場合、品質の良い金属薄膜を製造することができることから好ましい。   In the production method of the present invention, when producing a metal molybdenum thin film or a metal vanadium thin film, at least selected from the group consisting of a compound represented by the following general formula (1) and a compound represented by the following general formula (2): When one type of compound is used, it is preferable because a high-quality metal thin film can be produced.

Figure 2018035375
Figure 2018035375

(式中、R〜Rは各々独立に炭素原子数1〜5の直鎖若しくは分岐状アルキル基を表し、Mはモリブデン原子又はバナジウム原子を表し、yは0又は2を表し、xはyが0のときに4であり、yが2のときに2であり、複数存在するR〜Rはそれぞれ同一でもよく、異なってもよい。) (Wherein R 1 to R 3 each independently represents a linear or branched alkyl group having 1 to 5 carbon atoms, M represents a molybdenum atom or a vanadium atom, y represents 0 or 2, and x represents (When y is 0, it is 4; when y is 2, it is 2, and a plurality of R 1 to R 3 may be the same or different.)

Figure 2018035375
Figure 2018035375

(式中、Rは各々独立に炭素原子数1〜5の直鎖若しくは分岐状アルキル基を表し、Lは炭素原子数1〜5の直鎖若しくは分岐状アルキル基、トリメチルシリル基、ジメチルイソプロピルシリル基又はジメチル第三ブチルシリル基を表し、Mはモリブデン原子又はバナジウム原子を表し、複数存在するL及びRはそれぞれ同一でもよく、異なってもよい。) (In the formula, each R 4 independently represents a linear or branched alkyl group having 1 to 5 carbon atoms, and L represents a linear or branched alkyl group having 1 to 5 carbon atoms, a trimethylsilyl group, or dimethylisopropylsilyl. A group or a dimethyl tert-butylsilyl group, M represents a molybdenum atom or a vanadium atom, and a plurality of L and R 4 may be the same or different.)

上記一般式(1)及び(2)中のR、R、R、R及びLで表される炭素原子数1〜5の直鎖若しくは分岐状アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、第2ブチル基、第3ブチル基、イソブチル基、ペンチル基、イソペンチル基、第2ペンチル基、第3ペンチル基などを挙げることができる。 Examples of the linear or branched alkyl group having 1 to 5 carbon atoms represented by R 1 , R 2 , R 3 , R 4 and L in the general formulas (1) and (2) include methyl group, ethyl Group, propyl group, isopropyl group, butyl group, second butyl group, third butyl group, isobutyl group, pentyl group, isopentyl group, second pentyl group, third pentyl group and the like.

一般式(1)で表される有機モリブデン化合物の具体例としては、例えば下記に示す化合物No.1〜81が挙げられる。ただし、本発明は以下の例示化合物により何ら限定されるものではない。有機バナジウム化合物は、下記化合物No.1〜81におけるモリブデン原子をバナジウム原子に置き換えたものを挙げることができる。   Specific examples of the organomolybdenum compound represented by the general formula (1) include, for example, the following compound Nos. 1-81 is mentioned. However, this invention is not limited at all by the following exemplary compounds. The organic vanadium compound has the following compound No. The thing which replaced the molybdenum atom in 1-81 with the vanadium atom can be mentioned.

Figure 2018035375
Figure 2018035375

Figure 2018035375
Figure 2018035375

Figure 2018035375
Figure 2018035375

Figure 2018035375
Figure 2018035375

Figure 2018035375
Figure 2018035375

Figure 2018035375
Figure 2018035375

Figure 2018035375
Figure 2018035375

Figure 2018035375
Figure 2018035375

Figure 2018035375
Figure 2018035375

一般式(2)で表される有機モリブデン化合物の具体例としては、例えば下記に示す化合物No.82〜89が挙げられる。ただし、本発明は以下の例示化合物により何ら限定されるものではない。有機バナジウム化合物は、下記化合物No.82〜89におけるモリブデン原子をバナジウム原子に置き換えたものを挙げることができる。   Specific examples of the organomolybdenum compound represented by the general formula (2) include, for example, the following compound Nos. 82-89 are mentioned. However, this invention is not limited at all by the following exemplary compounds. The organic vanadium compound has the following compound No. The thing which replaced the molybdenum atom in 82-89 with the vanadium atom can be mentioned.

Figure 2018035375
Figure 2018035375

これらのなかでも、化合物No.2、9、37及び38は融点が低く、蒸気圧が高く、本発明の製造方法に適用した場合に得られる金属薄膜中の残留炭素が非常に少なくなることから特に好ましい。   Among these, Compound No. 2, 9, 37 and 38 are particularly preferred because they have a low melting point, a high vapor pressure, and very little residual carbon in the metal thin film obtained when applied to the production method of the present invention.

本発明の製造方法において、金属ニッケル薄膜を製造する場合は、下記一般式(3)で表される化合物を用いた場合、品質の良い金属ニッケル薄膜を製造することができることから好ましい。   In the manufacturing method of this invention, when manufacturing a metallic nickel thin film, when the compound represented by following General formula (3) is used, since a metallic nickel thin film with sufficient quality can be manufactured, it is preferable.

Figure 2018035375
Figure 2018035375

(式中、Rは炭素原子数2〜4の直鎖若しくは分岐状アルキル基を表し、R及びRは、炭素原子数1〜4の直鎖若しくは分岐状アルキル基を表す。) (In the formula, R 5 represents a linear or branched alkyl group having 2 to 4 carbon atoms, and R 6 and R 7 represent a linear or branched alkyl group having 1 to 4 carbon atoms.)

上記一般式(3)のRで表される炭素原子数2〜4の直鎖若しくは分岐状アルキル基としては、エチル基、プロピル基、イソプロピル基、ブチル基、第2ブチル基、第3ブチル基、イソブチル基を挙げることができる。 Examples of the linear or branched alkyl group having 2 to 4 carbon atoms represented by R 5 in the general formula (3) include an ethyl group, a propyl group, an isopropyl group, a butyl group, a second butyl group, and a third butyl. Group and isobutyl group.

上記一般式(3)のR及びRで表される炭素原子数1〜4の直鎖若しくは分岐状アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、第2ブチル基、第3ブチル基、イソブチル基を挙げることができる。 Examples of the linear or branched alkyl group having 1 to 4 carbon atoms represented by R 6 and R 7 in the general formula (3) include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a second group. Examples thereof include a butyl group, a tertiary butyl group, and an isobutyl group.

一般式(3)で表される有機ニッケル化合物の具体例としては、例えば下記に示す化合物No.90〜95が挙げられる。ただし、本発明は以下の例示化合物により何ら限定されるものではない。   Specific examples of the organic nickel compound represented by the general formula (3) include, for example, the following compound Nos. 90-95 is mentioned. However, this invention is not limited at all by the following exemplary compounds.

Figure 2018035375
Figure 2018035375

これらのなかでも、化合物No.90、92及び94は融点が低く、蒸気圧が高く、本発明の製造方法に適用した場合に得られる金属薄膜中の残留炭素が非常に少なくなることから特に好ましい。   Among these, Compound No. 90, 92 and 94 are particularly preferred because they have a low melting point, a high vapor pressure, and very little residual carbon in the metal thin film obtained when applied to the production method of the present invention.

(A)工程における有機金属化合物を気化させる方法としては、特に限定されるものではなく、周知一般の原子層堆積法に用いられる有機金属化合物の気化方法で行うことができる。例えば、原料容器中で加熱や減圧することによって気化させることができる。加熱する際の温度は20℃〜200℃の範囲が好ましい。また、(A)工程において、気化させた有機金属化合物を基体上に堆積させる際の基体の温度は20〜600℃の範囲が好ましく、100〜450℃がより好ましい。   The method for vaporizing the organometallic compound in the step (A) is not particularly limited, and can be carried out by a method for vaporizing an organometallic compound used in a known general atomic layer deposition method. For example, it can be vaporized by heating or reducing the pressure in the raw material container. The heating temperature is preferably in the range of 20 ° C to 200 ° C. In the step (A), the temperature of the substrate when the vaporized organometallic compound is deposited on the substrate is preferably 20 to 600 ° C, more preferably 100 to 450 ° C.

本発明の製造方法における(B)工程は、塩化水素、臭化水素、ヨウ化水素、モノクロロシラン、ジクロロシラン、トリクロロシラン、テトラクロロシラン、三塩化ホウ素、三臭化ホウ素、ヨウ化メチル及び臭化メチルからなる群から選ばれる少なくとも1種の第一の反応性ガスを反応室に導入し(A)工程で堆積させた有機金属化合物と反応させる工程である。第一の反応性ガスの導入方法は、特に限定されるものではなく、周知一般の原子層堆積法に用いられる反応性ガスの導入方法と同様に導入することができる。(B)工程を行う際の基体の温度は20〜600℃の範囲が好ましく、100〜450℃がより好ましい。第一の反応性ガスのなかでも、塩化水素を用いた場合には、得られる金属薄膜中の残留炭素を大幅に減らすことができることから特に好ましい。   Step (B) in the production method of the present invention includes hydrogen chloride, hydrogen bromide, hydrogen iodide, monochlorosilane, dichlorosilane, trichlorosilane, tetrachlorosilane, boron trichloride, boron tribromide, methyl iodide and bromide. In this step, at least one first reactive gas selected from the group consisting of methyl is introduced into the reaction chamber and reacted with the organometallic compound deposited in step (A). The introduction method of the first reactive gas is not particularly limited, and the first reactive gas can be introduced in the same manner as the reactive gas introduction method used in the well-known general atomic layer deposition method. (B) As for the temperature of the base | substrate at the time of performing a process, the range of 20-600 degreeC is preferable, and 100-450 degreeC is more preferable. Among the first reactive gases, when hydrogen chloride is used, it is particularly preferable because residual carbon in the obtained metal thin film can be greatly reduced.

本発明の製造方法における(C)工程は、水素、モノシラン、ジシラン及びジボランから選ばれる少なくとも1種の第二の反応性ガスを反応室に導入し(B)工程で得られた反応生成物と更に反応させる工程である。第二の反応性ガスの導入方法は、特に限定されるものではなく、周知一般の原子層堆積法に用いられる反応性ガスの導入方法と同様に導入することができる。(C)工程を行う際の基体の温度は20〜600℃の範囲が好ましく、100〜450℃がより好ましい。第二の反応性ガスのなかでも、水素を用いた場合には、得られる金属薄膜中の残留炭素を大幅に減らすことができることから特に好ましい。   In step (C) of the production method of the present invention, at least one second reactive gas selected from hydrogen, monosilane, disilane and diborane is introduced into the reaction chamber, and the reaction product obtained in step (B) It is a step of further reacting. The method for introducing the second reactive gas is not particularly limited, and the second reactive gas can be introduced in the same manner as the reactive gas introducing method used in the well-known general atomic layer deposition method. (C) As for the temperature of the base | substrate at the time of performing a process, the range of 20-600 degreeC is preferable, and 100-450 degreeC is more preferable. Among the second reactive gases, when hydrogen is used, it is particularly preferable because residual carbon in the obtained metal thin film can be greatly reduced.

例えば、本発明の製造方法によってシリコン基体上に金属モリブデン薄膜を製造する場合は、まず、シリコン基体を反応室内に設置し、有機モリブデン化合物を原料容器内で気化させ、これを反応室に導入し、100℃〜600℃に加温したシリコン基体上に堆積させる((A)工程)。   For example, when a metal molybdenum thin film is produced on a silicon substrate by the production method of the present invention, first, the silicon substrate is placed in a reaction chamber, an organic molybdenum compound is vaporized in a raw material container, and this is introduced into the reaction chamber. And depositing on a silicon substrate heated to 100 ° C. to 600 ° C. (step (A)).

次に、シリコン基体上に堆積しなかった有機モリブデン化合物を反応室から排気する(排気工程1)。シリコン基体上に堆積(吸着)しなかった有機モリブデン化合物が反応室から完全に排気されるのが理想的であるが、必ずしも完全に排気される必要はない。排気方法としては、ヘリウム、アルゴンなどの不活性ガスにより系内をパージする方法、系内を減圧することで排気する方法、これらを組み合わせた方法などが挙げられる。減圧する場合の減圧度は、0.01〜300Paが好ましく、0.1〜100Paがより好ましい。   Next, the organomolybdenum compound not deposited on the silicon substrate is exhausted from the reaction chamber (exhaust process 1). Ideally, the organomolybdenum compound that has not been deposited (adsorbed) on the silicon substrate should be completely evacuated from the reaction chamber, but not necessarily completely evacuated. Examples of the exhaust method include a method of purging the system with an inert gas such as helium and argon, a method of exhausting the system by depressurizing the system, and a method combining these. When the pressure is reduced, the degree of pressure reduction is preferably 0.01 to 300 Pa, and more preferably 0.1 to 100 Pa.

次に、反応室に第一の反応性ガスとして塩化水素を導入し、シリコン基体上に堆積させた有機モリブデン化合物と反応させる((B)工程)。本工程において熱を作用させる場合の温度は、20℃〜600℃が好ましく、100〜450℃がより好ましい。   Next, hydrogen chloride is introduced into the reaction chamber as the first reactive gas, and reacted with the organic molybdenum compound deposited on the silicon substrate (step (B)). The temperature when heat is applied in this step is preferably 20 ° C to 600 ° C, more preferably 100 to 450 ° C.

次に、未反応の塩化水素及び副生したガスを反応室から排気する(排気工程2)。未反応の塩化水素及び副生したガスが反応室から完全に排気されるのが理想的であるが、必ずしも完全に排気される必要はない。排気方法としては、ヘリウム、アルゴンなどの不活性ガスにより系内をパージする方法、系内を減圧することで排気する方法、これらを組み合わせた方法などが挙げられる。減圧する場合の減圧度は、0.01〜300Paが好ましく、0.1〜100Paがより好ましい。   Next, unreacted hydrogen chloride and by-product gas are exhausted from the reaction chamber (exhaust process 2). Ideally, unreacted hydrogen chloride and by-product gases are completely exhausted from the reaction chamber, but it is not necessary to exhaust them completely. Examples of the exhaust method include a method of purging the system with an inert gas such as helium and argon, a method of exhausting the system by depressurizing the system, and a method combining these. When the pressure is reduced, the degree of pressure reduction is preferably 0.01 to 300 Pa, and more preferably 0.1 to 100 Pa.

次に、反応室に第二の反応性ガスとして水素を導入し、シリコン基体上に堆積した有機モリブデン化合物と第一の反応性ガスとの反応生成物と更に反応させる(C)工程)。本工程において熱を作用させる場合の温度は、20℃〜600℃が好ましく、100〜450℃がより好ましい。   Next, hydrogen is introduced into the reaction chamber as the second reactive gas, and further reacted with the reaction product of the organic molybdenum compound deposited on the silicon substrate and the first reactive gas (step (C)). The temperature when heat is applied in this step is preferably 20 ° C to 600 ° C, more preferably 100 to 450 ° C.

次に、未反応の水素及び副生したガスを反応室から排気する(排気工程3)。未反応の水素及び副生したガスが反応室から完全に排気されるのが理想的であるが、必ずしも完全に排気される必要はない。排気方法としては、ヘリウム、アルゴンなどの不活性ガスにより系内をパージする方法、系内を減圧することで排気する方法、これらを組み合わせた方法などが挙げられる。減圧する場合の減圧度は、0.01〜300Paが好ましく、0.1〜100Paがより好ましい。   Next, unreacted hydrogen and by-product gas are exhausted from the reaction chamber (exhaust process 3). Ideally, unreacted hydrogen and by-product gases are completely exhausted from the reaction chamber, but it is not necessary to exhaust them completely. Examples of the exhaust method include a method of purging the system with an inert gas such as helium and argon, a method of exhausting the system by depressurizing the system, and a method combining these. When the pressure is reduced, the degree of pressure reduction is preferably 0.01 to 300 Pa, and more preferably 0.1 to 100 Pa.

上記の(A)工程、排気工程1、(B)工程、排気工程2、(C)工程及び排気工程3からなる一連の操作による薄膜堆積を1サイクルとし、このサイクルを必要な膜厚の金属薄膜が得られるまで複数回繰り返してもよい。   Thin film deposition by a series of operations consisting of the above-described steps (A), evacuation step 1, (B), evacuation step 2, (C) and evacuation step 3 is defined as one cycle, and this cycle is a metal having a required film thickness You may repeat several times until a thin film is obtained.

また、本発明の製造方法には、プラズマ、光、電圧などのエネルギーを印加してもよい。これらのエネルギーを印加する時期は、特には限定されず、例えば、(A)工程における有機金属化合物ガス導入時、(B)工程又は(C)工程における加温時、排気工程における系内の排気時でもよく、上記の各工程の間でもよい。   Moreover, you may apply energy, such as a plasma, light, and voltage, to the manufacturing method of this invention. The timing for applying these energies is not particularly limited. For example, when introducing the organometallic compound gas in the step (A), heating in the step (B) or (C), exhausting in the system in the exhaust step It may be time or between the above steps.

本発明の製造方法においては、薄膜堆積の後に、より良好な膜質を得るために不活性雰囲気下もしくは還元性ガス雰囲気下でアニール処理を行ってもよく、段差埋め込みが必要な場合には、リフロー工程を設けてもよい。この場合の温度は、400〜1200℃であり、500〜800℃が好ましい。   In the manufacturing method of the present invention, after thin film deposition, annealing may be performed in an inert atmosphere or a reducing gas atmosphere in order to obtain a better film quality. A process may be provided. The temperature in this case is 400-1200 degreeC, and 500-800 degreeC is preferable.

本発明により金属薄膜を製造するのに用いる装置は、周知のALD法用装置を用いることができる。具体的な装置の例としては図1のような原子層堆積法用原料をバブリング供給することのできる装置や、図2のように気化室を有する装置が挙げられる。また、図3及び図4のように反応性ガスに対してプラズマ処理を行うことのできる装置が挙げられる。図1〜図4のような枚葉式装置に限らず、バッチ炉を用いた多数枚同時処理可能な装置を用いることもできる。   As the apparatus used for manufacturing the metal thin film according to the present invention, a well-known ALD method apparatus can be used. Specific examples of the apparatus include an apparatus capable of bubbling and supplying a material for atomic layer deposition as shown in FIG. 1, and an apparatus having a vaporization chamber as shown in FIG. In addition, as shown in FIGS. 3 and 4, an apparatus capable of performing plasma treatment on a reactive gas can be used. The present invention is not limited to the single wafer type apparatus as shown in FIGS.

以下、実施例及び比較例をもって本発明を更に詳細に説明する。しかしながら、本発明は以下の実施例等によって何ら制限を受けるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. However, the present invention is not limited by the following examples.

[実施例1]金属モリブデン薄膜の製造
化合物No.2を原子層堆積法用原料とし、図1に示す装置を用いて以下の条件のALD法により、シリコンウエハ上に金属モリブデン薄膜を製造した。得られた薄膜について、X線反射率法による膜厚測定及びX線光電子分光法による薄膜組成の確認を行ったところ、膜厚は2.0nmであり、膜組成は金属モリブデンであり、炭素含有量は検出下限である0.1atom%よりも少なかった。1サイクル当たりに得られる膜厚は、0.04nmであった。
Example 1 Production of Metal Molybdenum Thin Film Compound No. 1 A metal molybdenum thin film was produced on a silicon wafer by the ALD method under the following conditions using the apparatus shown in FIG. About the obtained thin film, when the film thickness measurement by X-ray reflectivity method and the thin film composition were confirmed by X-ray photoelectron spectroscopy, the film thickness was 2.0 nm, the film composition was metallic molybdenum, and carbon content The amount was less than the detection limit of 0.1 atom%. The film thickness obtained per cycle was 0.04 nm.

(条件)
反応温度(シリコンウエハ温度);380℃
第一の反応性ガス:塩化水素
第二の反応性ガス:水素
(工程)
下記(1)〜(6)からなる一連の工程を1サイクルとして、50サイクル繰り返した。
(1)原料容器温度:90℃、原料容器内圧力:70Paの条件で気化させた原子層堆積法用原料を成膜チャンバーに導入し、系圧力:100Paで10秒間堆積させる。
(2)15秒間のアルゴンパージにより、堆積しなかった原料を除去する。
(3)第一の反応性ガスを成膜チャンバーに導入し、系圧力:100Paで10秒間反応させる。
(4)15秒間のアルゴンパージにより、未反応の第一の反応性ガス及び副生ガスを除去する。
(5)第二の反応性ガスを成膜チャンバーに導入し、系圧力:100Paで10秒間反応させる。
(6)15秒間のアルゴンパージにより、未反応の第二の反応性ガス及び副生ガスを除去する。
(conditions)
Reaction temperature (silicon wafer temperature); 380 ° C
First reactive gas: hydrogen chloride Second reactive gas: hydrogen (process)
A series of steps consisting of the following (1) to (6) was set as one cycle and repeated 50 cycles.
(1) A material for an atomic layer deposition method vaporized under the conditions of a raw material container temperature: 90 ° C. and a raw material container pressure: 70 Pa is introduced into a film forming chamber, and is deposited at a system pressure: 100 Pa for 10 seconds.
(2) The raw material which did not deposit is removed by argon purge for 15 seconds.
(3) A first reactive gas is introduced into the film forming chamber and reacted at a system pressure of 100 Pa for 10 seconds.
(4) The unreacted first reactive gas and by-product gas are removed by an argon purge for 15 seconds.
(5) A second reactive gas is introduced into the film forming chamber and reacted at a system pressure of 100 Pa for 10 seconds.
(6) The unreacted second reactive gas and by-product gas are removed by argon purge for 15 seconds.

[実施例2]金属モリブデン薄膜の製造
化合物No.2を原子層堆積法用原料とし、図1に示す装置を用いて以下の条件のALD法により、シリコンウエハ上に金属モリブデン薄膜を製造した。得られた薄膜について、X線反射率法による膜厚測定及びX線光電子分光法による薄膜組成の確認を行ったところ、膜厚は1.5nmであり、膜組成は金属モリブデンであり、炭素含有量は検出下限である0.1atom%よりも少なかった。1サイクル当たりに得られる膜厚は、0.03nmであった。
[Example 2] Production of metallic molybdenum thin film A metal molybdenum thin film was produced on a silicon wafer by the ALD method under the following conditions using the apparatus shown in FIG. About the obtained thin film, when the film thickness measurement by X-ray reflectivity method and the thin film composition were confirmed by X-ray photoelectron spectroscopy, the film thickness was 1.5 nm, the film composition was metallic molybdenum, and contained carbon. The amount was less than the detection limit of 0.1 atom%. The film thickness obtained per cycle was 0.03 nm.

(条件)
反応温度(シリコンウエハ温度);400℃
第一の反応性ガス:ヨウ化メチル
第二の反応性ガス:水素
(工程)
下記(1)〜(6)からなる一連の工程を1サイクルとして、50サイクル繰り返した。
(1)原料容器温度:90℃、原料容器内圧力:70Paの条件で気化させた原子層堆積法用原料を成膜チャンバーに導入し、系圧力:100Paで10秒間堆積させる。
(2)15秒間のアルゴンパージにより、堆積しなかった原料を除去する。
(3)第一の反応性ガスを成膜チャンバーに導入し、系圧力:100Paで10秒間反応させる。
(4)15秒間のアルゴンパージにより、未反応の第一の反応性ガス及び副生ガスを除去する。
(5)第二の反応性ガスを成膜チャンバーに導入し、系圧力:100Paで10秒間反応させる。
(5)15秒間のアルゴンパージにより、未反応の第二の反応性ガス及び副生ガスを除去する。
(conditions)
Reaction temperature (silicon wafer temperature); 400 ° C
First reactive gas: methyl iodide Second reactive gas: hydrogen (process)
A series of steps consisting of the following (1) to (6) was set as one cycle and repeated 50 cycles.
(1) A material for an atomic layer deposition method vaporized under the conditions of a raw material container temperature: 90 ° C. and a raw material container pressure: 70 Pa is introduced into a film forming chamber, and is deposited at a system pressure: 100 Pa for 10 seconds.
(2) The raw material which did not deposit is removed by argon purge for 15 seconds.
(3) A first reactive gas is introduced into the film forming chamber and reacted at a system pressure of 100 Pa for 10 seconds.
(4) The unreacted first reactive gas and by-product gas are removed by an argon purge for 15 seconds.
(5) A second reactive gas is introduced into the film forming chamber and reacted at a system pressure of 100 Pa for 10 seconds.
(5) The unreacted second reactive gas and by-product gas are removed by argon purge for 15 seconds.

[比較例1]金属モリブデン薄膜の製造
化合物No.2を原子層堆積法用原料とし、図1に示す装置を用いて以下の条件のALD法により、シリコンウエハ上に金属モリブデン薄膜を製造した。得られた薄膜について、X線反射率法による膜厚測定及びX線光電子分光法による薄膜組成の確認を行ったところ、膜厚は1.5nmであり、膜組成は金属モリブデンであり、炭素含有量は5atom%だった。1サイクル当たりに得られる膜厚は、0.03nmであった。
Comparative Example 1 Production of Metal Molybdenum Thin Film Compound No. 1 A metal molybdenum thin film was produced on a silicon wafer by the ALD method under the following conditions using the apparatus shown in FIG. About the obtained thin film, when the film thickness measurement by X-ray reflectivity method and the thin film composition were confirmed by X-ray photoelectron spectroscopy, the film thickness was 1.5 nm, the film composition was metallic molybdenum, and contained carbon. The amount was 5 atom%. The film thickness obtained per cycle was 0.03 nm.

(条件)
反応温度(シリコンウエハ温度);400℃
第一の反応性ガス:なし
第二の反応性ガス:水素
(工程)
下記(1)〜(4)からなる一連の工程を1サイクルとして、50サイクル繰り返した。
(1)原料容器温度:90℃、原料容器内圧力:70Paの条件で気化させた原子層堆積法原料を成膜チャンバーに導入し、系圧力:100Paで10秒間堆積させる。
(2)15秒間のアルゴンパージにより、堆積しなかった原料を除去する。
(3)水素ガスを成膜チャンバーに導入し、系圧力:100Paで10秒間反応させる。
(4)15秒間のアルゴンパージにより、未反応の水素ガス及び副生ガスを除去する。
(conditions)
Reaction temperature (silicon wafer temperature); 400 ° C
1st reactive gas: none 2nd reactive gas: hydrogen (process)
A series of steps consisting of the following (1) to (4) was set as one cycle and repeated 50 cycles.
(1) An atomic layer deposition method raw material vaporized under the conditions of a raw material container temperature: 90 ° C. and a raw material container pressure: 70 Pa is introduced into a film forming chamber, and is deposited at a system pressure: 100 Pa for 10 seconds.
(2) The raw material which did not deposit is removed by argon purge for 15 seconds.
(3) Hydrogen gas is introduced into the film forming chamber and reacted at a system pressure of 100 Pa for 10 seconds.
(4) Unreacted hydrogen gas and by-product gas are removed by argon purge for 15 seconds.

以上の結果から、比較例1では、得られた金属モリブデン薄膜中に大量の残留炭素成分が混入してしまったが、実施例1及び実施例2では、得られた金属モリブデン薄膜には残留炭素成分が検出されず、品質のよい金属モリブデン薄膜を製造することができることがわかった。   From the above results, in Comparative Example 1, a large amount of residual carbon component was mixed in the obtained metal molybdenum thin film, but in Examples 1 and 2, the obtained metal molybdenum thin film contained residual carbon. It was found that the component was not detected and a metal molybdenum thin film with good quality could be produced.

[実施例3]金属ニッケル薄膜の製造
化合物No.92を原子層堆積法用原料とし、図1に示す装置を用いて以下の条件のALD法により、シリコンウエハ上に金属ニッケル薄膜を製造した。得られた薄膜について、X線反射率法による膜厚測定及びX線光電子分光法による薄膜組成の確認を行ったところ、膜厚は2.0nmであり、膜組成は金属ニッケルであり、炭素含有量は検出下限である0.1atom%よりも少なかった。1サイクル当たりに得られる膜厚は、0.02nmであった。
[Example 3] Production of metallic nickel thin film A metal nickel thin film was produced on a silicon wafer by ALD using the apparatus shown in FIG. About the obtained thin film, when the film thickness measurement by X-ray reflectivity method and the thin film composition were confirmed by X-ray photoelectron spectroscopy, the film thickness was 2.0 nm, the film composition was metallic nickel, and carbon content The amount was less than the detection limit of 0.1 atom%. The film thickness obtained per cycle was 0.02 nm.

(条件)
反応温度(シリコンウエハ温度);250℃
第一の反応性ガス:塩化水素
第二の反応性ガス:水素
(工程)
下記(1)〜(6)からなる一連の工程を1サイクルとして、100サイクル繰り返した。
(1)原料容器温度:80℃、原料容器内圧力:35Paの条件で気化させた原子層堆積法原料を成膜チャンバーに導入し、系圧力:100Paで10秒間堆積させる。
(2)15秒間のアルゴンパージにより、堆積しなかった原料を除去する。
(3)第一の反応性ガスを成膜チャンバーに導入し、系圧力:100Paで10秒間反応させる。
(4)15秒間のアルゴンパージにより、未反応の第一の反応性ガス及び副生ガスを除去する。
(5)第二の反応性ガスを成膜チャンバーに導入し、系圧力:100Paで10秒間反応させる。
(6)15秒間のアルゴンパージにより、未反応の第二の反応性ガス及び副生ガスを除去する。
(conditions)
Reaction temperature (silicon wafer temperature); 250 ° C
First reactive gas: hydrogen chloride Second reactive gas: hydrogen (process)
A series of steps consisting of the following (1) to (6) was taken as one cycle and repeated 100 cycles.
(1) An atomic layer deposition method material vaporized under the conditions of a raw material container temperature: 80 ° C. and a raw material container pressure: 35 Pa is introduced into a film forming chamber, and deposited at a system pressure: 100 Pa for 10 seconds.
(2) The raw material which did not deposit is removed by argon purge for 15 seconds.
(3) A first reactive gas is introduced into the film forming chamber and reacted at a system pressure of 100 Pa for 10 seconds.
(4) The unreacted first reactive gas and by-product gas are removed by an argon purge for 15 seconds.
(5) A second reactive gas is introduced into the film forming chamber and reacted at a system pressure of 100 Pa for 10 seconds.
(6) The unreacted second reactive gas and by-product gas are removed by argon purge for 15 seconds.

[比較例2]金属ニッケル薄膜の製造
NiClを原子層堆積法用原料とし、図1に示す装置を用いて、実施例3と同様の条件のALD法により、シリコンウエハ上に金属ニッケル薄膜を製造することを試みたが、原料容器内圧力:133.3Paで原料容器温度:600℃まで上昇させてもNiClは気化せず、金属ニッケル薄膜を製造することはできなかった。
[Comparative Example 2] Manufacture of a nickel metal thin film A nickel metal thin film was formed on a silicon wafer by the ALD method under the same conditions as in Example 3 using NiCl 2 as a raw material for atomic layer deposition and using the apparatus shown in FIG. tried to be produced, the raw material container pressure: 133.3 Pa at raw material container temperature: be raised up to 600 ° C. NiCl 2 is not vaporized, it was not possible to produce a metallic nickel film.

Claims (2)

原子層堆積法による金属薄膜の製造方法において、
(A)モリブデン原子、バナジウム原子、コバルト原子、ニッケル原子、銅原子及びクロム原子からなる群から選ばれる1種の金属原子を含有する有機金属化合物を気化させ、これを基体が設置された反応室に導入し、前記基体上に堆積させる工程、
(B)塩化水素、臭化水素、ヨウ化水素、モノクロロシラン、ジクロロシラン、トリクロロシラン、テトラクロロシラン、三塩化ホウ素、三臭化ホウ素、ヨウ化メチル及び臭化メチルからなる群から選ばれる少なくとも1種の第一の反応性ガスを前記反応室に導入し前記有機金属化合物と反応させる工程、及び
(C)水素、モノシラン、ジシラン及びジボランから選ばれる少なくとも1種の第二の反応性ガスを前記反応室に導入し前記(B)工程で得られた反応生成物と更に反応させる工程
を含む金属薄膜の製造方法。
In a method for producing a metal thin film by atomic layer deposition,
(A) A reaction chamber in which an organometallic compound containing one metal atom selected from the group consisting of a molybdenum atom, a vanadium atom, a cobalt atom, a nickel atom, a copper atom and a chromium atom is vaporized, and the substrate is installed And depositing on the substrate,
(B) at least one selected from the group consisting of hydrogen chloride, hydrogen bromide, hydrogen iodide, monochlorosilane, dichlorosilane, trichlorosilane, tetrachlorosilane, boron trichloride, boron tribromide, methyl iodide and methyl bromide Introducing a first reactive gas of a species into the reaction chamber and reacting with the organometallic compound; and (C) at least one second reactive gas selected from hydrogen, monosilane, disilane, and diborane, A method for producing a metal thin film, comprising a step of introducing into a reaction chamber and further reacting with the reaction product obtained in the step (B).
前記第一の反応性ガスが塩化水素であり、且つ前記第二の反応性ガスが水素である請求項1に記載の金属薄膜の製造方法。   The method for producing a metal thin film according to claim 1, wherein the first reactive gas is hydrogen chloride, and the second reactive gas is hydrogen.
JP2016166582A 2016-08-29 2016-08-29 Manufacturing method of metal thin film by atomic layer deposition method Active JP6855191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016166582A JP6855191B2 (en) 2016-08-29 2016-08-29 Manufacturing method of metal thin film by atomic layer deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016166582A JP6855191B2 (en) 2016-08-29 2016-08-29 Manufacturing method of metal thin film by atomic layer deposition method

Publications (2)

Publication Number Publication Date
JP2018035375A true JP2018035375A (en) 2018-03-08
JP6855191B2 JP6855191B2 (en) 2021-04-07

Family

ID=61564719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016166582A Active JP6855191B2 (en) 2016-08-29 2016-08-29 Manufacturing method of metal thin film by atomic layer deposition method

Country Status (1)

Country Link
JP (1) JP6855191B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019246500A1 (en) * 2018-06-22 2019-12-26 Applied Materials, Inc. Catalyzed deposition of metal films
WO2020101336A1 (en) * 2018-11-14 2020-05-22 (주)디엔에프 Method for manufacturing molybdenum-containing thin film and molybdenum-containing thin film manufactured thereby
WO2021183728A1 (en) * 2020-03-11 2021-09-16 Applied Materials, Inc. Gap fill methods using catalyzed deposition
KR20220083724A (en) 2019-10-17 2022-06-20 가부시키가이샤 아데카 A novel tin compound, a raw material for forming a thin film containing the compound, a thin film formed using the raw material for forming the thin film, a method using the compound as a precursor to produce the thin film, and a method for manufacturing the thin film
WO2022245726A1 (en) * 2021-05-21 2022-11-24 Applied Materials, Inc. Catalyst enhanced molybdenum deposition and gap fill
WO2023278720A1 (en) * 2021-07-01 2023-01-05 Applied Materials, Inc. Method of depositing metal films
WO2023129499A1 (en) * 2021-12-30 2023-07-06 Applied Materials, Inc. Method of depositing metal films
WO2024177404A1 (en) * 2023-02-23 2024-08-29 솔브레인 주식회사 Thin film forming material, thin film forming method, and semiconductor substrate and semiconductor device manufactured therefrom
US12094785B2 (en) 2021-12-15 2024-09-17 Applied Materials, Inc. Dual silicide process using ruthenium silicide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002099A (en) * 2003-04-22 2005-01-06 Air Products & Chemicals Inc Precursor for metal-containing film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002099A (en) * 2003-04-22 2005-01-06 Air Products & Chemicals Inc Precursor for metal-containing film

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI755607B (en) * 2018-06-22 2022-02-21 美商應用材料股份有限公司 Catalyzed deposition of metal films
KR102690701B1 (en) * 2018-06-22 2024-08-05 어플라이드 머티어리얼스, 인코포레이티드 Method of controlling ruthenium deposition
US12000044B2 (en) 2018-06-22 2024-06-04 Applied Materials, Inc. Catalyzed deposition of metal films
KR20210012046A (en) * 2018-06-22 2021-02-02 어플라이드 머티어리얼스, 인코포레이티드 Catalyzed deposition of metal films
CN112335021A (en) * 2018-06-22 2021-02-05 应用材料公司 Catalytic deposition of metal films
WO2019246500A1 (en) * 2018-06-22 2019-12-26 Applied Materials, Inc. Catalyzed deposition of metal films
KR102506466B1 (en) 2018-06-22 2023-03-07 어플라이드 머티어리얼스, 인코포레이티드 Catalyzed deposition of metal films
CN112969814A (en) * 2018-11-14 2021-06-15 Dnf有限公司 Method for producing molybdenum-containing thin film and molybdenum-containing thin film produced by the method
JP2022510566A (en) * 2018-11-14 2022-01-27 ディーエヌエフ カンパニー リミテッド Method for manufacturing molybdenum-containing thin film and molybdenum-containing thin film manufactured by this method
KR102355507B1 (en) * 2018-11-14 2022-01-27 (주)디엔에프 Method of manufacturing a molybdenum-containing thin film and molybdenum-containing thin film manufactured thereby
US11459653B2 (en) 2018-11-14 2022-10-04 Dnf Co., Ltd. Method for manufacturing molybdenum-containing thin film and molybdenum-containing thin film manufactured thereby
JP7171916B2 (en) 2018-11-14 2022-11-15 ディーエヌエフ カンパニー リミテッド Method for producing molybdenum-containing thin film and molybdenum-containing thin film produced thereby
WO2020101336A1 (en) * 2018-11-14 2020-05-22 (주)디엔에프 Method for manufacturing molybdenum-containing thin film and molybdenum-containing thin film manufactured thereby
KR20200056543A (en) * 2018-11-14 2020-05-25 (주)디엔에프 Method of manufacturing a molybdenum-containing thin film and molybdenum-containing thin film manufactured thereby
KR20220083724A (en) 2019-10-17 2022-06-20 가부시키가이샤 아데카 A novel tin compound, a raw material for forming a thin film containing the compound, a thin film formed using the raw material for forming the thin film, a method using the compound as a precursor to produce the thin film, and a method for manufacturing the thin film
WO2021183728A1 (en) * 2020-03-11 2021-09-16 Applied Materials, Inc. Gap fill methods using catalyzed deposition
US11859277B2 (en) 2021-05-21 2024-01-02 Applied Materials, Inc. Catalyst enhanced molybdenum deposition and gap fill
WO2022245726A1 (en) * 2021-05-21 2022-11-24 Applied Materials, Inc. Catalyst enhanced molybdenum deposition and gap fill
WO2023278720A1 (en) * 2021-07-01 2023-01-05 Applied Materials, Inc. Method of depositing metal films
US12094785B2 (en) 2021-12-15 2024-09-17 Applied Materials, Inc. Dual silicide process using ruthenium silicide
WO2023129499A1 (en) * 2021-12-30 2023-07-06 Applied Materials, Inc. Method of depositing metal films
WO2024177404A1 (en) * 2023-02-23 2024-08-29 솔브레인 주식회사 Thin film forming material, thin film forming method, and semiconductor substrate and semiconductor device manufactured therefrom

Also Published As

Publication number Publication date
JP6855191B2 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
JP6855191B2 (en) Manufacturing method of metal thin film by atomic layer deposition method
JP6761028B2 (en) A method for depositing a conformal metal or metalloid silicon nitride film and the resulting film
KR20210049053A (en) Method and system for treatment of deposition reactor
TWI549958B (en) Molybdenum (iv) amide precursors and use thereof in atomic layer deposition
JP7368372B2 (en) Method of manufacturing thin film
US8686138B2 (en) Heteroleptic pyrrolecarbaldimine precursors
KR101772478B1 (en) Organic group 13 precursor and method for depositing thin film using thereof
WO2013192220A1 (en) Tungsten nitrido precursors for the cvd of tungsten nitride, carbonitride, and oxide films
TW201311702A (en) Heteroleptic (allyl) (pyrroles-2-aldiminate) metal-containing precursors, their synthesis and vapor deposition thereof to deposit metal-containing films
JP2005171291A (en) Titanium-containing thin film and production method therefor
Potts et al. Bis (cyclopentadienyl) zirconium (IV) amides as possible precursors for low pressure CVD and plasma-enhanced ALD
CN112969812B (en) Method for manufacturing metal ruthenium film by atomic layer deposition method
Preuß et al. Synthesis of β‐Ketoiminato Copper (II) Complexes and Their Use in Copper Deposition
JP2022068374A (en) Starting material for forming gallium nitride-containing thin film for atomic layer deposition, and method for producing gallium nitride-containing thin film
JP6116007B2 (en) Thin film forming raw material and thin film manufacturing method
JP6954776B2 (en) Raw material for thin film formation and manufacturing method of thin film
JP2018168398A (en) Production method of yttrium oxide-containing thin film by atomic layer deposition method
JP6797068B2 (en) Method for manufacturing titanium carbide-containing thin film by atomic layer deposition method
JP2016138325A (en) Production method of metal or semimetal carbonitride film
JP2016222568A (en) Bis(silylamideaminoalkane)iron compound and manufacturing method of iron-containing film using the iron compound
TW202129062A (en) Method for producing yttrium oxide-containing film
JP2024117104A (en) Thin film forming material, thin film and method for producing thin film
CN118496107A (en) Organic small molecule inhibitor and application method thereof in thin film deposition
JP2016130337A (en) Method for producing metal or metalloid carbonitride film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210317

R151 Written notification of patent or utility model registration

Ref document number: 6855191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151