JP2018029053A - Private power-generation lighting device based on transparent solar cells - Google Patents

Private power-generation lighting device based on transparent solar cells Download PDF

Info

Publication number
JP2018029053A
JP2018029053A JP2017141326A JP2017141326A JP2018029053A JP 2018029053 A JP2018029053 A JP 2018029053A JP 2017141326 A JP2017141326 A JP 2017141326A JP 2017141326 A JP2017141326 A JP 2017141326A JP 2018029053 A JP2018029053 A JP 2018029053A
Authority
JP
Japan
Prior art keywords
solar cells
light
lithium ion
transparent solar
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017141326A
Other languages
Japanese (ja)
Inventor
兵治 新山
Heiji Niiyama
兵治 新山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017141326A priority Critical patent/JP2018029053A/en
Publication of JP2018029053A publication Critical patent/JP2018029053A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

PROBLEM TO BE SOLVED: To solve the problem in which solar cells and the like generating power through the photovoltaic effect by absorbing light energy of sunlight during the daytime have fluctuation in power generation capacity due to weather and are not counted as stable power generation.SOLUTION: Organic film transparent solar cells and the like absorb light energy and ultraviolet emitted and radiated by an LED module having connected multiple purple LED elements in a lighting device, and generate DC electromotive force through the photovoltaic effect. The solar cells and the like are disposed in close vicinity to the LED module so that the emitted light energy and ultraviolet can be absorbed before significant attenuation, thereby allowing power generation with high electromotive force and provision of a private power-generation lighting device with organic film transparent solar cells generating stable electromotive force regardless of weather.SELECTED DRAWING: Figure 3-A

Description

本発明は、躯体内と、躯体外の光源から発光される光エネルギーを透明太陽電池で吸収し、光起電力効果で起電力を自家発電する照明装置に関する。  The present invention relates to a lighting device that absorbs light energy emitted from a light source from a housing and a light source outside the housing by a transparent solar cell, and generates an electromotive force in-house by a photovoltaic effect.

これまで、太陽光発電といえばその名の通り、昼間の太陽光の光エネルギーを吸収し光起電力効果で直流起電力を自家発電する装置であり、昼間の太陽光ではなく照明用の光源が発光した光エネルギーを再利用する発電に関してはほとんど関心がなかった。  Up to now, as the name suggests, solar power generation is a device that absorbs the light energy of daylight sunlight and generates direct current electromotive force by the photovoltaic effect. There was little interest in power generation that reuses the emitted light energy.

近年では、看板照明は蛍光灯や水銀灯ではなく、LED(Light Emitting Diode)光源を用いた看板用照明装置が本願発明者によって開示されている(特許文献1参照)。  In recent years, the inventor of the present application has disclosed a signboard illumination device using an LED (Light Emitting Diode) light source instead of a fluorescent lamp or a mercury lamp (see Patent Document 1).

また昼間の太陽光を利用した透明太陽電池も開示されている(特許文献2、3、4参照)。  A transparent solar cell using daylight sunlight is also disclosed (see Patent Documents 2, 3, and 4).

特許第5592528号公報Japanese Patent No. 5592528 特開2005−129987号公報JP 2005-129987 A 特開2009−229975号公報JP 2009-229975 A 特開2011−119455号公報JP2011-119455A

これまで、LED照明や有機EL照明は消費電力の削減に努力しているがLED光源や有機ELパネルが自ら発光する光エネルギーを有効利用することは放置されてきた。  Until now, LED lighting and organic EL lighting have been striving to reduce power consumption, but it has been neglected to effectively use light energy emitted by LED light sources and organic EL panels themselves.

特許文献1に記載の看板用照明装置では、看板面全体の明るさを平均化しているし消費電力の削減に努力しているが、LED光源の発光照射する光エネルギーを有効利用することには触れていない。  In the signboard lighting device described in Patent Document 1, the brightness of the entire signboard surface is averaged and efforts are made to reduce power consumption. However, in order to effectively use the light energy emitted from the LED light source, Not touching.

特許文献2に記載の躯体を透明太陽電池とした携帯電話機では、太陽光の光エネルギーを光源として利用しているので天候により発電にバラツキが出るという問題がある。
また、特許文献3に記載の電気掲示器では、やはり太陽光の光エネルギーを光源として利用するので雨天時などの場合は極端に発電量が少なくなるという問題がある。
また、特許文献4に記載される太陽電池を備えた有機EL装置では、昼間の太陽光の光エネルギーを吸収し発電するため天候による発電能力のバラツキがあり安定した発電が期待できないという問題がある。
In the cellular phone using the casing described in Patent Document 2 as a transparent solar cell, there is a problem that power generation varies depending on the weather because light energy of sunlight is used as a light source.
Moreover, in the electric bulletin board described in Patent Document 3, since the light energy of sunlight is used as a light source, there is a problem that the amount of power generation is extremely reduced in rainy weather.
Moreover, in the organic EL device provided with the solar cell described in Patent Document 4, there is a problem in that stable power generation cannot be expected due to variations in power generation capability due to weather because it absorbs the light energy of daylight sunlight and generates power. .

本発明の目的は、福島原発事故による長期間の停電により、モバイル端末などの蓄電量が0になり再充電するのに停電していない場所まで訪問しなければならなかった経験と、その後の電気料金の高騰と節電意識を鑑み、LEDモジュールや有機ELパネルから発せられる光エネルギーを放出するだけでなく、放出された光エネルギーを再利用して自家発電し更なる節電方法を提供することにある。  The object of the present invention is that the amount of power stored in a mobile terminal or the like due to a long-term power outage due to the Fukushima nuclear accident has become zero, and it has been necessary to visit a place where there is no power outage for recharging, In view of rising prices and awareness of power saving, not only emits light energy emitted from LED modules and organic EL panels, but also recycles the emitted light energy to provide in-house power generation and provide further power saving methods. .

前記課題を解決するために、本願の請求項1にかかる発明の透明太陽電池による自家発電照明装置は、照射対象の液晶パネルと他の機器類が設置される設置領域を開口した躯体を備えた液晶ディスプレイと、前記設置領域を開口した躯体内に、商業用電力(交流)を交流直流変換器で変換された直流電力と、後述する透明太陽電池類からの起電力の供給を受けて蓄電し蓄電量が満充電状態になると過充電防止機能が働き、商業用電力と前記透明太陽電池類からの起電力の供給を自ら停止する機能を有する二次リチウムイオン蓄電池と、前記二次リチウムイオン蓄電池から電力の供給を受けて光エネルギーを発光する表面実装型LEDパッケージ内に実装された紫色LED素子、または近紫外光LED素子、あるいは青色LED素子、若しくは近赤外光LED素子等の前記LED素子類と、前記LED素子類は、R(赤色)G(緑色)B(青色)蛍光体を分散させた封止材と、または黄色蛍光体を分散させた前記LED素子類を封止する樹脂系の封止材と、前記蛍光体類含有封止材は、前記LED素子類が発光した光エネルギーに励起されると当該光と異なる波長の白色光を発する発光層を形成し、前記LED素子類を封止したLEDパッケージが複数連接されたLEDモジュールが発光した光エネルギーを吸収し光起電力効果で起電力を自家発電する、前述した透明な有機薄膜太陽電池、または透明な色素増感太陽電池等の有機系太陽電池類と、若しくは透明な革新型太陽電池類と、又は透明な化合物系太陽電池類と、或いは透明な薄膜太陽電池類と、それとも前記透明太陽電池類の複数の組み合わせと、前記透明太陽電池類を透過した光エネルギーの供給を受けて液晶画面を点灯する液晶パネルと、前記透明太陽電池類は、前記液晶パネルの内側に平面状に形成され、前記LEDモジュールから発光された光エネルギーを吸収し光起電力効果で発電された起電力は前記リチウムイオン蓄電池に蓄電させる機能と、また前記透明太陽電池類は、前記設置領域に設置される前記液晶パネルの外側と、または前記設置領域を開口した躯体裏側とに平面状に形成される構成と、を含み、さらに前記透明太陽電池類は、前記液晶パネルの内側に単独で形成するか、または前記液晶パネルの内側と前記液晶パネル外側の組み合わせか、或いは前記液晶パネルの内側と前記設置領域を開口した躯体裏側との組み合わせか、それとも前記液晶パネルの内側と、前記液晶パネル外側と、前記設置領域を開口した躯体裏側と、に形成される構造と、を備え、
前記液晶パネルの内側に平面状に形成される前記透明太陽電池類は、前記LEDモジュールから発光された光エネルギーを吸収し光起電力効果で自家発電した起電力は前記二次リチウムイオン蓄電池に蓄電し、また前記液晶パネルの外側と前記設置領域を開口した躯体裏側の前記透明太陽電池類は、屋外では、昼間の太陽光の光エネルギーを吸収し光起電力効果で発電された起電力は前記二次リチウムイオン蓄電池に蓄電し、又、屋内では、室内用照明の蛍光灯やLED光源等の外部光源から発光放射される光エネルギーを吸収し光起電力効果で発電された起電力を前記二次リチウムイオン蓄電池に蓄電することにより、前記二次リチウムイオン蓄電池は、放電能力時間の長寿命化を達成する特徴とともに、長期間の災害発生などで商業用電力の供給を断たれ前記二次リチウムイオン蓄電池の蓄電量が0となっても、前記液晶パネル外側の、または前記設置領域を開口した躯体裏側の前記透明太陽電池類を、昼間の太陽光に暴露し太陽光の光エネルギーを吸収し発電された起電力は前記二次リチウムイオン蓄電池に再蓄電することで、前記二次リチウムイオン蓄電池の失われた蓄電量を回復させることを特徴とする。
In order to solve the above-described problem, the self-powered lighting device using the transparent solar cell according to the first aspect of the present invention includes a housing that opens an installation area in which a liquid crystal panel to be irradiated and other devices are installed. A liquid crystal display and a housing having an opening in the installation area receive and store DC power obtained by converting commercial power (AC) with an AC / DC converter and electromotive force from transparent solar cells described later. A secondary lithium ion storage battery having a function of preventing overcharge when the amount of stored electricity is in a fully charged state and having a function of stopping supply of commercial power and electromotive force from the transparent solar cells, and the secondary lithium ion storage battery A purple LED element, a near-ultraviolet LED element, a blue LED element, or a blue LED element mounted in a surface-mounted LED package that emits light energy upon receiving power from The LED elements such as an infrared LED element and the LED elements have a sealing material in which R (red), G (green), and B (blue) phosphors are dispersed, or a yellow phosphor is dispersed. The resin-based sealing material that seals the LED elements and the phosphor-containing sealing material emit white light having a wavelength different from that of the light when excited by the light energy emitted from the LED elements. The above-mentioned transparent organic thin-film solar that absorbs light energy emitted from an LED module in which a plurality of LED packages in which the LED elements are sealed are formed and which forms a light emitting layer, and generates electromotive force by the photovoltaic effect. Or organic solar cells such as transparent dye-sensitized solar cells, transparent innovative solar cells, transparent compound solar cells, or transparent thin-film solar cells, or the aforementioned Transparent solar cells A plurality of combinations, a liquid crystal panel that lights a liquid crystal screen upon receiving light energy transmitted through the transparent solar cells, and the transparent solar cells are formed in a planar shape inside the liquid crystal panel, and the LED The electromotive force generated by absorbing the light energy emitted from the module and generated by the photovoltaic effect is stored in the lithium ion storage battery, and the transparent solar cells are provided on the liquid crystal panel installed in the installation area. The transparent solar cells are formed independently on the inside of the liquid crystal panel, or the liquid crystal panel. A combination of the inside of the liquid crystal panel and the outside of the liquid crystal panel, or a combination of the inside of the liquid crystal panel and the rear side of the housing opening the installation area, or the liquid A structure formed on the inside of the crystal panel, on the outside of the liquid crystal panel, and on the back side of the housing opening the installation area,
The transparent solar cells formed in a planar shape inside the liquid crystal panel absorb the light energy emitted from the LED module and store the electromotive force generated by the photovoltaic effect in the secondary lithium ion storage battery. In addition, the transparent solar cells on the outside of the liquid crystal panel and on the back side of the housing that opens the installation area, the outdoors, the electromotive force generated by the photovoltaic effect by absorbing the light energy of sunlight in the daytime is The secondary electromotive force stored in the secondary lithium ion storage battery, and the indoor electromotive force generated by the photovoltaic effect by absorbing light energy emitted and emitted from an external light source such as a fluorescent lamp or LED light source for indoor lighting is used. By storing the secondary lithium ion battery in the secondary lithium ion battery, the secondary lithium ion battery has a feature of achieving a longer discharge capacity time and a long-term disaster. The transparent solar cells on the outside of the liquid crystal panel or on the back side of the enclosure with the opening of the installation area exposed to daytime sunlight even when the supply of the secondary lithium ion battery becomes 0 Then, the electromotive force generated by absorbing the light energy of sunlight is stored again in the secondary lithium ion storage battery, thereby recovering the stored amount of power lost in the secondary lithium ion storage battery.

また、本願の請求項2にかかる発明の透明太陽電池による自家発電照明装置は、照射対象の液晶パネルと他の機器類が設置される設置領域を開口した躯体を備えた液晶ディスプレイと、前記設置領域を開口した躯体内に、商業用電力と前記透明太陽電池類からの起電力の供給を受けて蓄電し蓄電量が満充電状態になると過充電防止機能が働き、商業用電力と前記透明太陽電池類からの起電力の供給を自ら停止する機能を有する二次リチウムイオン蓄電池と、前記躯体内の設置領域の一端に設けられ、前記二次リチウムイオン蓄電池から電力の供給を受けて前記一端側から対峙する側に光エネルギーを発光する前記表面実装型LEDパッケージを複数連接したLEDモジュールと、前記躯体内に設置され、板状のプラスチック類にレーザー光やエッチング等により加工され、前記LEDモジュールから発光された光エネルギーを効率よく導く導光板と、前記導光板底辺部に形成され、前記LEDモジュールからの光エネルギーが導光板底辺部側に導かれた光エネルギーを、前記液晶パネル側に強制的に反射させるように反射面が形成された光反射板と、前記LEDモジュールから発光され、前記導光板から導かれた直接光と光反射板からの反射光の両方の光エネルギーを吸収し発電した起電力を、前記躯体内に設置された前記二次リチウムイオン蓄電池に蓄電させる前記液晶パネルの内側に形成された前記透明太陽電池類と、さらに前記LEDモジュールから発光放射され、前記導光板から導かれた直接光と反射光の両方の光エネルギーの供給を受けて液晶画面を点灯する前記液晶パネルと、前記設置領域に設置される前記液晶パネルの外側と、または前記設置領域を開口した躯体裏側に平面状に形成される前記透明太陽電池類と、を含み、前記透明太陽電池類は、前記液晶パネルの内側に単独で形成するか、あるいは前記液晶パネルの内側と前記液晶パネル外側の組み合わせか、若しくは前記液晶パネルの内側と前記設置領域を開口した躯体裏側との組み合わせか、それとも前記液晶パネルの内側と、前記液晶パネル外側と、前記設置領域を開口した躯体裏側と、に形成された構造と、を備え、
前記液晶パネル内側に形成された前記透明太陽電池類は、前記LEDモジュールが発光した光エネルギーが前記導光板からの直接光と前記導光板底辺部の光反射板から強制的に導かれた反射光の両方の光エネルギーを吸収し、光起電力効果で発電した起電力は前記二次リチウムイオン蓄電池に蓄電し、また前記液晶パネルの外側と、前記設置領域を開口した躯体裏側の前記透明太陽電池類は、屋外では、昼間の太陽光の光エネルギーを吸収し発電した起電力は前記二次リチウムイオン蓄電池に蓄電し、又、屋内では、室内用照明の蛍光灯やLED光源等の外部光源から発光される光エネルギーを吸収し発電した起電力は前記二次リチウムイオン蓄電池に蓄電することにより、前記二次リチウムイオン蓄電池の放電能力時間の長寿命化を達成する特徴とともに、前記二次リチウムイオン蓄電池は、長期間の災害発生などで商業用電力の供給を断たれ蓄電量が0となっても、前記液晶パネルの外側と、または前記設置領域を開口した躯体裏側の前記透明太陽電池類を昼間の太陽光に暴露し、太陽光の光エネルギーを吸収し発電した起電力は前記二次リチウムイオン蓄電池に再蓄電することで、前記二次リチウムイオン蓄電池の失われた蓄電量を回復させることを特徴とする。
In addition, the self-powered illumination device using the transparent solar cell according to claim 2 of the present application includes a liquid crystal display including a housing having an installation area in which a liquid crystal panel to be irradiated and other devices are installed, and the installation In the housing having an open area, the commercial power and the transparent solar cells are supplied with electric power and stored, and when the amount of stored power is in a fully charged state, an overcharge prevention function is activated. A secondary lithium ion storage battery having a function of stopping supply of electromotive force from the batteries, and one end side of the secondary lithium ion storage battery provided with power from the secondary lithium ion storage battery provided at one end of the installation area in the enclosure An LED module in which a plurality of the surface-mounted LED packages emitting light energy are connected to the side facing each other, and a laser light A light guide plate that is processed by etching or the like and efficiently guides light energy emitted from the LED module, and light that is formed on the bottom side of the light guide plate, and the light energy from the LED module is guided to the bottom side of the light guide plate A light reflection plate having a reflection surface formed so as to forcibly reflect energy toward the liquid crystal panel, and direct light emitted from the LED module and guided from the light guide plate and reflected light from the light reflection plate The transparent solar cells formed inside the liquid crystal panel for storing the electromotive force generated by absorbing both light energies in the secondary lithium ion storage battery installed in the housing, and the LED module The liquid crystal panel illuminates and emits light from the light guide plate and receives the supply of both direct and reflected light energy guided by the light guide plate. And the transparent solar cells formed in a planar shape on the outside of the liquid crystal panel installed in the installation area, or on the rear side of the housing opening the installation area, and the transparent solar cells are Forming alone inside the liquid crystal panel, or a combination of the inside of the liquid crystal panel and the outside of the liquid crystal panel, or a combination of the inside of the liquid crystal panel and the rear side of the housing opening the installation area, or the liquid crystal A structure formed on the inner side of the panel, on the outer side of the liquid crystal panel, and on the rear side of the housing opening the installation area,
The transparent solar cells formed on the inner side of the liquid crystal panel are configured such that the light energy emitted from the LED module is reflected directly from the light guide plate and from the light reflection plate at the bottom of the light guide plate. The electromotive force generated by the photovoltaic effect is stored in the secondary lithium ion storage battery, and the transparent solar cell on the outer side of the liquid crystal panel and on the back side of the housing opening the installation area. In the outdoors, the electromotive force generated by absorbing the light energy of daytime sunlight is stored in the secondary lithium ion storage battery, and indoors, from an external light source such as a fluorescent lamp or LED light source for indoor lighting. The electromotive force generated by absorbing the emitted light energy is stored in the secondary lithium ion storage battery, thereby extending the discharge capacity time of the secondary lithium ion storage battery. In addition to the above features, the secondary lithium ion storage battery has a housing that opens the outside of the liquid crystal panel or the installation area even when the supply of commercial power is cut off due to a long-term disaster, etc. The transparent solar cells on the back side are exposed to sunlight in the daytime, and the electromotive force generated by absorbing the light energy of sunlight is stored again in the secondary lithium ion storage battery, so that the secondary lithium ion storage battery is lost. It is characterized by recovering the amount of stored electricity.

また請求項3にかかる発明の透明太陽電池類による自家発電照明装置は、照射対象の内照式看板の絵柄表示面と他の機器類が設置される設置領域を開口した躯体を備えた内照式看板ディスプレイと、前記内照式看板躯体内に、商業用電力と前記透明太陽電池類からの起電力の供給を受けて蓄電する二次リチウムイオン蓄電池と、前記二次リチウムイオン蓄電池から電力の供給を受けて光エネルギーを発光する前記表面実装型LEDパッケージを複数連接したLEDモジュールと、前記LEDモジュールが発光した光エネルギーを吸収し光起電力効果で起電力を発電する前記透明太陽電池類と、前記内照式看板躯体内の絵柄表示面設置領域の一端に設けられ、前記二次リチウムイオン蓄電池から電力の供給を受けて前記一端側から対峙する側に光エネルギーを発光する前記LEDモジュールからの光エネルギーを、前記絵柄表示面側に強制的に反射させる反射面を形成した光反射板と、前記LEDモジュールが発光した直接光と光反射板からの反射光で照射されて点灯する絵柄表示面と、前記設置領域との対向距離は、前記設置領域の一端側から対峙する側に向けて徐々に近くなるよう斜めに傾けて一様に平面状に形成された光反射板と対向する状態で前記内照式看板躯体内に設置され、前記光反射板は、前記LEDモジュールが発光する光エネルギーの少なくても一部を前記絵柄表示面側に強制的に反射させる反射面を形成した光反射機能と、前記透明太陽電池類は、前記光反射板から見て、前記設置領域に設置する内照式看板の絵柄表示面の内側に平面状に形成され、前記LEDモジュールから発光された直接光と光反射板からの反射光の両方からの光エネルギーを吸収し光起電力効果で発電した起電力を前記内照式看板躯体内に設置された前記二次リチウムイオン蓄電池に蓄電させる機能と、さらに前記透明太陽電池類は、前記絵柄表示面の内側に単独で形成するか、あるいは前記絵柄表示面の内側と前記絵柄表示面の外側に形成し、前記絵柄表示面外側の前記太陽電池類は、昼間の太陽光の光エネルギーを吸収し発電した起電力は前記二次リチウムイオン蓄電池に蓄電させる機能と、前記二次リチウムイオン蓄電池は、商業用電力と前記透明太陽電池類からの起電力の供給を受け蓄電しながら蓄電量が満充電状態になると過充電防止機能が働き、商業用電力と前記透明太陽電池類からの起電力の供給を自ら停止する機能を有し、さらに前記二次リチウムイオン蓄電池は、商業用電力と前記透明太陽電池類で発電された起電力の供給停止後、満充電状態から電力が消費され蓄電可能になった瞬間から前記透明太陽電池類からの起電力の供給を受け蓄電しながらも、蓄電量が予め設定された残蓄電量まで減少した時点で商業用電力の供給を自ら再開する機能と、を含み、前記LEDモジュールは、電源スイッチのオン、オフ機能の他に、前記二次リチウムイオン蓄電池が商業用電力と前記透明太陽電池類からの起電力の供給停止と、停電を感知する機能を有し、商業用電力と前記透明太陽電池類からの起電力の供給停止と、または停電を感知した場合、常時オン状態になり前記二次リチウムイオン蓄電池より引き続き電力の供給を受け続ける機能と、を備え、
前記LEDモジュールは、前記二次リチウムイオン蓄電池が商業用電力と前記透明太陽電池類からの起電力の供給停止と、または停電を感知すると、前記二次リチウムイオン蓄電池から引き続き電力の供給を受けて光エネルギーを発光し、発光した光エネルギーの直接光と反射光を前記透明太陽電池類が吸収発電し、発電された起電力は前記リチウムイオン蓄電池に蓄電し、蓄電された電力を再び前記LEDモジュールに供給するエンドレス機能、つまり前記LEDモジュールが点灯中に停電が発生しても光エネルギーの発光と吸収発電を繰り返して自家発電し前記二次リチウムイオン蓄電池に再蓄電することで、前記二次リチウムイオン蓄電池の放電能力時間の長寿命化を達成する特徴とともに、電源スイッチをオフにしない限り前記リチウムイオン蓄電池の蓄電量が0になるまで光エネルギーを発光し、長時間にわたる非常用停電対応型LED照明装置としての役目と、商業用電力の供給停止中の節電機能を併せ持つことを特徴とする。
According to a third aspect of the present invention, there is provided a self-powered illumination device including a transparent solar cell, and an internal illumination provided with a frame having a pattern display surface of an irradiation-type signboard to be irradiated and an installation area in which other devices are installed. Type signboard display, a secondary lithium ion storage battery that stores electric power received from commercial power and the transparent solar cells in the internally illuminated signboard housing, and power from the secondary lithium ion storage battery An LED module connected to a plurality of the surface-mounted LED packages that emit light energy upon receipt of power, and the transparent solar cells that absorb light energy emitted from the LED module and generate electromotive force by a photovoltaic effect; , Provided at one end of the pattern display surface installation region in the internally illuminated signboard housing, on the side facing the power supply from the secondary lithium ion storage battery from the one end side A light reflecting plate for forming a reflecting surface for forcibly reflecting light energy from the LED module emitting light to the pattern display surface side, direct light emitted from the LED module and reflected light from the light reflecting plate The facing distance between the pattern display surface that is illuminated and turned on and the installation area is inclined uniformly so as to gradually approach from the one end side of the installation area toward the opposite side, and is uniformly formed in a flat shape. The light reflecting plate is installed in the internally illuminated signboard housing in a state of facing the light reflecting plate, and the light reflecting plate forces at least a part of the light energy emitted by the LED module to the picture display surface side. The light reflecting function that forms a reflecting surface to be reflected, and the transparent solar cells are formed in a planar shape inside the picture display surface of an internally illuminated signboard installed in the installation area, as seen from the light reflecting plate, LED The secondary lithium ion installed in the internally illuminated signboard housing absorbs the light energy from both the direct light emitted from the joule and the reflected light from the light reflector and generates power by the photovoltaic effect. The function of storing power in a storage battery, and further, the transparent solar cells are formed independently inside the picture display surface, or formed inside the picture display surface and outside the picture display surface, and the picture display surface The outer solar cells absorb the light energy of daytime sunlight and generate the electromotive force generated in the secondary lithium ion storage battery, and the secondary lithium ion storage battery has commercial power and the transparent solar power. An overcharge prevention function works when the amount of stored electricity reaches a fully charged state while receiving the supply of electromotive force from batteries, and stops the supply of commercial power and electromotive force from the transparent solar cells. In addition, the secondary lithium ion storage battery, after the supply of commercial power and the electromotive force generated by the transparent solar cells is stopped, the power is consumed from a fully charged state and can be stored from the moment A function of self-resuming the supply of commercial power when the amount of stored electricity is reduced to a preset remaining stored amount while receiving and storing the supply of electromotive force from transparent solar cells, and the LED module In addition to the power switch on / off function, the secondary lithium ion storage battery has the function of detecting the supply of commercial power and the electromotive force from the transparent solar cells, and the power failure. And the supply of electromotive force from the transparent solar cells, or when a power failure is detected, the power supply is always turned on and continues to receive power from the secondary lithium ion storage battery.
The LED module continues to receive power from the secondary lithium ion storage battery when the secondary lithium ion storage battery senses a stoppage of supply of commercial power and electromotive force from the transparent solar cells or a power failure. The transparent solar cells absorb and generate direct light and reflected light of the emitted light energy, and the generated electromotive force is stored in the lithium ion storage battery, and the stored power is returned to the LED module. Endless function to supply to the secondary lithium-ion battery by repeating self-power generation by repeating light energy emission and absorption power generation even if a power failure occurs while the LED module is on, Along with the feature that achieves the long life of the discharge capacity time of the ion storage battery, the above-mentioned lithium ion battery is required unless the power switch is turned off. It emits light energy until the storage amount of the Ion battery becomes 0, characterized in that both the role as an emergency power failure corresponding type LED lighting device for a long time, the power saving function during stop of the supply of commercial power.

また、請求項4の発明にかかる透明太陽電池類による自家発電照明装置は、有機発光ダイオード(Organic Light Emitting Diode)が設置される設置領域を開口した躯体を備えた有機ELディスプレイと、前記設置領域を開口した躯体内に、商業用電力と前記透明太陽電池類からの起電力の供給を受けて蓄電し蓄電量が満充電状態になると過充電防止機能が働き、商業用電力と前記透明太陽電池類からの起電力の供給を自ら停止する機能を有する二次リチウムイオン蓄電池と、前記二次リチウムイオン蓄電池から電力の供給を受けて有機EL画面を点灯する有機ELパネルと、前記有機ELパネル内のR(赤色)G(緑色)B(青色)発光層を備えた有機発光層から発光された光エネルギーを吸収し光起電力効果で起電力を発電する前記透明太陽電池類と、前記透明太陽電池類は、前記有機ELパネルの外側に平面状に形成され、前記有機発光ダイオード内の有機発光層から発光された光エネルギーを吸収し発電された起電力は前記二次リチウムイオン蓄電池に蓄電させる機能と、前記透明太陽電池類の裏側にも、光吸収面を逆向きにして一体化されて平面状に形成され、また前記設置領域を開口した躯体裏側にも形成される前記透明太陽電池類は、昼間の太陽光や室内の蛍光灯やLED照明など外部光源からの光エネルギーを吸収し発電された起電力は前記二次リチウムイオン蓄電池に蓄電させる機能と、を含み、さらに前記透明太陽電池類は、前記有機ELパネルの外側に単独で形成するか、或いは前記単独で形成される前記透明太陽電池類の裏側に、光吸収面を逆向きにして一体化された前記透明太陽電池類の組み合わせで形成するか、若しくは前記単独で形成される前記透明太陽電池類と前記設置領域を開口した躯体裏側との組み合わせで形成される構造と、を備え、
前記有機ELパネルの外側に単独で形成される前記透明太陽電池類は、前記有機ELパネル内のR(赤色)G(緑色)B(青色)の各発光層を備えた有機発光層から発光された光エネルギーを吸収し自家発電された起電力は前記二次リチウムイオン蓄電池に蓄電し、また前記単独で形成された前記透明太陽電池類の裏側に、光吸収面を逆向きにして一体化された前記透明太陽電池類と前記設置領域を開口した躯体裏側の前記透明太陽電池類は、屋外では、昼間の太陽光の光エネルギーを吸収し自家発電された起電力は前記二次リチウムイオン蓄電池に蓄電し、又、屋内では、室内用照明器具である照明用有機ELパネルや蛍光灯またはLED光源等の外部光源が発光する光エネルギーを吸収し自家発電された起電力は前記二次リチウムイオン蓄電池に蓄電することにより、前記二次リチウムイオン蓄電池の放電能力時間の長寿命化を達成する特徴とともに、前記二次リチウムイオン蓄電池は、長期間の災害発生で商業用電力の供給を断たれ蓄電量が0となっても、前記有機ELパネル外側の透明太陽電池類の裏側に、光吸収面を逆向きにして一体化された前記透明太陽電池類を、または前記設置領域を開口した躯体裏側の前記透明太陽電池類を、昼間の太陽光に暴露し太陽光の光エネルギーを吸収し自家発電された起電力は前記二次リチウムイオン蓄電池に再蓄電することで、前記二次リチウムイオン蓄電池の失われた蓄電量を回復させることを特徴とする。
According to a fourth aspect of the present invention, there is provided a self-powered lighting device including transparent solar cells, an organic EL display having a housing having an opening in which an organic light emitting diode (Organic Light Emitting Diode) is installed, and the installation region. In the housing having an opening, the commercial power and the transparent solar cell are supplied with the commercial power and the electromotive force from the transparent solar cells, and the overcharge prevention function is activated when the charged amount is fully charged. A secondary lithium ion storage battery having a function of stopping the supply of electromotive force from the battery, an organic EL panel for lighting an organic EL screen upon receiving power from the secondary lithium ion storage battery, and in the organic EL panel Absorbs the light energy emitted from the organic light emitting layer with R (red), G (green) and B (blue) light emitting layers, and produces a photovoltaic effect. The transparent solar cells for generating electric power and the transparent solar cells are formed in a flat shape outside the organic EL panel, and absorb light energy generated from the organic light emitting layer in the organic light emitting diode to generate power. The generated electromotive force is stored in the secondary lithium ion storage battery, and is formed on the back side of the transparent solar cells so that the light absorption surface is reversed and integrated into a flat shape. The transparent solar cells that are also formed on the back side of the opened casing absorb the light energy from an external light source such as daylight sunlight, indoor fluorescent lamps, and LED lighting, and the generated electromotive force is the secondary lithium ion storage battery. And the transparent solar cells are formed independently on the outside of the organic EL panel or on the back side of the transparent solar cells formed alone. Formed by a combination of the transparent solar cells integrated with the light absorption surface reversed, or formed by a combination of the transparent solar cells formed alone and the rear side of the housing opening the installation area And having a structure
The transparent solar cells independently formed on the outside of the organic EL panel emit light from an organic light emitting layer provided with R (red), G (green), and B (blue) light emitting layers in the organic EL panel. The electromotive force generated by self-power generation by absorbing the light energy is stored in the secondary lithium ion storage battery, and is integrated with the back side of the transparent solar cells formed independently with the light absorption surface facing in the reverse direction. In addition, the transparent solar cells and the transparent solar cells on the back side of the enclosure that opens the installation area absorb the light energy of sunlight in the daytime and generate the electromotive force generated in-house in the secondary lithium ion storage battery. The electromotive force that is stored and absorbs light energy emitted from an external light source such as a lighting organic EL panel, a fluorescent lamp, or an LED light source, which is an indoor lighting device, and is generated in-house is the secondary lithium ion. The secondary lithium ion storage battery is characterized in that the secondary lithium ion storage battery is cut off from the supply of commercial power due to the occurrence of a long-term disaster. Even if the amount becomes 0, the transparent solar cells integrated with the light absorption surface reversed in the reverse side of the transparent solar cells outside the organic EL panel, or the rear side of the housing in which the installation area is opened The electromotive force generated by self-power generation by exposing the transparent solar cells of daylight to sunlight in the daytime to absorb the light energy of sunlight is recharged in the secondary lithium ion storage battery, so that the secondary lithium ion storage battery It is characterized by recovering the amount of stored electricity lost.

請求項1の発明にかかる透明太陽電池類による自家発電照明装置によれば、前記液晶パネルの内側に平面状に形成される前記透明太陽電池類は、前記LEDモジュールから発光された光エネルギーを吸収し光起電力効果で自家発電した起電力は前記二次リチウムイオン蓄電池に蓄電し、また前記液晶パネルの外側と前記設置領域を開口した躯体裏側の前記透明太陽電池類は、屋外では、昼間の太陽光の光エネルギーを吸収し光起電力効果で発電された起電力は前記二次リチウムイオン蓄電池に蓄電し、又、屋内では、室内用照明の蛍光灯やLED光源等の外部光源から発光放射される光エネルギーを吸収し光起電力効果で発電された起電力を前記二次リチウムイオン蓄電池に蓄電することにより、前記二次リチウムイオン蓄電池は、放電能力時間の長寿命化を達成する特徴とともに、長期間の災害発生などで商業用電力の供給を断たれ前記二次リチウムイオン蓄電池の蓄電量が0となっても、前記液晶パネル外側の、または前記設置領域を開口した躯体裏側の前記透明太陽電池類を、昼間の太陽光に暴露し太陽光の光エネルギーを吸収し発電された起電力は前記二次リチウムイオン蓄電池に再蓄電することで、前記二次リチウムイオン蓄電池の失われた蓄電量を回復させることを特徴とする透明太陽電池類による自家発電照明装置が提供される。  According to the self-powered lighting device using transparent solar cells according to the invention of claim 1, the transparent solar cells formed in a planar shape inside the liquid crystal panel absorb light energy emitted from the LED module. The electromotive force generated in-house by the photovoltaic effect is stored in the secondary lithium ion storage battery, and the transparent solar cells on the outside of the liquid crystal panel and on the back side of the housing opening the installation area are outdoors in the daytime. The electromotive force generated by the photovoltaic effect by absorbing the light energy of sunlight is stored in the secondary lithium ion storage battery, and is emitted from an external light source such as a fluorescent lamp for indoor lighting or an LED light source indoors. The secondary lithium ion storage battery has a discharge capacity by storing the electromotive force generated by the photovoltaic effect by absorbing the generated light energy in the secondary lithium ion storage battery. In addition to the feature that achieves a long lifetime, even if the supply of commercial power is cut off due to a long-term disaster or the like and the amount of charge of the secondary lithium ion storage battery becomes 0, the outside of the liquid crystal panel or the The electromotive force generated by exposing the transparent solar cells on the back side of the housing with the installation area opened to sunlight in the daytime to absorb the light energy of sunlight and regenerating power in the secondary lithium ion storage battery, Provided is a self-powered lighting device using transparent solar cells, which is capable of recovering the amount of electricity stored in a secondary lithium ion storage battery.

請求項2の発明にかかる透明太陽電池類による自家発電照明装置によれば、前記液晶パネル内側に形成された前記透明太陽電池類は、前記LEDモジュールが発光した光エネルギーが前記導光板からの直接光と前記導光板底辺部の光反射板から強制的に導かれた反射光の両方の光エネルギーを吸収し、光起電力効果で発電した起電力は前記二次リチウムイオン蓄電池に蓄電し、また前記液晶パネルの外側と、前記設置領域を開口した躯体裏側の前記透明太陽電池類は、屋外では、昼間の太陽光の光エネルギーを吸収し発電した起電力は前記二次リチウムイオン蓄電池に蓄電し、又、屋内では、室内用照明の蛍光灯やLED光源等の外部光源から発光される光エネルギーを吸収し発電した起電力は前記二次リチウムイオン蓄電池に蓄電することにより、前記二次リチウムイオン蓄電池の放電能力時間の長寿命化を達成する特徴とともに、前記二次リチウムイオン蓄電池は、長期間の災害発生などで商業用電力の供給を断たれ蓄電量が0となっても、前記液晶パネルの外側と、または前記設置領域を開口した躯体裏側の前記透明太陽電池類を昼間の太陽光に暴露し、太陽光の光エネルギーを吸収し発電した起電力は前記二次リチウムイオン蓄電池に再蓄電することで、前記二次リチウムイオン蓄電池の失われた蓄電量を回復させることを特徴とする透明太陽電池による自家発電照明装置が提供される。  According to the self-powered lighting device using transparent solar cells according to the invention of claim 2, the transparent solar cells formed inside the liquid crystal panel are such that the light energy emitted from the LED module is directly from the light guide plate. The electromotive force generated by the photovoltaic effect is stored in the secondary lithium ion storage battery by absorbing light energy of both light and reflected light that is forcibly guided from the light reflection plate at the bottom of the light guide plate, and The transparent solar cells on the outside of the liquid crystal panel and on the rear side of the housing that opens the installation area, outdoors, store the electromotive force generated by absorbing light energy of sunlight in the daytime in the secondary lithium ion storage battery. Also, indoors, the electromotive force generated by absorbing light energy emitted from an external light source such as a fluorescent lamp or LED light source for indoor lighting is stored in the secondary lithium ion storage battery. As a result, the secondary lithium ion storage battery has a feature that the discharge capacity time of the secondary lithium ion storage battery is extended, and the secondary lithium ion storage battery is cut off from the supply of commercial power due to the occurrence of a long-term disaster etc. Even if the transparent solar cells on the outside of the liquid crystal panel or on the back side of the housing opening the installation area are exposed to sunlight in the daytime, the electromotive force generated by absorbing the light energy of sunlight is A self-power generation lighting device using a transparent solar cell is provided that recovers the amount of power stored in the secondary lithium ion storage battery by recharging the secondary lithium ion storage battery.

請求項3の発明にかかる透明太陽電池による自家発電照明器具によれば、前記LEDモジュールは、前記二次リチウムイオン蓄電池が商業用電力と前記透明太陽電池類からの起電力の供給停止と、または停電を感知すると、前記二次リチウムイオン蓄電池から引き続き電力の供給を受けて光エネルギーを発光し、発光した光エネルギーの直接光と反射光を前記透明太陽電池類が吸収発電し、発電された起電力は前記リチウムイオン蓄電池に蓄電し、蓄電された電力を再び前記LEDモジュールに供給するエンドレス機能、つまり前記LEDモジュールが点灯中に停電が発生しても光エネルギーの発光と吸収発電を繰り返して自家発電し前記二次リチウムイオン蓄電池に再蓄電することで、前記二次リチウムイオン蓄電池の放電能力時間の長寿命化を達成する特徴とともに、電源スイッチをオフにしない限り前記リチウムイオン蓄電池の蓄電量が0になるまで光エネルギーを発光し、長時間にわたる非常用停電対応型LED照明装置としての役目と、商業用電力の供給停止中の節電機能を併せ持つことを特徴とする透明太陽電池類による自家発電照明装置が提供される。  According to the self-powered lighting apparatus using a transparent solar cell according to the invention of claim 3, the LED module is configured such that the secondary lithium ion storage battery stops supplying commercial power and electromotive force from the transparent solar cells, or When a power failure is detected, power is continuously supplied from the secondary lithium ion storage battery to emit light energy, and the transparent solar cells absorb and generate direct light and reflected light of the emitted light energy to generate the generated power. Power is stored in the lithium ion storage battery, and the stored power is supplied to the LED module again. That is, even if a power failure occurs while the LED module is lit, the light energy is emitted and absorbed and generated repeatedly. Long life of discharge capacity time of the secondary lithium ion storage battery by generating electricity and recharging the secondary lithium ion storage battery As long as the power is not turned off, the light energy is emitted until the amount of power stored in the lithium ion storage battery becomes 0, and the role as an LED lighting device for emergency power outages over a long period of time. Provided is a self-powered lighting device using transparent solar cells, which also has a power saving function while power supply is stopped.

請求項4の発明にかかる透明太陽電池による自家発電照明装置によれば、前記有機ELパネルの外側に単独で形成される前記透明太陽電池類は、前記有機ELパネル内のR(赤色)G(緑色)B(青色)の各発光層を備えた有機発光層から発光された光エネルギーを吸収し自家発電された起電力は前記二次リチウムイオン蓄電池に蓄電し、また前記単独で形成された前記透明太陽電池類の裏側に、光吸収面を逆向きにして一体化された前記透明太陽電池類と前記設置領域を開口した躯体裏側の前記透明太陽電池類は、屋外では、昼間の太陽光の光エネルギーを吸収し自家発電された起電力は前記二次リチウムイオン蓄電池に蓄電し、又、屋内では、室内用照明器具である照明用有機ELパネルや蛍光灯またはLED光源等の外部光源が発光する光エネルギーを吸収し自家発電された起電力は前記二次リチウムイオン蓄電池に蓄電することにより、前記二次リチウムイオン蓄電池の放電能力時間の長寿命化を達成する特徴とともに、前記二次リチウムイオン蓄電池は、長期間の災害発生で商業用電力の供給を断たれ蓄電量が0となっても、前記有機ELパネル外側の透明太陽電池類の裏側に、光吸収面を逆向きにして一体化された前記透明太陽電池類を、または前記設置領域を開口した躯体裏側の前記透明太陽電池類を、昼間の太陽光に暴露し太陽光の光エネルギーを吸収し自家発電された起電力は前記二次リチウムイオン蓄電池に再蓄電することで、前記二次リチウムイオン蓄電池の失われた蓄電量を回復させることを特徴とする透明太陽電池類による自家発電照明装置が提供される。  According to the self-powered illumination device using a transparent solar cell according to the invention of claim 4, the transparent solar cells formed independently on the outside of the organic EL panel are R (red) G (in the organic EL panel). The electromotive force generated by absorbing the light energy emitted from the organic light-emitting layer including each of the green and B (blue) light-emitting layers is stored in the secondary lithium ion storage battery, and is formed alone. On the back side of the transparent solar cells, the transparent solar cells integrated with the light absorption surface reversed, and the transparent solar cells on the back side of the housing opening the installation area, The electromotive force generated by self-power generation by absorbing light energy is stored in the secondary lithium ion storage battery, and indoors, an external light source such as an organic EL panel for lighting, a fluorescent lamp, or an LED light source emits light. You The secondary lithium ion storage battery is characterized in that the electromotive force generated by self-power generation by absorbing light energy is stored in the secondary lithium ion storage battery, thereby extending the discharge capacity time of the secondary lithium ion storage battery. Even if the supply of commercial power is cut off due to a long-term disaster and the amount of stored electricity becomes 0, it is integrated with the back side of the transparent solar cells outside the organic EL panel with the light absorption surface facing reverse The transparent solar cells, or the transparent solar cells on the back side of the enclosure having the installation area opened, are exposed to sunlight in the daytime to absorb the light energy of sunlight, and the electromotive force generated in-house is the secondary power. Provided is a self-powered lighting device using transparent solar cells that recovers the amount of power stored in the secondary lithium ion storage battery by recharging the lithium ion storage battery. .

本発明の実施形態1に係る表面実装型紫色LEDパッケージの躯体平面斜視図である。1 is a housing plan perspective view of a surface-mounted purple LED package according to Embodiment 1 of the present invention. その躯体平面斜視図のA−A矢視断面図である。It is AA arrow sectional drawing of the housing top perspective view. その他のLEDパッケージの躯体平面斜視図のA−A矢視断面図である。It is AA arrow sectional drawing of the housing top perspective view of another LED package. 本発明の液晶パネルと透明UVカットフィルムと有機薄膜透明太陽電池と光源の重合積層ブロック図である。It is a superposition lamination block diagram of a liquid crystal panel of the present invention, a transparent UV cut film, an organic thin film transparent solar cell, and a light source. 本発明の液晶用LEDバックライトの躯体斜視図である。It is a housing perspective view of the LED backlight for liquid crystal of the present invention. 液晶用LEDバックライトの躯体斜視図のA−A矢視断面図である。It is AA arrow sectional drawing of the housing perspective view of the LED backlight for liquid crystals. その電気回路の斜視図である。It is a perspective view of the electric circuit. 本発明の液晶用LED導光板の躯体斜視図である。It is a housing perspective view of the LED light guide plate for liquid crystal of the present invention. その躯体斜視図A−A矢視断面図である。It is the housing perspective view AA arrow sectional drawing. その電気回路の斜視図である。It is a perspective view of the electric circuit. 本発明の内照式看板エッジライト照明の躯体斜視図である。It is a housing perspective view of the internally illuminated signboard edge light illumination of the present invention. その躯体斜視図のA−A矢視断面図である。It is AA arrow sectional drawing of the housing perspective view. その電気回路の斜視図である。It is a perspective view of the electric circuit. 本発明の有機発光ダイオード(OLED)と有機薄膜透明太陽電池と色素増感透明太陽電池の躯体斜視図である。It is a housing perspective view of an organic light emitting diode (OLED), an organic thin film transparent solar cell, and a dye-sensitized transparent solar cell of the present invention. その躯体斜視図のA−A矢視断面図である。It is AA arrow sectional drawing of the housing perspective view. その電気回路の斜視図である。It is a perspective view of the electric circuit.

以下、本発明を実施するための最良の形態を実施例に基づき図面を参照して詳細に設明する。  Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings based on the embodiments.

(LEDパッケージの構成)
図1、図1−A、図1−Bは、LEDパッケージの構成を示す模式図である。図1は表面実装型紫色LEDパッケージの構成を示す平面斜視図であり、図1−Aは、その平面斜視図のA−A矢視断面図、図1−Bは、その他のLED素子の表面実装型LEDパッケージの構成を示すA−A矢視断面図である。
(Configuration of LED package)
1, FIG. 1-A, and FIG. 1-B are schematic views showing the configuration of an LED package. FIG. 1 is a plan perspective view showing the configuration of a surface-mounted purple LED package, FIG. 1-A is a cross-sectional view taken along the line AA of the plan perspective view, and FIG. 1-B is a surface of another LED element. It is AA arrow sectional drawing which shows the structure of a mounting type LED package.

本実施の形態では、図1、図1−Aに示すように、LEDパッケージは表面実装型LEDパッケージ1である。表面実装型LEDパッケージ1はセラミックや樹脂で成形されたキャピティ12と、キャピティ12に実装された紫色LED素子10と、キャピティ12の内側の面に形成され、紫色LED素子10が発光した紫色光エネルルギー74を前面に反射するリフレクタ14と、キャピティ12内を充填するR(赤色)G(緑色)B(青色)蛍光体含有のシリコン樹脂からなる封止材15と、RGB蛍光体との同時加法混色により白色光エネルギー68の発光とともに紫外線69も放射する紫色LEDパッケージ1である。尚、本実施の形態では、紫色LED素子とRGB蛍光体を用いたが、図1−Bに示すように、青色LED素子11と黄色蛍光体17の組み合わせで白色光エネルギーを発光させてもよい。その場合、青色LED素子11と黄色蛍光体含有封止材17の組み合わせでは紫外線をほとんど放射しないので紫外線対策はさほど必要ではない。また、上記パッケージ上のアノード電極、カソード電極、それらと紫色LED素子10とを接続する金属ワイヤなどの図示は省略している。  In the present embodiment, as shown in FIGS. 1 and 1 -A, the LED package is a surface mount type LED package 1. The surface-mounted LED package 1 is a ceramic 12 or resin molded capacities 12, purple LED elements 10 mounted on the capacities 12, and purple light energy emitted from the purple LED elements 10 formed on the inner surface of the capacities 12. Simultaneously additive color mixing of the reflector 14 reflecting the surface 74, the sealing material 15 made of silicon resin containing R (red) G (green) B (blue) phosphor filling the inside of the capacity 12, and RGB phosphor Thus, the purple LED package 1 emits the ultraviolet light 69 as well as the white light energy 68. In this embodiment, purple LED elements and RGB phosphors are used. However, as shown in FIG. 1B, white light energy may be emitted by a combination of blue LED elements 11 and yellow phosphors 17. . In that case, since the combination of the blue LED element 11 and the yellow phosphor-containing sealing material 17 emits almost no ultraviolet rays, the countermeasure against ultraviolet rays is not so necessary. Also, the anode electrode and cathode electrode on the package, and the metal wires that connect them to the purple LED element 10 are not shown.

また、図1−AのLED素子は、紫色LED素子10であり、紫色LED素子10が発光した紫色光エネルギー74を封止材15に含有されるR、G、B蛍光体に当てて光の三原色を応用した同時加法混色で、可視光全域を蛍光体発光で得る白色の光エネルギー73を実現するので、これまで主流であった青色LED素子と黄色蛍光体の組み合わせで疑似白色光を発光照射させる方法と比べはるかに色再現度を高められ、RGBそれぞれの蛍光体の増減の調整でRa(平均演色評価数)100に近づけることが容易である。また、RGBそれぞれの蛍光体の増減の調整で白色光以外の、例えば、赤色系、緑色系、青色系、黄色系等の光エネルギー73の発光照射も容易であることは公知のことであり、また、紫色LED素子10が発光する紫色の光エネルギー74は、RGB蛍光体との同時加法混色により白色光または同時加法混色で発光可能な色の光エネルギー68の発光とともに紫外線69も放射することも公知のことである。尚、本実施形態では、紫色LED素子を採用したが、近紫外光LED素子、あるいは青色LED素子、若しくは近赤外光LED素子を採用してもよい。  1A is a violet LED element 10, and the violet light energy 74 emitted from the violet LED element 10 is applied to the R, G, B phosphors contained in the sealing material 15 to emit light. Realizing white light energy 73 that obtains the entire visible light by phosphor emission by simultaneous additive color mixture applying the three primary colors, so it emits pseudo white light with a combination of blue LED elements and yellow phosphor that has been the mainstream so far The color reproducibility is far higher than that of the method of making it easy to approach Ra (average color rendering index) 100 by adjusting the increase or decrease of the phosphors of RGB. In addition, it is known that light emission irradiation of light energy 73 other than white light, for example, red, green, blue, yellow, etc., can be easily performed by adjusting increase / decrease of phosphors of RGB, Further, the purple light energy 74 emitted from the purple LED element 10 may be emitted as well as the ultraviolet light 69 together with the light energy 68 of a color that can be emitted by white light or simultaneous additive color mixture by simultaneous additive color mixing with the RGB phosphor. It is known. In the present embodiment, a purple LED element is employed, but a near ultraviolet light LED element, a blue LED element, or a near infrared light LED element may be employed.

また、図1−Aのキャピティ12に実装される紫色LED素子10は、フェイスアップタイプを採用したが、フェイスダウンタイプでもよい。  Moreover, although the purple LED element 10 mounted in the capacity | capacitance 12 of FIG. 1-A employ | adopted the face-up type, a face-down type may be sufficient.

また、図1−A及び図1−Bに示すように、LED素子は、1つであっても複数であってもよいし、集光レンズ16が取り付けられた構造であってもよい。またLED素子封止材15は、同時加法混色用RGB蛍光体を分散させた耐紫外性、耐熱性、を有するシリコン樹脂封止材15を用いることが好ましい。また黄色蛍光体を分散させた封止材17を使用する場合は耐熱性を有するシリコン樹脂が好ましい。  Further, as shown in FIGS. 1A and 1B, the LED element may be one or a plurality of LED elements, or may have a structure in which a condenser lens 16 is attached. The LED element sealing material 15 is preferably a silicon resin sealing material 15 having ultraviolet resistance and heat resistance in which RGB phosphors for simultaneous additive color mixing are dispersed. Moreover, when using the sealing material 17 which disperse | distributed yellow fluorescent substance, the silicon resin which has heat resistance is preferable.

(透明太陽電池の構成)
ところで、太陽から地上に降り注がれる太陽光には、可視光線50%前後と赤外線44%前後と紫外線6%前後の波長が含まれ、この波長から、可視光線と紫外線、または可視光線と赤外線を吸収し、光起電力効果で起電力が発電されるのが現在の太陽電池による発電の構成となっている。
(Configuration of transparent solar cell)
By the way, the sunlight poured from the sun onto the ground includes wavelengths of about 50% visible light, about 44% infrared light, and about 6% ultraviolet light. From this wavelength, visible light and ultraviolet light, or visible light and infrared light. The current solar power generation configuration is that the electromotive force is generated by the photovoltaic effect.

(液晶パネルと透明UVカットフィルムと有機薄膜透明太陽電池と光源の構成)
図2は、液晶パネルと、透明UVカットフィルムと、有機薄膜透明太陽電池と、光源の重合積層ブロック図である。
(Configuration of liquid crystal panel, transparent UV cut film, organic thin film transparent solar cell and light source)
FIG. 2 is a polymerization block diagram of a liquid crystal panel, a transparent UV cut film, an organic thin film transparent solar cell, and a light source.

図2に示すように有機薄膜透明太陽電池100は、第1透明電極層101と透明光電変換層102と第2透明電極層103で構成されこの順番に積層される。本実施の形態で使用される表面実装型紫色LEDパッケージ1を複数連接した紫色LEDモジュール20は同時加法混色で白色の光エネルギー68と一緒に紫外線69(紫外線光エネルギー73)も放射する。RGB蛍光体の増減の調整で紫外線量を調整することにより、高い起電力を発電する有機薄膜透明太陽電池100は、紫色LEDモジュール20から発光放射される紫外線光エネルギー73を吸収し、光起電力効果で自家発電した起電力は図示しない直流制御器111を経由して紫色LEDモジュール20に供給するか、または図示しない二次リチウムイオン蓄電池120に蓄電する。尚、有機薄膜透明太陽電池100が発電した起電力の発生電圧は、紫外線光エネルギー73の入射光量に左右されるのでそのままの電圧を使用することはできない。そこで有機薄膜透明太陽電池100で発電した発生電圧を、供給予定先の例えば、紫色LEDモジュール20、または二次リチウムイオン蓄電池120等の供給先に適合するように制御する直流制御器111を設け、有機薄膜透明太陽電池100からの発生電圧をこの直流制御器111で制御した後、紫色LEDモジュール20か、または二次リチウムイオン蓄電池120に蓄電する。また、有機薄膜透明太陽電池100から紫色LEDモジュール20やリチウムイオン蓄電池120に供給するための配線などの図示は省略している。  As shown in FIG. 2, the organic thin-film transparent solar cell 100 includes a first transparent electrode layer 101, a transparent photoelectric conversion layer 102, and a second transparent electrode layer 103, which are stacked in this order. The purple LED module 20 in which a plurality of surface-mounting purple LED packages 1 used in the present embodiment are connected to each other emits ultraviolet light 69 (ultraviolet light energy 73) together with white light energy 68 by simultaneous additive color mixing. The organic thin-film transparent solar cell 100 that generates a high electromotive force by adjusting the amount of ultraviolet light by adjusting the increase or decrease of the RGB phosphors absorbs the ultraviolet light energy 73 emitted and emitted from the purple LED module 20, and the photovoltaic power The electromotive force generated in-house by the effect is supplied to the purple LED module 20 via the DC controller 111 (not shown) or stored in the secondary lithium ion storage battery 120 (not shown). The generated voltage of the electromotive force generated by the organic thin-film transparent solar cell 100 depends on the amount of incident light of the ultraviolet light energy 73, so that the voltage as it is cannot be used. Therefore, a DC controller 111 that controls the generated voltage generated by the organic thin-film transparent solar cell 100 so as to be compatible with a supply destination such as a purple LED module 20 or a secondary lithium ion storage battery 120 is provided. After the generated voltage from the organic thin-film transparent solar cell 100 is controlled by the DC controller 111, the purple LED module 20 or the secondary lithium ion storage battery 120 is charged. Further, illustration of wiring for supplying the purple LED module 20 and the lithium ion storage battery 120 from the organic thin film transparent solar cell 100 is omitted.

また、図2は、光源(LEDバックライトか、LEDエッジライトかどちらかの光源)から発光放射された紫外線光エネルギー73を吸収し自家発電する有機薄膜透明太陽電池100は、光源から発光放射された紫外線光エネルギー73を吸収し光起電力効果で発電した起電力は図示しないリチウムイオン蓄電池120に蓄電させる。透明UVカットフィルム104は、有機薄膜透明太陽電池100で吸収され起電力を発電した後の、有機薄膜透明太陽電池100で吸収しきれなかった残りの紫外線69を吸収消滅させ、紫外線69を含まない光エネルギー68はそのまま透過させUVカットフィルム104から先に存在する液晶パネル50や人体に紫外線69を放射する悪影響を防止する。また液晶パネル50は、偏光板60とアレイ基板61と透明電極(サブ画素電極)62と配光膜63と液晶層64と上側配光膜65と透明電極(共通電極)66と上側偏光板67とから構成されこの順番に積層される。光源から発光放射された紫外線光エネルギー73は、有機薄膜透明太陽電池100に吸収され起電力を発電した後の、有機薄膜透明太陽電池100で吸収しきれなかった残りの紫外線69は透明UVカットフィルム104に吸収消滅され、紫外線69を含まない光エネルギー68が液晶パネル50に供給されて液晶パネル50が点灯する。液晶パネル50を点灯した光エネルギー68は可視光線となりやがて消滅する。  Further, FIG. 2 shows that the organic thin film transparent solar cell 100 that absorbs and emits ultraviolet light energy 73 emitted from a light source (either a LED backlight or an LED edge light) emits light from the light source. The electromotive force generated by absorbing the ultraviolet light energy 73 and generated by the photovoltaic effect is stored in a lithium ion storage battery 120 (not shown). The transparent UV cut film 104 absorbs and extinguishes the remaining ultraviolet light 69 that has not been absorbed by the organic thin film transparent solar cell 100 after it is absorbed by the organic thin film transparent solar cell 100 and generates an electromotive force, and does not contain the ultraviolet light 69. The light energy 68 is transmitted as it is to prevent the adverse effect of radiating the ultraviolet rays 69 to the liquid crystal panel 50 and the human body existing from the UV cut film 104. The liquid crystal panel 50 includes a polarizing plate 60, an array substrate 61, a transparent electrode (subpixel electrode) 62, a light distribution film 63, a liquid crystal layer 64, an upper light distribution film 65, a transparent electrode (common electrode) 66, and an upper polarizing plate 67. And are laminated in this order. The ultraviolet light energy 73 emitted and emitted from the light source is absorbed by the organic thin film transparent solar cell 100 to generate electromotive force, and the remaining ultraviolet light 69 that cannot be absorbed by the organic thin film transparent solar cell 100 is a transparent UV cut film. Light energy 68 that has been absorbed and extinguished by 104 and does not contain ultraviolet light 69 is supplied to the liquid crystal panel 50, and the liquid crystal panel 50 is turned on. The light energy 68 that illuminates the liquid crystal panel 50 becomes visible light and eventually disappears.

(透明のUVカットフィルムの構成)
また、図2に示すように透明UVカットフィルム104は、LEDモジュール20から見て、有機薄膜透明太陽電池100のすぐ外側に形成され、有機薄膜透明太陽電池100で吸収され起電力を発電した後の、有機薄膜透明太陽電池100で吸収しきれなかった紫外線69を吸収消滅させ、紫外線69を含まない光エネルギー68はそのまま透過させることで、透明UVカットフィルム104から先に存在する液晶パネル50や人体に紫外線69を放射する悪影響を防止する。尚、本実施の形態では、透明UVカットフィルム104を採用したが透明で紫外線69を吸収消滅させる材料なら他の材料でも良い。また、有機薄膜透明太陽電池100である程度紫外線を吸収し、有機薄膜透明太陽電池100の外側に存在する液晶パネル50や人体に紫外線を放射する影響が少なければ、透明UVカットフィルム104は形成しなくともよい。
(Configuration of transparent UV cut film)
Further, as shown in FIG. 2, the transparent UV cut film 104 is formed immediately outside the organic thin film transparent solar cell 100 as viewed from the LED module 20 and is absorbed by the organic thin film transparent solar cell 100 to generate an electromotive force. By absorbing and extinguishing the ultraviolet rays 69 that could not be absorbed by the organic thin-film transparent solar cell 100, and transmitting the light energy 68 that does not contain the ultraviolet rays 69 as it is, the liquid crystal panel 50 existing from the transparent UV cut film 104 or the like Prevents adverse effects of radiating ultraviolet rays 69 to the human body. In this embodiment, the transparent UV cut film 104 is used, but other materials may be used as long as they are transparent and absorb and extinguish the ultraviolet rays 69. In addition, if the organic thin film transparent solar cell 100 absorbs ultraviolet rays to some extent and the liquid crystal panel 50 existing outside the organic thin film transparent solar cell 100 or the human body is less affected by ultraviolet rays, the transparent UV cut film 104 is not formed. Also good.

〈実施の形態1〉
(液晶用LEDバックライトの構成)
実施の形態1について説明する。図3及び図3−Aは本発明の実施の形態を示す模式図である。図3は、液晶用LEDバックライトの躯体斜視図であり、図3−Aは、その躯体斜視図のA−A矢視断面図であり、図3−Bは、その電気回路の斜視図である。
<Embodiment 1>
(Configuration of LED backlight for liquid crystal)
Embodiment 1 will be described. 3 and 3A are schematic views showing the embodiment of the present invention. 3 is a perspective view of the housing of the LED backlight for liquid crystal, FIG. 3-A is a cross-sectional view taken along the line AA of the perspective view of the housing, and FIG. 3-B is a perspective view of the electric circuit. is there.

図3及び図3−Aによれば、照射対象の液晶パネル50と他の機器類が設置される設置領域を開口した躯体30と、躯体30内に、商業用電力と有機薄膜透明太陽電池100と100aと100bから起電力の供給を受けて蓄電し蓄電量が満充電状態になると過充電防止機能が働き、商業用電力と有機薄膜透明太陽電池100と100aと100bからの起電力の供給を、自ら停止する機能を有する図示しない二次リチウムイオン蓄電池120と、躯体30内の背面側に、二次リチウムイオン蓄電池120から電力の供給を受けて紫外線光エネルギー73を発光放射する表面実装型紫色LEDパッケージ1が複数連接されたバックライト用の紫色LEDモジュール20と、紫色LEDモジュール20から発光された紫外線光エネルギー73を吸収し光起電力効果で起電力を自家発電する液晶パネル50の内側最前列に形成された有機薄膜透明太陽電池100と、有機薄膜透明太陽電池100の外側に形成され、有機薄膜透明太陽電池100で吸収され起電力を発電した後の、有機薄膜透明太陽電池100で吸収しきれなかった紫外線69を吸収消滅させ、紫外線69を含まない光エネルギー68はそのまま透過させ、透明UVカットフィルム104から先に存在する液晶パネル50や人体に紫外線69を放射する悪影響を防止するUVカットフィルム104と、設置領域に設置される液晶パネル50の外側の有機薄膜透明太陽電池100aと、設置領域を開口した躯体30の裏側の有機薄膜透明太陽電池100bも平面状に形成される。紫色LEDモジュール20から見て、液晶パネル50の内側最前列の有機薄膜透明太陽電池100を単独で形成するか、又は液晶パネル50の内側最前列の有機薄膜透明太陽電池100と液晶パネル50の外側に有機薄膜透明太陽電池100aを設置する組み合わせか、あるいは液晶パネル50の内側最前列の有機薄膜透明太陽電池100と設置領域を開口した躯体30の裏側に有機薄膜透明太陽電池100bを設置する組み合わせか、それとも液晶パネル50の内側最前列の有機薄膜透明太陽電池100と、液晶パネル50の外側の有機薄膜透明太陽電池100aと、設置領域を開口した躯体30裏側の有機薄膜透明太陽電池100bと、に形成される構造と、を備える。液晶パネル50の内側最前列に平面状に形成される有機薄膜透明太陽電池100は、紫色LEDモジュール20から発光放射された紫外線光エネルギー73を吸収し自家発電した起電力は二次リチウムイオン蓄電池120に蓄電される。また液晶パネル50の外側の有機薄膜透明太陽電池100aと設置領域を開口した躯体30裏側の有機薄膜透明太陽電池100bは、屋外では、昼間の太陽光の紫外線光エネルギー73を吸収し自家発電された起電力は二次リチウムイオン蓄電池120に蓄電し、夜間は街路灯や水銀灯からの紫外線光エネルギー73を吸収し自家発電された起電力はリチウムイオン蓄電池120に蓄電する。又、屋内では、室内用照明の蛍光灯やLED光源等の外部光源の発光する紫外線光エネルギー73を吸収し自家発電された起電力はリチウムイオン蓄電池120に蓄電する。上記それぞれの有機薄膜透明太陽電池100は紫色LEDモジュール20から、有機薄膜透明太陽電池100aと100bは、太陽光と、街路灯や水銀灯と、LED光源等からの紫外線光エネルギー73を吸収し発電した起電力を二次リチウムイオン蓄電池120に供給する。二次リチウムイオン蓄電池120は、自家発電された起電力の供給を受けて放電能力時間の長寿命化を達成するとともに、長期間の災害発生などで商業用電力の供給を断たれ二次リチウムイオン蓄電池120の蓄電量が0となっても、液晶パネル50の外側有機薄膜透明太陽電池100a、または設置領域を開口した躯体30裏側の有機薄膜透明太陽電池100bを、昼間の太陽光に暴露し太陽光の紫外線光エネルギー73を吸収し自家発電された起電力は二次リチウムイオン蓄電池120に蓄電することで、二次リチウムイオン蓄電池120の失われた蓄電量を回復させることが出来る。尚、本実施形態での有機薄膜透明太陽電池100と、100aと、100bの光電変換効率が大幅に改善された場合は商業用電力による再充電を不要とすることも可能である。また、設置領域を開口した躯体30裏側の有機薄膜透明太陽電池100bは、透明でなく光電変換効率に優れた不透明の太陽電池類でも良い。また、二次リチウムイオン蓄電池120を採用したが蓄電能力や充放電能力が優れていれば他の二次蓄電池類でもよい。また、表面実装型紫色LEDパッケージではなく、表面実装型近紫外光LEDパッケージ、若しくは表面実装型青色LEDパッケージ、或いは表面実装型近赤外光LED素子が複数連接されるLEDモジュールを採用してもよい。  3 and FIG. 3A, the housing 30 having an installation area in which the liquid crystal panel 50 to be irradiated and other devices are installed, and the commercial power and the organic thin-film transparent solar cell 100 are installed in the housing 30. 100a and 100b receive power from the electromotive force, and when the amount of power storage reaches a fully charged state, the overcharge prevention function is activated, and commercial power and supply of electromotive force from the organic thin film transparent solar cells 100, 100a and 100b A secondary lithium ion storage battery 120 (not shown) having a function of stopping itself, and a surface-mounted purple that emits ultraviolet light energy 73 upon receiving power from the secondary lithium ion storage battery 120 on the back side in the housing 30. A purple LED module 20 for backlight in which a plurality of LED packages 1 are connected, and ultraviolet light energy 73 emitted from the purple LED module 20 The organic thin film transparent solar cells 100 formed on the inner front row of the liquid crystal panel 50 for generating the electromotive force by the photovoltaic effect and the organic thin film transparent solar cells 100 are formed outside the organic thin film transparent solar cells 100. The ultraviolet light 69 not absorbed by the organic thin-film transparent solar cell 100 after being absorbed by the organic thin film 100 is absorbed and extinguished, and the light energy 68 that does not contain the ultraviolet light 69 is transmitted as it is. The liquid crystal panel 50 existing in the window, the UV cut film 104 that prevents the adverse effect of radiating ultraviolet rays 69 on the human body, the organic thin-film transparent solar cell 100a outside the liquid crystal panel 50 installed in the installation area, and the enclosure that opens the installation area The organic thin film transparent solar cell 100b on the back side of 30 is also formed in a planar shape. When viewed from the purple LED module 20, the organic thin film transparent solar cells 100 on the inner front row of the liquid crystal panel 50 are formed singly, or the organic thin film transparent solar cells 100 on the inner front row of the liquid crystal panel 50 and the outer side of the liquid crystal panel 50 are formed. Or a combination in which the organic thin film transparent solar cell 100b is installed on the back side of the housing 30 having an opening in the installation area and the organic thin film transparent solar cell 100 in the front row inside the liquid crystal panel 50. Or the organic thin film transparent solar cells 100 in the frontmost inner row of the liquid crystal panel 50, the organic thin film transparent solar cells 100a on the outer side of the liquid crystal panel 50, and the organic thin film transparent solar cells 100b on the back side of the housing 30 with the installation area opened. And a structure to be formed. The organic thin film transparent solar cell 100 formed in a planar shape on the inner front row of the liquid crystal panel 50 absorbs the ultraviolet light energy 73 emitted and emitted from the purple LED module 20 and self-generated electromotive force is the secondary lithium ion storage battery 120. Is stored. In addition, the organic thin-film transparent solar cell 100a outside the liquid crystal panel 50 and the organic thin-film transparent solar cell 100b on the back side of the housing 30 with the installation area opened absorb the ultraviolet light energy 73 of daytime sunlight and are self-generated. The electromotive force is stored in the secondary lithium ion storage battery 120, and the electromotive force generated by self-power generation by absorbing ultraviolet light energy 73 from a street light or a mercury lamp is stored in the lithium ion storage battery 120 at night. In addition, indoors, the self-generated electromotive force is stored in the lithium ion storage battery 120 by absorbing ultraviolet light energy 73 emitted from an external light source such as a fluorescent lamp for indoor lighting or an LED light source. Each of the organic thin film transparent solar cells 100 absorbs ultraviolet light energy 73 from the purple LED module 20 and the organic thin film transparent solar cells 100a and 100b absorb sunlight, street light, mercury lamp, LED light source, etc. The electromotive force is supplied to the secondary lithium ion storage battery 120. The secondary lithium ion storage battery 120 is provided with self-generated electromotive force to achieve a longer discharge capacity time, and the supply of commercial power is cut off due to a long-term disaster, etc. Even when the storage amount of the storage battery 120 becomes 0, the outer organic thin-film transparent solar cell 100a of the liquid crystal panel 50 or the organic thin-film transparent solar cell 100b on the back side of the housing 30 with the installation area opened is exposed to sunlight in the daytime. The electromotive force that is self-generated by absorbing the ultraviolet light energy 73 of light is stored in the secondary lithium ion storage battery 120, so that the amount of power stored in the secondary lithium ion storage battery 120 can be recovered. In addition, when the photoelectric conversion efficiency of the organic thin film transparent solar cell 100, 100a, and 100b in this embodiment is significantly improved, it is possible to eliminate the need for recharging with commercial power. Further, the organic thin film transparent solar cell 100b on the back side of the housing 30 with the installation area opened may be opaque solar cells that are not transparent and have excellent photoelectric conversion efficiency. Moreover, although the secondary lithium ion storage battery 120 was employ | adopted, other secondary storage batteries may be sufficient as long as the electrical storage capability and charging / discharging capability are excellent. Further, instead of a surface-mounting purple LED package, a surface-mounting near-ultraviolet LED package, a surface-mounting blue LED package, or an LED module in which a plurality of surface-mounting near-infrared LED elements are connected may be adopted. Good.

(電気回路)
図3−Bは、液晶用バックライトの電気回路の斜視図である。図3−Bによれば、商業用電力(交流)の供給を受け交流直流変換器110で直流に変換された電力を二次リチウムイオン蓄電池120に蓄電し、蓄電された電力を紫色LEDモジュール20に供給することで紫色LEDモジュール20は紫外線光エネルギー73を発光放射する。紫外線光エネルギー73を液晶パネル50の内側最前列に配置された有機薄膜透明太陽電池100が吸収し起電力を発電し発電された起電力は直流制御器111を経由して二次チウムイオン蓄電池120に蓄電し、蓄電された電力を再び紫色LEDモジュール20に供給する。また液晶パネル50の外側の有機薄膜透明太陽電池100aと、または設置領域を開口した躯体30裏側の有機薄膜透明太陽電池100bは、屋外では太陽光の紫外線光エネルギー73を吸収し光起電力効果で発電した起電力は直流制御器111を経由して二次リチウムイオン蓄電池120に蓄電し、また屋内では蛍光灯やLED照明の紫外線光エネルルギー73を吸収し起電力を発電して二次リチウムイオン蓄電池120に蓄電する。
(electric circuit)
FIG. 3-B is a perspective view of an electric circuit of the backlight for liquid crystal. According to FIG. 3-B, the electric power supplied with commercial power (AC) is converted into DC by the AC / DC converter 110 and stored in the secondary lithium ion storage battery 120, and the stored power is stored in the purple LED module 20. The purple LED module 20 emits and emits ultraviolet light energy 73. The organic thin film transparent solar cells 100 arranged in the frontmost inner row of the liquid crystal panel 50 absorb the ultraviolet light energy 73 to generate an electromotive force, and the generated electromotive force is transferred to the secondary titanium ion storage battery 120 via the DC controller 111. The power is stored, and the stored power is supplied to the purple LED module 20 again. Further, the organic thin film transparent solar cell 100a outside the liquid crystal panel 50 or the organic thin film transparent solar cell 100b on the back side of the housing 30 having the installation area opened absorbs the ultraviolet light energy 73 of sunlight and produces a photovoltaic effect. The generated electromotive force is stored in the secondary lithium ion storage battery 120 via the DC controller 111, and the secondary lithium ion storage battery is generated indoors by absorbing the ultraviolet light energy 73 of the fluorescent lamp or LED lighting to generate the electromotive force. 120 is charged.

〈実施の形態2〉
(液晶パネル用LED導光板の構成)
実施の形態2について説明する。図4及び図4−Aは本発明の実施の形態を示す模式図である。図4は、液晶用LED導光板の躯体斜視図であり、図4−Aは、その躯体斜視図のA−A矢視断面図であり、図4−Bは、その電気回路の斜視図である。
<Embodiment 2>
(Configuration of LED light guide plate for liquid crystal panel)
A second embodiment will be described. 4 and 4A are schematic views showing the embodiment of the present invention. 4 is a housing perspective view of the LED light guide plate for liquid crystal, FIG. 4-A is a sectional view taken along the line AA of the housing perspective view, and FIG. 4-B is a perspective view of the electric circuit. is there.

本実施の形態は、設置領域を開口した躯体内に設置される導光板を使用することが実施の形態1とは異なる。以下、実施の形態1とは異なる要素について説明し、実施の形態1で説明した要素と実質的に同一の要素には同一の符号を付してその説明を省略する。  The present embodiment is different from the first embodiment in that a light guide plate installed in a housing having an installation area opened is used. Hereinafter, elements different from those of the first embodiment will be described, and elements substantially the same as those described in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted.

図4及び図4−Aによれば、照射対象の液晶パネル50と他の機器類が設置される設置領域を開口した躯体30と、躯体30内に、商業用電力と色素増感透明太陽電池95と有機薄膜透明太陽電池100aと100bから起電力の供給を受けて蓄電し蓄電量が満充電状態になると過充電防止機能が働き、商業用電力と色素増感透明太陽電池95と有機薄膜透明太陽電池100aと100bからの起電力の供給を自ら停止する機能を有する図示しない二次リチウムイオン蓄電池120と、躯体30内の設置領域の一端(本実施形態では上部)に設けられ、二次リチウムイオン蓄電池120から電力の供給を受けて、一端側から対峙する側に光エネルギー68を発光放射する表面実装型青色LEDパッケージ2が複数連接された青色LEDモジュール21と、板状のプラスチック類にレーザー光やエッチング等により青色LEDモジュール21からの光エネルギー68を効率よく導くように加工された導光板52と、導光板底辺部に導かれた光エネルギー68を液晶パネル50側に強制的に反射させるように反射面を形成した光反射板53と、導光板52から見て、設置領域に設置される液晶パネル50の内側最前列に平面状に形成される色素増感透明太陽電池95と、色素増感透明太陽電池95は、導光板52から導かれた直接光と光反射板53からの反射光との両方の光エネルギー68を吸収し、自家発電した起電力を躯体30内に設置された二次リチウムイオン蓄電池120に蓄電させる。また設置領域に設置される液晶パネル50の外側の有機薄膜透明太陽電池100aと設置領域を開口した躯体30裏側の有機薄膜透明太陽電池100bは平面状に形成する。液晶パネル50の内側最前列に色素増感透明太陽電池95を単独で形成するか、あるいは液晶パネル50の内側最前列の色素増感透明太陽電池95と液晶パネル50外側の有機薄膜透明太陽電池100aとの組み合わせか、若しくは液晶パネル50の内側最前列の色素増感透明太陽電池95と設置領域を開口した躯体30裏側の有機薄膜透明太陽電池100b組み合わせか、それとも液晶パネル50の内側最前列の色素増感透明太陽電池95と、液晶パネル50外側の有機薄膜透明太陽電池100aと、設置領域を開口した躯体30の裏側の有機薄膜透明太陽電池100bと、に形成した構造と、を備える。液晶パネル50の内側最前列に形成された色素増感透明太陽電池95は、青色LEDモジュール21が発光した光エネルギー68が導光板52から導かれた直接光と光反射板53を介した反射光の両方の光エネルギー68を吸収し自家発電した起電力は二次リチウムイオン蓄電池120に蓄電し、また液晶パネル50外側の有機薄膜透明太陽電池100aと設置領域を開口した躯体30裏側の有機薄膜透明太陽電池100bは、屋外では昼間の太陽光の紫外線光エネルギー73を吸収し自家発電した起電力はリチウムイオン蓄電池120に蓄電し、夜間には、街路灯や水銀灯からの紫外線光エネルギー73を吸収し自家発電された起電力はリチウムイオン蓄電池120に蓄電する。又、屋内では、室内用照明の蛍光灯やLED光源等外部光源の紫外線光エネルギー73を吸収し起電力を自家発電し二次リチウムイオン蓄電池120に蓄電する。上記色素増感透明太陽電池95は、青色LEDモジュール21から、有機薄膜透明太陽電池100aと有機薄膜透明太陽電池100bは、太陽光と、街路灯や水銀灯と、蛍光灯やLED光源等からの光エネルギー68と、紫外線光エネルギー73と、を吸収し発電した起電力を二次リチウムイオン蓄電池120に供給する。二次リチウムイオン蓄電池120は、自家発電されたそれぞれの起電力の供給を受けて放電能力時間の長寿命化を達成するとともに、長期間の災害発生などで商業用電力の供給を断たれ二次リチウムイオン蓄電池120の蓄電量が0となっても、液晶パネル50外側の有機薄膜透明太陽電池100a、または設置領域を開口した躯体30裏側の有機薄膜透明太陽電池100bを、昼間の太陽光に暴露し太陽光の紫外線光エネルギー73を吸収し自家発電された起電力は二次リチウムイオン蓄電池120に蓄電することで、二次リチウムイオン蓄電池120の失われた蓄電量を回復させることが出来る。尚、本実施形態の青色LEDモジュール21は、躯体上部に設置したが、設計上の都合で上下左右の一端側であれば一番好適と思われる場所に設置できる。また本実施形態では青色LEDモジュール21を採用したが、紫色LEDモジュール20でも、近紫外光LEDモジュールでも良いし、近赤外光LEDモジュールを採用してもよい。  According to FIGS. 4 and 4-A, a housing 30 having an installation area in which a liquid crystal panel 50 to be irradiated and other devices are installed, and commercial power and a dye-sensitized transparent solar cell in the housing 30 are shown. 95 and organic thin film transparent solar cells 100a and 100b are supplied with electromotive force to store electricity, and when the amount of stored power reaches a fully charged state, an overcharge prevention function works, and commercial power, dye-sensitized transparent solar cell 95 and organic thin film transparent A secondary lithium ion storage battery 120 (not shown) having a function of stopping the supply of electromotive force from the solar cells 100a and 100b, and one end of the installation area in the housing 30 (upper part in the present embodiment) A blue LED module in which a plurality of surface-mounted blue LED packages 2 that receive power supply from the ion storage battery 120 and emit light energy 68 on one side facing each other are connected. , The light guide plate 52 processed so as to efficiently guide the light energy 68 from the blue LED module 21 to the plate-like plastic by laser light, etching, or the like, and the light energy 68 guided to the bottom of the light guide plate. And a light reflecting plate 53 formed with a reflecting surface so as to force the liquid crystal panel 50 to be reflected on the liquid crystal panel 50 side, and the light guide plate 52 as viewed from the light guide plate 52, it is formed in a planar shape on the inner front row of the liquid crystal panel 50 installed in the installation area. The dye-sensitized transparent solar cell 95 and the dye-sensitized transparent solar cell 95 absorb the light energy 68 of both the direct light guided from the light guide plate 52 and the reflected light from the light reflecting plate 53, and generate electric power in-house. The generated electromotive force is stored in the secondary lithium ion storage battery 120 installed in the housing 30. Moreover, the organic thin film transparent solar cell 100a outside the liquid crystal panel 50 installed in the installation region and the organic thin film transparent solar cell 100b on the back side of the housing 30 opening the installation region are formed in a planar shape. The dye-sensitized transparent solar cells 95 are independently formed on the inner front row of the liquid crystal panel 50, or the dye-sensitized transparent solar cells 95 on the inner front row of the liquid crystal panel 50 and the organic thin film transparent solar cells 100a on the outer side of the liquid crystal panel 50 are used. Or a combination of the dye-sensitized transparent solar cells 95 on the inner front row of the liquid crystal panel 50 and the organic thin-film transparent solar cells 100b on the back side of the housing 30 having the installation area open, or the inner front row of the liquid crystal panel 50. The structure formed in the sensitized transparent solar cell 95, the organic thin film transparent solar cell 100a of the liquid crystal panel 50 outer side, and the organic thin film transparent solar cell 100b of the back side of the housing 30 which opened the installation area | region is provided. The dye-sensitized transparent solar cells 95 formed in the innermost front row of the liquid crystal panel 50 include direct light from which the light energy 68 emitted from the blue LED module 21 is guided from the light guide plate 52 and reflected light through the light reflection plate 53. The electromotive force generated by self-generated by absorbing both of the light energies 68 is stored in the secondary lithium ion storage battery 120, and the organic thin film transparent solar cell 100a outside the liquid crystal panel 50 and the organic thin film transparent on the back side of the housing 30 opening the installation area. The solar battery 100b absorbs the ultraviolet light energy 73 of daytime sunlight outdoors and stores the electromotive force generated in-house in the lithium ion storage battery 120, and absorbs the ultraviolet light energy 73 from the street light or mercury lamp at night. The self-generated electromotive force is stored in the lithium ion storage battery 120. In addition, indoors, the ultraviolet light energy 73 of an external light source such as a fluorescent lamp for indoor lighting or an LED light source is absorbed, and an electromotive force is self-generated to be stored in the secondary lithium ion storage battery 120. The dye-sensitized transparent solar cell 95 is from the blue LED module 21, and the organic thin-film transparent solar cell 100a and the organic thin-film transparent solar cell 100b are sunlight, light from street lights, mercury lamps, fluorescent lights, LED light sources, and the like. The electromotive force generated by absorbing the energy 68 and the ultraviolet light energy 73 is supplied to the secondary lithium ion storage battery 120. The secondary lithium ion storage battery 120 is supplied with each electromotive force generated in-house to achieve a longer discharge capacity time, and the supply of commercial power is cut off due to a long-term disaster. Even when the charged amount of the lithium ion storage battery 120 becomes 0, the organic thin film transparent solar battery 100a outside the liquid crystal panel 50 or the organic thin film transparent solar battery 100b on the back side of the housing 30 with the installation area opened is exposed to daylight sunlight. Then, the electromotive force generated by absorbing the ultraviolet light energy 73 of sunlight and being generated in-house is stored in the secondary lithium ion storage battery 120, so that the amount of power stored in the secondary lithium ion storage battery 120 can be recovered. In addition, although the blue LED module 21 of this embodiment was installed in the housing | casing upper part, it can be installed in the place considered to be the most suitable if it is one end side of the upper, lower, left, and right for convenience of design. Moreover, although the blue LED module 21 was employ | adopted in this embodiment, the purple LED module 20, the near ultraviolet light LED module may be sufficient, and a near infrared light LED module may be employ | adopted.

(電気回路)
図4−Bによれば、商業用電力(交流)の供給を受け交流直流変換器110で直流に変換された電力を二次リチウムイオン蓄電池120に蓄電し、蓄電された電力を青色LEDモジュール21に供給し、供給された電力で光エネルギー68を発光する青色LEDモジュール21は、発光した直接光と反射光の両方の光エネルルギー68を併せて液晶パネル50の内側最前列に設置された色素増感透明太陽電池95に供給する。内側最前列の色素増感透明太陽電池95は、供給された直接光と反射光の光エネルルギー68を吸収し光起電力効果で発電した起電力は直流制御器111を経由して二次リチウムイオン蓄電池120に蓄電させる。また液晶パネル50の外側の有機薄膜透明太陽電池100aと設置領域を開口した躯体30裏側の有機薄膜透明太陽電池100bは、屋外では昼間の太陽光の紫外線光エネルギー73を吸収し自家発電した起電力は直流制御器111を経由して二次リチウムイオン蓄電池120に蓄電する。又、屋内では室内用照明の蛍光灯やLED光源等外部光源の紫外線光エネルギー73を吸収し起電力を自家発電し直流制御器111を経由して二次リチウムイオン蓄電池120に蓄電し、蓄電された電力を青色LEDモジュール21に再供給する。
(electric circuit)
According to FIG. 4-B, the electric power supplied with commercial electric power (AC) is converted into DC by the AC / DC converter 110 and stored in the secondary lithium ion storage battery 120, and the stored electric power is stored in the blue LED module 21. The blue LED module 21 that emits the light energy 68 with the supplied power is combined with the light energy 68 of both the emitted direct light and the reflected light and installed in the frontmost inner row of the liquid crystal panel 50. The transparent solar cell 95 is supplied. The inner frontmost dye-sensitized transparent solar cell 95 absorbs the supplied direct energy and reflected light energy 68, and the electromotive force generated by the photovoltaic effect is a secondary lithium ion via the DC controller 111. The storage battery 120 is charged. In addition, the organic thin film transparent solar cell 100a outside the liquid crystal panel 50 and the organic thin film transparent solar cell 100b on the back side of the housing 30 having the installation area opened absorb the ultraviolet light energy 73 of daytime sunlight and generate electromotive force generated in-house. Is stored in the secondary lithium ion storage battery 120 via the DC controller 111. In addition, indoors, the ultraviolet light energy 73 of an external light source such as a fluorescent lamp for indoor lighting or an LED light source is absorbed, and the electromotive force is self-generated, and is stored in the secondary lithium ion storage battery 120 via the DC controller 111 and stored. The supplied power is supplied again to the blue LED module 21.

〈実施の形態3〉
(内照式看板エッジライト照明の構成)
実施の形態3について説明する。図5及び図5−Aは本発明の実施の形態を示す模式図である。図5は、内照式看板照明の躯体斜視図であり、図5−Aは、その内照式看板の躯体斜視図のA−A矢視断面図であり、図5−Bは、その電気回路の斜視図である。
<Embodiment 3>
(Configuration of internally illuminated signboard edge light illumination)
A third embodiment will be described. 5 and 5A are schematic views showing the embodiment of the present invention. FIG. 5 is a perspective view of the housing of the internally illuminated signboard illumination, FIG. 5-A is a cross-sectional view taken along the line AA of the perspective view of the internally illuminated signboard, and FIG. It is a perspective view of a circuit.

本実施の形態は、看板躯体内の一端に設置される紫色LEDモジュールと、斜めに一様に形成した光反射板を使用することが実施の形態1とは異なる。以下、実施の形態1とは異なる要素について説明し、実施の形態1で説明した要素と実質的に同一の要素には同一の符号を付してその説明を省略する。  The present embodiment is different from the first embodiment in that a purple LED module installed at one end of the signboard housing and a light reflecting plate formed obliquely and uniformly are used. Hereinafter, elements different from those of the first embodiment will be described, and elements substantially the same as those described in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted.

図5及び図5−Aによれば、照射対象の内照式看板内の絵柄表示面83と他の機器類が設置される設置領域を開口した看板躯体80内に、商業用電力と有機薄膜透明太陽電池100から起電力の供給を受け蓄電する図示しない二次リチウムイオン蓄電池120と、設置領域の一端(本実施形態では上部)に設けられ、二次リチウムイオン蓄電池120から電力の供給を受け、一端側から対峙する側に紫外線光エネルギー73を発光放射する表面実装型紫色LEDパッケージ1が複数連接された紫色LEDモジュール20と、紫色LEDモジュール20から発光放射された紫外線光エネルギー73を吸収し光起電力効果で起電力を発電する有機薄膜透明太陽電池100と、紫外線光エネルギー73を絵柄表示面83側に強制的に反射させる反射面を形成した光反射板86と、設置領域との対向距離は、設置領域の一端側から対峙する側に向けて徐々に近くなるよう斜めに傾けて一様に平面状に形成された光反射板86と対向する状態で看板躯体内の設置領域に設置される。有機薄膜透明太陽電池100は、設置領域に設置する内照式看板の絵柄表示面83の内側最前列に平面状に形成され、紫色LEDモジュール20が発光放射する紫外線光エネルギー73を吸収し光起電力効果で起電力を発電する。透明UVカットフィルム104は、光反射板86から見て有機薄膜透明太陽電池100の外側に形成され、有機薄膜透明太陽電池100で吸収され起電力を発電した後の透明太陽電池100で吸収しきれなかった紫外線69を吸収消滅させ、紫外線69を含まない光エネルギー68はそのまま透過させ、透明UVカットフィルム104から先に存在する絵柄表示面83や人体に紫外線69を放射する悪影響を防止する。絵柄表示面83の内側最前列に平面状に形成された有機薄膜透明太陽電池100は、紫色LEDモジュール20からの直接光と光反射板86からの反射光の両方の紫外線光エネルギー73を吸収して、光起電力効果で自家発電した起電力を看板躯体80内の設置領域に設置された二次リチウムイオン蓄電池120に蓄電させる。さらに絵柄表示面83の外側に有機薄膜透明太陽電池100aを平面状に形成し、昼間の太陽光の紫外線光エネルギー73を吸収し、自家発電した起電力は二次リチウムイオン蓄電池120に蓄電させる。二次リチウムイオン蓄電池120は、商業用電力と絵柄表示面83の内側最前列の有機薄膜透明太陽電池100と絵柄表示面の外側の有機薄膜透明太陽電池100aから起電力の供給を受け蓄電しながら蓄電量が満充電状態になると過充電防止機能が働き、商業用電力と有機薄膜透明太陽電池100と100aからの電力の供給を自ら停止する機能を有し、さらに二次リチウムイオン蓄電池120は、商業用電力と有機薄膜透明太陽電池100と100aからの起電力の供給停止後、満充電状態から電力が消費され蓄電可能になった瞬間から有機薄膜透明太陽電池100と100aからの起電力の供給を受け蓄電しながらも、予め設定された残蓄電量、例えば、蓄電量が30%から50%付近まで減少した時点で商業用電力の供給を自ら再開する機能と、も有する。紫色LEDモジュール20は、電源スイッチのオン、オフ機能のほかに、二次リチウムイオン蓄電池120の商業用電力と有機薄膜透明太陽電池100と100aからの起電力の供給停止と、停電を感知する機能を有し、商業用電力と透明太陽電池100と100aからの起電力の供給停止、または停電を感知した場合、常時オン状態になり二次リチウムイオン蓄電池120から引き続き電力の供給を受ける機能と、を備える。紫色LEDモジュール20は、商業用電力と有機薄膜透明太陽電池100と100aからの供給停止と、または停電を感知すると、二次リチウムイオン蓄電池120から引き続き電力の供給を受けて紫外線光エネルギー73を発光放射し続け、発光された紫外線光エネルギー73の直接光と光反射板を介した反射光を有機薄膜透明太陽電池100が吸収発電し、発電された起電力は二次リチウムイオン蓄電池120に蓄電し、蓄電された電力を再び紫色LEDモジュール20に供給するエンドレス機能、つまり紫色LEDモジュール20が点灯中に停電を発生しても引き続き二次リチウムイオン蓄電池120から電力の供給を受け紫外線光エネルギー73の発光放射と吸収発電を繰り返して自家発電し二次リチウムイオン蓄電池120に蓄電し、二次リチウムイオン蓄電池120の放電能力時間の長寿命化を達成するとともに、電源スイッチをオフにしない限り二次リチウムイオン蓄電池120の蓄電量が0になるまで紫外線光エネルギー73を発光し、長時間にわたる非常用停電対応型照明装置としての役目と、商業用電力の供給停止中の節電機能を発揮する。尚、内照式看板が設置される場所の多くは繁華街であり歩道脇のビル壁面が多く、停電時にビル入り口や歩道上を明るくすることで周囲に安全や安心感を提供できる。また、本実施形態で使用される光反射板86は、蝶番などの回動性を有する器具により回動可能な設置方法の光反射板86でも良い。また、透明太陽電池100と直流制御器111と二次リチウムイオン蓄電池120を接続する配線等の図示は省略している。  According to FIG.5 and FIG.5-A, commercial electric power and an organic thin film are installed in the signboard housing | casing 80 which opened the installation area | region in which the pattern display surface 83 in an internal-lighting type | mold signboard to be irradiated and other equipment are installed. A secondary lithium ion storage battery 120 (not shown) that receives the supply of electromotive force from the transparent solar battery 100 and stores it, and one end (upper part in the present embodiment) of the installation area, receives the supply of power from the secondary lithium ion storage battery 120. The purple LED module 20 in which a plurality of surface-mounted purple LED packages 1 that emit and emit ultraviolet light energy 73 from one end to the opposite side and the ultraviolet light energy 73 emitted and emitted from the purple LED module 20 are absorbed. Organic thin-film transparent solar cell 100 that generates electromotive force by the photovoltaic effect, and reflection that forcibly reflects ultraviolet light energy 73 toward the picture display surface 83 side The light reflecting plate 86 formed with the mounting area and the light reflecting plate formed uniformly in a flat plane by inclining obliquely so that the facing distance from the one end side of the installing area gradually becomes closer to the facing side. It is installed in the installation area in the signboard housing in a state of facing the 86. The organic thin film transparent solar cell 100 is formed in a planar shape on the inner front row of the picture display surface 83 of the internally illuminated signboard installed in the installation area, and absorbs the ultraviolet light energy 73 emitted from the purple LED module 20 to emit light. The electromotive force is generated by the power effect. The transparent UV cut film 104 is formed outside the organic thin film transparent solar cell 100 as viewed from the light reflector 86, and is absorbed by the transparent solar cell 100 after being absorbed by the organic thin film transparent solar cell 100 and generating an electromotive force. Absorbing and extinguishing the ultraviolet ray 69 that has not existed, the light energy 68 that does not contain the ultraviolet ray 69 is transmitted as it is, thereby preventing the adverse effect of radiating the ultraviolet ray 69 from the transparent UV cut film 104 to the pattern display surface 83 and the human body. The organic thin film transparent solar cell 100 formed in a planar shape on the inner front row of the pattern display surface 83 absorbs ultraviolet light energy 73 of both direct light from the purple LED module 20 and reflected light from the light reflecting plate 86. Thus, the electromotive force generated in-house by the photovoltaic effect is stored in the secondary lithium ion storage battery 120 installed in the installation area in the signboard housing 80. Further, the organic thin film transparent solar cell 100a is formed in a flat shape outside the pattern display surface 83, absorbs the ultraviolet light energy 73 of daylight sunlight, and the self-generated electromotive force is stored in the secondary lithium ion storage battery 120. The secondary lithium ion storage battery 120 receives and stores the electromotive force from the commercial power and the organic thin film transparent solar cells 100 in the front row inside the pattern display surface 83 and the organic thin film transparent solar cells 100a outside the pattern display surface. The overcharge prevention function works when the storage amount reaches a fully charged state, and has a function of stopping the supply of commercial power and power from the organic thin film transparent solar cells 100 and 100a, and the secondary lithium ion storage battery 120 is Supply of electromotive force from the organic thin film transparent solar cells 100 and 100a from the moment when power is consumed from the fully charged state and storage becomes possible after the supply of commercial power and the electromotive force from the organic thin film transparent solar cells 100 and 100a is stopped. Receiving and storing electricity, but resumes the supply of commercial power by itself when the remaining amount of electricity set in advance, for example, the amount of electricity stored decreases from 30% to around 50%. With function and that, also. The purple LED module 20 has a function of detecting a power failure and a commercial power supply of the secondary lithium ion storage battery 120, an electromotive force supply stop from the organic thin film transparent solar cells 100 and 100a, in addition to an on / off function of the power switch. And a function of receiving power from the secondary lithium ion storage battery 120 continuously when the commercial power and supply of electromotive force from the transparent solar cells 100 and 100a are detected, or when a power failure is detected, Is provided. When the purple LED module 20 senses commercial power and supply interruption from the organic thin film transparent solar cells 100 and 100a or a power failure, it continuously receives power from the secondary lithium ion storage battery 120 and emits ultraviolet light energy 73. The organic thin film transparent solar cell 100 absorbs and generates the generated direct light of the ultraviolet light energy 73 and the reflected light through the light reflector, and the generated electromotive force is stored in the secondary lithium ion storage battery 120. The endless function of supplying the stored power to the purple LED module 20 again, that is, even if a power failure occurs while the purple LED module 20 is lit, the power is continuously supplied from the secondary lithium ion storage battery 120 and the ultraviolet light energy 73 Self-generated electricity by repeating emission emission and absorption power generation and stored in secondary lithium ion storage battery 120 The secondary lithium ion storage battery 120 achieves longer discharge capacity time and emits ultraviolet light energy 73 until the amount of charge in the secondary lithium ion storage battery 120 becomes zero unless the power switch is turned off. It will serve as an emergency power outage lighting device over time, and will save power while commercial power is stopped. Many of the places where internally-lit signboards are installed are busy streets, and there are many wall surfaces on the side of the sidewalk, and it is possible to provide safety and security to the surroundings by brightening the building entrance and on the sidewalk in the event of a power failure. In addition, the light reflecting plate 86 used in the present embodiment may be a light reflecting plate 86 of an installation method that can be rotated by a rotating instrument such as a hinge. Further, illustration of wiring and the like connecting the transparent solar cell 100, the DC controller 111, and the secondary lithium ion storage battery 120 is omitted.

(電気回路)
図5−Bによれば、商業用電力(交流)の供給を受け交流直流変換器110で直流に変換された電力を二次リチウムイオン蓄電池120に蓄電し、蓄電された電力を紫色LEDモジュール20に供給する。紫色LEDモジュール20からの直接光と反射板からの反射光を絵柄表示面83の内側最前列の有機薄膜透明太陽電池100に供給し、内側最前列の有機薄膜透明太陽電池100で発電された起電力は直流制御器111を経由して二次リチウムイオン蓄電池120に蓄電し、蓄電された電力を再び紫色LEDモジュール20に供給する。また、絵柄表示面83外側の有機薄膜透明太陽電池100aは、昼間の太陽光の紫外線光エネルギー73を吸収し発電した起電力は直流制御器111を経由して二次リチウムイオン蓄電池120に蓄電する。
(electric circuit)
According to FIG. 5-B, the electric power supplied with commercial power (AC) is converted into DC by the AC / DC converter 110 and stored in the secondary lithium ion storage battery 120, and the stored power is stored in the purple LED module 20. To supply. The direct light from the purple LED module 20 and the reflected light from the reflecting plate are supplied to the organic thin film transparent solar cells 100 on the innermost front row of the picture display surface 83, and the power generated by the organic thin film transparent solar cells 100 on the innermost front row is generated. The electric power is stored in the secondary lithium ion storage battery 120 via the DC controller 111, and the stored electric power is supplied to the purple LED module 20 again. The organic thin film transparent solar cell 100a outside the pattern display surface 83 absorbs the ultraviolet light energy 73 of daytime sunlight and stores the generated electromotive force in the secondary lithium ion storage battery 120 via the DC controller 111. .

〈実施の形態4〉
(有機発光ダイオード(OLED)と色素増感透明太陽電池と有機薄膜透明太陽電池の構成)
図6及び図6−Aは本発明の実施の形態を示す模式図である。図6は、OLEDと有機薄膜透明太陽電池と色素増感透明太陽電池が設置される躯体斜視図であり、図6−Aは、その躯体斜視図のA−A矢視断面図であり、図6−Bは、その電気回路の斜視図である。
<Embodiment 4>
(Structure of organic light-emitting diode (OLED), dye-sensitized transparent solar cell, and organic thin-film transparent solar cell)
6 and 6A are schematic views showing an embodiment of the present invention. FIG. 6 is a perspective view of a housing in which an OLED, an organic thin film transparent solar cell, and a dye-sensitized transparent solar cell are installed. FIG. 6A is a cross-sectional view taken along the line AA in the perspective view of the housing. 6-B is a perspective view of the electric circuit.

本実施の形態は、設置領域を開口した躯体内に設置される液晶パネルの代わりに、OLEDを使用することが実施の形態1とは異なる。以下、実施の形態1とは異なる要素について説明し、実施の形態1で説明した要素と実質的に同一の要素には同一の符号を付してその説明を省略する。  The present embodiment is different from the first embodiment in that an OLED is used instead of a liquid crystal panel installed in a housing having an installation area opened. Hereinafter, elements different from those of the first embodiment will be described, and elements substantially the same as those described in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted.

図6及び図6−Aによれば、有機発光ダイオード(OLED)27と他の機器類が設置される設置領域を開口した躯体30と、躯体30内に、商業用電力と色素増感透明太陽電池95と有機薄膜透明太陽電池100aと有機薄膜透明太陽電池100bからの起電力の供給を受けて蓄電し蓄電量が満充電状態になると過充電防止機能が働き、商業用電力と色素増感透明太陽電池95と有機薄膜透明太陽電池100aと100bからの起電力の供給を自ら停止する機能を有する図示しない二次リチウムイオン蓄電池120と、二次リチウムイオン蓄電池120から電力の供給を受けてフルカラー光エネルギー29を発光するOLED27と、OLED27から発光されたフルカラー光エネルギー29を吸収し起電力を自家発電する色素増感透明太陽電池95と、色素増感透明太陽電池95の裏側に、光吸収面を逆向きにして一体化して形成された有機薄膜透明太陽電池100aと、設置領域を開口した躯体裏側に平面状に形成された有機薄膜透明太陽電池100bとを備える。色素増感透明太陽電池95は、OLED27内のR(赤色)G(緑色)B(青色)の各発光層を備えた有機発光層34から発光されたフルカラー光エネルギー29を吸収して発電された起電力は二次リチウムイオン蓄電池120に蓄電させる。また設置領域に設置されたOLED27の外側に形成された色素増感透明太陽電池95の裏側に、光吸収面を逆向きにして一体化して形成された有機薄膜透明太陽電池100aと、設置領域を開口した躯体30裏側の有機薄膜透明太陽電池100bは、屋外では、昼間の太陽光の紫外線光エネルギー73を吸収し自家発電された起電力は二次リチウムイオン蓄電池120に蓄電し、夜間には、街路灯や水銀灯からの紫外線光エネルギー73を吸収し自家発電された起電力はリチウムイオン蓄電池120に蓄電する。又、屋内では、室内用照明の照明用有機ELパネルや蛍光灯またはLED光源等の外部光源の紫外線光エネルギー73を吸収し、自家発電された起電力は二次リチウムイオン蓄電池120に蓄電する。二次リチウムイオン蓄電池120は、自家発電された起電力の供給を受けて放電能力時間の長寿命化を達成するとともに、長期間の災害発生などで商業用電力の供給を断たれ二次リチウムイオン蓄電池120の蓄電量が0となっても、設置領域に設置されたOLED27の外側に形成された色素増感透明太陽電池95の裏側に、光吸収面を逆向きにして一体化されて形成された有機薄膜透明太陽電池100aと、設置領域を開口した躯体30裏側の有機薄膜透明太陽電池100bを、昼間の太陽光に暴露し太陽光の紫外線光エネルギー73を吸収し、自家発電された起電力は二次リチウムイオン蓄電池120に蓄電することで、二次リチウムイオン蓄電池120の失われた蓄電量を回復させることが出来る。  6 and 6A, a housing 30 having an installation area where an organic light emitting diode (OLED) 27 and other devices are installed, and commercial power and a dye-sensitized transparent sun are installed in the housing 30. When the battery 95, the organic thin film transparent solar battery 100a and the organic thin film transparent solar battery 100b are supplied with the electromotive force, the overcharge prevention function is activated when the charged amount is fully charged, and commercial power and dye sensitized transparent A secondary lithium ion storage battery 120 (not shown) having a function of stopping the supply of electromotive force from the solar battery 95 and the organic thin film transparent solar batteries 100a and 100b, and full color light received from the secondary lithium ion storage battery 120 OLED 27 that emits energy 29, and dye-sensitized transparent layer that absorbs full-color light energy 29 emitted from OLED 27 and generates electromotive force in-house. An organic thin-film transparent solar cell 100a formed integrally with the back side of the battery 95 and the dye-sensitized transparent solar cell 95 with the light-absorbing surface reversed, and a flat surface formed on the back side of the housing opening the installation area The organic thin film transparent solar cell 100b. The dye-sensitized transparent solar cell 95 generated power by absorbing the full-color light energy 29 emitted from the organic light-emitting layer 34 including the R (red), G (green), and B (blue) light-emitting layers in the OLED 27. The electromotive force is stored in the secondary lithium ion storage battery 120. Further, an organic thin film transparent solar cell 100a formed by integrating the light absorption surface in the reverse direction on the back side of the dye-sensitized transparent solar cell 95 formed outside the OLED 27 installed in the installation region, and the installation region. The organic thin-film transparent solar cell 100b on the back side of the opened housing 30 absorbs the ultraviolet light energy 73 of daytime sunlight and stores the electromotive force generated in-house in the secondary lithium ion storage battery 120, and at night, The electromotive force generated by absorbing the ultraviolet light energy 73 from the street lamp or mercury lamp and being self-generated is stored in the lithium ion storage battery 120. In addition, indoors, it absorbs ultraviolet light energy 73 of an external light source such as an organic EL panel for illumination for indoor lighting, a fluorescent lamp, or an LED light source, and the electromotive force generated in-house is stored in the secondary lithium ion storage battery 120. The secondary lithium ion storage battery 120 is provided with self-generated electromotive force to achieve a longer discharge capacity time, and the supply of commercial power is cut off due to a long-term disaster, etc. Even when the storage amount of the storage battery 120 becomes 0, it is integrally formed on the back side of the dye-sensitized transparent solar cell 95 formed outside the OLED 27 installed in the installation area with the light absorption surface reversed. The organic thin film transparent solar cell 100a and the organic thin film transparent solar cell 100b on the back side of the housing 30 with the installation area opened are exposed to sunlight in the daytime to absorb the ultraviolet light energy 73 of the sunlight, and the self-generated electromotive force Can be stored in the secondary lithium ion storage battery 120 to recover the amount of power stored in the secondary lithium ion storage battery 120.

(電気回路)
図6−Bによれば、商業用電力(交流)の供給を受け交流直流変換器110で直流に変換された電力を二次リチウムイオン蓄電池120に蓄電し、蓄電された電力をOLED27に供給する。OLED27は、供給された電力でフルカラー光エネルギー29を発光し色素増感透明太陽電池95に供給する。色素増感透明太陽電池95は、供給されたフルカラー光エネルギー29を吸収し光起電力効果で発電した起電力は直流制御器111を経由して二次リチウムイオン蓄電池120に蓄電する。また設置領域に設置されたOLED27の外側に形成された色素増感透明太陽電池95の裏側に、光吸収層を逆向きにして一体化して形成された有機薄膜透明太陽電池100aと、設置領域を開口した躯体30裏側の有機薄膜透明太陽電池100bは、屋外では昼間の太陽光の紫外線光エネルギー73を吸収し自家発電した起電力は直流制御器111を経由して二次リチウムイオン蓄電池120に蓄電する。又、屋内では室内用照明の照明用有機ELパネルや蛍光灯またはLED光源等外部光源の紫外線光エネルギー73を吸収し、起電力を自家発電し直流制御器111を経由してリチウムイオン蓄電池120に蓄電する。
(electric circuit)
According to FIG. 6B, the electric power supplied with commercial power (alternating current) is converted into direct current by the alternating current direct current converter 110 and stored in the secondary lithium ion storage battery 120, and the stored electric power is supplied to the OLED 27. . The OLED 27 emits full-color light energy 29 with the supplied power and supplies it to the dye-sensitized transparent solar cell 95. The dye-sensitized transparent solar cell 95 absorbs the supplied full-color light energy 29 and stores the electromotive force generated by the photovoltaic effect in the secondary lithium ion storage battery 120 via the DC controller 111. Further, the organic thin film transparent solar cell 100a formed by integrating the light absorption layer in the reverse direction on the back side of the dye-sensitized transparent solar cell 95 formed outside the OLED 27 installed in the installation region, and the installation region The organic thin-film transparent solar cell 100b on the back side of the opened housing 30 absorbs the ultraviolet light energy 73 of daytime sunlight outdoors and stores the electromotive force generated in-house in the secondary lithium ion storage battery 120 via the DC controller 111. To do. In addition, indoors, it absorbs ultraviolet light energy 73 of an external light source such as an organic EL panel for illumination for indoor lighting, a fluorescent lamp, or an LED light source, and generates an electromotive force in-house to a lithium ion storage battery 120 via a DC controller 111. Accumulate electricity.

現在使用される液晶用光源、または内照式看板の光源、或いは有機発光ダイオードの光源は、自ら発光した光エネルギーを再利用することがなく多くの消費電力を必要としている。本発明の照明装置は、自ら発光した光エネルギーを再利用して自家発電することができ、天候に左右されることがなく安定した自家発電が計算できるとともに、躯体外の、太陽光や室内照明用の蛍光灯やLED照明の光エネルルギーを吸収し自家発電することで膨大な節電が可能となり地球温暖化を防止するための一助となり得る。  Currently used light sources for liquid crystals, light sources for internally illuminated signboards, or light sources for organic light emitting diodes do not reuse light energy emitted by themselves, and require a large amount of power consumption. The illuminating device of the present invention can self-generate power by reusing light energy emitted by itself, can calculate stable in-house power generation without being influenced by the weather, and can also provide sunlight and indoor lighting outside the enclosure. Absorbing the light energy of fluorescent lamps and LED lighting and generating power in-house can save enormous amounts of electricity and help prevent global warming.

1 表面実装型紫色LEDパッケージ
2 表面実装型青色LEDパッケージ
10 紫色LED素子
11 青色LED素子
12 キャピティ
14 リフレクタ
15 R(赤色)G(緑色)B(青色)蛍光体含有の封止材
16 集光レンズ
17 黄色蛍光体含有の封止材
20 紫色LEDモジュール
21 青色LEDモジュール
27 有機発光ダイオード(OLED)
29 フルカラー光エネルギー
30 躯体
31 有機ELパネル
32 金属電極
33 有機電子輸送層(+)
34 R(赤色)G(緑色)B(青色)の各発光層を備えた有機発光層
35 有機正孔輸送層(−)
36 ITO透明電極
37 透明基板
50 液晶パネル
52 導光板
53 光反射板
60 偏光板
61 アレイ基板
62 透明電極(サブ画素電極)
63 配光膜
64 液晶層
65 上側配光膜
66 透明電極(共通電極)
67 上側偏光板
68 紫外線を含まない光エネルギー
69 紫外線
73 紫外線光エネルギー
74 紫色光エネルギー
80 内照式看板躯体
83 絵柄表示面(ポスター類)
86 光反射板
95 色素増感透明太陽電池
100 有機薄膜透明太陽電池
100a 有機薄膜透明太陽電池
100b 有機薄膜透明太陽電池
101 第1透明電極層
102 透明光電変換層
103 第2透明電極層
104 透明のUVカットフィルム
105 ランプカバー
110 交流直流変換器
111 直流制御器
120 リチウムイオン蓄電池
DESCRIPTION OF SYMBOLS 1 Surface mount type purple LED package 2 Surface mount type blue LED package 10 Purple LED element 11 Blue LED element 12 Capacitance 14 Reflector 15 R (red) G (green) B (blue) phosphor containing sealing material 16 Condensing lens 17 Encapsulant 20 containing yellow phosphor Purple LED module 21 Blue LED module 27 Organic light emitting diode (OLED)
29 Full-color light energy 30 Housing 31 Organic EL panel 32 Metal electrode 33 Organic electron transport layer (+)
34 Organic Light-Emitting Layer 35 With Each R (Red) G (Green) B (Blue) Light-Emitting Layer 35 Organic Hole Transport Layer (-)
36 ITO transparent electrode 37 Transparent substrate 50 Liquid crystal panel 52 Light guide plate 53 Light reflecting plate 60 Polarizing plate 61 Array substrate 62 Transparent electrode (subpixel electrode)
63 Light distribution film 64 Liquid crystal layer 65 Upper light distribution film 66 Transparent electrode (common electrode)
67 Upper polarizing plate 68 Light energy not including ultraviolet light 69 Ultraviolet light 73 Ultraviolet light energy 74 Purple light energy 80 Internally illuminated signboard housing 83 Picture display surface (posters)
86 Light reflector 95 Dye-sensitized transparent solar cell 100 Organic thin film transparent solar cell 100a Organic thin film transparent solar cell 100b Organic thin film transparent solar cell 101 First transparent electrode layer 102 Transparent photoelectric conversion layer 103 Second transparent electrode layer 104 Transparent UV Cut film 105 Lamp cover 110 AC / DC converter 111 DC controller 120 Lithium ion storage battery

Claims (4)

照射対象の液晶パネルと他の機器類が設置される設置領域を開口した躯体を備えた液晶ディスプレイと、
前記設置領域を開口した躯体内に、商業用電力(交流)を交流直流変換器で変換された直流電力と、後述する透明太陽電池類からの起電力の供給を受けて蓄電し蓄電量が満充電状態になると過充電防止機能が働き、商業用電力と前記透明太陽電池類からの起電力の供給を自ら停止する機能を有する二次リチウムイオン蓄電池と、
前記二次リチウムイオン蓄電池から電力の供給を受けて光エネルギーを発光する表面実装型LEDパッケージ内に実装された紫色LED素子、または近紫外光LED素子、あるいは青色LED素子、若しくは近赤外光LED素子等の前記LED素子類と、
前記LED素子類は、R(赤色)G(緑色)B(青色)蛍光体を分散させた封止材と、または黄色蛍光体を分散させた前記LED素子類を封止する樹脂系の封止材と、
前記蛍光体類含有封止材は、前記LED素子類が発光した光エネルギーに励起されると当該光と異なる波長の白色光を発する発光層を形成し、
前記LED素子類を封止したLEDパッケージが複数連接されたLEDモジュールが発光した光エネルギーを吸収し光起電力効果で起電力を自家発電する、前述した透明な有機薄膜太陽電池、または透明な色素増感太陽電池等の有機系太陽電池類と、若しくは透明な革新型太陽電池類と、又は透明な化合物系太陽電池類と、或いは透明な薄膜太陽電池類と、それとも前記透明太陽電池類の複数の組み合わせと、
前記透明太陽電池類を透過した光エネルギーの供給を受けて液晶画面を点灯する液晶パネルと、
前記透明太陽電池類は、前記液晶パネルの内側に平面状に形成され、前記LEDモジュールから発光された光エネルギーを吸収し光起電力効果で発電された起電力は前記リチウムイオン蓄電池に蓄電させる機能と、
また前記透明太陽電池類は、前記設置領域に設置される前記液晶パネルの外側と、または前記設置領域を開口した躯体裏側とに平面状に形成される構成と、を含み、
さらに前記透明太陽電池類は、前記液晶パネルの内側に単独で形成するか、または前記液晶パネルの内側と前記液晶パネル外側の組み合わせか、或いは前記液晶パネルの内側と前記設置領域を開口した躯体裏側との組み合わせか、それとも前記液晶パネルの内側と、前記液晶パネル外側と、前記設置領域を開口した躯体裏側と、に形成される構造と、を備え、
前記液晶パネルの内側に平面状に形成される前記透明太陽電池類は、前記LEDモジュールから発光された光エネルギーを吸収し光起電力効果で自家発電した起電力は前記二次リチウムイオン蓄電池に蓄電し、また前記液晶パネルの外側と前記設置領域を開口した躯体裏側の前記透明太陽電池類は、屋外では、昼間の太陽光の光エネルギーを吸収し光起電力効果で発電された起電力は前記二次リチウムイオン蓄電池に蓄電し、又、屋内では、室内用照明の蛍光灯やLED光源等の外部光源から発光放射される光エネルギーを吸収し光起電力効果で発電された起電力を前記二次リチウムイオン蓄電池に蓄電することにより、前記二次リチウムイオン蓄電池は、放電能力時間の長寿命化を達成する特徴とともに、長期間の災害発生などで商業用電力の供給を断たれ前記二次リチウムイオン蓄電池の蓄電量が0となっても、前記液晶パネル外側の、または前記設置領域を開口した躯体裏側の前記透明太陽電池類を、昼間の太陽光に暴露し太陽光の光エネルギーを吸収し発電された起電力は前記二次リチウムイオン蓄電池に再蓄電することで、前記二次リチウムイオン蓄電池の失われた蓄電量を回復させることを特徴とする前記透明太陽電池類による自家発電照明装置。
A liquid crystal display with a housing that opens an installation area where the liquid crystal panel to be irradiated and other devices are installed; and
In the enclosure having the installation area opened, the commercial power (alternating current) is stored by receiving the direct current power obtained by converting the commercial power (alternating current) with the alternating current to direct current converter and the electromotive force from the transparent solar cells described later. A secondary lithium ion storage battery having a function of self-stopping the supply of electromotive force from commercial power and the transparent solar cells, when the overcharge prevention function works when in a charged state,
Purple LED element, near-ultraviolet LED element, blue LED element, or near-infrared light LED mounted in a surface-mounted LED package that receives light from the secondary lithium ion storage battery to emit light energy LED elements such as elements,
The LED elements include a sealing material in which R (red), G (green), and B (blue) phosphors are dispersed, or a resin-based sealing that seals the LED elements in which yellow phosphors are dispersed. Material,
The phosphor-containing sealing material forms a light emitting layer that emits white light having a wavelength different from that of the light when excited by the light energy emitted by the LED elements,
The above-mentioned transparent organic thin-film solar cell or transparent pigment that absorbs light energy emitted from a LED module in which a plurality of LED packages in which the LED elements are sealed are connected and absorbs light and generates electromotive force by the photovoltaic effect. Organic solar cells such as sensitized solar cells, transparent innovative solar cells, transparent compound solar cells, transparent thin-film solar cells, or a plurality of the transparent solar cells A combination of
A liquid crystal panel that turns on a liquid crystal screen by receiving light energy transmitted through the transparent solar cells; and
The transparent solar cells are formed in a flat shape inside the liquid crystal panel, absorb the light energy emitted from the LED module, and store the electromotive force generated by the photovoltaic effect in the lithium ion storage battery. When,
Further, the transparent solar cells include a configuration formed in a planar shape on the outside of the liquid crystal panel installed in the installation area, or on the back side of the housing opening the installation area,
Further, the transparent solar cells are formed independently on the inner side of the liquid crystal panel, or are a combination of the inner side of the liquid crystal panel and the outer side of the liquid crystal panel, or the inner side of the liquid crystal panel and the rear side of the housing opening the installation area. Or a structure formed on the inside of the liquid crystal panel, on the outside of the liquid crystal panel, and on the rear side of the housing opening the installation area,
The transparent solar cells formed in a planar shape inside the liquid crystal panel absorb the light energy emitted from the LED module and store the electromotive force generated by the photovoltaic effect in the secondary lithium ion storage battery. In addition, the transparent solar cells on the outside of the liquid crystal panel and on the back side of the housing that opens the installation area, the outdoors, the electromotive force generated by the photovoltaic effect by absorbing the light energy of sunlight in the daytime is The secondary electromotive force stored in the secondary lithium ion storage battery, and the indoor electromotive force generated by the photovoltaic effect by absorbing light energy emitted and emitted from an external light source such as a fluorescent lamp or LED light source for indoor lighting is used. By storing the secondary lithium ion battery in the secondary lithium ion battery, the secondary lithium ion battery has a feature of achieving a longer discharge capacity time and a long-term disaster. The transparent solar cells on the outside of the liquid crystal panel or on the back side of the enclosure with the opening of the installation area exposed to daytime sunlight even when the supply of the secondary lithium ion battery becomes 0 The electromotive force generated by absorbing the light energy of sunlight is re-stored in the secondary lithium ion storage battery, thereby recovering the lost storage amount of the secondary lithium ion storage battery. Self-powered lighting system using solar cells.
照射対象の液晶パネルと他の機器類が設置される設置領域を開口した躯体を備えた液晶ディスプレイと、
前記設置領域を開口した躯体内に、商業用電力と前記透明太陽電池類からの起電力の供給を受けて蓄電し蓄電量が満充電状態になると過充電防止機能が働き、商業用電力と前記透明太陽電池類からの起電力の供給を自ら停止する機能を有する二次リチウムイオン蓄電池と、
前記躯体内の設置領域の一端に設けられ、前記二次リチウムイオン蓄電池から電力の供給を受けて前記一端側から対峙する側に光エネルギーを発光する前記表面実装型LEDパッケージを複数連接したLEDモジュールと、
前記躯体内に設置され、板状のプラスチック類にレーザー光やエッチング等により加工され、前記LEDモジュールから発光された光エネルギーを効率よく導く導光板と、
前記導光板底辺部に形成され、前記LEDモジュールからの光エネルギーが導光板底辺部側に導かれた光エネルギーを、前記液晶パネル側に強制的に反射させるように反射面が形成された光反射板と、
前記LEDモジュールから発光され、前記導光板から導かれた直接光と光反射板からの反射光の両方の光エネルギーを吸収し発電した起電力を、前記躯体内に設置された前記二次リチウムイオン蓄電池に蓄電させる前記液晶パネルの内側に形成された前記透明太陽電池類と、
さらに前記LEDモジュールから発光放射され、前記導光板から導かれた直接光と反射光の両方の光エネルギーの供給を受けて液晶画面を点灯する前記液晶パネルと、
前記設置領域に設置される前記液晶パネルの外側と、または前記設置領域を開口した躯体裏側に平面状に形成される前記透明太陽電池類と、を含み、
前記透明太陽電池類は、前記液晶パネルの内側に単独で形成するか、あるいは前記液晶パネルの内側と前記液晶パネル外側の組み合わせか、若しくは前記液晶パネルの内側と前記設置領域を開口した躯体裏側との組み合わせか、それとも前記液晶パネルの内側と、前記液晶パネル外側と、前記設置領域を開口した躯体裏側と、に形成された構造と、を備え、
前記液晶パネル内側に形成された前記透明太陽電池類は、前記LEDモジュールが発光した光エネルギーが前記導光板からの直接光と前記導光板底辺部の光反射板から強制的に導かれた反射光の両方の光エネルギーを吸収し、光起電力効果で発電した起電力は前記二次リチウムイオン蓄電池に蓄電し、また前記液晶パネルの外側と、前記設置領域を開口した躯体裏側の前記透明太陽電池類は、屋外では、昼間の太陽光の光エネルギーを吸収し発電した起電力は前記二次リチウムイオン蓄電池に蓄電し、又、屋内では、室内用照明の蛍光灯やLED光源等の外部光源から発光される光エネルギーを吸収し発電した起電力は前記二次リチウムイオン蓄電池に蓄電することにより、前記二次リチウムイオン蓄電池の放電能力時間の長寿命化を達成する特徴とともに、前記二次リチウムイオン蓄電池は、長期間の災害発生などで商業用電力の供給を断たれ蓄電量が0となっても、前記液晶パネルの外側と、または前記設置領域を開口した躯体裏側の前記透明太陽電池類を昼間の太陽光に暴露し、太陽光の光エネルギーを吸収し発電した起電力は前記二次リチウムイオン蓄電池に再蓄電することで、前記二次リチウムイオン蓄電池の失われた蓄電量を回復させることを特徴とする請求項1に記載の前記透明太陽電池類による自家発電照明装置。
A liquid crystal display with a housing that opens an installation area where the liquid crystal panel to be irradiated and other devices are installed; and
In the enclosure having the installation area opened, when the electric power is supplied from commercial power and the transparent solar cells and stored, the overcharge prevention function works when the amount of power storage is in a fully charged state. A secondary lithium ion storage battery having a function of stopping the supply of electromotive force from the transparent solar cells,
An LED module that is provided at one end of an installation region in the housing and that is connected to a plurality of the surface-mounted LED packages that emit light energy from the one end side to receive light from the secondary lithium ion storage battery. When,
A light guide plate installed in the housing, processed into a plate-like plastic by laser light or etching, and efficiently guides light energy emitted from the LED module;
Light reflection formed on the bottom side of the light guide plate and having a reflective surface so that the light energy from the LED module guided to the bottom side of the light guide plate is forcibly reflected to the liquid crystal panel side. The board,
An electromotive force generated by absorbing light energy of both the direct light guided from the light guide plate and the reflected light from the light reflecting plate and generated by the LED module, and the secondary lithium ions installed in the housing. The transparent solar cells formed on the inner side of the liquid crystal panel to be stored in a storage battery;
Further, the liquid crystal panel that radiates and emits light from the LED module and lights the liquid crystal screen by receiving the supply of both direct light and reflected light energy guided from the light guide plate;
Including the outside of the liquid crystal panel installed in the installation area, or the transparent solar cells formed in a planar shape on the back side of the housing opening the installation area,
The transparent solar cells are formed independently on the inside of the liquid crystal panel, or are a combination of the inside of the liquid crystal panel and the outside of the liquid crystal panel, or the inside of the liquid crystal panel and the rear side of the housing opening the installation area, Or a structure formed on the inner side of the liquid crystal panel, on the outer side of the liquid crystal panel, and on the rear side of the housing opening the installation area,
The transparent solar cells formed on the inner side of the liquid crystal panel are configured such that the light energy emitted from the LED module is reflected directly from the light guide plate and from the light reflection plate at the bottom of the light guide plate. The electromotive force generated by the photovoltaic effect is stored in the secondary lithium ion storage battery, and the transparent solar cell on the outer side of the liquid crystal panel and on the back side of the housing opening the installation area. In the outdoors, the electromotive force generated by absorbing the light energy of daytime sunlight is stored in the secondary lithium ion storage battery, and indoors, from an external light source such as a fluorescent lamp or LED light source for indoor lighting. The electromotive force generated by absorbing the emitted light energy is stored in the secondary lithium ion storage battery, thereby extending the discharge capacity time of the secondary lithium ion storage battery. In addition to the above features, the secondary lithium ion storage battery has a housing that opens the outside of the liquid crystal panel or the installation area even when the supply of commercial power is cut off due to a long-term disaster, etc. The transparent solar cells on the back side are exposed to sunlight in the daytime, and the electromotive force generated by absorbing the light energy of sunlight is stored again in the secondary lithium ion storage battery, so that the secondary lithium ion storage battery is lost. The self-power generation lighting device using the transparent solar cells according to claim 1, wherein the stored power amount is recovered.
照射対象の内照式看板の絵柄表示面と他の機器類が設置される設置領域を開口した躯体を備えた内照式看板ディスプレイと、
前記内照式看板躯体内に、商業用電力と前記透明太陽電池類からの起電力の供給を受けて蓄電する二次リチウムイオン蓄電池と、
前記二次リチウムイオン蓄電池から電力の供給を受けて光エネルギーを発光する前記表面実装型LEDパッケージを複数連接したLEDモジュールと、
前記LEDモジュールが発光した光エネルギーを吸収し光起電力効果で起電力を発電する前記透明太陽電池類と、
前記内照式看板躯体内の絵柄表示面設置領域の一端に設けられ、前記二次リチウムイオン蓄電池から電力の供給を受けて前記一端側から対峙する側に光エネルギーを発光する前記LEDモジュールからの光エネルギーを、前記絵柄表示面側に強制的に反射させる反射面を形成した光反射板と、
前記LEDモジュールが発光した直接光と光反射板からの反射光で照射されて点灯する絵柄表示面と、
前記設置領域との対向距離は、前記設置領域の一端側から対峙する側に向けて徐々に近くなるよう斜めに傾けて一様に平面状に形成された光反射板と対向する状態で前記内照式看板躯体内に設置され、
前記光反射板は、前記LEDモジュールが発光する光エネルギーの少なくても一部を前記絵柄表示面側に強制的に反射させる反射面を形成した光反射機能と、
前記透明太陽電池類は、前記光反射板から見て、前記設置領域に設置する内照式看板の絵柄表示面の内側に平面状に形成され、前記LEDモジュールから発光された直接光と光反射板からの反射光の両方からの光エネルギーを吸収し光起電力効果で発電した起電力を前記内照式看板躯体内に設置された前記二次リチウムイオン蓄電池に蓄電させる機能と、
さらに前記透明太陽電池類は、前記絵柄表示面の内側に単独で形成するか、あるいは前記絵柄表示面の内側と前記絵柄表示面の外側に形成し、
前記絵柄表示面外側の前記太陽電池類は、昼間の太陽光の光エネルギーを吸収し発電した起電力は前記二次リチウムイオン蓄電池に蓄電させる機能と、
前記二次リチウムイオン蓄電池は、商業用電力と前記透明太陽電池類からの起電力の供給を受け蓄電しながら蓄電量が満充電状態になると過充電防止機能が働き、商業用電力と前記透明太陽電池類からの起電力の供給を自ら停止する機能を有し、
さらに前記二次リチウムイオン蓄電池は、商業用電力と前記透明太陽電池類で発電された起電力の供給停止後、満充電状態から電力が消費され蓄電可能になった瞬間から前記透明太陽電池類からの起電力の供給を受け蓄電しながらも、蓄電量が予め設定された残蓄電量まで減少した時点で商業用電力の供給を自ら再開する機能と、を含み、
前記LEDモジュールは、電源スイッチのオン、オフ機能の他に、前記二次リチウムイオン蓄電池が商業用電力と前記透明太陽電池類からの起電力の供給停止と、停電を感知する機能を有し、商業用電力と前記透明太陽電池類からの起電力の供給停止と、または停電を感知した場合、常時オン状態になり前記二次リチウムイオン蓄電池より引き続き電力の供給を受け続ける機能と、を備え、
前記LEDモジュールは、前記二次リチウムイオン蓄電池が商業用電力と前記透明太陽電池類からの起電力の供給停止と、または停電を感知すると、前記二次リチウムイオン蓄電池から引き続き電力の供給を受けて光エネルギーを発光し、発光した光エネルギーの直接光と反射光を前記透明太陽電池類が吸収発電し、発電された起電力は前記リチウムイオン蓄電池に蓄電し、蓄電された電力を再び前記LEDモジュールに供給するエンドレス機能、つまり前記LEDモジュールが点灯中に停電が発生しても光エネルギーの発光と吸収発電を繰り返して自家発電し前記二次リチウムイオン蓄電池に再蓄電することで、前記二次リチウムイオン蓄電池の放電能力時間の長寿命化を達成する特徴とともに、電源スイッチをオフにしない限り前記リチウムイオン蓄電池の蓄電量が0になるまで光エネルギーを発光し、長時間にわたる非常用停電対応型LED照明装置としての役目と、商業用電力の供給停止中の節電機能を併せ持つことを特徴とする請求項1乃至2のいずれかに記載する前記透明太陽電池類による自家発電照明装置。
An internally illuminated signboard display with a frame that opens an installation area in which the design display surface of the illuminated illuminated signboard and other devices are installed;
In the internally illuminated signboard housing, a secondary lithium ion storage battery that stores electricity by receiving supply of commercial power and electromotive force from the transparent solar cells,
An LED module in which a plurality of the surface-mounted LED packages that receive power from the secondary lithium-ion battery and emit light energy are connected;
The transparent solar cells that absorb light energy emitted by the LED module and generate an electromotive force by a photovoltaic effect, and
From the LED module that is provided at one end of the picture display surface installation region in the internally illuminated signboard housing, receives power from the secondary lithium ion storage battery, and emits light energy from the one end side to the opposite side A light reflecting plate formed with a reflecting surface for forcibly reflecting light energy on the picture display surface side;
A pattern display surface that is illuminated by direct light emitted from the LED module and reflected light from a light reflector;
The facing distance with respect to the installation area is inclined in an oblique manner so as to gradually approach from the one end side of the installation area toward the opposite side, while facing the light reflecting plate formed uniformly in a flat shape. It is installed in the illuminated signboard enclosure,
The light reflecting plate has a light reflecting function in which a reflecting surface for forcibly reflecting at least a part of the light energy emitted by the LED module to the pattern display surface side is formed;
The transparent solar cells are formed in a planar shape inside the picture display surface of the internally illuminated signboard installed in the installation area as viewed from the light reflector, and reflect the direct light emitted from the LED module and the light reflection. A function of storing the electromotive force generated by the photovoltaic effect by absorbing light energy from both reflected light from the plate in the secondary lithium ion storage battery installed in the internally illuminated signboard housing;
Further, the transparent solar cells are formed independently on the inside of the picture display surface, or formed on the inside of the picture display surface and on the outside of the picture display surface,
The solar cells outside the picture display surface absorb the light energy of sunlight in the daytime, and the electromotive force generated and stored in the secondary lithium ion storage battery,
The secondary lithium ion storage battery receives the supply of commercial power and the electromotive force from the transparent solar cells, and stores an electric charge when the storage amount reaches a full charge state. It has a function to stop the supply of electromotive force from batteries,
Further, the secondary lithium ion storage battery is supplied from the transparent solar cells from the moment when power is consumed from the fully charged state and can be stored after the supply of commercial power and the electromotive force generated by the transparent solar cells is stopped. Including the function of resuming the supply of commercial power by itself when the amount of stored power is reduced to a preset remaining stored power amount,
The LED module has a function of detecting a power failure when the secondary lithium ion storage battery stops supplying commercial power and electromotive force from the transparent solar cells, in addition to a power switch on / off function, A function to stop supply of commercial power and electromotive force from the transparent solar cells, or a function of continuing to receive power from the secondary lithium ion storage battery when a power failure is detected,
The LED module continues to receive power from the secondary lithium ion storage battery when the secondary lithium ion storage battery senses a stoppage of supply of commercial power and electromotive force from the transparent solar cells or a power failure. The transparent solar cells absorb and generate direct light and reflected light of the emitted light energy, and the generated electromotive force is stored in the lithium ion storage battery, and the stored power is returned to the LED module. Endless function to supply to the secondary lithium-ion battery by repeating self-power generation by repeating light energy emission and absorption power generation even if a power failure occurs while the LED module is on, Along with the feature that achieves the long life of the discharge capacity time of the ion storage battery, the above-mentioned lithium ion battery is required unless the power switch is turned off. Light energy is emitted until the amount of electricity stored in the Mu-ion battery reaches 0, and it has both the role as a long-term emergency blackout LED lighting device and the power-saving function when commercial power supply is stopped. Item 3. A self-powered illumination device using the transparent solar cell according to any one of items 1 to 2.
有機発光ダイオード(Organic Light Emitting Diode)が設置される設置領域を開口した躯体を備えた有機ELディスプレイと、
前記設置領域を開口した躯体内に、商業用電力と前記透明太陽電池類からの起電力の供給を受けて蓄電し蓄電量が満充電状態になると過充電防止機能が働き、商業用電力と前記透明太陽電池類からの起電力の供給を自ら停止する機能を有する二次リチウムイオン蓄電池と、
前記二次リチウムイオン蓄電池から電力の供給を受けて有機EL画面を点灯する有機ELパネルと、
前記有機ELパネル内のR(赤色)G(緑色)B(青色)発光層を備えた有機発光層から発光された光エネルギーを吸収し光起電力効果で起電力を発電する前記透明太陽電池類と、
前記透明太陽電池類は、前記有機ELパネルの外側に平面状に形成され、前記有機発光ダイオード内の有機発光層から発光された光エネルギーを吸収し発電された起電力は前記二次リチウムイオン蓄電池に蓄電させる機能と、
前記透明太陽電池類の裏側にも、光吸収面を逆向きにして一体化されて平面状に形成され、また前記設置領域を開口した躯体裏側にも形成される前記透明太陽電池類は、昼間の太陽光や室内の蛍光灯やLED照明など外部光源からの光エネルギーを吸収し発電された起電力は前記二次リチウムイオン蓄電池に蓄電させる機能と、を含み、
さらに前記透明太陽電池類は、前記有機ELパネルの外側に単独で形成するか、或いは前記単独で形成される前記透明太陽電池類の裏側に、光吸収面を逆向きにして一体化された前記透明太陽電池類の組み合わせで形成するか、若しくは前記単独で形成される前記透明太陽電池類と前記設置領域を開口した躯体裏側との組み合わせで形成される構造と、を備え、
前記有機ELパネルの外側に単独で形成される前記透明太陽電池類は、前記有機ELパネル内のR(赤色)G(緑色)B(青色)の各発光層を備えた有機発光層から発光された光エネルギーを吸収し自家発電された起電力は前記二次リチウムイオン蓄電池に蓄電し、また前記単独で形成された前記透明太陽電池類の裏側に、光吸収面を逆向きにして一体化された前記透明太陽電池類と前記設置領域を開口した躯体裏側の前記透明太陽電池類は、屋外では、昼間の太陽光の光エネルギーを吸収し自家発電された起電力は前記二次リチウムイオン蓄電池に蓄電し、又、屋内では、室内用照明器具である照明用有機ELパネルや蛍光灯またはLED光源等の外部光源が発光する光エネルギーを吸収し自家発電された起電力は前記二次リチウムイオン蓄電池に蓄電することにより、前記二次リチウムイオン蓄電池の放電能力時間の長寿命化を達成する特徴とともに、前記二次リチウムイオン蓄電池は、長期間の災害発生で商業用電力の供給を断たれ蓄電量が0となっても、前記有機ELパネル外側の透明太陽電池類の裏側に、光吸収面を逆向きにして一体化された前記透明太陽電池類を、または前記設置領域を開口した躯体裏側の前記透明太陽電池類を、昼間の太陽光に暴露し太陽光の光エネルギーを吸収し自家発電された起電力は前記二次リチウムイオン蓄電池に再蓄電することで、前記二次リチウムイオン蓄電池の失われた蓄電量を回復させることを特徴とする請求項1乃至3のいずれかに記載する前記透明太陽電池類による自家発電照明装置。
An organic EL display having a housing having an opening in an installation region where an organic light emitting diode (Organic Light Emitting Diode) is installed;
In the enclosure having the installation area opened, when the electric power is supplied from commercial power and the transparent solar cells and stored, the overcharge prevention function works when the amount of power storage is in a fully charged state. A secondary lithium ion storage battery having a function of stopping the supply of electromotive force from the transparent solar cells,
An organic EL panel that illuminates the organic EL screen by receiving power from the secondary lithium ion storage battery;
The transparent solar cells that absorb light energy emitted from an organic light emitting layer including R (red), G (green), and B (blue) light emitting layers in the organic EL panel and generate an electromotive force by a photovoltaic effect. When,
The transparent solar cells are planarly formed on the outside of the organic EL panel, and the electromotive force generated by absorbing light energy emitted from the organic light emitting layer in the organic light emitting diode is the secondary lithium ion storage battery. The ability to store power in
Also on the back side of the transparent solar cells, the transparent solar cells are formed in a flat shape with the light absorption surface being reversed and formed on the back side of the housing that opens the installation area. The electromotive force generated by absorbing light energy from an external light source such as sunlight, indoor fluorescent light or LED lighting, and the like, and storing it in the secondary lithium ion storage battery,
Further, the transparent solar cells are formed independently on the outside of the organic EL panel, or integrated with the light absorption surface in the reverse direction on the back side of the transparent solar cells formed independently. It is formed by a combination of transparent solar cells, or a structure formed by a combination of the transparent solar cells formed alone and the housing back side opening the installation region, and
The transparent solar cells independently formed on the outside of the organic EL panel emit light from an organic light emitting layer provided with R (red), G (green), and B (blue) light emitting layers in the organic EL panel. The electromotive force generated by self-power generation by absorbing the light energy is stored in the secondary lithium ion storage battery, and is integrated with the back side of the transparent solar cells formed independently with the light absorption surface facing in the reverse direction. In addition, the transparent solar cells and the transparent solar cells on the back side of the enclosure that opens the installation area absorb the light energy of sunlight in the daytime and generate the electromotive force generated in-house in the secondary lithium ion storage battery. The electromotive force that is stored and absorbs light energy emitted from an external light source such as a lighting organic EL panel, a fluorescent lamp, or an LED light source, which is an indoor lighting device, and is generated in-house is the secondary lithium ion. The secondary lithium ion storage battery is characterized in that the secondary lithium ion storage battery is cut off from the supply of commercial power due to the occurrence of a long-term disaster. Even if the amount becomes 0, the transparent solar cells integrated with the light absorption surface reversed in the reverse side of the transparent solar cells outside the organic EL panel, or the rear side of the housing in which the installation area is opened The electromotive force generated by self-power generation by exposing the transparent solar cells of daylight to sunlight in the daytime to absorb the light energy of sunlight is recharged in the secondary lithium ion storage battery, so that the secondary lithium ion storage battery 4. The self-powered illumination device using the transparent solar cell according to claim 1, wherein the lost power storage amount is recovered.
JP2017141326A 2017-07-04 2017-07-04 Private power-generation lighting device based on transparent solar cells Pending JP2018029053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017141326A JP2018029053A (en) 2017-07-04 2017-07-04 Private power-generation lighting device based on transparent solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017141326A JP2018029053A (en) 2017-07-04 2017-07-04 Private power-generation lighting device based on transparent solar cells

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016171256A Division JP6183732B1 (en) 2016-08-17 2016-08-17 Self-powered lighting device using transparent solar cells.

Publications (1)

Publication Number Publication Date
JP2018029053A true JP2018029053A (en) 2018-02-22

Family

ID=61248500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017141326A Pending JP2018029053A (en) 2017-07-04 2017-07-04 Private power-generation lighting device based on transparent solar cells

Country Status (1)

Country Link
JP (1) JP2018029053A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101905570B1 (en) 2018-02-09 2018-11-20 주식회사 문화전기 Energy-saving edge light with built-in solar module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101905570B1 (en) 2018-02-09 2018-11-20 주식회사 문화전기 Energy-saving edge light with built-in solar module

Similar Documents

Publication Publication Date Title
KR200452570Y1 (en) Solar-type LED one&#39;s eyes leading lamp
US9905709B2 (en) Photovoltaic cell device with switchable lighting/reflection
JP6183732B1 (en) Self-powered lighting device using transparent solar cells.
JP2019164356A (en) Display device, or wavelength selection photovoltaic for device including display device
US20140003038A1 (en) Lighting apparatus using solar cell
JP6202414B1 (en) Self-powered lighting equipment with transparent solar cells.
JP2007294630A (en) Solar cell generator
CN104011460A (en) Organic light emitting diodes in light fixtures
CN101493202B (en) Brightness adjustable luminous indicator
JP2014086490A (en) Light emission power generation module and light emission power generation device
US20110227486A1 (en) White led light source module
CN102803833B (en) Illuminating apparatus
JP2009229975A (en) Electric bulletin display
KR20120062429A (en) Light-emitting device
JP2018029053A (en) Private power-generation lighting device based on transparent solar cells
CN208652256U (en) Wide-angle type wall lamp
WO2019114683A1 (en) Weak-light photovoltaic long-persistence luminescence identifier
JP2018029185A (en) Private electric generation illumination device using transparent solar cell
JP2000057815A (en) Power generating device for illumination
CN115101616A (en) Photovoltaic module with illumination function and preparation method thereof
KR102375001B1 (en) Emotion lighting using indoor lighting power
KR101648166B1 (en) led illumination lamp
JP5057574B2 (en) Self-luminous lighting device
JP2005203239A (en) Compound light emitting device
KR20070025460A (en) United display apparatus using sollar cell