JP2018030159A - Flux-cored wire for electroslag welding - Google Patents

Flux-cored wire for electroslag welding Download PDF

Info

Publication number
JP2018030159A
JP2018030159A JP2016165132A JP2016165132A JP2018030159A JP 2018030159 A JP2018030159 A JP 2018030159A JP 2016165132 A JP2016165132 A JP 2016165132A JP 2016165132 A JP2016165132 A JP 2016165132A JP 2018030159 A JP2018030159 A JP 2018030159A
Authority
JP
Japan
Prior art keywords
wire
flux
welding
steel
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016165132A
Other languages
Japanese (ja)
Other versions
JP6688192B2 (en
Inventor
木本 勇
Isamu Kimoto
勇 木本
直樹 坂林
Naoki Sakabayashi
直樹 坂林
明知 末田
Akitomo Sueda
明知 末田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2016165132A priority Critical patent/JP6688192B2/en
Publication of JP2018030159A publication Critical patent/JP2018030159A/en
Application granted granted Critical
Publication of JP6688192B2 publication Critical patent/JP6688192B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flux-cored wire which has excellent wire feedability, causes no welding defect and stably provides strength and toughness of a weld steel in high heat input electroslag welding of 490-590 MPa class steel.SOLUTION: The flux-cored wire for electroslag welding is provided that is obtained by filling a steel-made shell with flux. In the flux-cored wire for electroslag welding, the steel-made shell contains, by mass % with respect to the total mass of steel-made shell, 0.07% or less C, 0.2% or less Si, 0.1-0.6% Mn, and the wire component contains, by mass % with respect to the total mass of the wire, as total amounts of the steel-made shell and the flux, 0.01-0.10% C, 0.01-0.50% Si, 1.8-2.8% Mn, and further contains in the flux, by mass % with respect to the total mass of the wire, 0.2-0.7% Mo, 0.01-0.20% Ti, 0.02-0.20% Si oxide in terms of SiOand 0.02-0.10% as the total of Na compound and K compound in terms of NaO and in terms of KO.SELECTED DRAWING: None

Description

本発明は、490〜590MPa級鋼のエレクトロスラグ溶接に用いられるエレクトロスラグ溶接用フラックス入りワイヤに関し、大入熱のエレクトロスラグ溶接において、溶接欠陥が無く、良好で安定した強度及び靭性を有する溶接金属を得る上で好適なエレクトロスラグ溶接用フラックス入りワイヤに関する。   The present invention relates to a flux-cored wire for electroslag welding used for electroslag welding of 490 to 590 MPa class steel, and relates to a weld metal having good and stable strength and toughness without welding defects in electroslag welding with high heat input. It is related with the flux cored wire for electroslag welding suitable for obtaining.

エレクトロスラグ溶接は、大入熱溶接の1パス溶接により高能率な溶接が可能であるので、建築構造物、船舶、橋梁、海洋構造物、タンクなどの各種溶接構造物の建造に用いられている。   Electroslag welding is one-pass welding with high heat input welding, so that highly efficient welding is possible. Therefore, it is used for the construction of various welded structures such as building structures, ships, bridges, marine structures, and tanks. .

特に、建築構造物においては、地震時における構造物の脆性破壊を防止する観点から、溶接欠陥が無く溶接金属の高靭性化の要望が極めて大きい。   In particular, in building structures, there is a great demand for high toughness of weld metal without welding defects from the viewpoint of preventing brittle fracture of structures during an earthquake.

厚板の非消耗ノズル式エレクトロスラグ溶接を高能率に行う方法として、例えば特許文献1に、ワイヤ径が1.4〜2.0mmの細径ワイヤを用いて溶融スラグ浴表面と溶接チップ先端間のワイヤ突き出し長さ(以下、ドライエックステンションという。)を一定に保持して溶接ノズルを自動上昇させながら溶接を行うという技術の開示がある。   As a method of performing highly efficient non-consumable nozzle type electroslag welding of a thick plate, for example, in Patent Document 1, a thin wire having a wire diameter of 1.4 to 2.0 mm is used to connect the surface of the molten slag bath and the tip of the welding tip. There is a disclosure of a technique in which welding is performed while the welding nozzle is automatically raised while keeping the wire protruding length (hereinafter referred to as dry extension) constant.

図3に非消耗ノズル式エレクトロスラグ溶接方法の概要を示す。建築物のボックス柱の製作において、スキンプレート21、ダイアフラム22及び当金23で囲まれた開先24の中央部に非消耗ノズル25を挿入して、通電と同時に溶接用ワイヤ26の先端と開先底部との間にアークを発生させ、溶融型フラックスを投入して溶融スラグ27を作り、エレクトロスラグ溶接を開始する。溶接が進行すると溶接用ワイヤ26のドライエクステンションLを設定値(30〜50mm)に保つように、溶接金属29の上昇に伴って溶接電流の変化を検出してノズル上昇用ローラ30が駆動され、非消耗ノズル25を引上げながら溶接用ワイヤ26が送給されることでエレクトロスラグ溶接を行う。なお、板厚が厚くなると図示しない搖動装置で非消耗ノズル25をダイアフラム22の板厚方向に搖動させる。   FIG. 3 shows an outline of the non-consumable nozzle type electroslag welding method. In the production of a box column for a building, a non-consumable nozzle 25 is inserted in the center of a groove 24 surrounded by a skin plate 21, a diaphragm 22 and a metal plate 23, and simultaneously with energization, the tip of the welding wire 26 is opened and opened. An arc is generated between the tip and the bottom, molten flux is introduced to form molten slag 27, and electroslag welding is started. As welding progresses, the nozzle raising roller 30 is driven by detecting a change in welding current as the weld metal 29 rises so as to keep the dry extension L of the welding wire 26 at a set value (30 to 50 mm). Electroslag welding is performed by feeding the welding wire 26 while pulling up the non-consumable nozzle 25. When the plate thickness is increased, the non-consumable nozzle 25 is moved in the plate thickness direction of the diaphragm 22 by a peristaltic device (not shown).

溶接に供されるワイヤは、大入熱1パス溶接で溶接金属の強度及び靭性を確保するために、従来から種々の成分組成の溶接用ワイヤが用いられている。例えば特許文献2〜4には、大入熱で強度及び優れた靭性を得るためにワイヤ成分としてC、Si、Mn、Ni、Mo、Ti等を多く含有するソリッドワイヤの開示がある。   Conventionally, welding wires having various component compositions have been used for welding to ensure the strength and toughness of the weld metal by one-pass welding with high heat input. For example, Patent Documents 2 to 4 disclose a solid wire containing a large amount of C, Si, Mn, Ni, Mo, Ti or the like as a wire component in order to obtain strength and excellent toughness with high heat input.

一方、図4に示すように非消耗ノズル25は、上部にワイヤ矯正装置が設けられており、図示しないペールパックに装填、またはスプールに巻かれた溶接用ワイヤの癖や捩りを矯正して非消耗ノズル25を経由して開先24の中央部に送給している。図4中のガイド31は、図示しないペールパックやスプールからワイヤ送給装置を経て溶接用ワイヤを案内するコンジットライナを連結する。溶接用ワイヤは、ガイド31から送られて回転自在なワイヤガイド輪32(直径70〜100mm)と複数の溝付ローラ33によって一方向に屈曲され曲がり癖や捩りを取り除かれた後、第一矯正ローラ35a、35bによって前記屈曲を矯正している。   On the other hand, as shown in FIG. 4, the non-consumable nozzle 25 is provided with a wire straightening device at the top, and is fixed by correcting wrinkles and twists of a welding wire loaded in a pail pack (not shown) or wound on a spool. It is fed to the central portion of the groove 24 via the consumable nozzle 25. A guide 31 in FIG. 4 connects a conduit liner that guides a welding wire from a pail pack or spool (not shown) through a wire feeding device. The welding wire is bent in one direction by a wire guide ring 32 (diameter: 70 to 100 mm) that is sent from the guide 31 and is rotatable and a plurality of grooved rollers 33 to remove bending wrinkles and twists, and then the first correction. The bending is corrected by the rollers 35a and 35b.

次いで、第二矯正ローラ36a、36cと36bとの間を溶接ワイヤが屈曲しつつ通過するようにして前記矯正方向に対して90°の方向から真直ぐに矯正し、非消耗ノズル25内から給電チップ34を介して溶接部へ送給される。なお、第一矯正ローラ35bと、第二矯正ローラ36a、36cは軸が固定され、第一矯正ローラ35a及び第二矯正ローラ36bをそれぞれ調整つまみ37、38で押し付け量を変えてワイヤの矯正量が調整される。   Next, the welding wire passes between the second straightening rollers 36a, 36c and 36b while being bent, straightening from the direction of 90 ° with respect to the straightening direction, and feeding chip from inside the non-consumable nozzle 25. It is fed to the welded part via 34. The first straightening roller 35b and the second straightening rollers 36a and 36c have fixed axes, and the amount of straightening of the wire is changed by changing the pressing amount of the first straightening roller 35a and the second straightening roller 36b with the adjusting knobs 37 and 38, respectively. Is adjusted.

引用文献2〜引用文献4に記載のソリッドワイヤを用いて図4に示すワイヤ矯正装置によって溶接する場合、ソリッドワイヤは、大入熱溶接においても溶接金属の十分な強度及び靭性を得るために比較的多くの合金を含んでいるので、ワイヤが硬く、溶接時にワイヤ矯正が十分にできない場合がある。このためワイヤガイド輪32と複数の溝付ローラ33間、第一矯正ローラ35及び第二矯正ローラ36でワイヤ送給抵抗が増してワイヤ送給速度が不安定となり、母材を十分に溶融することができない場合がある。また、この場合非消耗ノズル25の先端部の給電チップ34から溶接用ワイヤが曲がった状態で供給されるので溶接金属が片溶けして、溶融不良が生じる場合があった。   When welding with the wire straightening device shown in FIG. 4 using the solid wires described in cited references 2 to 4, the solid wires are compared in order to obtain sufficient strength and toughness of the weld metal even in high heat input welding. Since many alloys are included, the wire is hard and the wire may not be sufficiently straightened during welding. For this reason, the wire feed resistance increases between the wire guide wheel 32 and the plurality of grooved rollers 33, the first straightening roller 35 and the second straightening roller 36, the wire feed speed becomes unstable, and the base material is sufficiently melted. It may not be possible. Further, in this case, since the welding wire is supplied in a bent state from the power supply tip 34 at the tip of the non-consumable nozzle 25, the weld metal may be partially melted, resulting in poor melting.

このため、溶接用ワイヤの矯正が容易で送給抵抗を少なくすることを目的として、軟鋼の鋼製外皮に金属粉又は合金粉を充填したフラックス入りワイヤを用いる技術が、例えば特許文献5、6において提案されている。   For this reason, for the purpose of easily correcting the welding wire and reducing the feeding resistance, a technique using a flux-cored wire in which a steel sheath of mild steel is filled with metal powder or alloy powder is disclosed in Patent Documents 5 and 6, for example. Has been proposed in

しかし、特許文献5及び特許文献6に記載のフラックス入りワイヤは、鋼製外皮内に充填した金属粉又は合金粉の表面積が大きいことから表面が酸化した多量の鉄酸化物を含んでおり、溶接が進むにつれて溶融スラグ中の鉄酸化物が多くなり、溶融スラグの粘性が高くなるという問題点があった。また、溶融スラグの流動性が低下して母材を十分に溶融できなくなるという問題点があった。さらに、これらのフラックス入りワイヤを用いて溶接した場合の溶接金属の溶接線方向の強度及び靭性が安定しないという問題点もあった。   However, the flux-cored wires described in Patent Document 5 and Patent Document 6 contain a large amount of iron oxide whose surface is oxidized because the surface area of the metal powder or alloy powder filled in the steel outer shell is large, and welding is performed. As the process proceeds, the iron oxide in the molten slag increases and the viscosity of the molten slag increases. Further, there is a problem that the fluidity of the molten slag is lowered and the base material cannot be sufficiently melted. Furthermore, there has been a problem that the strength and toughness of the weld metal in the weld line direction when welding is performed using these flux-cored wires is not stable.

特開昭57−156884号公報JP-A-57-156684 特開2002−79396号公報JP 2002-79396 A 特開2005−246398号公報JP 2005-246398 A 特開2009−45671号公報JP 2009-45671 A 特開2005−271032号公報JP 2005-271032 A 特開2009−195975号公報JP 2009-195975 A

そこで本発明は、上述した問題点に鑑みて案出されたものであり、490〜590MPa級鋼の大入熱のエレクトロスラグ溶接において、ワイヤ送給性が良好で溶接欠陥が無く、かつ溶接金属の強度及び靭性が安定して得られるエレクトロスラグ溶接用フラックス入りワイヤを提供することを目的とする。   Therefore, the present invention has been devised in view of the above-described problems, and in high heat input electroslag welding of 490 to 590 MPa class steel, the wire feedability is good, there is no welding defect, and the weld metal An object of the present invention is to provide a flux-cored wire for electroslag welding in which the strength and toughness of the steel can be stably obtained.

本発明の要旨は、鋼製外皮にフラックスを充填してなるエレクトロスラグ溶接用フラックス入りワイヤにおいて、鋼製外皮は、鋼製外皮全質量に対する質量%で、C:0.07%以下、Si:0.2%以下、Mn:0.1〜0.6%を含有し、ワイヤ成分は、ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、C:0.01〜0.10%、Si:0.01〜0.50%、Mn:1.8〜2.8%、さらに、ワイヤ全質量に対する質量%で、フラックス中に、Mo:0.2〜0.7%、Ti:0.01〜0.20%、Si酸化物のSiO2換算値の合計:0.02〜0.20%、Na化合物及びK化合物のNa2O換算値とK2O換算値の1種又は2種の合計:0.02〜0.10%を含有し、残部は鋼製外皮のFe、鉄粉、鉄合金粉のFe分及び不可避不純物からなることを特徴とする。 The gist of the present invention is that in a flux-cored wire for electroslag welding formed by filling a steel outer shell with a flux, the steel outer shell is in mass% with respect to the total mass of the steel outer shell, C: 0.07% or less, Si: 0.2% or less, Mn: 0.1-0.6%, the wire component is mass% with respect to the total mass of the wire, and is the total of the steel outer sheath and the flux, C: 0.01-0.10 %, Si: 0.01 to 0.50%, Mn: 1.8 to 2.8%, and mass% with respect to the total mass of the wire, in the flux, Mo: 0.2 to 0.7%, Ti : 0.01 to 0.20%, total of SiO 2 equivalent value of Si oxide: 0.02 to 0.20%, Na 2 O equivalent value of Na compound and K compound and one kind of K 2 O equivalent value Or the total of two types: 0.02 to 0.10% is contained, and the balance is steel outer shell Fe, iron powder, iron Characterized by comprising the Fe content and unavoidable impurities gold powder.

また、ワイヤ全質量に対する質量%で、フラックス中に、B:0.002〜0.010%をさらに含有することも特徴とする。   Moreover, it is characterized by further containing B: 0.002 to 0.010% in the flux in mass% with respect to the total mass of the wire.

さらに、成形された鋼製外皮の合わせ目が溶接されていることで鋼製外皮に継目を無くしたことも特徴とするエレクトロスラグ溶接用フラックス入りワイヤにある。   Further, the present invention provides a flux-cored wire for electroslag welding, characterized in that the seam of the steel outer skin is eliminated by welding the seam of the formed steel outer skin.

本発明に係るエレクトロスラグ溶接用フラックス入りワイヤによれば、鋼製外皮が軟らかいので、溶接時のワイヤ矯正が容易で非消耗ノズルや矯正ローラ部でのワイヤ送給抵抗を抑えることができる。したがって、ワイヤ送給が安定して溶接欠陥が生じることがない。また、フラックス中にSi酸化物及びNa化合物とK化合物の1種又は2種を含むので、溶融スラグの粘性及び流動性が溶接開始から終了まで良好で、母材を十分に溶融できるとともに適量の合金成分を含んでいるので、安定した機械的性能を有する溶接金属を提供できるなど、490〜590MPa級鋼の溶接構造物の安全性及び生産効率を著しく高めることができる。   According to the flux-cored wire for electroslag welding according to the present invention, since the steel outer sheath is soft, wire correction at the time of welding is easy, and wire feeding resistance at the non-consumable nozzle and the correction roller portion can be suppressed. Therefore, the wire feeding is stable and no welding defect occurs. In addition, since the flux contains one or two kinds of Si oxide, Na compound and K compound, the viscosity and fluidity of the molten slag are good from the start to the end of welding, the base material can be sufficiently melted and an appropriate amount can be obtained. Since the alloy component is contained, the safety and production efficiency of a welded structure of 490 to 590 MPa class steel can be remarkably improved, such as providing a weld metal having stable mechanical performance.

本発明を適用したエレクトロスラグ溶接用フラックス入りワイヤの実験的検証のために使用した溶接試験板を示す図である。It is a figure which shows the welding test board used for the experimental verification of the flux cored wire for electroslag welding to which this invention is applied. 本発明を適用したエレクトロスラグ溶接用フラックス入りワイヤの実験的検証に必要な溶接金属の試験片採取位置を示す図である。It is a figure which shows the test piece collection position of a weld metal required for experimental verification of the flux cored wire for electroslag welding to which this invention is applied. 非消耗ノズル式エレクトロスラグ溶接方法の概要を示す図である。It is a figure which shows the outline | summary of the non-consumable nozzle type electroslag welding method. 非消耗ノズル式エレクトロスラグ溶接に用いるワイヤ矯正装置を示す図である。It is a figure which shows the wire straightening apparatus used for non-consumable nozzle type electroslag welding.

本発明者らは、490〜590MPa級鋼の大入熱のエレクトロスラグ溶接に用いる溶接用ワイヤにおいて、ワイヤ矯正装置部でワイヤ送給抵抗が少なくなる鋼製外皮を用いたフラックス入りワイヤについて、耐欠陥性及び安定した機械的性能を得るべく、それぞれの鋼製外皮成分及び充填フラックスの成分組成、並びにその作用効果について詳細に検討した。   In the welding wire used for electroslag welding with a large heat input of 490 to 590 MPa class steel, the present inventors have made resistance to flux-cored wire using a steel outer sheath that reduces wire feeding resistance in the wire straightening device section. In order to obtain defects and stable mechanical performance, the steel outer skin components and the component compositions of the filling flux, and their effects were examined in detail.

その結果、鋼製外皮のC、Si及びMn量を限定することによって、ワイヤ矯正装置部でワイヤ送給抵抗が低く、母材への溶け込み不良などの欠陥が生じなくなり、ワイヤ成分については鋼製外皮とフラックスの合計で、C、Si、Mn、Mo及びTiを適量とすることによって、大入熱溶接による溶接金属の強度の確保及び優れた靭性が得られることを見出した。   As a result, by limiting the amount of C, Si and Mn in the steel outer sheath, the wire feeding resistance is low in the wire straightening device section, and defects such as poor penetration into the base material do not occur, and the wire component is made of steel. It has been found that by ensuring that C, Si, Mn, Mo, and Ti are appropriate amounts of the outer shell and the flux, the strength of the weld metal by high heat input welding and excellent toughness can be obtained.

また、フラックス入りワイヤを用いた場合に問題となる溶融スラグの鉄酸化物の増加による粘性の増加は、Si酸化物の微量添加によって調整でき、流動性の低下は、Na化合物及びK化合物の微量添加によって解決でき、溶接開始から終了まで均一に母材を溶融できることから、溶接欠陥がなく溶接線方向の機械的性能が均一で安定した溶接金属が得られることを見出した。   In addition, the increase in viscosity due to the increase in iron oxide of molten slag, which is a problem when using flux-cored wire, can be adjusted by adding a small amount of Si oxide, and the decrease in fluidity is caused by a small amount of Na compound and K compound. It can be solved by addition, and since the base metal can be melted uniformly from the start to the end of welding, it has been found that a weld metal having no weld defects and uniform mechanical performance in the weld line direction can be obtained.

さらに、Bの添加により溶接金属の靭性がさらに向上し、鋼製外皮の合わせ目を溶接して鋼製外皮の継目をなくすることによって、フラックス入りワイヤの製造時に焼鈍が可能となることから、さらにワイヤ矯正装置部でワイヤ送給抵抗を低くできることを見出した。   Furthermore, the toughness of the weld metal is further improved by the addition of B, and by welding the seam of the steel outer shell and eliminating the seam of the steel outer shell, annealing can be performed during the manufacture of the flux-cored wire. Further, it has been found that the wire feeding resistance can be lowered in the wire straightening device section.

以下に本発明を適用したエレクトロスラグ溶接用フラックス入りワイヤについて説明する。   The flux cored wire for electroslag welding to which the present invention is applied will be described below.

まず、鋼製外皮の成分組成について説明する。なお、各成分の含有率は、鋼製外皮全質量に対する質量%で表すものとし、その質量%に関する記載を単に%と記載する。   First, the component composition of the steel outer shell will be described. In addition, the content rate of each component shall be represented by the mass% with respect to the steel outer shell total mass, and the description regarding the mass% is only described as%.

[鋼製外皮のC:0.07%以下、Si:0.2%以下、Mn:0.1〜0.6%]
鋼製外皮は、溶接時のワイヤ矯正の容易性を左右するものであり、溶接部の健全性に影響する。鋼製外皮中のCが0.07%超、Siが0.2%超、Mnが0.6%を超えると、ワイヤが硬くなってワイヤ矯正が十分にできず、矯正ローラ部及び非消耗ノズル内でのワイヤ送給抵抗が大きくなってワイヤ送給速度が不安定になってしまう。その結果、母材を十分溶融できず溶接金属の靭性が安定化させることができない。また鋼製外皮中のC、Si、Mnが上述した範囲を超えると、非消耗ノズル先端の給電チップからワイヤが曲がって供給されて母材が片溶けする場合がある。一方、Mnが0.1%未満であると、フラックス入りワイヤ製造時の伸線工程で断線しやすくなる。よって鋼製外皮は、C:0.07%以下、Si:0.2%以下、Mn:0.1〜0.6%とする。なお、C及びSiの下限は限定しないが、製鋼コストの観点からCは0.005%、Siは0.005%であることが好ましい。
[C of steel outer skin: 0.07% or less, Si: 0.2% or less, Mn: 0.1-0.6%]
The steel skin affects the ease of wire correction during welding and affects the soundness of the weld. If C in the steel shell exceeds 0.07%, Si exceeds 0.2%, and Mn exceeds 0.6%, the wire becomes hard and the wire cannot be sufficiently corrected, and the correction roller part and non-consumable The wire feeding resistance in the nozzle becomes large and the wire feeding speed becomes unstable. As a result, the base metal cannot be sufficiently melted and the toughness of the weld metal cannot be stabilized. Further, when C, Si, and Mn in the steel outer shell exceed the above-described range, the wire may be bent and supplied from the power supply tip at the tip of the non-consumable nozzle, and the base material may be partially melted. On the other hand, when Mn is less than 0.1%, it becomes easy to break in the wire drawing process at the time of manufacturing the flux-cored wire. Accordingly, the steel outer skin is C: 0.07% or less, Si: 0.2% or less, and Mn: 0.1-0.6%. In addition, although the minimum of C and Si is not limited, it is preferable that C is 0.005% and Si is 0.005% from a viewpoint of steelmaking cost.

次いで、フラックス入りワイヤの成分組成について説明する。なお、フラックス入りワイヤの各成分組成の含有率は、ワイヤ全質量に対する質量%で表すものとし、その質量%に関する記載を単に%と記載する。   Next, the component composition of the flux-cored wire will be described. In addition, the content rate of each component composition of a flux cored wire shall be represented by the mass% with respect to the total mass of a wire, and the description regarding the mass% is described only as%.

[鋼製外皮とフラックスの合計でC:0.01〜0.10%]
Cは、溶接金属の強度を向上させる成分であり、490〜590MPa以上の溶接金属の高度を確保するためには、鋼製外皮とフラックスの合計で0.01%以上含有する必要がある。一方、Cが0.10%を超えると、溶接金属の強度が高くなって靭性が低下する。したがって、鋼製外皮とフラックスの合計でCは0.01〜0.10%とする。なお、Cは、鋼製外皮に含まれる成分の他、フラックスから金属粉及び合金粉等で添加できる。
[C: 0.01 to 0.10% in total of steel outer shell and flux]
C is a component that improves the strength of the weld metal, and in order to ensure a high level of weld metal of 490 to 590 MPa or more, it is necessary to contain 0.01% or more in total of the steel outer shell and the flux. On the other hand, when C exceeds 0.10%, the strength of the weld metal increases and the toughness decreases. Therefore, C is 0.01 to 0.10% in total of the steel outer shell and the flux. In addition to the components contained in the steel outer skin, C can be added from the flux as metal powder, alloy powder, or the like.

[鋼製外皮とフラックスの合計でSi:0.01〜0.50%]
Siは、溶接金属のオーステナイト粒径を微細化する元素として作用して靭性を向上させる。鋼製外皮とフラックスの合計でSiが0.01%未満であると、溶接金属のオーステナイト粒径が粗大化して靭性が低下する。一方、Siが0.50%を超えると、溶接金属の強度が高くなって靭性が低下する。したがって、鋼製外皮とフラックスの合計でSiは0.01〜0.50%とする。なお、Siは、鋼製外皮に含まれる成分の他、フラックスから金属Si、Fe−Si、Fe−Si−Mn等の合金粉末で添加できる。
[The total of steel shell and flux is Si: 0.01 to 0.50%]
Si acts as an element that refines the austenite grain size of the weld metal and improves toughness. When Si is less than 0.01% in the total of the steel outer shell and the flux, the austenite grain size of the weld metal becomes coarse and the toughness decreases. On the other hand, if Si exceeds 0.50%, the strength of the weld metal increases and the toughness decreases. Therefore, Si is 0.01 to 0.50% in total of the steel outer shell and the flux. Si can be added as an alloy powder such as metal Si, Fe—Si, or Fe—Si—Mn from the flux in addition to the components contained in the steel outer sheath.

[鋼製外皮とフラックスの合計でMn:1.8〜2.8%]
Mnは、溶接金属の強度向上及びオーステナイト粒径微細化元素として作用する。鋼製外皮とフラックスの合計でMnが1.8%未満であると、溶接金属の強度及び靭性が低下する。一方、Mnが2.8%を超えると、溶接金属の強度が高くなって靭性が低下する。したがって、鋼製外皮とフラックスの合計でMnは1.8〜2.8%とする。なお、Mnは、鋼製外皮に含まれる成分の他、フラックスから金属Mn、Fe−Mn、Fe−Si−Mn等の合金粉末で添加できる。
[Mn: 1.8 to 2.8% in total of steel outer shell and flux]
Mn acts as an element for improving the strength of the weld metal and refining the austenite grain size. If the total of the steel outer shell and the flux is Mn is less than 1.8%, the strength and toughness of the weld metal are lowered. On the other hand, if Mn exceeds 2.8%, the strength of the weld metal increases and the toughness decreases. Therefore, the total of the steel outer shell and the flux is Mn 1.8 to 2.8%. Mn can be added as an alloy powder such as metal Mn, Fe-Mn, Fe-Si-Mn, etc. from the flux in addition to the components contained in the steel outer sheath.

[フラックス中にMo:0.2〜0.7%]
Moは、変態温度を低下させ、組織を微細化して溶接金属の靭性を向上させる作用を有する。フラックス中のMoが0.2%未満であると、これらの作用が十分に得られず、溶接金属の靭性が低下する。一方、Moが0.7%を超えると、溶接金属の強度が高くなって靭性が低下する。したがって、フラックス中のMoは0.2〜0.7%とする。なお、Moは、フラックスから金属Mo、Fe―Mo等の合金粉末で添加できる。
[Mo in flux: 0.2-0.7%]
Mo has the effect of lowering the transformation temperature, refining the structure and improving the toughness of the weld metal. If Mo in the flux is less than 0.2%, these effects cannot be obtained sufficiently, and the toughness of the weld metal decreases. On the other hand, if Mo exceeds 0.7%, the strength of the weld metal increases and the toughness decreases. Therefore, Mo in the flux is 0.2 to 0.7%. Mo can be added from the flux as an alloy powder such as metal Mo or Fe—Mo.

[フラックス中のTi:0.01〜0.20%]
Tiは、溶接金属中に微細酸化物を生成して溶接金属の靭性を向上させる作用を有する。フラックス中のTiが0.01%未満であると、溶接金属の靭性が低下する。一方、Tiが0.20%を超えると、溶接金属中の固溶Tiが増加して靭性が低下する。したがって、フラックス中のTiは0.01〜0.20%とする。なお、Tiは、フラックスから金属Ti、Fe−Ti等の合金粉末で添加できる。
[Ti in flux: 0.01 to 0.20%]
Ti has the effect | action which produces | generates a fine oxide in a weld metal and improves the toughness of a weld metal. If the Ti in the flux is less than 0.01%, the toughness of the weld metal decreases. On the other hand, if Ti exceeds 0.20%, the solid solution Ti in the weld metal increases and the toughness decreases. Therefore, Ti in the flux is set to 0.01 to 0.20%. Ti can be added from the flux as an alloy powder such as metal Ti or Fe—Ti.

[フラックス中のSi酸化物のSiO2換算値の合計:0.02〜0.20%]
Si酸化物は、鋼製外皮内に充填した鉄合金粉及び鉄粉表面の酸化を起因として、溶接が進むにつれて溶融スラグ中の鉄酸化物が多くなり、溶融スラグの粘性が高くなるのを抑制する効果を有する。フラックス中のSi酸化物のSiO2換算値の合計が0.02%未満であると、溶接の進行につれて溶融スラグの粘性が高くなり母材への溶け込み量が少なくなって溶接線方向の強度が徐々に高くなり靭性は低くなる。一方、フラックス中のSi酸化物のSiO2換算値の合計が0.20%を超えると、溶接の進行につれて溶融スラグの量が多くなりスラグ浴深さが大きくなってスラグが対流しなくなり母材への溶け込み量が少なくなって溶接線方向の強度が徐々に高くなり靭性は低くなる。したがって、フラックス中のSi酸化物のSiO2換算値の合計は0.02〜0.20%とする。なお、Si酸化物は、フラックスから珪砂、珪酸ソーダ及び珪酸カリからなる水ガラスの固質成分等で添加できる。
[Total of SiO 2 equivalent value of Si oxide in flux: 0.02 to 0.20%]
Si oxide suppresses the increase in the viscosity of molten slag due to the increase in iron oxide in the molten slag as welding progresses due to the oxidation of the iron alloy powder and iron powder surface filled in the steel outer shell. Has the effect of When the total of SiO 2 conversion values of the Si oxide in the flux is less than 0.02%, the viscosity of the molten slag increases as welding progresses, and the amount of penetration into the base material decreases, and the strength in the weld line direction increases. Gradually increases and toughness decreases. On the other hand, if the total SiO 2 conversion value of the Si oxide in the flux exceeds 0.20%, the amount of molten slag increases as welding progresses, the slag bath depth increases, and the slag does not convect and the base material As the amount of penetration into the steel decreases, the strength in the weld line direction gradually increases and the toughness decreases. Therefore, the total of SiO 2 conversion values of the Si oxide in the flux is 0.02 to 0.20%. Si oxide can be added from the flux as a solid component of water glass made of silica sand, sodium silicate and potassium silicate.

[フラックス中のNa化合物及びK化合物のNa2O換算値とK2O換算値の1種又は2種の合計:0.02〜0.10%]
Na化合物及びK化合物は、鋼製外皮内に充填した鉄合金粉及び鉄粉の酸化を起因として、溶接が進むにつれて溶融スラグ中の鉄酸化物が多くなり、溶融スラグの流動性が低下するのを抑制する効果を有する。フラックス中のNa化合物及びK化合物のNa2O換算値とK2O換算値の1種又は2種の合計が0.02%未満であると、溶接の進行につれて溶融スラグの流動性が低下して母材への溶け込み量が少なくなり溶接線方向の強度が徐々に高くなり靭性は低くなる。一方、Na化合物及びK化合物のNa2O換算値とK2O換算値の1種又は2種の合計が0.10%を超えると、溶接の進行につれて溶融スラグの流動性が高くなり過ぎて母材への溶け込み量が多くなって溶接線方向の強度及び靭性が徐々に低くなる。したがって、フラックス中のNa化合物及びK化合物のNa2O換算値とK2O換算値の1種又は2種の合計は0.02〜0.10%とする。なお、Na化合物及びK化合物は、フラックスから珪酸ソーダ及び珪酸カリの固質分、NaF、K2SiF6等の粉末で添加できる。
[Total of one or two kinds of Na compound and K compound converted into Na 2 O and K 2 O in flux: 0.02 to 0.10%]
The Na compound and the K compound are caused by the oxidation of the iron alloy powder and iron powder filled in the steel outer shell, so that the iron oxide in the molten slag increases as welding progresses, and the fluidity of the molten slag decreases. Has the effect of suppressing When the total of one or two of Na 2 O converted value and K 2 O converted value of Na compound and K compound in the flux is less than 0.02%, the fluidity of the molten slag decreases as welding progresses. As a result, the amount of penetration into the base metal decreases, the strength in the weld line direction gradually increases, and the toughness decreases. On the other hand, if the total of one or two of Na 2 O converted value and K 2 O converted value of Na compound and K compound exceeds 0.10%, the fluidity of molten slag becomes too high as welding progresses. The amount of penetration into the base metal increases and the strength and toughness in the weld line direction gradually decrease. Therefore, the total of one or two of Na 2 O converted value and K 2 O converted value of Na compound and K compound in the flux is 0.02 to 0.10%. The Na compound and the K compound can be added from the flux as powders of sodium silicate and potassium silicate solids, NaF, K 2 SiF 6 and the like.

[フラックス中のB:0.002〜0.010%]
Bは、溶接金属の靱性を更に向上させる作用を有する。Bが0.002%未満であると作用が十分に得られず、溶接金属の靱性が低下する。一方、0.010%を超えると、過剰なBが粒界に固溶して靱性が低下する。したがって、フラックス中のBは0.002〜0.010%とする。なお、Bは、鋼製外皮に含まれる成分の他、フラックスからの金属B、Fe−B、Fe−Mn−B等の合金粉末から添加できる。
[B in flux: 0.002 to 0.010%]
B has the effect of further improving the toughness of the weld metal. If B is less than 0.002%, the effect cannot be sufficiently obtained, and the toughness of the weld metal is lowered. On the other hand, if it exceeds 0.010%, excess B is solid-solved at the grain boundary and the toughness is lowered. Therefore, B in the flux is 0.002 to 0.010%. B can be added from an alloy powder such as metal B, Fe-B, Fe-Mn-B, etc. from the flux in addition to the components contained in the steel outer shell.

[成形された鋼製外皮の合わせ目が溶接されていることで鋼製外皮に継目を無くす]
本発明のエレクトロスラグ溶接用フラックス入りワイヤは、鋼製外皮をパイプ状に成形し、その内部にフラックスを充填した構造である。フラックス入りワイヤの種類としては、成形した鋼製外皮の合わせ目を溶接して得られた鋼製外皮に継目の無いフラックス入りワイヤと、鋼製外皮の合わせ目の溶接を行わないままとした鋼製外皮に継目を有するフラックス入りワイヤとに大別できる。本発明の鋼製外皮に継目が無いフラックス入りワイヤは、熱処理が可能であるので、製造時の伸線工程で加工硬化した鋼製外皮を焼鈍して軟化できるので、溶接時のワイヤ矯正を容易にできるとともにワイヤ送給抵抗が良好となり溶接部の健全性を確保できる。さらに、ワイヤ中の全水素量を低減することができる。
[Seams are eliminated from the steel shell by welding the seam of the molded steel shell]
The flux-cored wire for electroslag welding of the present invention has a structure in which a steel outer shell is formed into a pipe shape and the inside thereof is filled with flux. As the types of flux cored wires, the steel without leaving the seam joint of the steel outer skin and the flux cored wire seamless to the steel outer shell obtained by welding the seam of the molded steel outer shell. It can be roughly divided into flux-cored wires having a seam in the outer shell. The flux-cored wire with a seamless steel outer sheath according to the present invention can be heat-treated, so the steel outer sheath that has been work-hardened in the wire drawing process at the time of manufacture can be annealed and softened, making it easy to straighten the wire during welding. In addition, the wire feeding resistance is improved and the soundness of the welded portion can be secured. Furthermore, the total amount of hydrogen in the wire can be reduced.

本発明のエレクトロスラグ溶接用フラックス入りワイヤの残部は、鋼製外皮のFe、鉄粉、Fe−Si、Fe−Mn、Fe−Si−Mn、Fe−Ti合金等の鉄合金粉のFe分及び不可避不純物である。不可避不純物については特に規定しないが、高温割れ及び溶接金属の靭性に観点から、Cu:0.3%以下、Al:0.02%以下、P及びSは各々0.02%以下であることが好ましい。   The balance of the flux-cored wire for electroslag welding of the present invention is the Fe content of iron alloy powder such as Fe, iron powder, Fe-Si, Fe-Mn, Fe-Si-Mn, Fe-Ti alloy of steel outer sheath, and Inevitable impurities. Inevitable impurities are not particularly specified, but from the viewpoint of hot cracking and weld metal toughness, Cu: 0.3% or less, Al: 0.02% or less, and P and S are each 0.02% or less. preferable.

なお、フラックスの充填率は特に制限しないが、生産性の観点から、ワイヤ全質量に対して8〜20%とするのが好ましい。   The flux filling rate is not particularly limited, but is preferably 8 to 20% with respect to the total mass of the wire from the viewpoint of productivity.

以下、本発明の効果を実施例により具体的に説明する。   Hereinafter, the effect of the present invention will be described in detail with reference to examples.

表1に示す鋼製外皮を用いて表2に示す各種成分組成のワイヤ径1.6mmのフラックス入りワイヤを試作した。   Using the steel outer sheath shown in Table 1, flux-cored wires having various component compositions shown in Table 2 and having a wire diameter of 1.6 mm were manufactured.

Figure 2018030159
Figure 2018030159

Figure 2018030159
Figure 2018030159

表3に示す化学成分及び表4に示すサイズの鋼板を、図1に示すようにスキンプレート1、ダイアフラム2及び当金3を、スキンプレート1の表面とダイアフラム2の端面とのギャップGが25mmとなるように配置して溶接試験板を組立てた。溶接は、表2に示すフラックス入りワイヤを用いて表5に示す溶接条件で行った。溶接長は1000mmである。なお、溶融型フラックスは表6に示す化学成分のものを用いた。   The steel plate of the chemical composition shown in Table 3 and the size shown in Table 4 is used for the skin plate 1, the diaphragm 2 and the metal 3 as shown in FIG. 1, and the gap G between the surface of the skin plate 1 and the end face of the diaphragm 2 is 25 mm. The welding test plate was assembled by arranging so that Welding was performed under the welding conditions shown in Table 5 using the flux-cored wires shown in Table 2. The welding length is 1000 mm. In addition, the melt-type flux used the chemical component shown in Table 6.

Figure 2018030159
Figure 2018030159

Figure 2018030159
Figure 2018030159

Figure 2018030159
Figure 2018030159

Figure 2018030159
Figure 2018030159

溶接前及び溶接時にワイヤの矯正状態を調べ、溶接終了後マクロ試験片を溶接開始部から200mm(下層部)、600mm(中層部)及び800mm(上層部)の箇所から採取して母材への溶け込み状態を調べた。機械的性能は、溶接開始部〜200mm(下層部)、400〜600mm(中層部)及び800mm(上層部)〜溶接終了部の箇所から、図2に示すように溶接金属9の中央部から引張試験片19(JIS Z 2241 10号)及び衝撃試験片20(JIS Z 2242 Vノッチ試験片)を採取して機械試験を実施した。引張試験の評価は、引張強さが500〜740MPaで溶接線方向の強度差(上層部〜下層部間の強度差)が20MPa以下を良好とした。また、衝撃試験の評価は、−5℃におけるシャルピー衝撃試験を行い、各々繰り返し3本の平均値が70J以上で平均値と最低値の差が15J以下、溶接線方向の吸収エネルギーの平均値の差(上層部〜下層部間における吸収エネルギーの平均値の差)が10J以下を良好とした。これらの結果を表7にまとめて示す。   Check the straightening condition of the wire before and during welding, and after completion of welding, take a macro specimen from 200mm (lower layer), 600mm (middle layer) and 800mm (upper layer) from the welding start part. The state of penetration was investigated. The mechanical performance is pulled from the center of the weld metal 9 as shown in FIG. 2 from the welding start part to 200 mm (lower layer part), 400 to 600 mm (middle layer part) and 800 mm (upper layer part) to the welding end part. A test piece 19 (JIS Z 2241 No. 10) and an impact test piece 20 (JIS Z 2242 V-notch test piece) were collected and subjected to a mechanical test. In the evaluation of the tensile test, the tensile strength was 500 to 740 MPa, and the strength difference in the weld line direction (strength difference between the upper layer portion and the lower layer portion) was 20 MPa or less. The impact test was evaluated by performing a Charpy impact test at −5 ° C., and the average value of three samples each was 70 J or more, the difference between the average value and the minimum value was 15 J or less, and the average value of absorbed energy in the weld line direction. The difference (difference in the average value of the absorbed energy between the upper layer part and the lower layer part) was 10 J or less. These results are summarized in Table 7.

Figure 2018030159
Figure 2018030159

表2及び表7中ワイヤ記号W1〜W12が本発明例、ワイヤ記号W13〜W30は比較例である。本発明例であるワイヤ記号W1〜W12は、用いた鋼製外皮の成分及びフラックス入りワイヤの各成分が適量であるので、ワイヤ矯正状態が良好であるので下層部〜上層部までマクロ断面の溶け込み状態が良好で、引張強さ及び吸収エネルギーともに下層部〜上層部まで安定して良好な値が得られた。なお、鋼製外皮に合わせ目のあるワイヤ記号W3及びW11は、鋼製外皮に合わせ目があり製造時の伸線工程で外皮が加工硬化したのでマクロ断面においてやや片溶けがあったが実用上特に問題とならない程度であった。また、Bを添加したワイヤ記号W3、W5、W6及びW9〜W11は、吸収エネルギーの平均値が120J以上得られた。   In Tables 2 and 7, wire symbols W1 to W12 are examples of the present invention, and wire symbols W13 to W30 are comparative examples. In the wire symbols W1 to W12 according to the present invention, the components of the steel outer shell and the components of the flux-cored wire used are appropriate amounts, so that the wire straightening state is good, so the macro section melts from the lower layer to the upper layer. The state was good, and both tensile strength and absorbed energy were stable and good values were obtained from the lower layer part to the upper layer part. In addition, the wire symbols W3 and W11 having a seam on the steel outer shell had a seam outer surface and the outer skin was processed and hardened in the wire drawing process at the time of manufacture. It was not particularly problematic. In addition, the wire symbols W3, W5, W6 and W9 to W11 to which B was added had an average absorbed energy of 120 J or more.

比較例中ワイヤ記号W13は、外皮記号H5のCが高いので、ワイヤの矯正が不十分でワイヤの送給速度が不安定になってマクロ断面で下層部〜上層部まで母材溶融量が少なく、片溶けも生じ、溶接金属の吸収エネルギーの平均値と最低値との差及び溶接線方向の平均値の差が大きくなった。   In the comparative example, the wire symbol W13 has a high C of the outer skin symbol H5, so that the wire correction is insufficient and the wire feeding speed becomes unstable, and the base material melting amount is small from the lower layer to the upper layer in the macro section. Also, piece melting occurred, and the difference between the average value and the minimum value of the absorbed energy of the weld metal and the difference in the average value in the weld line direction increased.

ワイヤ記号W14は、外皮記号H6のSiが多いので、ワイヤの矯正が不十分でワイヤの送給速度が不安定になってマクロ断面で下層部〜上層部まで母材溶融量が少なく、片溶けも生じ、溶接金属の吸収エネルギーの平均値と最低値との差及び溶接線方向の平均値の差が大きくなった。   Since the wire symbol W14 has a large amount of Si of the outer skin symbol H6, the wire correction is insufficient and the wire feeding speed becomes unstable, and the base material melting amount from the lower layer part to the upper layer part is small in the macro cross section, so This also occurred, and the difference between the average value and the minimum value of the absorbed energy of the weld metal and the difference in the average value in the weld line direction increased.

ワイヤ記号W15は、外皮記号H7のMnが少ないので、ワイヤ製造時に断線が生じた。また、鋼製外皮に合わせ目が無いので、ワイヤ製造時の伸線工程で外皮が硬化し、ワイヤの矯正が不十分でワイヤの送給速度が不安定になってマクロ断面で下層部〜上層部まで母材溶融量が少なく、片溶けも生じ、溶接金属の吸収エネルギーの平均値と最低値との差及び溶接線方向の平均値の差が大きくなった。   Since the wire symbol W15 has a small Mn of the outer shell symbol H7, a breakage occurred during the manufacture of the wire. Also, since there is no seam on the steel outer skin, the outer skin hardens in the wire drawing process at the time of wire manufacture, the wire correction is insufficient, the wire feeding speed becomes unstable, and the lower layer part to the upper layer in the macro section The amount of the base metal melted to a part and part melting occurred, and the difference between the average value and the minimum value of the absorbed energy of the weld metal and the difference in the average value in the weld line direction increased.

ワイヤ記号W16は、外皮記号H8のMnが多いので、ワイヤの矯正が不十分でワイヤの送給速度が不安定になってマクロ断面で下層部〜上層部まで母材溶融量が少なく、片溶けも生じ、溶接金属の吸収エネルギーの平均値と最低値との差及び溶接線方向の平均値の差が大きくなった。   Since the wire symbol W16 has a large Mn of the skin symbol H8, the correction of the wire is insufficient, the wire feeding speed becomes unstable, and the base material melting amount from the lower layer part to the upper layer part is small in the macro cross section, so that one piece melts. This also occurred, and the difference between the average value and the minimum value of the absorbed energy of the weld metal and the difference in the average value in the weld line direction increased.

ワイヤ記号W17は、Cが少ないので、溶接金属の引張強さが低かった。また、Bが多いので、溶接金属の吸収エネルギーも低値であった、   Since the wire symbol W17 has a small amount of C, the tensile strength of the weld metal was low. Moreover, since there is much B, the absorbed energy of the weld metal was also low.

ワイヤ記号W18は、Cが多いので、溶接金属の引張強さが高く吸収エネルギーが低値であった。   Since the wire symbol W18 has a large amount of C, the tensile strength of the weld metal was high and the absorbed energy was low.

ワイヤ記号W19は、Siが少ないので、溶接金属の吸収エネルギーが低値であった。また、Bが少ないので、吸収エネルギーを高くする効果が得られなかった。   Since the wire symbol W19 has a small amount of Si, the absorbed energy of the weld metal was low. Moreover, since there is little B, the effect which makes absorbed energy high was not acquired.

ワイヤ記号W20は、Siが多いので、溶接金属の引張強さが高く吸収エネルギーが低値であった。   Since the wire symbol W20 has a large amount of Si, the tensile strength of the weld metal was high and the absorbed energy was low.

ワイヤ記号W21は、Mnが少ないので、溶接金属の引張強さ及び吸収エネルギーが低値であった。   Since the wire symbol W21 has a small amount of Mn, the tensile strength and absorbed energy of the weld metal were low.

ワイヤ記号W22は、Mnが多いので、溶接金属の引張強さが高く吸収エネルギーが低値であった。   Since the wire symbol W22 has a large amount of Mn, the tensile strength of the weld metal was high and the absorbed energy was low.

ワイヤ記号W23は、Moが少ないので、溶接金属の吸収エネルギーが低値であった。   Since the wire symbol W23 has a small amount of Mo, the absorbed energy of the weld metal was low.

ワイヤ記号W24は、Moが多いので、溶接金属の引張強さが高く吸収エネルギーが低値であった。   Since the wire symbol W24 has a lot of Mo, the tensile strength of the weld metal was high and the absorbed energy was low.

ワイヤ記号W25は、Tiが少ないので、溶接金属の吸収エネルギーが低値であった。   Since the wire symbol W25 has a small amount of Ti, the absorbed energy of the weld metal was low.

ワイヤ記号W26は、Tiが多いので、溶接金属の吸収エネルギーが低値であった。   Since the wire symbol W26 has a large amount of Ti, the absorbed energy of the weld metal was low.

ワイヤ記号W27は、Si酸化物のSiO2換算値が少ないので、溶接が進むにつれて溶融スラグの粘性が高くなって、中層部で母材への溶け込みがやや少なくなり、上層部では母材への溶け込みが少なかった。また、溶接金属の上層部の強度が高くなり溶接線方向の強度差も大きくなった。さらに、溶接金属の上層部の吸収エネルギーが低値となり平均値の差も大きくなった。 In the wire symbol W27, since the SiO 2 conversion value of Si oxide is small, the viscosity of the molten slag increases as welding progresses, and the melting into the base material is slightly reduced in the middle layer portion, and the upper layer portion is dissolved in the base material. There was little penetration. In addition, the strength of the upper layer of the weld metal was increased, and the strength difference in the weld line direction was also increased. Furthermore, the absorbed energy in the upper layer of the weld metal was low, and the difference between the average values was also large.

ワイヤ記号W28は、Si酸化物のSiO2換算値が多いので、溶接が進むにつれて溶融スラグが多くなって、中層部で母材への溶け込みがやや少なくなり、上層部では母材への溶け込みが少なかった。また、溶接金属の上層部の強度が高くなり溶接線方向の強度差も大きくなった。さらに、溶接金属の上層部の吸収エネルギーが低値となり平均値の差も大きくなった。 Since the wire symbol W28 has a large SiO 2 equivalent value of Si oxide, the molten slag increases as the welding progresses, and the middle layer is slightly less soluble in the base material, and the upper layer is less soluble in the base material. There were few. In addition, the strength of the upper layer of the weld metal was increased, and the strength difference in the weld line direction was also increased. Furthermore, the absorbed energy in the upper layer of the weld metal was low, and the difference between the average values was also large.

ワイヤ記号W29は、Na化合物及びK化合物のNa2O換算値とK2O換算値の合計が少ないので、溶接の進行につれて溶融スラグの流動性が低下して、中層部で母材への溶け込みがやや少なくなり、上層部では母材への溶け込みが少なかった。また、溶接金属の上層部の強度が高くなり溶接線方向の強度差も大きくなった。さらに、溶接金属の上層部の吸収エネルギーが低値となり平均値の差も大きくなった。 In the wire symbol W29, since the total of Na 2 O converted value and K 2 O converted value of Na compound and K compound is small, the fluidity of the molten slag is lowered as the welding progresses, so that it melts into the base material in the middle layer portion However, the upper layer was less soluble in the base material. In addition, the strength of the upper layer of the weld metal was increased, and the strength difference in the weld line direction was also increased. Furthermore, the absorbed energy in the upper layer of the weld metal was low, and the difference between the average values was also large.

ワイヤ記号W30は、Na化合物及びK化合物のNa2O換算値とK2O換算値の合計が多いので、溶接の進行につれて溶融スラグの流動性が高くなり、中層部での母材への溶け込みがやや多くなり、上層部では母材への溶け込みが多くなった。また、溶接金属の上層部の引張強さが低くなり溶接線方向の強度差も大きくなった。さらに、溶接金属の上層部の吸収エネルギーが低値となり平均値の差も大きくなった。 The wire symbol W30 has a large total of Na 2 O converted value and K 2 O converted value of Na compound and K compound, so that the fluidity of the molten slag becomes higher as the welding progresses, and the middle layer melts into the base material. However, there was a slight increase, and the upper layer melted more into the base material. Moreover, the tensile strength of the upper layer part of the weld metal was lowered and the strength difference in the weld line direction was also increased. Furthermore, the absorbed energy in the upper layer of the weld metal was low, and the difference between the average values was also large.

1、21 スキンプレート
2、22 ダイアフラム
3、23 当金
9 溶接金属
19 引張試験片
20 衝撃試験片
24 開先
25 非消耗ノズル
26 溶接用ワイヤ
27 溶融スラグ
29 溶接金属
30 ノズル上昇用ローラ
31 ガイド
32 ワイヤガイド輪
33 溝付ローラ
34 給電チップ
35a、35b 第一矯正ローラ
36a、36b、36c 第二矯正ローラ
G ギャップ
L ドライエクステンション
DESCRIPTION OF SYMBOLS 1,21 Skin plate 2,22 Diaphragm 3,23 Gold 9 Weld metal 19 Tensile test piece 20 Impact test piece 24 Groove 25 Non-consumable nozzle 26 Welding wire 27 Molten slag 29 Weld metal 30 Nozzle raising roller 31 Guide 32 Wire guide wheel 33 Grooved roller 34 Power feed tip 35a, 35b First straightening roller 36a, 36b, 36c Second straightening roller G Gap L Dry extension

Claims (3)

鋼製外皮にフラックスを充填してなるエレクトロスラグ溶接用フラックス入りワイヤにおいて、
鋼製外皮は、鋼製外皮全質量に対する質量%で、
C:0.07%以下、
Si:0.2%以下、
Mn:0.1〜0.6%を含有し、
ワイヤ成分は、ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、
C:0.01〜0.10%、
Si:0.01〜0.50%、
Mn:1.8〜2.8%、
さらに、ワイヤ全質量に対する質量%で、フラックス中に、
Mo:0.2〜0.7%、
Ti:0.01〜0.20%、
Si酸化物のSiO2換算値の合計:0.02〜0.20%、
Na化合物及びK化合物のNa2O換算値とK2O換算値の1種又は2種の合計:0.02〜0.10%を含有し、
残部は鋼製外皮のFe、鉄粉、鉄合金粉のFe分及び不可避不純物からなることを特徴とするエレクトロスラグ溶接用フラックス入りワイヤ。
In the flux-cored wire for electroslag welding formed by filling the steel outer shell with flux,
The steel outer shell is the mass% with respect to the total mass of the steel outer shell,
C: 0.07% or less,
Si: 0.2% or less,
Mn: contains 0.1 to 0.6%,
The wire component is the mass% with respect to the total mass of the wire.
C: 0.01-0.10%,
Si: 0.01 to 0.50%,
Mn: 1.8 to 2.8%
Furthermore, in the flux in mass% with respect to the total mass of the wire,
Mo: 0.2-0.7%,
Ti: 0.01-0.20%,
Total of SiO 2 conversion value of Si oxide: 0.02 to 0.20%,
One or two of the sum of terms of Na 2 O values of Na compounds and K compounds and K 2 O converted value: contains 0.02 to 0.10 percent,
The balance consists of Fe, iron powder, Fe content of iron alloy powder and inevitable impurities, and a flux-cored wire for electroslag welding.
ワイヤ全質量に対する質量%で、フラックス中に、B:0.002〜0.010%をさらに含有することを特徴とする請求項1に記載のエレクトロスラグ溶接用フラックス入りワイヤ。   2. The flux-cored wire for electroslag welding according to claim 1, further comprising B: 0.002 to 0.010% in the flux in mass% with respect to the total mass of the wire. 成形された鋼製外皮の合わせ目が溶接されていることで鋼製外皮に継目を無くしたことを特徴とする請求項1又は請求項2に記載のエレクトロスラグ溶接用フラックス入りワイヤ。   The flux cored wire for electroslag welding according to claim 1 or 2, wherein a seam is eliminated from the steel outer shell by welding the seam of the formed steel outer shell.
JP2016165132A 2016-08-25 2016-08-25 Flux-cored wire for electroslag welding Active JP6688192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016165132A JP6688192B2 (en) 2016-08-25 2016-08-25 Flux-cored wire for electroslag welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016165132A JP6688192B2 (en) 2016-08-25 2016-08-25 Flux-cored wire for electroslag welding

Publications (2)

Publication Number Publication Date
JP2018030159A true JP2018030159A (en) 2018-03-01
JP6688192B2 JP6688192B2 (en) 2020-04-28

Family

ID=61304376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016165132A Active JP6688192B2 (en) 2016-08-25 2016-08-25 Flux-cored wire for electroslag welding

Country Status (1)

Country Link
JP (1) JP6688192B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4305197A (en) * 1977-04-30 1981-12-15 Esab Aktiebolag Tubular filler wire for fusion welding
JPS59107791A (en) * 1982-12-08 1984-06-22 Kobe Steel Ltd Flux cored wire for electroslag welding
JP2007190602A (en) * 2006-01-20 2007-08-02 Nippon Steel & Sumikin Welding Co Ltd Wire containing pail pack for electroslag welding
JP2010089100A (en) * 2008-10-03 2010-04-22 Jfe Steel Corp Large heat input electroslag welding method
JP2011224612A (en) * 2010-04-19 2011-11-10 Jfe Steel Corp Electroslag welded joint with excellent toughness
JP2015199106A (en) * 2014-04-10 2015-11-12 日鐵住金溶接工業株式会社 Flux-cored wire for carbon dioxide gas shielded arc welding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4305197A (en) * 1977-04-30 1981-12-15 Esab Aktiebolag Tubular filler wire for fusion welding
JPS59107791A (en) * 1982-12-08 1984-06-22 Kobe Steel Ltd Flux cored wire for electroslag welding
JP2007190602A (en) * 2006-01-20 2007-08-02 Nippon Steel & Sumikin Welding Co Ltd Wire containing pail pack for electroslag welding
JP2010089100A (en) * 2008-10-03 2010-04-22 Jfe Steel Corp Large heat input electroslag welding method
JP2011224612A (en) * 2010-04-19 2011-11-10 Jfe Steel Corp Electroslag welded joint with excellent toughness
JP2015199106A (en) * 2014-04-10 2015-11-12 日鐵住金溶接工業株式会社 Flux-cored wire for carbon dioxide gas shielded arc welding

Also Published As

Publication number Publication date
JP6688192B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
JP4558780B2 (en) Flux-cored wire for submerged arc welding of low-temperature steel
JP5339871B2 (en) Flux-cored wire for submerged arc welding of low temperature steel and welding method.
JP5768547B2 (en) High-strength steel flux cored wire for gas shielded arc welding
JP4958872B2 (en) Large heat input electroslag welding method
JP6399983B2 (en) Flux-cored wire for gas shielded arc welding
JP5356142B2 (en) Gas shield arc welding method
JP6188621B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
US8963047B2 (en) Cored wire electrode
JP4300153B2 (en) Flux-cored wire for gas shielded arc welding
JP5726708B2 (en) Submerged arc welding method for low temperature steel
WO2017013965A1 (en) Wire containing flux for gas shield arc welding
JP6661516B2 (en) Non-consumable nozzle type electroslag welding method and method for manufacturing electroslag welding joint
JP2014198344A (en) Submerged arc welding method for high strength steel
JP2009050866A (en) Submerged arc welding method
JP5843164B2 (en) Flux-cored wire for submerged arc welding
JP6663327B2 (en) Flux-cored wire for electroslag welding
JP6438371B2 (en) Flux-cored wire for gas shielded arc welding
JP7244322B2 (en) Flux-cored wire for electrogas arc welding
JP5340014B2 (en) Submerged arc welding method for low temperature steel
KR102156027B1 (en) Flux cored wire
JP6084948B2 (en) Flux-cored wire for gas shielded arc welding
JP2010064087A (en) Flux cored wire for gas-shielded arc welding
JP5228527B2 (en) Wire containing metal powder for electroslag welding
JP4722811B2 (en) Flux-cored wire for submerged arc welding for high-strength steel.
JP6688192B2 (en) Flux-cored wire for electroslag welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200403

R150 Certificate of patent or registration of utility model

Ref document number: 6688192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250