JP2018031055A - Cast slab and manufacturing method of cast slab - Google Patents

Cast slab and manufacturing method of cast slab Download PDF

Info

Publication number
JP2018031055A
JP2018031055A JP2016163855A JP2016163855A JP2018031055A JP 2018031055 A JP2018031055 A JP 2018031055A JP 2016163855 A JP2016163855 A JP 2016163855A JP 2016163855 A JP2016163855 A JP 2016163855A JP 2018031055 A JP2018031055 A JP 2018031055A
Authority
JP
Japan
Prior art keywords
less
slab
concentration
molten steel
rem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016163855A
Other languages
Japanese (ja)
Other versions
JP6951060B2 (en
Inventor
謙治 田口
Kenji Taguchi
謙治 田口
慎 高屋
Makoto Takaya
慎 高屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016163855A priority Critical patent/JP6951060B2/en
Publication of JP2018031055A publication Critical patent/JP2018031055A/en
Application granted granted Critical
Publication of JP6951060B2 publication Critical patent/JP6951060B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cast slab capable of suppressing generation of surface crack during flexure or correction even in the case that a cast slab of steel containing B and Ni is manufactured by using a vertical flexure type or a curvature type continuous casting machine, and a manufacturing method of the cast slab.SOLUTION: A cast slab has a composition containing C, Si, Mn, P, S, Ni, N and B at a prescribed amount, and further one or more kind selected from REM:0.0015-0.02%, Ca:0.0015-0.0060% and Zr:0.0020-0.015% and the balance Fe and impurities, maximum concentration of S in a crystal particle diameter of 30 times or less as S concentration of whole cast slab, and the number of BN particles which can be observed at a crystal particle boundary and has particle diameter of 10-300 nm of 3000 or less per particle boundary of 1 mm when a broken surface of a test piece by conducting a tensile test at 800°C is observed.SELECTED DRAWING: None

Description

本発明は、垂直曲げ型又は湾曲型の連続鋳造機を用いて製造され、曲げ及び矯正時における表面割れの発生が抑制されたB及びNiを含有する鋼からなる鋳片、及び、この鋳片の製造方法に関する。   The present invention relates to a slab made of steel containing B and Ni, which is manufactured using a vertical bending type or curved type continuous casting machine, and generation of surface cracks during bending and straightening is suppressed, and the slab. It relates to the manufacturing method.

Niを鋼に添加すると、鋼の低温靭性が向上することから、0.1〜2mass%のNiを含む鋼は、海洋構造物や液化天然ガスのタンク材等、厚板材料に広く使用されている。しかしながら、Ni含有鋼を垂直曲げ型又は湾曲型の連続鋳造機で鋳造する際、曲げあるいは矯正に伴って、鋳片に引張歪みが作用し、これにより鋳片表面に旧オーステナイト粒界に沿った割れが発生しやすい。特に、700〜850℃において鋳片表面に引張歪みが作用した際に割れが生じやすいことから、2次冷却水量を調整して脆化域から鋳片表面温度を回避する対策がとられている。   When Ni is added to steel, the low-temperature toughness of the steel is improved. Steel containing 0.1 to 2 mass% Ni is widely used for thick plate materials such as marine structures and liquefied natural gas tank materials. Yes. However, when Ni-containing steel is cast by a vertical bend type or curved type continuous casting machine, tensile strain acts on the slab as it is bent or straightened, so that the surface of the slab is aligned with the prior austenite grain boundaries. Cracks are likely to occur. In particular, since a crack is likely to occur when a tensile strain acts on the slab surface at 700 to 850 ° C., measures are taken to avoid the slab surface temperature from the embrittlement region by adjusting the amount of secondary cooling water. .

一方、B(ホウ素)は、鋼に数十 massppm程度添加するだけで、変態温度が低下し、粒界の焼き入れ性が高まる。そのため、Bは、鋼材組織を制御して鋼材強度を高められるため、厚板などの鋼材設計において重要な元素の一つである。しかしながら、Bは、Ni同様に鋳片の表面割れを助長する元素の一つであり、特に、1000℃程度の高温域ですでに脆化しやすい。   On the other hand, B (boron) is only added to steel by about several tens of mass ppm, so that the transformation temperature decreases and the hardenability of the grain boundaries increases. Therefore, B is one of the important elements in the design of steel materials such as thick plates because the steel material structure can be controlled to increase the strength of the steel material. However, B, like Ni, is one of the elements that promotes surface cracking of the slab, and is particularly easily brittle at a high temperature range of about 1000 ° C.

したがって、NiとBの双方を含む鋼を連続鋳造する際、2次冷却水量をいくら調整しても、脆化温度域を回避することが現実的には困難で、歩留まりロスが大きく、生産性の低下や生産コストの増加に繋がってしまう。
それゆえ、優れた特性を有するNiとBを含有する鋼の連続鋳造鋳片の表面割れを防止できる方法が求められてきた。
Therefore, when steel containing both Ni and B is continuously cast, it is practically difficult to avoid the embrittlement temperature range, no matter how much the amount of secondary cooling water is adjusted, yield loss is large, and productivity is high. Leads to a decrease in production and an increase in production costs.
Therefore, there has been a demand for a method capable of preventing surface cracking of a continuous cast slab of steel containing Ni and B having excellent characteristics.

例えば、特許文献1には、B濃度及びN濃度を適正範囲に制御することにより、連続鋳造鋳片の表面割れを抑制する技術が開示されている。
また、特許文献2には、B及びNを含有する鋼の連続鋳造時の冷却条件を最適化することにより、連続鋳造鋳片の表面割れを抑制する技術が開示されている。
さらに、特許文献3には、B濃度及びN濃度を規定するともに、BNの平衡析出量を規定することにより、連続鋳造鋳片の表面割れを抑制する技術が開示されている。
For example, Patent Document 1 discloses a technique for suppressing surface cracks in a continuous cast slab by controlling the B concentration and the N concentration within appropriate ranges.
Patent Document 2 discloses a technique for suppressing surface cracking of a continuously cast slab by optimizing cooling conditions during continuous casting of steel containing B and N.
Furthermore, Patent Document 3 discloses a technique for suppressing surface cracking of a continuously cast slab by defining the B concentration and the N concentration and defining the amount of BN equilibrium precipitation.

特開昭56−080354号公報JP 56-080354 A 特許第4561755号公報Japanese Patent No. 4561755 特開2010−189712号公報JP 2010-189712 A

ところで、垂直曲げ型または湾曲型の連続鋳造機を使用して連続鋳造鋳片を製造する場合、鋳片が曲げられる、あるいは、矯正される際に、鋳片表面に歪みが作用する。特に、引張歪みが作用する際の鋳片表面温度が、オーステナイトからフェライトに変態する温度域、いわゆる第III領域の脆化温度(700〜850℃)に合致すると、連続鋳造鋳片に粒界割れなどの表面疵が発生しやすい。これは、オーステナイト粒界に沿って生成するフィルム状フェライトに起因するためである。   By the way, when a continuous cast slab is manufactured using a vertical bending type or a curved type continuous casting machine, when the slab is bent or straightened, distortion is applied to the surface of the slab. In particular, when the surface temperature of the slab when tensile strain is applied matches the temperature range where the austenite transforms into ferrite, the so-called III region embrittlement temperature (700 to 850 ° C.), intergranular cracking occurs in the continuous cast slab. Surface flaws such as are easy to occur. This is due to the film-like ferrite generated along the austenite grain boundary.

これに加え、Niを含有する鋼では、オーステナイト粒界にSなどの軽元素が偏析し、粒界強度が下がるため、これも脆化を助長する要因である。同時に、鋳片表面が酸化した際、優先的な粒界酸化が生じ、これも脆化を助長する。したがって、オーステナイトからフェライトへの固相変態の影響のみならず、軽元素の粒界偏析や粒界酸化の影響も受けるため、Niを含む鋼の割れ感受性は大きい。   In addition, in steel containing Ni, light elements such as S are segregated at the austenite grain boundaries and the grain boundary strength is lowered, which is also a factor for promoting embrittlement. At the same time, when the slab surface is oxidized, preferential grain boundary oxidation occurs, which also promotes embrittlement. Therefore, not only the effect of solid phase transformation from austenite to ferrite but also the influence of grain boundary segregation and grain boundary oxidation of light elements, the steel containing Ni has a high susceptibility to cracking.

一方、鋼中のBは粒界に偏析しやすく、1000℃程度の高温域から、粒界にBNが析出し、それを起点として、粒界割れが生じる。したがって、NiおよびBを含む鋼では、一般鋼に比べて脆化温度域が広いため、連続鋳造鋳片の表面割れを防止することは極めて困難である。
以上のことから、上記した特許文献1〜3に記載された技術においては、NiとBを含有する鋼の連続鋳造鋳片の表面割れを十分に抑制することはできなかった。
On the other hand, B in the steel is easily segregated at the grain boundaries, and BN precipitates at the grain boundaries from a high temperature range of about 1000 ° C., and grain boundary cracks occur from that. Therefore, since steel containing Ni and B has a wider embrittlement temperature range than general steel, it is extremely difficult to prevent surface cracking of the continuous cast slab.
From the above, in the techniques described in Patent Documents 1 to 3, the surface cracking of the continuous cast slab of steel containing Ni and B cannot be sufficiently suppressed.

本発明は、このような点を考慮してなされたものであり、B及びNiを含有する鋼の鋳片を、垂直曲げ型又は湾曲型の連続鋳造機を用いて製造した場合であっても、曲げや矯正時における表面割れの発生を抑制することが可能な鋳片、及び、この鋳片の製造方法を提供することを目的とする。   The present invention has been made in consideration of such points, and even when a steel slab containing B and Ni is manufactured using a vertical bending type or a curved type continuous casting machine. It aims at providing the slab which can suppress generation | occurrence | production of the surface crack at the time of a bending and correction, and the manufacturing method of this slab.

本発明者らは、上記の課題を解決するために、鋭意検討した結果、脆化要因となる軽元素の無害化法および析出物の形態制御法を導き、連続鋳造鋳片に生じる表面欠陥を防止できる方法を導いた。
具体的には、連続鋳造鋳片の割れ感受性を模擬するために、表1に示す組成の鋼A〜Dを一旦溶融させ、アズキャスト組織を有する鋼の高温引張試験を実施し、本発明の構成要件を見出した。
As a result of diligent studies to solve the above problems, the present inventors have led to a light element detoxification method and a form control method for precipitates that cause embrittlement, and surface defects generated in continuous cast slabs. A way that can be prevented has been led.
Specifically, in order to simulate the cracking susceptibility of a continuous cast slab, steels A to D having the compositions shown in Table 1 were once melted, and a high-temperature tensile test was performed on a steel having an as-cast structure. Found configuration requirements.

Figure 2018031055
Figure 2018031055

丸棒状(φ10×190mm,鍛伸材でアズキャスト組織を有さない)の鋼を、形状を維持したまま長さ方向中心約30mm長さを溶融させた後、溶融状態から1200℃までは10℃/sで試料を降温し、それ以下の温度域では0.4℃/sにて、連続的に試料を冷却した。試料の冷却過程で、その凝固部の試料温度が650〜1000℃の範囲で、連続鋳造時に作用する矯正・曲げ時の歪み速度とオーダーが概ね合致する3×10−4−1で、試料を引っ張り、破断させた。(1)式で定義される破断前後における試料の断面積減少率(RA)によって、鋼の高温延性を評価した。
RA=(A−A)/A×100 (%) ・・・・・・(1)
ここで、Aは引っ張り前の試料断面積(m)、Aは破断後の試料断面積(m)を表す。
A steel rod with a round bar shape (φ10 × 190mm, made of forged material and not having an as-cast structure) was melted to a length of about 30 mm at the center in the longitudinal direction while maintaining the shape. The sample was cooled at a temperature of ° C / s, and the sample was continuously cooled at a temperature range of 0.4 ° C / s. In the cooling process of the sample, the sample temperature of the solidified part is in the range of 650 to 1000 ° C., and the sample is 3 × 10 −4 s −1 , the order of which coincides with the strain rate at the time of straightening and bending that acts during continuous casting. Was pulled to break. The high temperature ductility of the steel was evaluated by the cross-sectional area reduction rate (RA) before and after the fracture defined by the formula (1).
RA = (A 0 −A f ) / A 0 × 100 (%) (1)
Here, A 0 represents the sample cross-sectional area (m 2 ) before pulling, and A f represents the sample cross-sectional area (m 2 ) after fracture.

垂直曲げ型または湾曲型の連続鋳造機を使用した際に鋳片表面が受ける引張歪み量を想定すると、RA値が60%以上、望ましくは63%以上であれば、鋳片の表面割れの懸念がないことに合致する。さらに、RA値が60%未満のときは粒界脆性破面で、RA値が60%以上のときは粒内延性破面であった。   Assuming the amount of tensile strain that the slab surface undergoes when using a vertical bending type or curved type continuous casting machine, if the RA value is 60% or more, preferably 63% or more, there is a concern about surface cracks in the slab. It matches that there is no. Further, when the RA value was less than 60%, it was a grain boundary brittle fracture surface, and when the RA value was 60% or more, it was an intragranular ductile fracture surface.

鋼Aの場合、650〜950℃においての断面積減少率が20〜55%を示し、鋼の高温延性の低下を確認した。引張り後の試料破面を観察した結果、破断形態はいずれも典型的なオーステナイト粒界割れであった。また、1000℃の断面積減少率は63%と許容下限の60%以上を確保できたものの明瞭な延性回復には至らなかった。したがって、NiおよびBを含有する鋼の連続鋳造鋳片の割れ感受性が大きいことを意味している。   In the case of Steel A, the reduction rate of the cross-sectional area at 650 to 950 ° C. was 20 to 55%, and a decrease in hot ductility of the steel was confirmed. As a result of observing the fracture surface of the sample after being pulled, all the fracture forms were typical austenite grain boundary cracks. Further, although the cross-sectional area reduction rate at 1000 ° C. was 63%, which was 60% or more of the allowable lower limit, it did not lead to clear ductility recovery. Therefore, it means that the cracking sensitivity of the continuous cast slab of steel containing Ni and B is large.

REM(希土類元素)であるLaを添加した鋼Bの場合、750℃以上での断面積減少率が60%を超え、さらに、900℃以上では80%以上と良好な延性を示した。
Caを添加した鋼Cの場合、750℃以上での断面積減少率が60%以上を示し、鋼Bよりは延性回復下限温度が小さいものの、鋼Aと比べると良好な延性を示した。
Zrを添加した鋼Dの場合、750℃以上から断面積減少率が60%以上を示し、特に850℃以上では90%以上と良好な延性を示し、鋼A〜Dの4種類の中で最も良好な延性を示した。
In the case of steel B to which La, which is REM (rare earth element), was added, the cross-sectional area reduction rate at 750 ° C. or higher exceeded 60%, and at 900 ° C. or higher, 80% or higher, indicating good ductility.
In the case of steel C to which Ca was added, the cross-sectional area reduction rate at 750 ° C. or higher was 60% or higher, and the ductile recovery lower limit temperature was lower than that of steel B, but better ductility than that of steel A was exhibited.
In the case of steel D to which Zr is added, the cross-sectional area reduction rate is 60% or higher from 750 ° C. or higher, particularly 90% or higher at 850 ° C. or higher, which is the best among the four types of steels A to D Good ductility was exhibited.

そして、800℃における引張り後の試験片を、2つの解析手法によって調査した。1つ目は、オージェ電子分光法によって破断面の元素マッピングを実施した。2つ目は、破断後の試料を縦断方向に切断し、その切断面を走査型電子顕微鏡で観察し、BNの存在有無を観察した。   And the test piece after the tension | pulling in 800 degreeC was investigated by two analysis methods. First, elemental mapping of the fracture surface was performed by Auger electron spectroscopy. Second, the fractured sample was cut in the longitudinal direction, the cut surface was observed with a scanning electron microscope, and the presence or absence of BN was observed.

鋼A(RA値=33%)では、破面上のS偏析と数百nmサイズのBNが容易に観察された。Sが粒界偏析しているとき、オージェ電子分光法によって得られた粒界上のS濃度は鋼のバルク組成の約2〜3桁程度大きく、800℃における鋼A(RA値=33%)の場合では、粒界上S濃度は0.9%であった。また、ナイタールエッチングで旧オーステナイト粒界を顕出させたままの状態で、走査型電子顕微鏡にて試料の粒界上の介在物を少なくとも30個以上観察、分析し、その60%以上が300nm以下の球形のBNであることを確認した。特に、観察されたBNは他組成を有する介在物とは一体となっておらず、BNそのものであった。   In Steel A (RA value = 33%), S segregation on the fracture surface and BN of several hundred nm size were easily observed. When S is segregated at grain boundaries, the S concentration on the grain boundaries obtained by Auger electron spectroscopy is about 2 to 3 orders of magnitude higher than the bulk composition of steel. Steel A at 800 ° C. (RA value = 33%) In this case, the S concentration on the grain boundary was 0.9%. Further, at least 30 inclusions on the grain boundary of the sample were observed and analyzed with a scanning electron microscope in a state where the prior austenite grain boundary was revealed by nital etching, and 60% or more of the inclusion was 300 nm. It confirmed that it was the following spherical BN. In particular, the observed BN was not integrated with inclusions having other compositions, but was BN itself.

一方、鋼B(RA値=69%)および鋼C(RA値=65%)では破面上のS偏析はほとんど認められず、粒界S濃度はバルク濃度の高々30倍以下であった。鋼BではLaを含み、また鋼CではCaを含む。これら元素はSとの親和性が高く、鋼中で硫化物、酸硫化物を形成し、固溶Sが固定化され、破面上のS偏析がほとんど認められなかった。ここで、Sとの親和性の高い元素とは、周期IIAに属するCaおよびLa,Ce,NdなどREMと称するランタノイドで、特に、溶鉄中Sに対するそれら元素の相互作用助係数(熱力学データ)が1600℃において−1以下のものである。   On the other hand, in steel B (RA value = 69%) and steel C (RA value = 65%), S segregation on the fracture surface was hardly observed, and the grain boundary S concentration was at most 30 times the bulk concentration. Steel B contains La, and steel C contains Ca. These elements had high affinity with S, formed sulfides and oxysulfides in steel, solid solution S was fixed, and S segregation on the fracture surface was hardly observed. Here, the element having high affinity with S is a lanthanoid called REM such as Ca and La, Ce, Nd, etc. belonging to the period IIA, and in particular, an interaction assistant coefficient (thermodynamic data) of these elements with respect to S in molten iron. Is 1 or less at 1600 ° C.

これら硫化物、酸硫化物の多くが、溶鋼段階で生じるため、存在位置は旧オーステナイト粒界とは無関係に存在する。無作為に30個以上、5〜10μmサイズの介在物を対象に観察した。その50%以上の割合で、硫化物、酸硫化物が観察された場合には、鋼が高温脆化しにくいレベル(RA値60%以上)まで固溶Sが固定化されている。特に、Caの場合には、硫化物、酸硫化物が単独として存在するケースは少なく、カルシウムアルミネート系酸化物とCaSが一体となって存在していた。固溶Sの固定効果および粒界割れ軽減効果に対しては、単一の硫化物、酸硫化物として存在するか、あるいは他の非金属物と一体になった複合形態として存在するかどうかは、関係しない。   Since most of these sulfides and oxysulfides are generated in the molten steel stage, the location exists regardless of the prior austenite grain boundaries. 30 or more random inclusions having a size of 5 to 10 μm were observed as subjects. When sulfides and oxysulfides are observed at a ratio of 50% or more, the solid solution S is fixed to a level (RA value 60% or more) at which the steel is not easily brittle at high temperature. In particular, in the case of Ca, there are few cases where sulfides and oxysulfides exist alone, and calcium aluminate-based oxides and CaS existed together. Whether it exists as a single sulfide, oxysulfide, or as a composite form integrated with other non-metals, for the solid solution S fixing effect and grain boundary crack reduction effect It does n’t matter.

さらに、鋼Aで観察されたような単一な数百nmサイズの粒界上BNもほとんど観察されず、5〜10μmサイズの硫化物、酸硫化物上に数百nmサイズのBNが析出していた。これら硫化物、酸硫化物は溶鋼段階で生成するために、結果として、それら表面に析出したBNも旧オーステナイト粒界上とは無関係に存在している。
そのため、Sの粒界偏析および粒界へのBN析出が抑制され、鋼Aと比べ延性の回復効果が得られた。種々調査し、RA値が60%以上のとき、適正な硫化物あるいは酸硫化物が存在し、粒界S濃度が最大でもバルク組成の高々30倍以下、かつ、粒界にBNが存在しないことに相関がある。
Further, almost no single BN on the grain boundary with a size of several hundreds nm as observed in the steel A is observed, and BN with a size of several hundreds nm is precipitated on the sulfide or oxysulfide having a size of 5 to 10 μm. It was. Since these sulfides and oxysulfides are produced at the molten steel stage, as a result, BN precipitated on the surface of the sulfides and oxysulfides is present regardless of the former austenite grain boundaries.
Therefore, S grain boundary segregation and BN precipitation at the grain boundaries were suppressed, and a ductility recovery effect was obtained compared to Steel A. After various investigations, when the RA value is 60% or more, the proper sulfide or oxysulfide is present, the grain boundary S concentration is at most 30 times less than the bulk composition, and no BN exists at the grain boundary. There is a correlation.

また、鋼D(RA値=79%)では、BN析出が見当たらず、主に数μmサイズのZrNが観察され、これは30個以上観察した窒化物の90%以上であった。そのうち、50%以上の割合で、数百nmサイズのMnSがZrN上同時に析出している場合がほとんどであった。このことは、鋼中にZrを含むことによって、NとSが同時に固定化できる条件が存在することを意味している。また、酸化物等の他の非金属物と一体になってZrNが存在する場合もあるが、延性改善効果に対しては、ZrNの存在形態には特に制約はない。   Further, in Steel D (RA value = 79%), no BN precipitation was observed, and ZrN having a size of several μm was mainly observed, which was 90% or more of 30 or more observed nitrides. Among them, in most cases, MnS having a size of several hundred nm was deposited on ZrN at a ratio of 50% or more. This means that there are conditions under which N and S can be fixed simultaneously by including Zr in the steel. In addition, ZrN may be present integrally with other non-metallic materials such as oxides, but there are no particular restrictions on the form of ZrN with respect to the ductility improving effect.

さらに、RAが60%未満の場合、粒界S濃度は鋼のバルク組成の2〜3桁程度大きく、RAが60%以上では、バルク濃度の高々30倍以下であった。したがって、NとSが同時に固定化され、鋼Aと比べて延性回復効果が出現した。この場合にも、RA値が60%以上のとき、ZrNとMnSが複合析出した介在物が存在し、粒界S濃度が最大でもバルク組成の高々30倍以下、かつ、粒界にBNが存在しないことに相関がある。   Further, when RA is less than 60%, the grain boundary S concentration is about two to three orders of magnitude higher than the bulk composition of steel, and when RA is 60% or more, it is at most 30 times the bulk concentration. Therefore, N and S were immobilized at the same time, and a ductile recovery effect appeared compared to steel A. Also in this case, when the RA value is 60% or more, there are inclusions in which ZrN and MnS are combined and precipitated, at most 30 times the bulk composition at the maximum grain boundary S concentration, and BN exists at the grain boundaries. There is a correlation to not doing.

したがって、NiとBを含む鋼にREM(希土類元素)またはCaまたはZrの添加が、連続鋳造鋳片の表面割れ抑制には有効であることを見出した。
BおよびNiを含む鋼の連続鋳造鋳片に生じる表面割れを防止するために、脆化要因となる粒界偏析Sの無害化および粒界上のBN析出抑制が必要で、鋳片曲げおよび矯正時の鋳片のコーナから鋳片厚み相当位置における表面温度を750℃以上に制御した上で、固溶S抑制およびBNの析出形態制御を行うことが重要である。
Therefore, it has been found that the addition of REM (rare earth element), Ca or Zr to steel containing Ni and B is effective in suppressing surface cracking of a continuous cast slab.
In order to prevent surface cracks that occur in continuous cast slabs of steel containing B and Ni, it is necessary to detoxify grain boundary segregation S, which causes embrittlement, and to suppress BN precipitation on the grain boundaries. It is important to control the surface temperature at the position corresponding to the slab thickness from the corner of the slab at the time to 750 ° C. or higher, and to control the solid solution S and the control of the precipitation form of BN.

本発明は、以上の知見に基づいてなされたものであり、本発明に係る鋳片は、質量%で、C:0.05%以上0.18%以下、Si:0.10%以上0.4%以下、Mn:0.5%以上2.0%以下、P:0.020%以下、S:0.0035%以下、Ni:0.1%以上2.0%以下、Ti:0.005%以上0.030%以下、Al:0.005%以上0.06%以下、N:0.0015%以上0.007%以下、およびB:0.0005%以上0.0050%以下、を含有し、さらに、REM:0.0015%以上0.02%以下、Ca:0.0015%以上0.0060%以下、Zr:0.0020%以上0.015%以下、から選択される1種あるいは2種以上を含有し、残部がFeおよび不純物からなる組成を有し、800℃で引張試験を行った試験片の破断面を観察した結果、結晶粒界におけるSの最大濃度が鋳片全体のS濃度の30倍以下とされるとともに、結晶粒界において観察される粒径10nm以上300nm以下のBN粒子の個数が粒界1mm長さあたり3000個以下とされていることを特徴としている。   This invention is made | formed based on the above knowledge, and the slab which concerns on this invention is C: 0.05% or more and 0.18% or less, Si: 0.10% or more and 0.00. 4% or less, Mn: 0.5% or more and 2.0% or less, P: 0.020% or less, S: 0.0035% or less, Ni: 0.1% or more and 2.0% or less, Ti: 0.0. 005% to 0.030%, Al: 0.005% to 0.06%, N: 0.0015% to 0.007%, and B: 0.0005% to 0.0050%. 1 type selected from REM: 0.0015% to 0.02%, Ca: 0.0015% to 0.0060%, Zr: 0.0020% to 0.015% Alternatively, it contains two or more types, with the balance being composed of Fe and impurities at 800 ° C. As a result of observing the fracture surface of the test piece subjected to the tension test, the maximum concentration of S at the crystal grain boundary is 30 times or less of the S concentration of the entire slab, and the grain size observed at the crystal grain boundary is 10 nm or more. It is characterized in that the number of BN particles of 300 nm or less is 3000 or less per 1 mm length of the grain boundary.

この構成の鋳片によれば、800℃で引張試験を行った試験片の破断面を観察した結果、結晶粒界におけるSの最大濃度が鋳片全体のS濃度の30倍以下とされており、Sの粒界偏析が十分に抑制されている。また、結晶粒界において観察される粒径10nm以上300nm以下のBN粒子の個数が粒界1mm長さあたり3000個以下とされているので、結晶粒界に粗大なBN粒子が過剰に存在していない。このため、粒界強度が確保されており、表面割れの発生を抑制することができる。   According to the slab of this configuration, as a result of observing the fracture surface of the test piece that was subjected to the tensile test at 800 ° C., the maximum concentration of S at the grain boundary is 30 times or less of the S concentration of the entire slab. , S grain boundary segregation is sufficiently suppressed. Further, since the number of BN particles having a particle size of 10 nm or more and 300 nm or less observed at the crystal grain boundary is 3000 or less per 1 mm length of the grain boundary, excessive coarse BN particles are present at the crystal grain boundary. Absent. For this reason, the grain boundary strength is ensured, and the occurrence of surface cracks can be suppressed.

また、本発明の鋳片においては、さらにCu:0.1%以上0.5%以下、Cr:0.2%以上2.0%以下、Mo:0.1%以上0.8%以下、V:0.01%以上0.1%以下、Nb:0.005%以上0.05%以下、から選択される1種あるいは2種以上を含有していてもよい。
上述の元素を添加することにより、強度、溶接性、耐候性等の鋳片の特性をさらに向上させることが可能となることから、必要に応じて適宜添加することが好ましい。
In the slab of the present invention, Cu: 0.1% to 0.5%, Cr: 0.2% to 2.0%, Mo: 0.1% to 0.8%, One or two or more selected from V: 0.01% to 0.1% and Nb: 0.005% to 0.05% may be contained.
By adding the above-mentioned elements, it is possible to further improve the properties of the slab such as strength, weldability, weather resistance, and the like. Therefore, it is preferable to add them as necessary.

本発明に係る鋳片の製造方法は、垂直曲げ型又は湾曲型の連続鋳造機を用いて上述の鋳片を製造する鋳片の製造方法であって、質量%で、C:0.05%以上0.18%以下、Si:0.10%以上0.4%以下、Mn:0.5%以上2.0%以下、P:0.020%以下、S:0.0035%以下、Ni:0.1%以上2.0%以下、Ti:0.005%以上0.030%以下、Al:0.005%以上0.06%以下、N:0.0015%以上0.007%以下、およびB:0.0005%以上0.0050%以下、を含有し、必要に応じてCu:0.1%以上0.5%以下、Cr:0.2%以上2.0%以下、Mo:0.1%以上0.8%以下、V:0.01%以上0.1%以下、Nb:0.005%以上0.05%以下、から選択される1種あるいは2種以上を含有し、残部がFeおよび不純物からなる組成の溶鋼に、溶鋼中の硫黄濃度を[%S]、溶鋼中のトータル酸素濃度をT.[%O]、溶鋼中のREM濃度を[%REM]とし、REMの原子量をMREMとした場合に、[%REM]/MREM≧0.3×([%S]/32.06+T.[%O]/16.1)を満足するようにREMを添加し、REM含有量が30mol%以上に制御された粒径1μm以上の酸化物及び酸硫化物を分散させ、鋳片に対して曲げまたは矯正歪が負荷される領域内において、前記鋳片の長辺面のコーナから鋳片厚み相当距離の位置における鋳片表面温度を750℃以上とすることを特徴としている。 The slab manufacturing method according to the present invention is a slab manufacturing method for manufacturing the above-described slab using a vertical bending type or a curved type continuous casting machine, and is in mass%, and C: 0.05%. 0.18% or less, Si: 0.10% or more and 0.4% or less, Mn: 0.5% or more and 2.0% or less, P: 0.020% or less, S: 0.0035% or less, Ni : 0.1% to 2.0%, Ti: 0.005% to 0.030%, Al: 0.005% to 0.06%, N: 0.0015% to 0.007% And B: 0.0005% to 0.0050%, Cu: 0.1% to 0.5%, Cr: 0.2% to 2.0%, Mo if necessary : Selected from 0.1% to 0.8%, V: 0.01% to 0.1%, Nb: 0.005% to 0.05% Contain one or two or more that, the molten steel the balance being Fe and impurities, the sulfur concentration in the molten steel [% S], the total oxygen concentration in the molten steel T. [% O], when the REM concentration in molten steel is [% REM] and the atomic weight of REM is M REM , [% REM] / M REM ≧ 0.3 × ([% S] /32.06+T. REM is added so as to satisfy [% O] /16.1), and the oxide and oxysulfide having a particle size of 1 μm or more whose REM content is controlled to 30 mol% or more are dispersed, In the region where bending or straightening strain is applied, the slab surface temperature at a position corresponding to the slab thickness distance from the corner of the long side surface of the slab is 750 ° C. or more.

この構成の鋳片の製造方法によれば、溶鋼中の硫黄濃度を[%S]、溶鋼中のトータル酸素濃度をT.[%O]、溶鋼中のREM濃度を[%REM]とし、REMの原子量をMREMとした場合に、[%REM]/MREM≧0.3×([%S]/32.06+T.[%O]/16.1)を満足するようにREMを添加しているので、溶鋼中のSがREMと反応して化合物を形成し、結晶粒界へのSの偏析を抑制することができる。
また、REM含有量が30mol%以上に制御された粒径1μm以上の酸化物及び酸硫化物を分散させているので、この酸化物及び酸硫化物を析出サイトとしてBNを析出させることができ、結晶粒界にBNが析出することを抑制できる。
さらに、鋳片に対して曲げまたは矯正歪が負荷される領域内において、前記鋳片の長辺面のコーナから鋳片厚み相当距離の位置における鋳片表面温度を750℃以上としているので、曲げ部または矯正部において鋳片の表面割れの発生を抑制することができる。
According to the method for producing a slab having this configuration, the sulfur concentration in the molten steel is [% S], and the total oxygen concentration in the molten steel is T.P. [% O], when the REM concentration in molten steel is [% REM] and the atomic weight of REM is M REM , [% REM] / M REM ≧ 0.3 × ([% S] /32.06+T. Since REM is added so as to satisfy [% O] /16.1), S in the molten steel reacts with REM to form a compound, thereby suppressing the segregation of S to the grain boundaries. it can.
Moreover, since the oxide and oxysulfide having a particle size of 1 μm or more whose REM content is controlled to 30 mol% or more are dispersed, BN can be precipitated using the oxide and oxysulfide as a precipitation site, Precipitation of BN at the crystal grain boundary can be suppressed.
Further, in the region where bending or straightening strain is applied to the slab, the slab surface temperature at a position equivalent to the slab thickness from the corner of the long side surface of the slab is 750 ° C. or higher. It is possible to suppress the occurrence of surface cracks in the slab at the part or the correction part.

また、本発明に係る鋳片の製造方法は、垂直曲げ型又は湾曲型の連続鋳造機を用いて上述の鋳片を製造する鋳片の製造方法であって、質量%で、C:0.05%以上0.18%以下、Si:0.10%以上0.4%以下、Mn:0.5%以上2.0%以下、P:0.020%以下、S:0.0035%以下、Ni:0.1%以上2.0%以下、Ti:0.005%以上0.030%以下、Al:0.005%以上0.06%以下、N:0.0015%以上0.007%以下、およびB:0.0005%以上0.0050%以下、を含有し、必要に応じてCu:0.1%以上0.5%以下、Cr:0.2%以上2.0%以下、Mo:0.1%以上0.8%以下、V:0.01%以上0.1%以下、Nb:0.005%以上0.05%以下、から選択される1種あるいは2種以上を含有し、残部がFeおよび不純物からなる組成の溶鋼に、溶鋼中の硫黄濃度を[%S]、溶鋼中のトータル酸素濃度をT.[%O]、溶鋼中のCa濃度を[%Ca]とし、Caの原子量をMCaとした場合に、[%Ca]/MCa≧0.3×([%S]/32.06+T.[%O]/16.1)を満足するようにCaを添加し、Ca含有量が30mol%以上に制御された粒径1μm以上の酸化物及び酸硫化物を分散させ、鋳片に対して曲げまたは矯正歪が負荷される領域内において、前記鋳片の長辺面のコーナから鋳片厚み相当距離の位置における鋳片表面温度を750℃以上とすることを特徴としている。 Moreover, the manufacturing method of the slab which concerns on this invention is a manufacturing method of the slab which manufactures the above-mentioned slab using a vertical bending type | mold or a curved type continuous casting machine, Comprising: In mass%, C: 0. 05% to 0.18%, Si: 0.10% to 0.4%, Mn: 0.5% to 2.0%, P: 0.020% or less, S: 0.0035% or less Ni: 0.1% to 2.0%, Ti: 0.005% to 0.030%, Al: 0.005% to 0.06%, N: 0.0015% to 0.007 %: B: 0.0005% to 0.0050%, Cu: 0.1% to 0.5%, Cr: 0.2% to 2.0% as necessary Mo: 0.1% or more and 0.8% or less, V: 0.01% or more and 0.1% or less, Nb: 0.005% or more and 0.05% or less It contains one or two or more kinds-option, the molten steel the balance being Fe and impurities, the sulfur concentration in the molten steel [% S], the total oxygen concentration in the molten steel T. When [% O], the Ca concentration in the molten steel is [% Ca], and the atomic weight of Ca is M Ca , [% Ca] / M Ca ≧ 0.3 × ([% S] /32.06+T. Ca is added so as to satisfy [% O] /16.1), and oxides and oxysulfides having a particle size of 1 μm or more whose Ca content is controlled to 30 mol% or more are dispersed, In the region where bending or straightening strain is applied, the slab surface temperature at a position corresponding to the slab thickness distance from the corner of the long side surface of the slab is 750 ° C. or more.

この構成の鋳片の製造方法によれば、溶鋼中の硫黄濃度を[%S]、溶鋼中のトータル酸素濃度をT.[%O]、溶鋼中のCa濃度を[%Ca]とし、Caの原子量をMCaとした場合に、[%Ca]/MCa≧0.3×([%S]/32.06+T.[%O]/16.1)を満足するようにCaを添加しているので、溶鋼中のSがCaと反応して化合物を形成し、結晶粒界へのSの偏析を抑制することができる。
また、Ca含有量が30mol%以上に制御された粒径1μm以上の酸化物及び酸硫化物を分散させているので、この酸化物及び酸硫化物を析出サイトとしてBNを析出させることができ、結晶粒界にBNが析出することを抑制できる。
さらに、鋳片に対して曲げまたは矯正歪が負荷される領域内において、前記鋳片の長辺面のコーナから鋳片厚み相当距離の位置における鋳片表面温度を750℃以上としているので、曲げ部または矯正部において鋳片の表面割れの発生を抑制することができる。
According to the method for producing a slab having this configuration, the sulfur concentration in the molten steel is [% S], and the total oxygen concentration in the molten steel is T.P. When [% O], the Ca concentration in the molten steel is [% Ca], and the atomic weight of Ca is M Ca , [% Ca] / M Ca ≧ 0.3 × ([% S] /32.06+T. Since Ca is added so as to satisfy [% O] /16.1), S in the molten steel reacts with Ca to form a compound, thereby suppressing the segregation of S to the grain boundaries. it can.
Moreover, since the oxide and oxysulfide having a particle diameter of 1 μm or more whose Ca content is controlled to 30 mol% or more are dispersed, BN can be precipitated using the oxide and oxysulfide as a precipitation site, Precipitation of BN at the crystal grain boundary can be suppressed.
Further, in the region where bending or straightening strain is applied to the slab, the slab surface temperature at a position equivalent to the slab thickness from the corner of the long side surface of the slab is 750 ° C. or higher. It is possible to suppress the occurrence of surface cracks in the slab at the part or the correction part.

さらに、本発明に係る鋳片の製造方法は、垂直曲げ型又は湾曲型の連続鋳造機を用いて上述の鋳片を製造する鋳片の製造方法であって、質量%で、C:0.05%以上0.18%以下、Si:0.10%以上0.4%以下、Mn:0.5%以上2.0%以下、P:0.020%以下、S:0.0035%以下、Ni:0.1%以上2.0%以下、Ti:0.005%以上0.030%以下、Al:0.005%以上0.06%以下、N:0.0015%以上0.007%以下、およびB:0.0005%以上0.0050%以下、を含有し、必要に応じてCu:0.1%以上0.5%以下、Cr:0.2%以上2.0%以下、Mo:0.1%以上0.8%以下、V:0.01%以上0.1%以下、Nb:0.005%以上0.05%以下、から選択される1種あるいは2種以上を含有し、残部がFeおよび不純物からなる組成の溶鋼に、溶鋼中の窒素濃度を[%N]、溶鋼中のホウ素濃度を[%B]、溶鋼中のZr濃度を[%Zr]とし、Zrの原子量をMZrとした場合に、[%Zr]/MZr≧0.3×([%N]/14.01−[%B]/10.81)を満足するようにZrを添加し、ZrNとMnSとを含む粒径500nm以上5μm以下の複合介在物を単位面積あたり30個/mm以上を分散させ、鋳片に対して曲げまたは矯正歪が負荷される領域内において、前記鋳片の長辺面のコーナから鋳片厚み相当距離の位置における鋳片表面温度を750℃以上とすることを特徴としている。 Furthermore, the manufacturing method of the slab which concerns on this invention is a manufacturing method of the slab which manufactures the above-mentioned slab using a vertical bending type | mold or a curved type continuous casting machine, Comprising: In mass%, C: 0. 05% to 0.18%, Si: 0.10% to 0.4%, Mn: 0.5% to 2.0%, P: 0.020% or less, S: 0.0035% or less Ni: 0.1% to 2.0%, Ti: 0.005% to 0.030%, Al: 0.005% to 0.06%, N: 0.0015% to 0.007 %: B: 0.0005% to 0.0050%, Cu: 0.1% to 0.5%, Cr: 0.2% to 2.0% as necessary , Mo: 0.1% to 0.8%, V: 0.01% to 0.1%, Nb: 0.005% to 0.05%, In the molten steel containing one or more selected, with the balance being composed of Fe and impurities, the nitrogen concentration in the molten steel is [% N], the boron concentration in the molten steel is [% B], When the Zr concentration is [% Zr] and the atomic weight of Zr is M Zr , [% Zr] / M Zr ≧ 0.3 × ([% N] /14.01 − [% B] /10.81 Zr is added so as to satisfy (2), and composite inclusions having a particle size of 500 nm to 5 μm containing ZrN and MnS are dispersed at a rate of 30 pieces / mm 2 or more per unit area, and bending or straightening distortion is applied to the slab. In the region where the slab is loaded, the slab surface temperature at a position corresponding to the slab thickness equivalent distance from the corner of the long side surface of the slab is 750 ° C. or more.

この構成の鋳片の製造方法によれば、溶鋼中の窒素濃度を[%N]、溶鋼中のホウ素濃度を[%B]、溶鋼中のZr濃度を[%Zr]とし、Zrの原子量をMZrとした場合に、[%Zr]/MZr≧0.3×([%N]/14.01−[%B]/10.81)を満足するようにZrを添加しているので、溶鋼中のNがZrと反応してZrNを形成し、BNの生成を抑制することができる。
また、ZrNはMnSとともに存在することから、ZrNとMnSとを含む粒径500nm以上5μm以下の複合介在物を単位面積あたり30個/mm以上を分散させることすることができる。
さらに、鋳片に対して曲げまたは矯正歪が負荷される領域内において、前記鋳片の長辺面のコーナから鋳片厚み相当距離の位置における鋳片表面温度を750℃以上としているので、曲げ部または矯正部において鋳片の表面割れの発生を抑制することができる。
According to the method for producing a slab of this configuration, the nitrogen concentration in the molten steel is [% N], the boron concentration in the molten steel is [% B], the Zr concentration in the molten steel is [% Zr], and the atomic weight of Zr is when the M Zr, [% Zr] / M Zr ≧ 0.3 × - since the addition of ([% N] /14.01 [% B] /10.81) so as to satisfy the Zr N in the molten steel reacts with Zr to form ZrN, and the generation of BN can be suppressed.
Further, since ZrN exists together with MnS, it is possible to disperse 30 / mm 2 or more of composite inclusions containing ZrN and MnS and having a particle size of 500 nm or more and 5 μm or less per unit area.
Further, in the region where bending or straightening strain is applied to the slab, the slab surface temperature at a position equivalent to the slab thickness from the corner of the long side surface of the slab is 750 ° C. or higher. It is possible to suppress the occurrence of surface cracks in the slab at the part or the correction part.

本発明によれば、B及びNiを含有する鋼の鋳片を、垂直曲げ型又は湾曲型の連続鋳造機を用いて製造した場合であっても、曲げや矯正時における表面割れの発生を抑制することが可能な鋳片、及び、この鋳片の製造方法を提供することが可能となる。   According to the present invention, even when a steel slab containing B and Ni is produced using a vertical bending type or a curved type continuous casting machine, the occurrence of surface cracks during bending and straightening is suppressed. It is possible to provide a slab that can be manufactured and a method for manufacturing the slab.

本発明の実施形態において用いられる連続鋳造装置の概略説明図である。It is a schematic explanatory drawing of the continuous casting apparatus used in embodiment of this invention. 実施例において、Sと親和性の高い元素(REM、Ca)をαとしたときの[%α]/Mαと([%S]/28.09+T.[%O]/16.01)の関係を示すグラフである。In the examples, the relationship between [% α] / Mα and ([% S] /28.09+T. [% O] /16.01), where α is an element having a high affinity for S (REM, Ca) It is a graph which shows. 実施例において、[%Zr]/MZrと([%N]/14.01−[%B]/10.81)の関係を表すグラフである。In Example, [% Zr] / M Zr and - is a graph representing the relationship between ([% N] /14.01 [% B] /10.81).

以下に、本発明の実施形態である鋳片、及び、鋳片の製造方法について説明する。なお、本発明は、以下の実施形態に限定されるものではない。   Below, the slab which is embodiment of this invention and the manufacturing method of a slab are demonstrated. In addition, this invention is not limited to the following embodiment.

本実施形態である鋳片は、その組成が、質量%で、C:0.05%以上0.18%以下、Si:0.10%以上0.4%以下、Mn:0.5%以上2.0%以下、P:0.020%以下、S:0.0035%以下、Ni:0.1%以上2.0%以下、Ti:0.005%以上0.030%以下、Al:0.005%以上0.06%以下、N:0.0015%以上0.007%以下、およびB:0.0005%以上0.0050%以下、を含有し、さらに、REM:0.0015%以上0.02%以下、Ca:0.0015%以上0.0060%以下、Zr:0.0020%以上0.015%以下、から選択される1種あるいは2種以上を含有し、残部がFeおよび不純物とされている。さらに、本実施形態では、必要に応じて、Cu:0.1%以上0.5%以下、Cr:0.2%以上2.0%以下、Mo:0.1%以上0.8%以下、V:0.01%以上0.1%以下、Nb:0.005%以上0.05%以下、から選択される1種あるいは2種以上を含有してもよい。
以下に、各成分を規定した理由について説明する。
The slab according to this embodiment has a composition of mass%, C: 0.05% to 0.18%, Si: 0.10% to 0.4%, Mn: 0.5% or more. 2.0% or less, P: 0.020% or less, S: 0.0035% or less, Ni: 0.1% or more and 2.0% or less, Ti: 0.005% or more and 0.030% or less, Al: 0.005% or more and 0.06% or less, N: 0.0015% or more and 0.007% or less, and B: 0.0005% or more and 0.0050% or less, and REM: 0.0015% 0.02% or less, Ca: 0.0015% or more and 0.0060% or less, Zr: One or more selected from 0.0020% or more and 0.015% or less, and the balance is Fe And impurities. Furthermore, in the present embodiment, Cu: 0.1% to 0.5%, Cr: 0.2% to 2.0%, Mo: 0.1% to 0.8% as necessary. V: 0.01% or more and 0.1% or less, Nb: 0.005% or more and 0.05% or less.
Below, the reason which prescribed | regulated each component is demonstrated.

(C:0.05%以上0.18%以下)
Cは、一般に鋼の強度に大きな影響を及ぼす元素として知られ、0.05%未満では高強度厚鋼板などの用途に対して所定の強度を得ることが困難となる。C濃度が0.18%を超えると、硬度が著しく高くなって新たな疵の原因となるため、熱処理に特段の工程が必要となる他、溶接部および熱影響部の硬化のため厚鋼板として必要となる溶接性を損なう。このような理由によりCの濃度範囲を0.05%以上0.18%以下と規定した。なお、C濃度の下限は0.08%以上であることが好ましく、C濃度の上限は0.16%以下であることが好ましい。
(C: 0.05% or more and 0.18% or less)
C is generally known as an element having a great influence on the strength of steel, and if it is less than 0.05%, it is difficult to obtain a predetermined strength for applications such as high-strength thick steel plates. If the C concentration exceeds 0.18%, the hardness will be extremely high and cause new flaws. Therefore, a special process is required for heat treatment, and as a thick steel plate for hardening the weld and heat affected zone The required weldability is impaired. For these reasons, the C concentration range is defined as 0.05% or more and 0.18% or less. The lower limit of the C concentration is preferably 0.08% or more, and the upper limit of the C concentration is preferably 0.16% or less.

(Si:0.10%以上0.4%以下)
Siは、一般に鋼の製造プロセスでは脱酸元素としての鋼中の酸素濃度を低減するために有効な元素の一つであり、鋼を強化する効果もある。溶鋼が十分に脱酸されていない状態で連続鋳造すると鋼中に気泡が生成し、製品の欠陥となるばかりでなく、ときにブレークアウトを誘発し操業できないという問題がある。このため、Siの含有量の下限を0.10%以上としている。一方、Siの含有量が0.4%を超えると縞状マルテンサイトが生成するようになり、溶接時にHAZ靭性を悪化させるという問題がある。したがって、その上限は0.4%以下と規定するが、より好ましくは0.3%未満とする。
(Si: 0.10% to 0.4%)
In general, Si is an element effective for reducing the oxygen concentration in steel as a deoxidizing element in the steel production process, and has an effect of strengthening steel. Continuous casting in a state where the molten steel is not sufficiently deoxidized causes bubbles to be generated in the steel, resulting in product defects, and sometimes causing breakout and inability to operate. For this reason, the lower limit of the Si content is 0.10% or more. On the other hand, when the Si content exceeds 0.4%, striped martensite is generated, and there is a problem that the HAZ toughness is deteriorated during welding. Therefore, the upper limit is defined as 0.4% or less, but more preferably less than 0.3%.

(Mn:0.5%以上2.0%以下)
Mnは、一般に鋼材の強度に大きな影響を与える元素であるが、0.5%未満では高強度厚鋼板として十分な強度を得ることが困難である。また、2.0%を超えると固溶強化のため強度強化が著しく製品の強度調整が困難となる。またMnは中心偏析部で濃化するため鋳片や圧延後の厚鋼板内で強度むらを生じさせる。このためMnの濃度範囲を0.5%以上2.0%以下と規定した。なお、Mn濃度の下限は0.8%以上であることが好ましく、Mn濃度の上限は1.8%以下であることが好ましい。
(Mn: 0.5% to 2.0%)
Mn is an element that generally has a great influence on the strength of steel, but if it is less than 0.5%, it is difficult to obtain sufficient strength as a high-strength thick steel plate. On the other hand, if it exceeds 2.0%, the strength is remarkably strengthened due to the solid solution strengthening, making it difficult to adjust the strength of the product. Further, since Mn is concentrated at the center segregation portion, unevenness in strength occurs in the cast slab and the thick steel plate after rolling. For this reason, the Mn concentration range is defined as 0.5% or more and 2.0% or less. The lower limit of the Mn concentration is preferably 0.8% or more, and the upper limit of the Mn concentration is preferably 1.8% or less.

(P:0.020%以下)
Pは鋼中に不可避的に含有する不純物元素の一つであり低い方が好ましい。Pは凝固時の固液界面における平衡分配係数が小さいため著しく偏析する。このため、種々の製品特性に悪影響を与えることが懸念される。偏析部では融点も著しく低下するため、圧延時には濃化部が溶融し製品疵につながることもある。そのため、含有量の上限を0.020%以下とした。偏析部における種々の問題を防止するために、好ましくは0.010%未満とするべきである。
(P: 0.020% or less)
P is one of the impurity elements inevitably contained in the steel and is preferably low. P segregates significantly because the equilibrium partition coefficient at the solid-liquid interface during solidification is small. For this reason, there is a concern that various product characteristics may be adversely affected. In the segregation part, the melting point also decreases remarkably, so the concentrated part melts during rolling and may lead to product defects. Therefore, the upper limit of the content is set to 0.020% or less. In order to prevent various problems in the segregated portion, it should preferably be less than 0.010%.

(S:0.0035%以下)
Sも鋼中に不可避的に含有する不純物元素の一つでありできるだけ低い方が好ましい。Sも凝固後の固液界面における平衡分配係数が小さいため著しく偏析する元素であるばかりでなく、偏析部ではPと同様に融点を低下させ、特に圧延時には表面疵の発生原因となる。このため、上限を0.0035%以下とした。高強度鋼などより要求レベルの厳しい条件では、S含有量の上限を0.0020%以下とすることが好ましい。
(S: 0.0035% or less)
S is one of impurity elements inevitably contained in the steel and is preferably as low as possible. S is not only an element that segregates remarkably because the equilibrium distribution coefficient at the solid-liquid interface after solidification is small, but also lowers the melting point in the segregated part in the same manner as P, and causes surface defects particularly during rolling. For this reason, the upper limit was made 0.0035% or less. Under conditions that are more demanding than high strength steel and the like, the upper limit of the S content is preferably 0.0020% or less.

(Ni:0.1%以上2.0%以下)
Niには固溶強化によって鋼の強度を向上させるとともに、靭性を改善する効果もある。これらの効果を得るためには0.1%以上添加する必要があるが、2.0%を超えて添加してもその効果は飽和し、溶接性を悪化させるという悪影響もある。このため、Niの濃度範囲を0.1%以上2.0%以下と規定した。なお、Ni濃度の下限は0.3%以上であることが好ましく、Ni濃度の上限は1.8%以下であることが好ましい。
(Ni: 0.1% to 2.0%)
Ni has the effect of improving the toughness as well as improving the strength of the steel by solid solution strengthening. In order to obtain these effects, it is necessary to add 0.1% or more, but even if added over 2.0%, the effect is saturated and there is also an adverse effect that the weldability is deteriorated. Therefore, the Ni concentration range is defined as 0.1% or more and 2.0% or less. Note that the lower limit of the Ni concentration is preferably 0.3% or more, and the upper limit of the Ni concentration is preferably 1.8% or less.

(Ti:0.005%以上0.03%以下)
Tiは鋼の強度を向上させるとともに、鋼中のNをTiNとして固定するため、BNの生成にも影響を与える。このことから、連続鋳造の鋳片の曲げ・矯正時の鋳片表面割れを防止する効果もある。このような効果を得るためには0.005%以上の添加が必要である。しかし、0.03%を超えて含有すると炭化物が多数生成し、溶接熱影響部の靭性を低下させるとともに粗大なTiNが生成する原因となる。このため、0.005%以上0.03%以下と規定する。鋳片の表面割れおよびTiNに基づく表面性状の低下の双方を安定的に抑制する観点からは、Ti濃度の下限を0.010%以上、Ti濃度の上限を0.020%以下とすることが好ましい。
(Ti: 0.005% to 0.03%)
Ti improves the strength of the steel and fixes N in the steel as TiN, which also affects the generation of BN. This also has the effect of preventing slab surface cracks during bending and straightening of continuously cast slabs. In order to obtain such an effect, addition of 0.005% or more is necessary. However, if the content exceeds 0.03%, a large number of carbides are generated, which reduces the toughness of the weld heat affected zone and causes coarse TiN to be generated. For this reason, it is specified as 0.005% or more and 0.03% or less. From the viewpoint of stably suppressing both the surface crack of the slab and the deterioration of the surface properties based on TiN, the lower limit of the Ti concentration may be 0.010% or more and the upper limit of the Ti concentration may be 0.020% or less. preferable.

(Al:0.005%以上0.06%以下)
Alも脱酸元素として鋼中の酸素濃度を低減するために有効な元素の一つである。脱酸のために必要となる含有量は0.005%以上となる。0.005%未満では、製錬工程における十分な脱硫も困難になる。一方、Alを過剰に添加するとAlNが生成しやすく、鋳片表面割れの原因となることから、0.06%以下とすることが好ましい。なお、Al濃度の下限は0.007%以上であることが好ましく、Al濃度の上限は0.04%以下であることが好ましい。
(Al: 0.005% to 0.06%)
Al is one of the elements effective for reducing the oxygen concentration in steel as a deoxidizing element. The content required for deoxidation is 0.005% or more. If it is less than 0.005%, sufficient desulfurization in the smelting process becomes difficult. On the other hand, when Al is added excessively, AlN is likely to be generated, and it causes cracking of the slab surface, so 0.06% or less is preferable. Note that the lower limit of the Al concentration is preferably 0.007% or more, and the upper limit of the Al concentration is preferably 0.04% or less.

(N:0.0015%以上0.007%以下)
Nは転炉などの大気雰囲気で溶製する場合には鋼中に不可避的に浸入する元素であり、BNの構成元素である。鋼材中ではTiなどと窒化物を形成する元素であり、これらの窒化物は熱間加工の過程でピン留め粒子として結晶粒を微細化する効果を有することから鋼材の機械特性に影響を与える。このため0.0015%以上の濃度とする必要がある。一方で、前述のようにこれらの窒化物が連続鋳造時にオーステナイト粒界に動的析出することにより鋳片表面割れの原因となることから上限は0.007%以下とする。組織のピン留め効果を確実に発揮するとともに、鋳片の中心部などにおける粗大な炭・窒化物の生成に伴う靱性低下を防止する観点からは、N濃度の下限を0.002%以上、N濃度の上限を0.004%以下とすることが好ましい。
(N: 0.0015% or more and 0.007% or less)
N is an element that inevitably penetrates into steel when it is melted in an air atmosphere such as a converter, and is a constituent element of BN. In steel materials, it is an element that forms nitrides with Ti and the like, and these nitrides have an effect of refining crystal grains as pinning particles in the process of hot working, and thus affect the mechanical properties of the steel materials. Therefore, the concentration needs to be 0.0015% or more. On the other hand, as described above, these nitrides are dynamically precipitated at the austenite grain boundaries during continuous casting, which causes slab surface cracks, so the upper limit is made 0.007% or less. From the viewpoint of reliably exhibiting the pinning effect of the structure and preventing toughness deterioration due to the formation of coarse carbon / nitride in the center of the slab, the lower limit of the N concentration is 0.002% or more, N The upper limit of the concentration is preferably 0.004% or less.

(B:0.0005%以上0.0050%以下)
Bは粒界の焼き入れ性を高め、鋼材の組織を制御し、鋼材の強度を高める成分として添加される。Bは微量の添加で高い効果があるが、引張強度が700MPa〜1200MPaという高い強度を実現するためには下限は0.0005%以上となる。一方、0.0050%を超えて添加するとその効果が飽和するとともに靭性も低下することになるので、上限を0.0050%以下とする。厚鋼板のミクロ組織を制御し、Bの添加効果を明確に発現する観点からは、B濃度の下限を0.0010%以上、B濃度の上限を0.0040%以下とすることが好ましい。
(B: 0.0005% or more and 0.0050% or less)
B is added as a component that increases the hardenability of the grain boundaries, controls the structure of the steel material, and increases the strength of the steel material. B is highly effective when added in a small amount, but the lower limit is 0.0005% or more in order to achieve high strength of 700 MPa to 1200 MPa. On the other hand, if adding over 0.0050%, the effect is saturated and the toughness is also lowered, so the upper limit is made 0.0050% or less. From the viewpoint of controlling the microstructure of the thick steel plate and clearly expressing the effect of addition of B, it is preferable that the lower limit of the B concentration is 0.0010% or more and the upper limit of the B concentration is 0.0040% or less.

また、引張強度700MPa以上の高強度を達成や、溶接性、耐候性など他の特性を発現させるには、以下に示すCu,Cr,Mo,V,Nbから選択される一種又は二種以上を添加している。   Moreover, in order to achieve high strength of 700 MPa or more and to develop other characteristics such as weldability and weather resistance, one or more selected from Cu, Cr, Mo, V, and Nb shown below are used. It is added.

(Cu:0.1%以上0.5%以下)
Cuは鋼の焼き入れ性を向上させる。そのためには0.1%以上の添加が必要であるが、0.5%を超えるとその効果が過剰となるばかりでなく鋼材の熱間加工性が低下する。なお、連続鋳造時にはスタークラックと称する表面割れを誘発する元素であることからCuを0.2%以上添加する場合にはその1/3以上の濃度のNiを併せて添加する必要がある。
(Cu: 0.1% to 0.5%)
Cu improves the hardenability of the steel. For that purpose, addition of 0.1% or more is necessary, but when it exceeds 0.5%, not only the effect becomes excessive, but also the hot workability of the steel material decreases. In addition, since it is an element which induces a surface crack called a star crack at the time of continuous casting, when adding 0.2% or more of Cu, it is necessary to add Ni at a concentration of 1/3 or more.

(Cr:0.2%以上2.0%以下)
Crには鋼の強度、靭性を高める効果がある。そのためには0.2%以上の添加が必要である。80kgクラス以上など高強度のスペックが要求される場合には半ば必須の添加元素となる。一方で2.0%を超えて添加すると溶接割れが発生する等の問題が発生する。同じ理由により溶接性を重視する場合には、Cr濃度の上限を1.5%以下とすべきである。
(Cr: 0.2% or more and 2.0% or less)
Cr has the effect of increasing the strength and toughness of steel. For that purpose, addition of 0.2% or more is necessary. When high-strength specifications such as 80 kg class or more are required, it becomes a semi-essential additive element. On the other hand, if it exceeds 2.0%, problems such as weld cracking occur. When emphasizing weldability for the same reason, the upper limit of Cr concentration should be 1.5% or less.

(Mo:0.1%以上0.8%以下)
Moは鋼板の焼き入れ性を向上させ、強度上昇にも寄与する。Crと同様、80kgクラス以上など高強度のスペックが要求される場合には半ば必須の添加元素となる。この効果を得るためには0.1%以上の添加が必要となる。しかし、Moは高価な元素でありコスト増加に繋がるばかりでなく、0.8%を超えて添加するとベイナイトやマルテンサイト相などの硬化相が生成し熱間加工性や溶接性を悪化させることから上限は0.8%以下とする。
(Mo: 0.1% to 0.8%)
Mo improves the hardenability of the steel sheet and contributes to an increase in strength. Like Cr, when high-strength specifications such as 80 kg class or more are required, it becomes a semi-essential additive element. In order to obtain this effect, addition of 0.1% or more is necessary. However, Mo is an expensive element and not only leads to an increase in cost, but if added over 0.8%, a hardened phase such as a bainite or martensite phase is generated, deteriorating hot workability and weldability. The upper limit is 0.8% or less.

(V:0.01%以上0.1%以下)
Vは鋼中でフェライト中への固溶ならびに炭窒化物を形成し、鋼の強度を高めるために有効な元素である。そのためには0.01%以上添加する必要がある。しかし、Vの含有量が0.1%を超えると溶接熱影響部での析出状況が変化し靭性に悪影響を与える。また過剰に添加すると鋳片内部にVNとして析出し、鋳片表面割れの原因となることから上限は0.1%以下とする。
(V: 0.01% to 0.1%)
V is an effective element for increasing the strength of steel by forming a solid solution and a carbonitride in ferrite in the steel. For that purpose, it is necessary to add 0.01% or more. However, if the content of V exceeds 0.1%, the precipitation state in the weld heat affected zone changes and adversely affects toughness. Moreover, since it will precipitate as VN inside a slab and will cause a slab surface crack if it adds excessively, an upper limit shall be 0.1% or less.

(Nb:0.005%以上0.05%以下)
Nbは鋼中で炭窒化物を形成し鋼の強度を高めるとともに靱性の向上にも有効な元素である。そのためには0.005%以上添加する必要がある。また特にTMCP(Thermo−Mechanical Control Process)において固溶および析出を制御することにより鋼板のミクロ組織制御するために使用される。この効果を得るためにも0.005%以上添加する必要がある。しかし、0.05%を超えて含有すると加熱時にも固溶せず、組織制御ができなくなる。また過剰に添加すると鋳片内部にNbCとして析出し、鋳片表面割れの原因となる。このため、Nbの濃度は0.005%以上0.05%以下と規定した。
(Nb: 0.005% or more and 0.05% or less)
Nb is an element that forms carbonitrides in steel to increase the strength of the steel and is effective in improving toughness. Therefore, it is necessary to add 0.005% or more. In particular, it is used for controlling the microstructure of the steel sheet by controlling solid solution and precipitation in TMCP (Thermo-Mechanical Control Process). In order to obtain this effect, it is necessary to add 0.005% or more. However, if it exceeds 0.05%, it does not dissolve at the time of heating, and the structure cannot be controlled. Moreover, when it adds excessively, it will precipitate as NbC inside a slab, and will cause a slab surface crack. Therefore, the Nb concentration is defined as 0.005% or more and 0.05% or less.

そして、本実施形態においては、固溶Sの固定および窒化物の形態制御して鋳片の表面割れを抑制するために、以下に示すREM,Ca,Zrから選択される一種又は二種以上を添加している。   And in this embodiment, in order to suppress the surface crack of the slab by fixing the solid solution S and controlling the form of the nitride, one or more selected from REM, Ca, Zr shown below are used. It is added.

(REM:0.0015〜0.02%)
REM(希土類元素)とは、ランタノイド(La,Ce等、原子番号57〜71の15元素)から選ばれた1種以上の金属元素を意味し、特に、Ce、La、PrまたはNdのうちの1種以上の元素が該当する。REMの添加効果は、0.0015%以上で現れる。しかし、REMは高価であり、過剰に添加しても効果が飽和するため、費用対効果の点から0.02%以下とすることが好ましい上、さらに、鋳造時の浸漬ノズルが閉塞するという新たな問題も併発してしまう。なお、REM濃度の下限は0.003%以上であることが好ましく、REM濃度の上限は0.018%以下であることが好ましい。
(REM: 0.0015-0.02%)
REM (rare earth element) means one or more metal elements selected from lanthanoids (La, Ce, etc., 15 elements having atomic numbers 57 to 71), and in particular, among Ce, La, Pr, or Nd One or more elements are applicable. The effect of adding REM appears at 0.0015% or more. However, since REM is expensive and the effect is saturated even if it is added excessively, it is preferable to set it to 0.02% or less from the viewpoint of cost-effectiveness, and further, a new immersion nozzle is blocked. The problem will also occur. The lower limit of the REM concentration is preferably 0.003% or more, and the upper limit of the REM concentration is preferably 0.018% or less.

(Ca:0.0015%以上0.0060%以下)
BおよびNiを含む表面割れを防止する観点から、Caは0.0015%以上添加することが必要である。0.0060%を超えて添加してもその効果は飽和し製造コストの増加を招くばかりでなく、かえってノズル閉塞などの新たな問題を引き起こす場合もあり、このため0.0005%以上0.0060%以下と規定した。なお、Ca濃度の下限は0.0020%以上であることが好ましく、Ca濃度の上限は0.0050%以下であることが好ましい。
(Ca: 0.0015% or more and 0.0060% or less)
From the viewpoint of preventing surface cracks including B and Ni, Ca needs to be added in an amount of 0.0015% or more. Even if added over 0.0060%, the effect is saturated and not only increases the production cost, but also may cause new problems such as nozzle clogging. % Or less. The lower limit of Ca concentration is preferably 0.0020% or more, and the upper limit of Ca concentration is preferably 0.0050% or less.

(Zr:0.0020〜0.015%)
BおよびNiを含む表面割れを防止する観点から、Zrは0.0020%以上添加することが必要である。0.015%を超えて添加してもその効果は飽和し製造コストの増加を招くばかりで、メリットが小さくなる。なお、Zr濃度の下限は0.0030%以上であることが好ましく、Zr濃度の上限は0.013%以下であることが好ましい。
(Zr: 0.0020 to 0.015%)
From the viewpoint of preventing surface cracks including B and Ni, it is necessary to add 0.0020% or more of Zr. Even if added over 0.015%, the effect is saturated and not only the manufacturing cost is increased, but the merit is reduced. The lower limit of the Zr concentration is preferably 0.0030% or more, and the upper limit of the Zr concentration is preferably 0.013% or less.

上述した元素以外は、Feおよび不純物である。ここで、「不純物」とは、鋼材の工業的生産において原料たる鉱石、スクラップや製造設備からの溶出成分等から混入するものであり、性能に悪影響を及ぼさない範囲で含有されていてもよい。   Other than the elements described above, Fe and impurities. Here, the “impurity” is a mixture of ore as a raw material in industrial production of steel materials, an elution component from scrap, manufacturing equipment, or the like, and may be contained within a range that does not adversely affect performance.

そして、本実施形態である鋳片においては、800℃で引張試験を行った試験片の破断面を観察した結果、結晶粒界におけるSの最大濃度が鋳片全体のS濃度の30倍以下とされるとともに、結晶粒界において観察される粒径10nm以上300nm以下のBN粒子の個数が粒界1mm長さあたり3000個以下とされている。
すなわち、本実施形態においては、結晶粒界におけるSの偏析や粒径10nm以上300nm以下のBN粒子の析出が抑制されており、粒界強度が十分に確保されている。
And in the slab which is this embodiment, as a result of observing the fracture surface of the test piece which performed the tensile test at 800 degreeC, the maximum density | concentration of S in a crystal grain boundary is 30 times or less of the S density | concentration of the whole slab. In addition, the number of BN particles having a particle diameter of 10 nm or more and 300 nm or less observed at the crystal grain boundary is set to 3000 or less per 1 mm length of the grain boundary.
That is, in this embodiment, segregation of S at the grain boundaries and precipitation of BN particles having a grain size of 10 nm to 300 nm are suppressed, and the grain boundary strength is sufficiently ensured.

次に、垂直曲げ型又は湾曲型の連続鋳造機を用いて、上述した本実施形態である鋳片の製造方法について説明する。
本実施形態では、図1に示す連続鋳造機10を用いて上述の本実施形態である鋳片1を製造する。
Next, the manufacturing method of the slab which is this embodiment mentioned above is demonstrated using a vertical bending type | mold or a curved type continuous casting machine.
In this embodiment, the slab 1 which is this embodiment mentioned above is manufactured using the continuous casting machine 10 shown in FIG.

図1に示す連続鋳造機10は、水冷鋳型11と、この水冷鋳型に溶鋼を供給する浸漬ノズル12と、水冷鋳型11の下方に位置する複数の鋳片支持ロール21からなる鋳片支持ロール群20を備えている。
なお、本実施形態である連続鋳造機10においては、水冷鋳型11から引き抜かれた鋳片1を下方へと引き抜く垂直部14と、鋳片1を曲げる曲げ部15と、曲げた鋳片1を曲げ戻す矯正部16と、鋳片1を水平方向へ搬送する水平部17と、を有する垂直曲げ型連続鋳造機とされている。
A continuous casting machine 10 shown in FIG. 1 includes a slab support roll group including a water-cooled mold 11, an immersion nozzle 12 that supplies molten steel to the water-cooled mold, and a plurality of slab support rolls 21 positioned below the water-cooled mold 11. 20 is provided.
In addition, in the continuous casting machine 10 which is this embodiment, the vertical part 14 which draws out the slab 1 pulled out from the water-cooled mold 11, and the bending part 15 which bends the slab 1, and the bent slab 1 are used. The vertical bending type continuous casting machine has a straightening part 16 that bends back and a horizontal part 17 that transports the slab 1 in the horizontal direction.

水冷鋳型11は、矩形孔を有する筒状をなしており、この矩形孔の形状に合わせた断面の鋳片1が引き抜かれることになる。例えば、この矩形孔の長辺長さ(鋳片1の幅に相当)は500〜2500mmとされ、矩形孔の短辺長さ(鋳片1の厚さに相当)は100〜600mmとされているものが例示できるが、これに限定されるものではない。   The water-cooled mold 11 has a cylindrical shape having a rectangular hole, and the slab 1 having a cross section matching the shape of the rectangular hole is pulled out. For example, the long side length of the rectangular hole (corresponding to the width of the cast piece 1) is 500 to 2500 mm, and the short side length of the rectangular hole (corresponding to the thickness of the cast piece 1) is 100 to 600 mm. However, the present invention is not limited to this.

鋳片支持ロール群20は、垂直部14に位置するピンチロール部24と、曲げ部15に位置するベンディングロール部25と、矯正部16に位置する矯正ロール部26と、水平部17に位置する水平ロール部27と、を備えている。
この連続鋳造機10においては、曲げ部15及び矯正部16において、鋳片1に引張歪みが負荷されることになる。
The slab support roll group 20 is located in the pinch roll part 24 located in the vertical part 14, the bending roll part 25 located in the bending part 15, the straightening roll part 26 located in the straightening part 16, and the horizontal part 17. A horizontal roll unit 27.
In the continuous casting machine 10, tensile strain is applied to the slab 1 at the bending portion 15 and the correction portion 16.

ここで、本実施形態では、鋳片1に対して引張歪みが負荷される曲げ部15及び矯正部16内において、鋳片1の長辺面においてコーナから鋳片厚み相当距離の位置における鋳片表面温度を750℃以上としている。例えば、鋳片1の幅を500mmとし、鋳片1の厚さを100mmとした場合には、鋳片1の長辺面の幅端部から100mm位置における表面温度が750℃以上とされているのである。   Here, in this embodiment, in the bending part 15 and the correction | amendment part 16 where tensile strain is loaded with respect to the slab 1, the slab in the position of the slab thickness equivalent distance from a corner in the long side surface of the slab 1 The surface temperature is 750 ° C. or higher. For example, when the width of the slab 1 is 500 mm and the thickness of the slab 1 is 100 mm, the surface temperature at a position of 100 mm from the width end of the long side surface of the slab 1 is 750 ° C. or more. It is.

そして、本実施形態においては、以下に示すような手段により、結晶粒界の強度を確保し、曲げ部15及び矯正部16における鋳片1の表面割れを抑制している。
以下に、本実施形態である鋳片の製造方法本実施形態について、(1)REMを添加する場合、(2)Caを添加する場合、(3)Zrを添加する場合、の3つに分けて説明する。
In the present embodiment, the strength of crystal grain boundaries is ensured by means as described below, and the surface cracks of the slab 1 at the bending portion 15 and the correction portion 16 are suppressed.
Hereinafter, a method for manufacturing a slab according to this embodiment is divided into three cases: (1) when REM is added, (2) when Ca is added, and (3) when Zr is added. I will explain.

(1)REM添加の場合
REMは、Sとの親和性が高いことから、溶鋼中にREMを添加することにより、REMとSの化合物が生成される。これにより、Sが固定されることになり、結晶粒界におけるSの偏析を抑制することが可能となる。また、REMを溶鋼中に添加することにより、酸化物及び酸硫化物が生成することになるが、これらの酸化物及び酸硫化物は、BN粒子の析出サイトとなるため、BN粒子の結晶粒界への析出を抑制することが可能となる。
(1) In the case of REM addition Since REM has a high affinity with S, a compound of REM and S is generated by adding REM to molten steel. As a result, S is fixed and segregation of S at the crystal grain boundary can be suppressed. In addition, by adding REM to the molten steel, oxides and oxysulfides are generated. Since these oxides and oxysulfides become precipitation sites for BN particles, the crystal grains of BN particles It is possible to suppress the precipitation to the boundary.

ここで、本実施形態では、結晶粒界におけるSの偏析やBN粒子の結晶粒界への析出を抑制するために、REMの添加量を以下の範囲内に調整している。
溶鋼中の硫黄濃度を[%S]、溶鋼中のトータル酸素濃度をT.[%O]、溶鋼中のREM濃度を[%REM]とし、REMの原子量をMREMとした場合に、
[%REM]/MREM≧0.3×([%S]/32.06+T.[%O]/16.1)
を満足するようにREMを添加する。
Here, in this embodiment, in order to suppress the segregation of S and the precipitation of BN particles at the crystal grain boundaries, the amount of REM added is adjusted within the following range.
The sulfur concentration in the molten steel is [% S], and the total oxygen concentration in the molten steel is T.V. When [% O], the REM concentration in the molten steel is [% REM], and the atomic weight of the REM is M REM ,
[% REM] / M REM ≧ 0.3 × ([% S] /32.06+T. [% O] /16.1)
REM is added to satisfy

これにより、REM含有量が30mol%以上に制御された粒径1μm以上の酸化物及び酸硫化物を分散させることが可能となる。なお、鋳片を観察した際に、観察される粒径1μm以上の酸化物及び酸硫化物のうちの50%以上が、REM含有量が30mol%以上に制御された酸化物及び酸硫化物であることが好ましい。
以上のように、REMを適量添加することにより、結晶粒界におけるSの偏析やBN粒子の結晶粒界への析出が抑制され、粒界強度が確保され、曲げ部15及び矯正部16において鋳片1の表面割れを抑制することが可能となる。
Thereby, it becomes possible to disperse oxides and oxysulfides having a particle size of 1 μm or more whose REM content is controlled to 30 mol% or more. When slabs are observed, 50% or more of the observed oxides and oxysulfides having a particle size of 1 μm or more are oxides and oxysulfides whose REM content is controlled to 30 mol% or more. Preferably there is.
As described above, by adding an appropriate amount of REM, segregation of S at the grain boundaries and precipitation of BN grains at the grain boundaries are suppressed, and the grain boundary strength is ensured. It becomes possible to suppress the surface crack of the piece 1.

(2)Ca添加の場合
Caは、REMと同様に、Sとの親和性が高いことから、溶鋼中にCaを添加することにより、CaとSの化合物が生成され、結晶粒界におけるSの偏析を抑制することが可能となる。また、Caを溶鋼中に添加することにより、酸化物及び酸硫化物が生成することになるが、これらの酸化物及び酸硫化物は、BN粒子の析出サイトとなるため、BN粒子が結晶粒界に析出することを抑制することが可能となる。
(2) When Ca is added Since Ca, like REM, has a high affinity with S, the addition of Ca into molten steel produces a compound of Ca and S. Segregation can be suppressed. Further, when Ca is added to the molten steel, oxides and oxysulfides are generated. Since these oxides and oxysulfides become precipitation sites of BN particles, the BN particles are crystal grains. It is possible to suppress the precipitation to the boundary.

ここで、本実施形態では、結晶粒界におけるSの偏析やBN粒子の結晶粒界への析出を抑制するために、Caの添加量を以下の範囲内に調整している。
溶鋼中の硫黄濃度を[%S]、溶鋼中のトータル酸素濃度をT.[%O]、溶鋼中のCa濃度を[%Ca]とし、Caの原子量をMCaとした場合に、
[%Ca]/MCa≧0.3×([%S]/32.06+T.[%O]/16.1)
を満足するようにCaを添加する。
Here, in this embodiment, in order to suppress the segregation of S and the precipitation of BN particles at the crystal grain boundaries, the addition amount of Ca is adjusted within the following range.
The sulfur concentration in the molten steel is [% S], and the total oxygen concentration in the molten steel is T.V. When [% O], the Ca concentration in the molten steel is [% Ca], and the atomic weight of Ca is MCa ,
[% Ca] / M Ca ≧ 0.3 × ([% S] /32.06+T. [% O] /16.1)
Ca is added so as to satisfy the above.

これにより、Ca含有量が30mol%以上に制御された粒径1μm以上の酸化物及び酸硫化物を分散させることが可能となる。なお、鋳片を観察した際に、観察される粒径 1μm以上の酸化物及び酸硫化物のうちの50%以上が、Ca含有量が30mol%以上に制御された酸化物及び酸硫化物であることが好ましい。
以上のように、Caを適量添加することにより、結晶粒界におけるSの偏析やBN粒子の結晶粒界への析出が抑制され、粒界強度が確保されることになり、曲げ部15及び矯正部16において鋳片1の表面割れを抑制することが可能となる。
Thereby, it becomes possible to disperse oxides and oxysulfides having a particle size of 1 μm or more whose Ca content is controlled to 30 mol% or more. When slabs are observed, 50% or more of oxides and oxysulfides having a particle size of 1 μm or more observed are oxides and oxysulfides whose Ca content is controlled to 30 mol% or more. Preferably there is.
As described above, by adding an appropriate amount of Ca, segregation of S at the grain boundaries and precipitation of BN grains at the grain boundaries are suppressed, and the grain boundary strength is ensured. It becomes possible to suppress the surface crack of the slab 1 at the portion 16.

(3)Zr添加の場合
Zrは、Nと反応してZrNを生成する。これにより、BNの生成を抑制することができ、BN粒子の結晶粒界への析出を抑制することができる。また、このZrNは、MnSと複合析出することから、溶鋼中のSが固定されることになる。これにより、結晶粒界におけるSの偏析を抑制することが可能となる。
(3) When Zr is added Zr reacts with N to produce ZrN. Thereby, the production | generation of BN can be suppressed and precipitation to the crystal grain boundary of BN particle | grains can be suppressed. Moreover, since this ZrN is complex-precipitated with MnS, S in the molten steel is fixed. Thereby, it is possible to suppress the segregation of S at the crystal grain boundaries.

ここで、本実施形態では、結晶粒界におけるSの偏析やBN粒子の結晶粒界への析出を抑制するために、Zrの添加量を以下の範囲内に調整している。
溶鋼中の窒素濃度を[%N]、溶鋼中のホウ素濃度を[%B]、溶鋼中のZr濃度を[%Zr]とし、Zrの原子量をMZrとした場合に、
[%Zr]/MZr≧0.3×([%N]/14.01−[%B]/10.81)
を満足するようにZrを添加する。
Here, in this embodiment, in order to suppress the segregation of S at the crystal grain boundaries and the precipitation of BN grains at the crystal grain boundaries, the amount of Zr added is adjusted within the following range.
When the nitrogen concentration in the molten steel is [% N], the boron concentration in the molten steel is [% B], the Zr concentration in the molten steel is [% Zr], and the atomic weight of Zr is M Zr ,
[% Zr] / M Zr ≧ 0.3 × ([% N] /14.01 − [% B] /10.81)
Zr is added so as to satisfy

これにより、ZrNとMnSとを含む粒径500nm以上5μm以下の複合介在物を単位面積あたり30個/mm以上で分散させることが可能となる。なお、鋳片を観察した際に、観察される粒径500nm以上5μm以下の複合介在物のうちの50%以上が、ZrNとMnSとを含む複合介在物であることが好ましい。
以上のように、Zrを適量添加することにより、結晶粒界におけるSの偏析やBN粒子の結晶粒界への析出が抑制され、粒界強度が確保されることになり、曲げ部15及び矯正部16において鋳片1の表面割れを抑制することが可能となる。
As a result, it is possible to disperse composite inclusions containing ZrN and MnS and having a particle size of 500 nm or more and 5 μm or less at a rate of 30 pieces / mm 2 or more per unit area. In addition, when slab is observed, it is preferable that 50% or more of the composite inclusions having a particle diameter of 500 nm or more and 5 μm or less observed are composite inclusions containing ZrN and MnS.
As described above, by adding an appropriate amount of Zr, segregation of S at the grain boundaries and precipitation of BN grains at the grain boundaries are suppressed, and the grain boundary strength is ensured. It becomes possible to suppress the surface crack of the slab 1 at the portion 16.

以上のように、本発明の実施形態によれば、B及びNiを含有する鋼の鋳片1を、垂直曲げ型の連続鋳造機10を用いて製造した場合であっても、曲げ部15及び矯正部16における鋳片1の表面割れの発生を抑制することが可能となる。   As described above, according to the embodiment of the present invention, even when the steel slab 1 containing B and Ni is manufactured using the vertical bending die continuous casting machine 10, the bending portion 15 and It becomes possible to suppress generation | occurrence | production of the surface crack of the slab 1 in the correction part 16. FIG.

以上、本発明の実施形態について具体的に説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
本実施形態では、垂直曲げ型の連続鋳造機10を例に挙げて説明したが、これに限定されることはなく、湾曲型の連続鋳造機であってもよい。
As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to this, In the range which does not deviate from the technical idea of the invention, it can change suitably.
In the present embodiment, the vertical bending type continuous casting machine 10 has been described as an example. However, the present invention is not limited to this, and a curved type continuous casting machine may be used.

以下に、発明の効果を確認すべく実施した確認実験について説明する。
2.5tonの高周波誘導炉を用いて、SiおよびMnによる予備複合脱酸を施した溶鋼を2.5ton溶製し、その後、高周波誘導炉から上注ぎで取鍋に溶鋼を移し替えた。取鍋内には、移し替える溶鋼に対して、金属Alを予め装入しておき、溶鋼の注入によって溶鋼中にAlを溶解させた。
Below, the confirmation experiment conducted in order to confirm the effect of invention is demonstrated.
A 2.5 ton high frequency induction furnace was used to melt 2.5 tonnes of molten steel subjected to preliminary combined deoxidation with Si and Mn, and then the molten steel was transferred from the high frequency induction furnace to the ladle by top pouring. In the ladle, metal Al was charged in advance for the molten steel to be transferred, and Al was dissolved in the molten steel by pouring the molten steel.

また、このとき、必要に応じて、Sとの親和力の大きい元素(REM,Ca)、またはZrも同様の手順で投入し、鋳造すべき溶鋼組成に最終調整した。取鍋中の溶鋼を、タンディッシュを介して、垂直部の長さ1.3mの垂直曲げ型連続鋳造機に注入し、厚さ100mm、幅500mmの鋳片を得た。鋳造速度は0.70〜1.20m/min、2次冷却の比水量は0.7〜1.6L/kg−steelである。また、鋳片曲げ入り側直前および矯正入り側直前のロール間に配置した放射温度計によって、L面(天側の長辺面のこと)側の鋳片表面温度を測温した。本発明で規定する測温位置はコーナから鋳片厚相当位置であり、本実施例ではコーナから100mm位置に相当する。   At this time, if necessary, elements having a high affinity with S (REM, Ca) or Zr were also introduced in the same procedure, and finally adjusted to the molten steel composition to be cast. The molten steel in the ladle was poured through a tundish into a vertical bending type continuous casting machine having a vertical portion length of 1.3 m to obtain a slab having a thickness of 100 mm and a width of 500 mm. The casting speed is 0.70 to 1.20 m / min, and the specific water amount for secondary cooling is 0.7 to 1.6 L / kg-steel. Further, the surface temperature of the slab on the L surface (the long side surface on the top side) was measured with a radiation thermometer disposed between the rolls immediately before the slab bending side and immediately before the correction side. The temperature measuring position defined in the present invention is a position corresponding to the slab thickness from the corner, and corresponds to a position 100 mm from the corner in this embodiment.

また、鋳片C断面(鋳片横断面の意で、この事例では500mm×100mmに相当)において、鋳片巾1/4およびL面側表層から厚み方向10mm位置までの10mm×20mmの視野を、走査型電子顕微鏡を用いて観察した。5〜10μmサイズの介在物を無作為に50個以上観察した。このとき、REM含有量が30mol%以上に制御された粒径1μm以上の酸化物及び酸硫化物、又は、Ca含有量が30mol%以上に制御された粒径1μm以上の酸化物及び酸硫化物がこの観察方法によって、少なくとも50%以上の割合で存在しなければならない。また、観察される硫化物、酸硫化物が他の非金属物と一体になっていた場合には、その硫化物または酸硫化物部分を対象に、EDSにて点分析を行い、CaまたはREMの含有量が30mol%以上であるかを確認した。
一方、同様の手順にて、無作為に30個以上の窒化物を観察し、10μm以下のZrNが90%以上の割合で存在し、そのうち50%以上の割合で、ZrN上に1μm未満のMnSが同時に観察されるとき、ZrNとMnSが複合した析出物を含むと定義した。
In addition, in the slab C cross section (in the sense of a slab transverse section, this example corresponds to 500 mm × 100 mm), a slab width of 1/4 and a 10 mm × 20 mm field of view from the L-layer side surface layer to the 10 mm position in the thickness direction This was observed using a scanning electron microscope. 50 or more inclusions having a size of 5 to 10 μm were randomly observed. At this time, an oxide and an oxysulfide having a particle size of 1 μm or more whose REM content is controlled to 30 mol% or more, or an oxide and an oxysulfide having a particle size of 1 μm or more whose Ca content is controlled to 30 mol% or more. Must be present in a proportion of at least 50% by this observation method. In addition, when the observed sulfide or oxysulfide is integrated with other non-metals, point analysis is performed on the sulfide or oxysulfide portion with EDS, and Ca or REM It was confirmed whether the content of was 30 mol% or more.
On the other hand, in the same procedure, 30 or more nitrides were randomly observed, and 10 μm or less of ZrN was present in a proportion of 90% or more, and 50% or more of which was less than 1 μm of MnS on ZrN. Is simultaneously observed, it is defined as including a precipitate in which ZrN and MnS are combined.

得られた鋳片表面からスケールを除去し、酸洗処理をした後に、鋳片のL面、F面(L面=天側の長辺面,F面=地側の長辺面)双方に対して、JIS Z2343に規定された染色浸透探傷試験、いわゆるカラーチェック法により割れ発生の有無を目視で観察した。表面疵の程度を指標化した値(疵指数)の3段階(0,1,2)で、表面割れの程度を評価した。疵指数が0(ゼロ)のとき、鋳片表面に、全く疵が確認できず、健全であることを表す。疵指数が1のとき、鋳片単位長さあたりの疵個数が10個/m以下と少ない上、表面を最大3mm程度のグラインダで旋削すれば、容易に手入れによって除去でき、実用上問題ないレベルである。疵指数が2のとき、鋳片全面に疵が散見される上(鋳片単位長さあたりの疵個数は30〜40個/m程度)、両面ともに、3mm程度のグラインダ旋削の軽度な手入れでは、完全に除去できないレベルである。または、鋳片コーナ部に3mm深さ以上の割れが顕著に観察され、その鋳片を次工程で使用するには、鋳片両端を30mm程度切断せざる、歩留まりの大幅低下を伴う。
したがって、したがって、疵発生指数0,1は鋳片の表面品質として支障がないレベルに該当し、疵指数2は、実用上、許容できないレベルに該当する。
After removing the scale from the surface of the obtained slab and pickling, both the L side and F side of the slab (L side = long side on the top side, F side = long side on the ground side) On the other hand, the presence or absence of cracks was visually observed by a dyeing penetrant flaw test defined in JIS Z2343, a so-called color check method. The degree of surface cracking was evaluated in three stages (0, 1, 2) of values (index of wrinkles) that index the degree of surface flaws. When the haze index is 0 (zero), no haze can be confirmed on the surface of the slab, indicating that the hull is sound. When the flaw index is 1, the number of flaws per slab unit length is as small as 10 pieces / m or less, and if the surface is turned with a grinder with a maximum of about 3 mm, it can be easily removed by maintenance, and there is no practical problem. It is. When the flaw index is 2, flaws are found on the entire surface of the slab (the number of ridges per unit length of the slab is about 30 to 40 / m), and both sides are not easily handled with a grinder turning of about 3 mm. This is a level that cannot be completely removed. Alternatively, cracks with a depth of 3 mm or more are remarkably observed in the slab corner, and in order to use the slab in the next process, both ends of the slab must be cut by about 30 mm, which is accompanied by a significant decrease in yield.
Therefore, the flaw occurrence index 0, 1 corresponds to a level that does not hinder the surface quality of the slab, and the flaw index 2 corresponds to a level that is practically unacceptable.

Sと親和性の高いREM及びCaを添加した本発明例1〜5及び比較例1〜5の結果について、表2及び図2に示す。なお、単位はいずれも質量%であり、各鋼について残部はFeおよび不純物である。   The results of Invention Examples 1 to 5 and Comparative Examples 1 to 5 to which REM and Ca having high affinity with S are added are shown in Table 2 and FIG. The unit is mass%, and the balance of each steel is Fe and impurities.

Figure 2018031055
Figure 2018031055

図2においては、溶鋼中の硫黄濃度を[%S]、溶鋼中のトータル酸素濃度をT.[%O]、Sと親和性の高い元素(REM、Ca)の溶鋼中の濃度を[%α]、Sと親和性の高い元素(REM、Ca)の原子量をMαとした場合の、[%α]/Mαと([%S]/28.09+T.[%O]/16.01)の関係を表す。
本発明例2,3では、疵の発生が全く観察されず(疵指数0)、非常に健全であった。本発明例1,4,5の疵指数1は、軽微な表面手入れで済む範囲で、生産性、歩留まりの弊害となるレベルではなかった。特に、疵指数0の場合と比べて、酸化物または酸硫化物中に占めるαの濃度がやや低位であっため、完全に疵発生を防止できなかった。比較例1、2、4は、請求項3,4で規定する式を満足せず、さらに酸化物または酸硫化物中のSと親和性の高い元素(REM、Ca)の濃度が30mol%未満であるため、曲げ、矯正時の表面温度が750℃以上であっても割れ抑制できなかった。また、比較例3,5は、請求項3,4で規定する式を満足するものの、矯正時の鋳片表面温度が750℃未満であったため割れが発生した。
In FIG. 2, the sulfur concentration in the molten steel is [% S], and the total oxygen concentration in the molten steel is T.V. When [% O], the concentration of elements having high affinity with S (REM, Ca) in the molten steel is [% α], and the atomic weight of elements having high affinity with S (REM, Ca) is M α , It represents the relationship between [% α] / Mα and ([% S] /28.09+T. [% O] /16.01).
In Inventive Examples 2 and 3, no wrinkle was observed (habit index 0), and it was very healthy. In the examples 1, 4, and 5 of the present invention, the wrinkle index 1 was not a level that would have a negative effect on productivity and yield, as long as slight surface care was required. In particular, compared with the case where the soot index was 0, the concentration of α in the oxide or oxysulfide was slightly lower, and so the generation of soot could not be prevented completely. Comparative Examples 1, 2, and 4 do not satisfy the formulas defined in claims 3 and 4, and the concentration of elements (REM, Ca) having a high affinity for S in the oxide or oxysulfide is less than 30 mol%. Therefore, even if the surface temperature during bending and straightening was 750 ° C. or higher, cracking could not be suppressed. Moreover, although the comparative examples 3 and 5 satisfy | fill the formula prescribed | regulated by Claim 3, 4, since the slab surface temperature at the time of correction was less than 750 degreeC, the crack generate | occur | produced.

次に、Zrを添加した本発明例6〜8及び比較例6〜8の結果について、表3及び図3に示す。なお、単位はいずれも質量%であり、各鋼について残部はFeおよび不純物である。   Next, Table 3 and FIG. 3 show the results of Invention Examples 6 to 8 and Comparative Examples 6 to 8 to which Zr was added. The unit is mass%, and the balance of each steel is Fe and impurities.

Figure 2018031055
Figure 2018031055

図3においては、溶鋼中の窒素濃度を[%N]、溶鋼中のホウ素濃度を[%B]、溶鋼中のZr濃度を[%Zr]とし、Zrの原子量をMZrとし、[%Zr]/MZrと([%N]/14.01−[%B]/10.81)の関係を表す。
本発明例7では、疵の発生が全く観察されず(疵指数0)、非常に健全であった。また、本発明例6,8(疵指数1)は、軽微な表面手入れで済む範囲で、生産性、歩留まりの弊害となるレベルではなかった。これは疵指数0の条件と比べると、矯正時に表面温度がやや低いため、疵指数1となった。比較例6、7は、請求項5で規定する式を満足せず、さらに鋼中に存在する窒化物としてZrNが認められず、BNが観察された。また、比較例8は、請求項5で規定する式を満足するものの、矯正時の鋳片表面温度が750℃未満であったため割れが発生した。
In FIG. 3, the nitrogen concentration in the molten steel is [% N], the boron concentration in the molten steel is [% B], the Zr concentration in the molten steel is [% Zr], the atomic weight of Zr is MZr, and [% Zr] / MZr and ([% N] /14.01-[% B] /10.81).
In Example 7 of the present invention, no generation of wrinkles was observed (wrinkle index 0), which was very healthy. In addition, Invention Examples 6 and 8 (having index 1) were not at a level that would adversely affect productivity and yield as long as minor surface maintenance was possible. Compared with the condition with a wrinkle index of 0, the surface temperature was slightly lower during correction, so that the wrinkle index was 1. In Comparative Examples 6 and 7, the formula defined in claim 5 was not satisfied, ZrN was not recognized as a nitride present in the steel, and BN was observed. Moreover, although the comparative example 8 satisfied the formula prescribed | regulated by Claim 5, since the slab surface temperature at the time of correction was less than 750 degreeC, the crack generate | occur | produced.

以上から、本発明例によれば、鋳片の表面割れの発生を抑制することが可能であることが確認された。   From the above, according to the example of the present invention, it was confirmed that occurrence of surface cracks in the slab can be suppressed.

1 鋳片
10 連続鋳造機
1 Slab 10 Continuous casting machine

Claims (5)

質量%で、C:0.05%以上0.18%以下、Si:0.10%以上0.4%以下、Mn:0.5%以上2.0%以下、P:0.020%以下、S:0.0035%以下、Ni:0.1%以上2.0%以下、Ti:0.005%以上0.030%以下、Al:0.005%以上0.06%以下、N:0.0015%以上0.007%以下、およびB:0.0005%以上0.0050%以下、を含有するとともに、
さらに、REM:0.0015%以上0.02%以下、Ca:0.0015%以上0.0060%以下、Zr:0.0020%以上0.015%以下、から選択される1種あるいは2種以上を含有し、残部がFeおよび不純物からなる組成を有し、
800℃で引張試験を行った試験片の破断面を観察した結果、結晶粒界におけるSの最大濃度が鋳片全体のS濃度の30倍以下とされるとともに、結晶粒界において観察される粒径10nm以上300nm以下のBN粒子の個数が粒界1mm長さあたり3000個以下とされていることを特徴とする鋳片。
In mass%, C: 0.05% to 0.18%, Si: 0.10% to 0.4%, Mn: 0.5% to 2.0%, P: 0.020% or less S: 0.0035% or less, Ni: 0.1% or more and 2.0% or less, Ti: 0.005% or more and 0.030% or less, Al: 0.005% or more and 0.06% or less, N: 0.0015% or more and 0.007% or less, and B: 0.0005% or more and 0.0050% or less,
Further, one or two selected from REM: 0.0015% to 0.02%, Ca: 0.0015% to 0.0060%, Zr: 0.0020% to 0.015% Containing the above, with the balance being composed of Fe and impurities,
As a result of observing the fracture surface of the test piece subjected to the tensile test at 800 ° C., the maximum concentration of S at the crystal grain boundary is 30 times or less of the S concentration of the entire slab, and the grains observed at the crystal grain boundary A cast slab characterized in that the number of BN particles having a diameter of 10 nm or more and 300 nm or less is 3000 or less per 1 mm length of the grain boundary.
さらに、Cu:0.1%以上0.5%以下、Cr:0.2%以上2.0%以下、Mo:0.1%以上0.8%以下、V:0.01%以上0.1%以下、Nb:0.005%以上0.05%以下、から選択される1種あるいは2種以上を含有することを特徴とする請求項1に記載の鋳片。   Further, Cu: 0.1% to 0.5%, Cr: 0.2% to 2.0%, Mo: 0.1% to 0.8%, V: 0.01% to 0.8%. The slab according to claim 1, comprising one or more selected from 1% or less and Nb: 0.005% or more and 0.05% or less. 垂直曲げ型又は湾曲型の連続鋳造機を用いて請求項1又は請求項2に記載の鋳片を製造する鋳片の製造方法であって、
質量%で、C:0.05%以上0.18%以下、Si:0.10%以上0.4%以下、Mn:0.5%以上2.0%以下、P:0.020%以下、S:0.0035%以下、Ni:0.1%以上2.0%以下、Ti:0.005%以上0.030%以下、Al:0.005%以上0.06%以下、N:0.0015%以上0.007%以下、およびB:0.0005%以上0.0050%以下、を含有し、必要に応じてCu:0.1%以上0.5%以下、Cr:0.2%以上2.0%以下、Mo:0.1%以上0.8%以下、V:0.01%以上0.1%以下、Nb:0.005%以上0.05%以下、から選択される1種あるいは2種以上を含有し、残部がFeおよび不純物からなる組成の溶鋼に、
溶鋼中の硫黄濃度を[%S]、溶鋼中のトータル酸素濃度をT.[%O]、溶鋼中のREM濃度を[%REM]とし、REMの原子量をMREMとした場合に、
[%REM]/MREM≧0.3×([%S]/32.06+T.[%O]/16.1)
を満足するようにREMを添加し、
REM含有量が30mol%以上に制御された粒径1μm以上の酸化物及び酸硫化物を分散させ、
鋳片に対して曲げまたは矯正歪が負荷される領域内において、前記鋳片の長辺面のコーナから鋳片厚み相当距離の位置における鋳片表面温度を750℃以上とすることを特徴とする鋳片の製造方法。
A slab manufacturing method for manufacturing a slab according to claim 1 or 2, using a vertical bending mold or a curved continuous casting machine,
In mass%, C: 0.05% to 0.18%, Si: 0.10% to 0.4%, Mn: 0.5% to 2.0%, P: 0.020% or less S: 0.0035% or less, Ni: 0.1% or more and 2.0% or less, Ti: 0.005% or more and 0.030% or less, Al: 0.005% or more and 0.06% or less, N: 0.0015% or more and 0.007% or less, and B: 0.0005% or more and 0.0050% or less. If necessary, Cu: 0.1% or more and 0.5% or less, Cr: 0.005% or less. 2% to 2.0%, Mo: 0.1% to 0.8%, V: 0.01% to 0.1%, Nb: 0.005% to 0.05% 1 type or 2 types or more of the molten steel having a composition consisting of Fe and impurities in the balance,
The sulfur concentration in the molten steel is [% S], and the total oxygen concentration in the molten steel is T.V. When [% O], the REM concentration in the molten steel is [% REM], and the atomic weight of the REM is M REM ,
[% REM] / M REM ≧ 0.3 × ([% S] /32.06+T. [% O] /16.1)
REM is added to satisfy
Disperse oxides and oxysulfides having a particle size of 1 μm or more whose REM content is controlled to 30 mol% or more,
In a region where bending or straightening strain is applied to the slab, the slab surface temperature at a position corresponding to the slab thickness distance from the corner of the long side surface of the slab is 750 ° C. or more. A method for producing a slab.
垂直曲げ型又は湾曲型の連続鋳造機を用いて請求項1又は請求項2に記載の鋳片を製造する鋳片の製造方法であって、
質量%で、C:0.05%以上0.18%以下、Si:0.10%以上0.4%以下、Mn:0.5%以上2.0%以下、P:0.020%以下、S:0.0035%以下、Ni:0.1%以上2.0%以下、Ti:0.005%以上0.030%以下、Al:0.005%以上0.06%以下、N:0.0015%以上0.007%以下、およびB:0.0005%以上0.0050%以下、を含有し、必要に応じてCu:0.1%以上0.5%以下、Cr:0.2%以上2.0%以下、Mo:0.1%以上0.8%以下、V:0.01%以上0.1%以下、Nb:0.005%以上0.05%以下、から選択される1種あるいは2種以上を含有し、残部がFeおよび不純物からなる組成の溶鋼に、
溶鋼中の硫黄濃度を[%S]、溶鋼中のトータル酸素濃度をT.[%O]、溶鋼中のCa濃度を[%Ca]とし、Caの原子量をMCaとした場合に、
[%Ca]/MCa≧0.3×([%S]/32.06+T.[%O]/16.1)
を満足するようにCaを添加し、
Ca含有量が30mol%以上に制御された粒径1μm以上の酸化物及び酸硫化物を分散させ、
鋳片に対して曲げまたは矯正歪が負荷される領域内において、前記鋳片の長辺面のコーナから鋳片厚み相当距離の位置における鋳片表面温度を750℃以上とすることを特徴とする鋳片の製造方法。
A slab manufacturing method for manufacturing a slab according to claim 1 or 2, using a vertical bending mold or a curved continuous casting machine,
In mass%, C: 0.05% to 0.18%, Si: 0.10% to 0.4%, Mn: 0.5% to 2.0%, P: 0.020% or less S: 0.0035% or less, Ni: 0.1% or more and 2.0% or less, Ti: 0.005% or more and 0.030% or less, Al: 0.005% or more and 0.06% or less, N: 0.0015% or more and 0.007% or less, and B: 0.0005% or more and 0.0050% or less. If necessary, Cu: 0.1% or more and 0.5% or less, Cr: 0.005% or less. 2% to 2.0%, Mo: 0.1% to 0.8%, V: 0.01% to 0.1%, Nb: 0.005% to 0.05% 1 type or 2 types or more of the molten steel having a composition consisting of Fe and impurities in the balance,
The sulfur concentration in the molten steel is [% S], and the total oxygen concentration in the molten steel is T.V. When [% O], the Ca concentration in the molten steel is [% Ca], and the atomic weight of Ca is MCa ,
[% Ca] / M Ca ≧ 0.3 × ([% S] /32.06+T. [% O] /16.1)
Ca is added so as to satisfy
Disperse oxides and oxysulfides having a particle size of 1 μm or more with Ca content controlled to 30 mol% or more,
In a region where bending or straightening strain is applied to the slab, the slab surface temperature at a position corresponding to the slab thickness distance from the corner of the long side surface of the slab is 750 ° C. or more. A method for producing a slab.
垂直曲げ型又は湾曲型の連続鋳造機を用いて請求項1又は請求項2に記載の鋳片を製造する鋳片の製造方法であって、
質量%で、C:0.05%以上0.18%以下、Si:0.10%以上0.4%以下、Mn:0.5%以上2.0%以下、P:0.020%以下、S:0.0035%以下、Ni:0.1%以上2.0%以下、Ti:0.005%以上0.030%以下、Al:0.005%以上0.06%以下、N:0.0015%以上0.007%以下、およびB:0.0005%以上0.0050%以下、を含有し、必要に応じてCu:0.1%以上0.5%以下、Cr:0.2%以上2.0%以下、Mo:0.1%以上0.8%以下、V:0.01%以上0.1%以下、Nb:0.005%以上0.05%以下、から選択される1種あるいは2種以上を含有し、残部がFeおよび不純物からなる組成の溶鋼に、
溶鋼中の窒素濃度を[%N]、溶鋼中のホウ素濃度を[%B]、溶鋼中のZr濃度を[%Zr]とし、Zrの原子量をMZrとした場合に、
[%Zr]/MZr≧0.3×([%N]/14.01−[%B]/10.81)
を満足するようにZrを添加し、
ZrNとMnSとを含む粒径500nm以上5μm以下の複合介在物を単位面積あたり30個/mm以上で分散させ、
鋳片に対して曲げまたは矯正歪が負荷される領域内において、前記鋳片の長辺面のコーナから鋳片厚み相当距離の位置における鋳片表面温度を750℃以上とすることを特徴とする鋳片の製造方法。
A slab manufacturing method for manufacturing a slab according to claim 1 or 2, using a vertical bending mold or a curved continuous casting machine,
In mass%, C: 0.05% to 0.18%, Si: 0.10% to 0.4%, Mn: 0.5% to 2.0%, P: 0.020% or less S: 0.0035% or less, Ni: 0.1% or more and 2.0% or less, Ti: 0.005% or more and 0.030% or less, Al: 0.005% or more and 0.06% or less, N: 0.0015% or more and 0.007% or less, and B: 0.0005% or more and 0.0050% or less. If necessary, Cu: 0.1% or more and 0.5% or less, Cr: 0.005% or less. 2% to 2.0%, Mo: 0.1% to 0.8%, V: 0.01% to 0.1%, Nb: 0.005% to 0.05% 1 type or 2 types or more of the molten steel having a composition consisting of Fe and impurities in the balance,
When the nitrogen concentration in the molten steel is [% N], the boron concentration in the molten steel is [% B], the Zr concentration in the molten steel is [% Zr], and the atomic weight of Zr is M Zr ,
[% Zr] / M Zr ≧ 0.3 × ([% N] /14.01 − [% B] /10.81)
Zr is added so as to satisfy
A composite inclusion having a particle size of 500 nm or more and 5 μm or less containing ZrN and MnS is dispersed at a rate of 30 pieces / mm 2 or more per unit area,
In a region where bending or straightening strain is applied to the slab, the slab surface temperature at a position corresponding to the slab thickness distance from the corner of the long side surface of the slab is 750 ° C. or more. A method for producing a slab.
JP2016163855A 2016-08-24 2016-08-24 Manufacturing method of slabs Active JP6951060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016163855A JP6951060B2 (en) 2016-08-24 2016-08-24 Manufacturing method of slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016163855A JP6951060B2 (en) 2016-08-24 2016-08-24 Manufacturing method of slabs

Publications (2)

Publication Number Publication Date
JP2018031055A true JP2018031055A (en) 2018-03-01
JP6951060B2 JP6951060B2 (en) 2021-10-20

Family

ID=61304918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016163855A Active JP6951060B2 (en) 2016-08-24 2016-08-24 Manufacturing method of slabs

Country Status (1)

Country Link
JP (1) JP6951060B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019207636A1 (en) * 2018-04-24 2019-10-31 株式会社Sbb66 Method for manufacturing steel sheet comprising high-tensile-strength steel
JP2020033584A (en) * 2018-08-28 2020-03-05 日本製鉄株式会社 steel sheet
JP2020033585A (en) * 2018-08-28 2020-03-05 日本製鉄株式会社 steel sheet
KR20200132165A (en) * 2019-05-15 2020-11-25 주식회사 포스코 High manganese slab having reduced rate of surface cracking and method of manufacturing the same and high manganese steel sheet using the same
CN115380128A (en) * 2020-04-07 2022-11-22 日本制铁株式会社 Slab having excellent surface crack resistance and continuous casting method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019207636A1 (en) * 2018-04-24 2019-10-31 株式会社Sbb66 Method for manufacturing steel sheet comprising high-tensile-strength steel
JP2020033584A (en) * 2018-08-28 2020-03-05 日本製鉄株式会社 steel sheet
JP2020033585A (en) * 2018-08-28 2020-03-05 日本製鉄株式会社 steel sheet
JP7206700B2 (en) 2018-08-28 2023-01-18 日本製鉄株式会社 steel plate
JP7206701B2 (en) 2018-08-28 2023-01-18 日本製鉄株式会社 steel plate
KR20200132165A (en) * 2019-05-15 2020-11-25 주식회사 포스코 High manganese slab having reduced rate of surface cracking and method of manufacturing the same and high manganese steel sheet using the same
KR102209405B1 (en) * 2019-05-15 2021-01-29 주식회사 포스코 High manganese slab having reduced rate of surface cracking and method of manufacturing the same and high manganese steel sheet using the same
CN115380128A (en) * 2020-04-07 2022-11-22 日本制铁株式会社 Slab having excellent surface crack resistance and continuous casting method thereof
CN115380128B (en) * 2020-04-07 2023-12-01 日本制铁株式会社 Slab excellent in surface cracking resistance sensitivity and continuous casting method thereof

Also Published As

Publication number Publication date
JP6951060B2 (en) 2021-10-20

Similar Documents

Publication Publication Date Title
US8177925B2 (en) High-tensile steel plate, welded steel pipe or tube, and methods of manufacturing thereof
EP2975149B1 (en) H-shaped steel and process for manufacturing same
JP5278188B2 (en) Thick steel plate with excellent resistance to hydrogen-induced cracking and brittle crack propagation
CN110088344B (en) Steel for pressure vessel having excellent hydrogen-induced cracking resistance and method for producing same
JP4725437B2 (en) Continuous cast slab for thick steel plate, method for producing the same, and thick steel plate
JP6951060B2 (en) Manufacturing method of slabs
JPWO2018105510A1 (en) High Mn steel sheet and method for producing the same
JP2017160510A (en) Nickel steel sheet for low temperature and manufacturing method therefor
KR20180132910A (en) High tensile steel and marine structures
US20200123624A1 (en) High-Strength Steel Material and Production Method Therefor
CN113846260B (en) Production method of high-strength steel plate for engineering machinery
JP2006063351A (en) High strength steel plate with excellent hydrogen induced cracking resistance, its manufacturing method, and steel pipe for line pipe
JP2018127677A (en) Steel material for tank and manufacturing method therefor
JP2017150067A (en) Steel sheet excellent in brittleness crack propagation arrest property and manufacturing method therefor
JP6131833B2 (en) Method for continuous casting of Ti deoxidized steel
JPH08158006A (en) High strength steel excellent in toughness in weld heat-affected zone
JP5708349B2 (en) Steel with excellent weld heat affected zone toughness
US11453925B2 (en) Seamless steel pipe and method for producing same
JP5223706B2 (en) Steel material excellent in toughness of heat-affected zone with high heat input and manufacturing method thereof
RU2432403C1 (en) Procedure for manufacture of cold resistant flat
JP6733808B2 (en) Wire rod and flat steel wire
JP2017057483A (en) H-shaped steel and production method therefor
JPWO2019180957A1 (en) Rolled H-section steel and manufacturing method thereof
JP7063401B2 (en) Manufacturing method of high manganese steel slab and manufacturing method of high manganese steel slab or steel plate
JP2017160511A (en) Nickel-containing steel sheet for low temperature excellent in tensile strength and toughness and manufacturing method therefor

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200728

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200728

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200805

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200811

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200904

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200908

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210420

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20210607

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210726

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20210811

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210817

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210914

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210924

R150 Certificate of patent or registration of utility model

Ref document number: 6951060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150