JP2018025591A - Objective optical system for endoscope and endoscope - Google Patents

Objective optical system for endoscope and endoscope Download PDF

Info

Publication number
JP2018025591A
JP2018025591A JP2016155329A JP2016155329A JP2018025591A JP 2018025591 A JP2018025591 A JP 2018025591A JP 2016155329 A JP2016155329 A JP 2016155329A JP 2016155329 A JP2016155329 A JP 2016155329A JP 2018025591 A JP2018025591 A JP 2018025591A
Authority
JP
Japan
Prior art keywords
optical system
lens group
objective optical
lens
endoscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016155329A
Other languages
Japanese (ja)
Other versions
JP6774811B2 (en
Inventor
幸子 那須
Sachiko Nasu
幸子 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2016155329A priority Critical patent/JP6774811B2/en
Priority to CN201710666063.4A priority patent/CN107703606B/en
Publication of JP2018025591A publication Critical patent/JP2018025591A/en
Application granted granted Critical
Publication of JP6774811B2 publication Critical patent/JP6774811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Lenses (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem in which it is difficult to design an objective optical system that is small and has a wide angle of view while keeping optical performance excellent.SOLUTION: An objective optical system for an endoscope is composed of, in order from an object side, a first lens group having negative power and a second lens group having positive power. The first lens group is composed of, in order from the object side, a negative lens training a concave surface on an image side and a positive lens training a convex surface on the image side. The second lens group at least includes, in order from the object side, a positive lens training a convex surface on the image side and a doublet composed of a negative lens and a positive lens joined together. The objective optical system satisfies prescribed conditions.SELECTED DRAWING: Figure 2

Description

本発明は、内視鏡用対物光学系及び内視鏡用対物光学系が組み込まれた内視鏡に関する。   The present invention relates to an endoscope objective optical system and an endoscope incorporating the endoscope objective optical system.

患者の体腔内を診断するための機器として、内視鏡(ファイバスコープ又は電子スコープ)が一般に知られ、実用に供されている。この種の内視鏡の先端部は、微小な隙間にも円滑に挿入できるように小型(細径かつ短い全長)に設計されることが望まれる。   As a device for diagnosing the inside of a body cavity of a patient, an endoscope (a fiber scope or an electronic scope) is generally known and used practically. It is desired that the distal end portion of this type of endoscope is designed to be small (small diameter and short overall length) so that it can be smoothly inserted into a minute gap.

内視鏡先端部の設計上可能な最小外形は、寸法の大きい搭載部品によって実質的に規定される。寸法の大きい搭載部品には、例えば内視鏡用対物光学系がある。搭載部品として小型な内視鏡用対物光学系を選択することは、内視鏡先端部を小型化する有効な手段の一つである。   The minimum design possible outer shape of the endoscope tip is substantially defined by a mounting component having a large size. For example, an endoscope objective optical system is an example of a large-sized mounting component. Selecting a small endoscope objective optical system as a mounted component is one of effective means for reducing the size of the endoscope tip.

また、内視鏡用対物光学系には、術者による病変部等の見落としを減らすため、観察視野を広範にする、すなわち広画角に設計することも望まれる。   In addition, in order to reduce oversight of a lesioned part or the like by an operator, it is desired that the endoscope objective optical system is designed to have a wide observation field of view, that is, a wide angle of view.

例えば消化器用の内視鏡用対物光学系において、画角は140°程度が一般的である。この程度の画角では、大腸内の管壁やヒダの裏側等を観察するときに内視鏡の湾曲部を湾曲させて、内視鏡先端部の向きを変える必要がある。しかし、例えば管腔径が細い場合等は内視鏡先端部の動きが制限されるため、内視鏡先端部を所望の向きに変えられないことがある。   For example, in an endoscope objective optical system for a digestive organ, the angle of view is generally about 140 °. With such an angle of view, it is necessary to change the direction of the distal end portion of the endoscope by bending the curved portion of the endoscope when observing the tube wall in the large intestine or the back side of the fold. However, for example, when the lumen diameter is small, the movement of the endoscope distal end is restricted, and therefore the endoscope distal end may not be changed to a desired orientation.

例えば特許文献1や特許文献2に、140°よりも更に広画角に設計された内視鏡用対物光学系が開示されている。内視鏡用対物光学系の画角がより一層広画角化されることにより、内視鏡先端部の向きを変えなくても、大腸内の管壁やヒダの裏側等を観察し易くなる。   For example, Patent Literature 1 and Patent Literature 2 disclose an endoscope objective optical system designed to have a wider angle of view than 140 °. By further widening the angle of view of the endoscope objective optical system, it becomes easier to observe the tube wall in the large intestine, the back side of the folds, etc. without changing the direction of the distal end of the endoscope. .

特許第4819203号公報Japanese Patent No. 4819203 特許第5750618号公報Japanese Patent No. 5750618

特許文献1に記載の内視鏡用対物光学系は、180°を超える広画角を有している。しかし、特許文献1に記載の内視鏡用対物光学系では、ペッツバール和が大きいことから、例えば消化管等の管腔を観察する場合、その観察方向によって周辺解像が異なる。また、内視鏡用対物光学系内で最も物体側に配置されているレンズ面への入射角度が大きいため、入射光量が低下する。また、特許文献2に記載の内視鏡用対物光学系では、内視鏡用対物光学系内で最も物体側に配置されているレンズの負のパワーを強くして画角を広くする必要上、内視鏡用対物光学系内の各レンズ面の曲率半径が小さくなって、コマ収差及び非点収差の補正が不十分となる。すなわち、特許文献1や特許文献2に記載の内視鏡用対物光学系では、広画角化を実現するため、少なくとも光学性能が犠牲となっている。   The endoscope objective optical system described in Patent Document 1 has a wide angle of view exceeding 180 °. However, in the endoscope objective optical system described in Patent Document 1, since the Petzval sum is large, for example, when observing a lumen such as the digestive tract, the peripheral resolution differs depending on the observation direction. Further, since the incident angle to the lens surface arranged closest to the object side in the endoscope objective optical system is large, the amount of incident light is reduced. Further, in the endoscope objective optical system described in Patent Document 2, it is necessary to increase the angle of view by increasing the negative power of the lens arranged closest to the object side in the endoscope objective optical system. The curvature radius of each lens surface in the endoscope objective optical system becomes small, and correction of coma and astigmatism becomes insufficient. That is, in the endoscope objective optical system described in Patent Document 1 or Patent Document 2, at least optical performance is sacrificed in order to realize a wide angle of view.

本発明は上記の事情に鑑みてなされたものであり、その目的とするところは、良好な光学性能を有しつつも小型かつ広画角に設計された内視鏡用対物光学系及び内視鏡を提供することである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an endoscope objective optical system and an endoscope that have a good optical performance but are designed to have a small size and a wide angle of view. Is to provide a mirror.

本発明の一実施形態に係る内視鏡用対物光学系は、物体側から順に、負のパワーを持つ第一のレンズ群、正のパワーを持つ第二のレンズ群からなる。第一のレンズ群は、物体側から順に、像側に凹面を向けた負レンズ、像側に凸面を向けた正レンズからなる。第二のレンズ群は、物体側から順に、像側に凸面を向けた正レンズ、負のレンズと正のレンズとを接合した接合レンズを少なくとも有する。本発明の一実施形態に係る内視鏡用対物光学系は、第一のレンズ群内で最も物体側に位置する負レンズの焦点距離をf(単位:mm)と定義し、該第一のレンズ群の焦点距離をf(単位:mm)と定義し、該第一のレンズ群内で最も物体側にある面の最大像高における有効径をED(単位:mm)と定義し、該第一のレンズ群及び第二のレンズ群の合成焦点距離をf(単位:mm)と定義した場合に、次の2つの条件
0.2<f/f<0.5
4.0<ED/f<5.0
を満たす。
An endoscope objective optical system according to an embodiment of the present invention includes, in order from the object side, a first lens group having a negative power and a second lens group having a positive power. The first lens group includes, in order from the object side, a negative lens having a concave surface facing the image side and a positive lens having a convex surface facing the image side. The second lens group includes at least a positive lens having a convex surface facing the image side and a cemented lens in which a negative lens and a positive lens are cemented in order from the object side. In the endoscope objective optical system according to one embodiment of the present invention, the focal length of the negative lens located closest to the object side in the first lens group is defined as f 1 (unit: mm). Is defined as f F (unit: mm), and an effective diameter at the maximum image height of the surface closest to the object in the first lens group is defined as ED (unit: mm). When the combined focal length of the first lens group and the second lens group is defined as f (unit: mm), the following two conditions 0.2 <f 1 / f F <0.5
4.0 <ED / f <5.0
Meet.

また、本発明の一実施形態に係る内視鏡用対物光学系は、第一のレンズ群と第二のレンズ群との間に絞りを有しており、第一のレンズ群内で最も絞り側に位置する正レンズの焦点距離をf(単位:mm)と定義した場合に、次の条件
0.5<|f/f|<2.0
を満たす構成としてもよい。
In addition, the endoscope objective optical system according to an embodiment of the present invention has a stop between the first lens group and the second lens group, and is the most stop in the first lens group. When the focal length of the positive lens located on the side is defined as f 2 (unit: mm), the following condition 0.5 <| f 2 / f F | <2.0
It is good also as composition which satisfies.

また、本発明の一実施形態において、第一のレンズ群内の正レンズは、例えば物体側の面が平面である。   In one embodiment of the present invention, the positive lens in the first lens group has a flat surface on the object side, for example.

また、本発明の一実施形態に係る内視鏡用対物光学系は、結像面における最大像高をy(単位:mm)と定義した場合に、次の条件
3.0<ED/y<4.0
を満たす構成としてもよい。
In the endoscope objective optical system according to an embodiment of the present invention, when the maximum image height on the imaging plane is defined as y (unit: mm), the following condition 3.0 <ED / y < 4.0
It is good also as composition which satisfies.

また、本発明の一実施形態に係る内視鏡用対物光学系は、画角が180°を超える構成としてもよい。   Further, the endoscope objective optical system according to an embodiment of the present invention may have a configuration in which the angle of view exceeds 180 °.

また、本発明の一実施形態に係る内視鏡用対物光学系は、第一のレンズ群及び第二のレンズ群に含まれる全てのレンズのレンズ面が球面であってもよい。   In the endoscope objective optical system according to an embodiment of the present invention, the lens surfaces of all the lenses included in the first lens group and the second lens group may be spherical.

また、本発明の一実施形態に係る内視鏡は、上記の内視鏡用対物光学系が先端に組み込まれた機器である。   An endoscope according to an embodiment of the present invention is a device in which the above-described endoscope objective optical system is incorporated at the tip.

本発明の一実施形態によれば、良好な光学性能を有しつつも小型かつ広画角に設計された内視鏡用対物光学系及び内視鏡が提供される。   According to an embodiment of the present invention, there are provided an endoscope objective optical system and an endoscope that are designed to have a small size and a wide angle of view while having good optical performance.

本発明の一実施形態に係る電子スコープの外観を示す外観図である。It is an external view which shows the external appearance of the electronic scope which concerns on one Embodiment of this invention. 本発明の一実施形態(実施例1)に係る内視鏡用対物光学系及びその後段に配置された光学部品の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the objective optical system for endoscopes which concerns on one Embodiment (Example 1) of this invention, and the optical component arrange | positioned in the back | latter stage. 本発明の一実施形態(実施例1)に係る内視鏡用対物光学系の各種収差図である。FIG. 6 is a diagram showing various aberrations of the endoscope objective optical system according to one embodiment (Example 1) of the present invention. 本発明の実施例2に係る内視鏡用対物光学系及びその後段に配置された光学部品の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the objective optical system for endoscopes which concerns on Example 2 of this invention, and the optical component arrange | positioned in the back | latter stage. 本発明の実施例2に係る内視鏡用対物光学系の各種収差図である。FIG. 6 is a diagram illustrating various aberrations of the endoscope objective optical system according to Example 2 of the present invention. 本発明の実施例3に係る内視鏡用対物光学系及びその後段に配置された光学部品の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the objective optical system for endoscopes based on Example 3 of this invention, and the optical component arrange | positioned in the back | latter stage. 本発明の実施例3に係る内視鏡用対物光学系の各種収差図である。FIG. 10 is a diagram showing various aberrations of the endoscope objective optical system according to Example 3 of the present invention. 本発明の実施例4に係る内視鏡用対物光学系及びその後段に配置された光学部品の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the objective optical system for endoscopes based on Example 4 of this invention, and the optical component arrange | positioned in the back | latter stage. 本発明の実施例4に係る内視鏡用対物光学系の各種収差図である。FIG. 10 is a diagram illustrating various aberrations of the endoscope objective optical system according to Example 4 of the present invention. 本発明の実施例5に係る内視鏡用対物光学系及びその後段に配置された光学部品の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the objective optical system for endoscopes concerning Example 5 of this invention, and the optical component arrange | positioned in the back | latter stage. 本発明の実施例5に係る内視鏡用対物光学系の各種収差図である。FIG. 10 is a diagram showing various aberrations of the endoscope objective optical system according to Example 5 of the present invention. 本発明の実施例6に係る内視鏡用対物光学系及びその後段に配置された光学部品の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of the objective optical system for endoscopes based on Example 6 of this invention, and the optical component arrange | positioned in the back | latter stage. 本発明の実施例6に係る内視鏡用対物光学系の各種収差図である。It is various aberrational figures of the objective optical system for endoscopes which concerns on Example 6 of this invention.

以下、図面を参照して、本発明の一実施形態に係る内視鏡用対物光学系、及び内視鏡用対物光学系が組み込まれた電子スコープについて説明する。   Hereinafter, an endoscope objective optical system according to an embodiment of the present invention and an electronic scope incorporating the endoscope objective optical system will be described with reference to the drawings.

図1は、本発明の一実施形態に係る電子スコープ1の外観を示す外観図である。図1に示されるように、電子スコープ1は、可撓性を有するシース11aによって外装された挿入部可撓管11を備えている。挿入部可撓管11の先端部分(湾曲部14)は、挿入部可撓管11の基端に連結された手元操作部13からの遠隔操作(具体的には、湾曲操作ノブ13aの回転操作)に応じて湾曲する。湾曲機構は、一般的な内視鏡に組み込まれている周知の機構であり、湾曲操作ノブ13aの回転操作に連動した操作ワイヤの牽引によって湾曲部14を湾曲させる。湾曲部14の先端には、硬質性を有する樹脂製筐体によって外装された先端部12の基端が連結している。先端部12の方向が湾曲操作ノブ13aの回転操作による湾曲動作に応じて変わることにより、電子スコープ1による撮影領域が移動する。   FIG. 1 is an external view showing the external appearance of an electronic scope 1 according to an embodiment of the present invention. As shown in FIG. 1, the electronic scope 1 includes an insertion portion flexible tube 11 that is sheathed by a flexible sheath 11 a. The distal end portion (bending portion 14) of the insertion portion flexible tube 11 is remotely operated from the hand operating portion 13 connected to the proximal end of the insertion portion flexible tube 11 (specifically, the bending operation knob 13a is rotated). ) To curve. The bending mechanism is a well-known mechanism incorporated in a general endoscope, and bends the bending portion 14 by pulling the operation wire in conjunction with the rotation operation of the bending operation knob 13a. The proximal end of the distal end portion 12 covered with a hard resin housing is connected to the distal end of the bending portion 14. When the direction of the distal end portion 12 changes according to the bending operation by the rotation operation of the bending operation knob 13a, the imaging region by the electronic scope 1 moves.

先端部12の樹脂製筐体の内部には、内視鏡用対物光学系100(図1において破線で示されたブロック)が組み込まれている。内視鏡用対物光学系100は、撮影領域中の被写体の画像データを採取するため、被写体からの光を固体撮像素子(図示省略)の受光面上に結像させる。固体撮像素子としては、例えば、CCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)イメージセンサが挙げられる。   An endoscope objective optical system 100 (a block indicated by a broken line in FIG. 1) is incorporated in the resin casing of the distal end portion 12. The endoscope objective optical system 100 forms an image of light from a subject on a light receiving surface of a solid-state imaging device (not shown) in order to collect image data of the subject in the imaging region. Examples of the solid-state imaging device include a CCD (Charge Coupled Device) image sensor and a CMOS (Complementary Metal Oxide Semiconductor) image sensor.

図2は、本発明の実施例1(詳しくは後述)に係る内視鏡用対物光学系100及びその後段に配置された光学部品の配置を示す断面図である。次においては、図2を援用して、本発明の一実施形態に係る内視鏡用対物光学系100について詳細な説明を行う。   FIG. 2 is a cross-sectional view showing the arrangement of an endoscope objective optical system 100 according to Embodiment 1 (details will be described later) of the present invention and optical components arranged at the subsequent stage. In the following, with reference to FIG. 2, the endoscope objective optical system 100 according to an embodiment of the present invention will be described in detail.

内視鏡用対物光学系100は、図2に示されるように、物体(被写体)側から順に、第一のレンズ群G1、絞りS、第二のレンズ群G2を少なくとも有している。第一のレンズ群G1、第二のレンズ群G2を構成する各光学レンズは、内視鏡用対物光学系100の光軸AXを中心として回転対称な形状を有している。第二のレンズ群G2の後段には、固体撮像素子用の色補正フィルタFが配置されている。色補正フィルタFは、固体撮像素子を保護するカバーガラス(不図示)に接着されている。   As shown in FIG. 2, the endoscope objective optical system 100 includes at least a first lens group G1, a diaphragm S, and a second lens group G2 in order from the object (subject) side. Each optical lens constituting the first lens group G1 and the second lens group G2 has a rotationally symmetric shape about the optical axis AX of the endoscope objective optical system 100. A color correction filter F for a solid-state image sensor is disposed at the subsequent stage of the second lens group G2. The color correction filter F is bonded to a cover glass (not shown) that protects the solid-state imaging device.

上記において「少なくとも有している」としたのは、本発明の技術的思想の範囲において、別の光学素子を追加する構成例もあり得るからである。例えば、本発明に係る内視鏡用対物光学系に対して光学性能に実質的に寄与しない平行平板を追加する構成例や、本発明に係る内視鏡用対物光学系の構成及び効果を維持しつつ別の光学素子を付加する構成例が想定される。第一のレンズ群G1、第二のレンズ群G2の説明においても、同様の理由で「少なくとも有している」と表現している。   The reason for having “at least” in the above is that there may be a configuration example in which another optical element is added within the scope of the technical idea of the present invention. For example, the configuration example in which a parallel plate that does not substantially contribute to the optical performance is added to the endoscope objective optical system according to the present invention, and the configuration and effect of the endoscope objective optical system according to the present invention are maintained. However, a configuration example in which another optical element is added is assumed. In the description of the first lens group G1 and the second lens group G2, it is expressed as “at least” for the same reason.

第一のレンズ群G1は、絞りSよりも物体側に配置されたレンズ群である。第一のレンズ群G1は、物体側から順に、像側に凹面を向けた負レンズL1、像側に凸面を向けた正レンズL2を少なくとも有している。第一のレンズ群G1は、内視鏡用対物光学系100の広画角化、すなわち広範囲に亘る被写体を取り込むため、全体として負のパワーを有している。   The first lens group G1 is a lens group disposed on the object side of the stop S. The first lens group G1 includes, in order from the object side, at least a negative lens L1 having a concave surface facing the image side and a positive lens L2 having a convex surface facing the image side. The first lens group G1 has a negative power as a whole in order to widen the angle of view of the endoscope objective optical system 100, that is, to capture a subject over a wide range.

広画角化のために負レンズL1のパワーを強くすると、第一のレンズ群G1と第二のレンズ群G2との非対称性が強くなるため、歪曲収差の補正が難しくなると共に、負の屈折面の曲率が大きくなるため、コマ収差や色収差等の諸収差が大きくなる。そこで、本実施形態では、絞りSの手前に正レンズL2を配置して負レンズL1による強い負のパワーを第一のレンズ群G1内で打ち消す構成を採用している。   When the power of the negative lens L1 is increased to widen the angle of view, the asymmetry between the first lens group G1 and the second lens group G2 increases, so that it becomes difficult to correct distortion and negative refraction. Since the curvature of the surface increases, various aberrations such as coma and chromatic aberration increase. Therefore, in the present embodiment, a configuration is adopted in which the positive lens L2 is disposed in front of the aperture stop S and the strong negative power from the negative lens L1 is canceled in the first lens group G1.

また、正レンズL2は、負レンズL1を広画角化することで生じやすくなる像面倒れによる観察視野周辺の解像度の低下や、歪曲収差の発生による観察視野周辺の解像度の低下を有効におさえるべく、物体側の面が平面であることが望ましい。   In addition, the positive lens L2 effectively suppresses a decrease in resolution around the observation visual field due to image plane tilting, which tends to occur when the negative lens L1 is widened, and a decrease in resolution around the observation visual field due to distortion. Therefore, it is desirable that the object side surface be a flat surface.

第二のレンズ群G2は、絞りSよりも像側に配置されたレンズ群である。第二のレンズ群G2は、物体側から順に、正レンズL3、負レンズL4と正レンズL5とを接合した接合レンズCLを少なくとも有している。第二のレンズ群G2は、第一のレンズ群G1によって取り込まれた広範囲に亘る被写体を固体撮像素子の受光面上で結像させるため、全体として正のパワーを有している。   The second lens group G2 is a lens group disposed on the image side of the stop S. The second lens group G2 includes at least a cemented lens CL in which a positive lens L3, a negative lens L4, and a positive lens L5 are cemented in order from the object side. The second lens group G2 has a positive power as a whole in order to form an image of a wide range of subjects captured by the first lens group G1 on the light receiving surface of the solid-state imaging device.

正のパワーを持つ第二のレンズ群G2において、正レンズL3として、像側に凹面を向けたレンズを採用した場合、射出角度が大きくなってしまう。そのため、十分な射出瞳距離を確保することが難しい。この問題を避けるべく、本実施形態では、正レンズL3は、像側に凸面を向けて配置されている。   In the second lens group G2 having positive power, when a lens having a concave surface on the image side is adopted as the positive lens L3, the emission angle becomes large. Therefore, it is difficult to ensure a sufficient exit pupil distance. In order to avoid this problem, in the present embodiment, the positive lens L3 is disposed with the convex surface facing the image side.

また、第一のレンズ群G1の負のパワーを広画角化のために強めるほど第一のレンズ群G1内で発生する倍率色収差が大きくなる。第一のレンズ群G1内で発生した倍率色収差を効率良く補正するため、本実施形態では、軸外光線が最も高い位置を通る第二のレンズ群G2内に接合レンズCLを配置する構成を採用している。   Further, the chromatic aberration of magnification generated in the first lens group G1 increases as the negative power of the first lens group G1 is increased for widening the angle of view. In order to efficiently correct the lateral chromatic aberration generated in the first lens group G1, the present embodiment employs a configuration in which the cemented lens CL is disposed in the second lens group G2 passing through the position where the off-axis ray is the highest. doing.

以下において、説明の便宜上、各光学部品の物体側の面、像側の面をそれぞれ、第一面、第二面と記す。また、絞りSは、光軸AXを中心とした所定の円形開口を有する板状部材、又は第一のレンズ群G1の絞りSに最も近いレンズ面(図2の構成例においては、正レンズL2の第二面r4)であって光軸AXを中心とした所定の円形領域以外にコーティングされた遮光膜である。絞りSの厚みは、負レンズL1や正レンズL2等の各光学レンズの厚みと比べて非常に薄く、内視鏡用対物光学系100の光学性能を計算する上で無視しても差し支えない。そのため、本明細書においては、絞りSの厚みをゼロとみなして説明を進める。   In the following, for convenience of explanation, the object-side surface and the image-side surface of each optical component are referred to as a first surface and a second surface, respectively. The diaphragm S is a plate-like member having a predetermined circular opening centered on the optical axis AX, or a lens surface closest to the diaphragm S of the first lens group G1 (in the configuration example of FIG. 2, a positive lens L2). The light-shielding film is coated on the second surface r4) other than a predetermined circular region centered on the optical axis AX. The thickness of the diaphragm S is very thin compared to the thickness of each optical lens such as the negative lens L1 and the positive lens L2, and can be ignored in calculating the optical performance of the endoscope objective optical system 100. Therefore, in the present specification, the description will be made assuming that the thickness of the diaphragm S is zero.

内視鏡用対物光学系100は、第一のレンズ群G1内で最も物体側に位置する負レンズL1の焦点距離をf(単位:mm)と定義し、第一のレンズ群G1の焦点距離をf(単位:mm)と定義し、第一のレンズ群G1内で最も物体側にある面(負レンズL1の第一面r1)の最大像高における有効径をED(単位:mm)と定義し、全系の(第一のレンズ群G1と第二のレンズ群G2の合成)焦点距離をf(単位:mm)と定義した場合に、次の2つの条件(1)及び(2)
0.2<f/f<0.5・・・(1)
4.0<ED/f<5.0・・・(2)
を満たす構成となっている。
The endoscope objective optical system 100 defines the focal length of the negative lens L1 located closest to the object side in the first lens group G1 as f 1 (unit: mm), and the focal point of the first lens group G1. The distance is defined as f F (unit: mm), and the effective diameter at the maximum image height of the surface closest to the object side (first surface r1 of the negative lens L1) in the first lens group G1 is ED (unit: mm). ) And the focal length of the entire system (combination of the first lens group G1 and the second lens group G2) is defined as f (unit: mm), the following two conditions (1) and ( 2)
0.2 <f 1 / f F <0.5 (1)
4.0 <ED / f <5.0 (2)
It is the composition which satisfies.

条件(1)は、第一のレンズ群G1内で最も物体側に位置する負レンズL1の焦点距離fと、第一のレンズ群G1の焦点距離fとの比を規定する。条件(1)が満たされることにより、第一のレンズ群G1と第二のレンズ群G2とを組み合わせたときの画角を適正な大きさ(例えば180°を超える画角)にしつつ、最も物体側に位置する負レンズL1の有効径を抑えることができる。 Condition (1) is provided with a focal length f 1 of the negative lens L1 is located closest to the object side in the first lens group G1, defining the ratio between the focal length f F of the first lens group G1. When the condition (1) is satisfied, the object angle is set to an appropriate size (for example, an angle of view exceeding 180 °) when the first lens group G1 and the second lens group G2 are combined. The effective diameter of the negative lens L1 located on the side can be suppressed.

条件(1)において「f/f」が右辺の値(=0.5)以上となる場合、コマ収差等の諸収差を良好に補正することはできるが、負レンズL1の有効径EDが大きくなるため、内視鏡用対物光学系100が細径にならない。内視鏡用対物光学系100を電子スコープ1の先端部12に組み込む必要上、先端部12を細径に設計することができなかったり、先端部12に対する設計の自由度が大きく制約されてしまったりする。また、正レンズL2の倍率が大きくなりすぎるため、正レンズL2が偏心して(光軸AXに対して垂直方向にずれて)組み付けられた際の像面倒れを抑えることが難しい。 In the condition (1), when “f 1 / f F ” is equal to or greater than the value on the right side (= 0.5), various aberrations such as coma can be corrected well, but the effective diameter ED of the negative lens L1 can be corrected. Therefore, the endoscope objective optical system 100 does not have a small diameter. Since it is necessary to incorporate the endoscope objective optical system 100 into the distal end portion 12 of the electronic scope 1, the distal end portion 12 cannot be designed to have a small diameter, and the design freedom for the distal end portion 12 is greatly restricted. I'll be relaxed. In addition, since the magnification of the positive lens L2 becomes too large, it is difficult to suppress the image plane collapse when the positive lens L2 is assembled eccentrically (shifted in the direction perpendicular to the optical axis AX).

条件(1)において「f/f」が左辺の値(=0.2)以下となる場合、負レンズL1の有効径EDを小さくすることによって内視鏡用対物光学系100の細径化することはできるが、負レンズL1のパワーが強くなりすぎるため、広画角化と収差(主にコマ収差と色収差)補正との両立が難しくなる。また、第二のレンズ群G2の倍率を高く設定せざるを得ないため、組立時の第一のレンズ群G1と第二のレンズ群G2との群間隔の誤差に伴う画角のばらつきを抑えることが難しい。 In the condition (1), when “f 1 / f F ” is equal to or less than the value on the left side (= 0.2), the effective diameter ED of the negative lens L1 is decreased to reduce the small diameter of the endoscope objective optical system 100. However, since the power of the negative lens L1 becomes too strong, it is difficult to achieve both a wide angle of view and correction of aberrations (mainly coma and chromatic aberration). In addition, since the magnification of the second lens group G2 must be set high, it is possible to suppress variations in the angle of view due to an error in the group spacing between the first lens group G1 and the second lens group G2 during assembly. It is difficult.

条件(2)は、第一のレンズ群G1内で最も物体側にある面(負レンズL1の第一面r1)の最大像高における有効径EDと、全系の焦点距離fとの比を規定する。条件(2)が満たされることにより、内視鏡用対物光学系100を大型化(太径化かつ全長が長くなる)させず(言い換えると、内視鏡用対物光学系100を小型化させることができ)、負レンズL1を取り扱いが容易な形状にすることができる。   Condition (2) is a ratio of the effective diameter ED at the maximum image height of the surface closest to the object side (first surface r1 of the negative lens L1) in the first lens group G1 to the focal length f of the entire system. Stipulate. By satisfying the condition (2), the endoscope objective optical system 100 is not increased in size (increased in diameter and length is increased) (in other words, the endoscope objective optical system 100 is reduced in size). The negative lens L1 can be shaped to be easy to handle.

ここで、負レンズL1の第一面r1は、電子スコープ1の先端部12の先端面上で外観として露出している。条件(2)が満たされる場合、負レンズL1は、第一面r1の径が小さいため、洗浄範囲が小さくかつ先端面上での第一面r1の突出量が小さい。そのため、負レンズL1は、先端部12の洗浄性の低下が抑えられており、かつ電子スコープ1の管理時に他の構造物等に第一面r1が衝突して破損するリスクも抑えられている、取り扱いが容易な形状となっている。   Here, the first surface r <b> 1 of the negative lens L <b> 1 is exposed as an appearance on the distal end surface of the distal end portion 12 of the electronic scope 1. When the condition (2) is satisfied, since the negative lens L1 has a small diameter of the first surface r1, the cleaning range is small and the protrusion amount of the first surface r1 on the tip surface is small. For this reason, the negative lens L1 is suppressed from being deteriorated in the cleaning performance of the distal end portion 12, and the risk of the first surface r1 colliding with other structures or the like during the management of the electronic scope 1 is also suppressed. The shape is easy to handle.

条件(2)において「ED/f」が右辺の値(=5.0)以上となる場合、先端面上での第一面r1の突出量が大きくなる。そのため、先端部12の洗浄性が低下する(例えば、先端面を洗浄する際に汚れが取り難くなる)と共に、電子スコープ1の管理時に他の構造物等に第一面r1が衝突して破損するリスクが高くなる。なお、第一面r1の突出量は、第一面r1の光軸AX上での接平面と第一面r1の有効径の最周縁との、光軸AX方向の距離と定義される。   In the condition (2), when “ED / f” is equal to or greater than the value on the right side (= 5.0), the protrusion amount of the first surface r1 on the tip surface becomes large. For this reason, the cleaning performance of the distal end portion 12 is deteriorated (for example, it becomes difficult to remove dirt when cleaning the distal end surface), and the first surface r1 collides with another structure or the like when the electronic scope 1 is managed and is damaged. The risk of The protrusion amount of the first surface r1 is defined as the distance in the optical axis AX direction between the tangential plane of the first surface r1 on the optical axis AX and the outermost periphery of the effective diameter of the first surface r1.

条件(2)において「ED/f」が左辺の値(=4.0)以下となる場合、負レンズL1の有効径EDが小さくなることに伴い、先端面上での第一面r1の突出量も小さくなる。しかし、第一面r1において表面反射する光の量が増えて、光量損失が大きくなってしまう。また、内視鏡用対物光学系100の全長が長くなる。全長の長い内視鏡用対物光学系100を電子スコープ1の先端部12に組み込む必要上、先端部12の全長を短く抑えることが難しい。硬質性を有する先端部12の全長が長くなることにより、例えば体腔内に対する電子スコープ1の挿入性(挿入のし易さ)が低下したり、電子スコープ1の挿入時における患者の負担が大きくなったりしてしまう。   In the condition (2), when “ED / f” is equal to or less than the value on the left side (= 4.0), the protrusion of the first surface r1 on the distal end surface is caused as the effective diameter ED of the negative lens L1 decreases. The amount is also reduced. However, the amount of light reflected on the surface of the first surface r1 increases, and the light amount loss increases. Further, the overall length of the endoscope objective optical system 100 is increased. Since it is necessary to incorporate the endoscope objective optical system 100 having a long overall length into the distal end portion 12 of the electronic scope 1, it is difficult to keep the entire length of the distal end portion 12 short. When the total length of the distal end portion 12 having rigidity is increased, for example, the insertion property (ease of insertion) of the electronic scope 1 into the body cavity is reduced, and the burden on the patient when the electronic scope 1 is inserted is increased. I will.

このように、内視鏡用対物光学系100は、上記のレンズ配置(第一のレンズ群G1と第二のレンズ群G2)において条件(1)、(2)を同時に満たすことにより、良好な光学性能を有しつつも小型化かつ広画角化(例えば、管腔観察に適した、180°を超える広い画角)が達成されており、例えば、高精細な固体撮像素子との組み合わせに適したものとなっている。   In this way, the endoscope objective optical system 100 is satisfactory by satisfying the conditions (1) and (2) at the same time in the lens arrangement (the first lens group G1 and the second lens group G2). Although it has optical performance, a small size and a wide angle of view (for example, a wide angle of view exceeding 180 ° suitable for lumen observation) have been achieved. For example, in combination with a high-definition solid-state image sensor It is suitable.

また、内視鏡用対物光学系100は、諸収差の補正に非球面レンズが必須ではないため、設計開発の負担が軽減すると共に加工が容易である。本発明の各実施例では、第一のレンズ群G1及び第二のレンズ群G2に含まれる全てのレンズのレンズ面が球面となっている。   In addition, since the objective optical system 100 for an endoscope does not require an aspheric lens for correcting various aberrations, the burden of design development is reduced and processing is easy. In each embodiment of the present invention, the lens surfaces of all the lenses included in the first lens group G1 and the second lens group G2 are spherical.

また、内視鏡用対物光学系100は、第一のレンズ群G1内で最も絞り側に位置する正レンズL2の焦点距離をf(単位:mm)と定義した場合に、次の条件(3)
0.5<|f/f|<2.0・・(3)
を満たす構成となっている。
Further, the endoscope objective optical system 100 has the following condition (when the focal length of the positive lens L2 located closest to the diaphragm side in the first lens group G1 is defined as f 2 (unit: mm)) 3)
0.5 <| f 2 / f F | <2.0 (3)
It is the composition which satisfies.

条件(3)は、第一のレンズ群G1内で最も絞り側に位置する正レンズL2の焦点距離fと、第一のレンズ群G1の焦点距離fとの比を規定する。条件(3)が満たされることにより、広画角化した場合に懸念される観察視野周辺の光学性能の劣化がより一層好適に抑えられる。 Condition (3), the focal length f 2 of the positive lens L2 positioned closest stop side in the first lens group G1, defining the ratio between the focal length f F of the first lens group G1. By satisfying the condition (3), the deterioration of the optical performance around the observation visual field, which is a concern when the angle of view is widened, can be more suitably suppressed.

条件(3)において「|f/f|」が右辺の値(=2.0)以上となる場合、例えば管腔観察時に観察視野中心から観察視野周辺にかけて歪みの少ない画像が得られる。しかし、観察視野中心付近の倍率が低くなるため、例えば病変部を発見して観察視野中心に寄せた場合、当該病変部を高解像度で撮像することができない。 In the condition (3), when “| f 2 / f F |” is equal to or greater than the value on the right side (= 2.0), for example, an image with little distortion is obtained from the center of the observation field to the periphery of the observation field during lumen observation. However, since the magnification in the vicinity of the observation visual field becomes low, for example, when a lesion is found and brought to the center of the observation visual field, the lesion cannot be imaged with high resolution.

条件(3)において「|f/f|」が左辺の値(=0.5)以下となる場合、例えば管腔観察時に観察視野周辺に近付くほど画像の歪みが大きくなり、観察視野周辺での物体側解像度が低くなってしまう。 In the condition (3), when “| f 2 / f F |” is equal to or less than the value on the left side (= 0.5), for example, the closer to the periphery of the observation field at the time of luminal observation, the greater the distortion of the image. The object-side resolution at will be low.

また、内視鏡用対物光学系100は、結像面における最大像高をy(単位:mm)と定義した場合に、次の条件(4)
3.0<ED/y<4.0・・・(4)
を満たす構成となっている。
The endoscope objective optical system 100 has the following condition (4) when the maximum image height on the image plane is defined as y (unit: mm).
3.0 <ED / y <4.0 (4)
It is the composition which satisfies.

条件(4)は、第一のレンズ群G1内で最も物体側にある面(負レンズL1の第一面r1)の最大像高における有効径EDと、結像面における最大像高yとの比を規定する。条件(4)が満たされることにより、内視鏡用対物光学系100を大型化させず(言い換えると、内視鏡用対物光学系100を小型化させることができ)、負レンズL1を取り扱いが容易な形状にすることができる。   Condition (4) is that the effective diameter ED at the maximum image height of the surface closest to the object side (the first surface r1 of the negative lens L1) in the first lens group G1 and the maximum image height y at the imaging surface Specify the ratio. By satisfying the condition (4), the endoscope objective optical system 100 is not increased in size (in other words, the endoscope objective optical system 100 can be reduced in size), and the negative lens L1 can be handled. Easy shape.

条件(4)において「ED/y」が右辺の値(=4.0)以上となる場合、電子スコープ1の先端部12の先端面上での第一面r1の突出量が小さくなる。しかし、第一面r1において表面反射する光の量が増えて、光量損失が大きくなってしまう。また、内視鏡用対物光学系100の全長が長くなる。全長の長い内視鏡用対物光学系100を電子スコープ1の先端部12に組み込む必要上、先端部12の全長を短く抑えることが難しい。硬質性を有する先端部12の全長が長くなることにより、例えば体腔内に対する電子スコープ1の挿入性が低下したり、電子スコープ1の挿入時における患者の負担が大きくなったりしてしまう。   In the condition (4), when “ED / y” is equal to or greater than the value on the right side (= 4.0), the protrusion amount of the first surface r1 on the distal end surface of the distal end portion 12 of the electronic scope 1 is reduced. However, the amount of light reflected on the surface of the first surface r1 increases, and the light amount loss increases. Further, the overall length of the endoscope objective optical system 100 is increased. Since it is necessary to incorporate the endoscope objective optical system 100 having a long overall length into the distal end portion 12 of the electronic scope 1, it is difficult to keep the entire length of the distal end portion 12 short. When the total length of the distal end portion 12 having rigidity is increased, for example, the insertion property of the electronic scope 1 into the body cavity is reduced, or the burden on the patient when the electronic scope 1 is inserted is increased.

条件(4)において「ED/y」が左辺の値(=3.0)以下となる場合、先端面上での第一面r1の突出量が大きくなる。そのため、先端部12の洗浄性が低下すると共に、電子スコープ1の管理時に他の構造物等に第一面r1が衝突して破損するリスクが高くなる。   In the condition (4), when “ED / y” is equal to or less than the value on the left side (= 3.0), the protrusion amount of the first surface r1 on the tip surface becomes large. Therefore, the cleaning performance of the distal end portion 12 is deteriorated, and the risk of the first surface r1 colliding with other structures or the like during the management of the electronic scope 1 is increased.

次に、これまで説明した内視鏡用対物光学系100の具体的数値実施例を6例説明する。各数値実施例1〜6に係る内視鏡用対物光学系100は、図1に示される電子スコープ1の先端部12に組み込まれている。   Next, six specific numerical examples of the endoscope objective optical system 100 described so far will be described. The endoscope objective optical system 100 according to Numerical Examples 1 to 6 is incorporated in the distal end portion 12 of the electronic scope 1 shown in FIG.

上述したように、本発明の実施例1に係る内視鏡用対物光学系100の構成は、図2に示される通りである。   As described above, the configuration of the endoscope objective optical system 100 according to the first embodiment of the present invention is as shown in FIG.

本実施例1に係る内視鏡用対物光学系100(及びその後段に配置された光学部品)の具体的数値構成(設計値)は、表1に示される。表1の上欄(面データ)に示される面番号NOは、絞りSに対応する面番号5を除き、図2中の面符号rn(nは自然数)に対応する。表1の上欄において、R(単位:mm)は光学部材の各面の曲率半径を、D(単位:mm)は光軸AX上の光学部材厚又は光学部材間隔を、N(d)はd線(波長588nm)の屈折率を、νdはd線のアッベ数を、それぞれ示す。表1の下欄(各種データ)には、本実施例1に係る内視鏡用対物光学系100の仕様(実効Fナンバ、全系の焦点距離(単位:mm)、光学倍率、半画角(単位:degree)、像高(単位:mm))を示す。   Table 1 shows specific numerical configurations (design values) of the endoscope objective optical system 100 (and optical components arranged in the subsequent stage) according to the first embodiment. The surface number NO shown in the upper column (surface data) of Table 1 corresponds to the surface code rn (n is a natural number) in FIG. 2 except for the surface number 5 corresponding to the aperture S. In the upper column of Table 1, R (unit: mm) is the radius of curvature of each surface of the optical member, D (unit: mm) is the optical member thickness or optical member interval on the optical axis AX, and N (d) is The refractive index of d-line (wavelength 588 nm) is indicated, and νd is the Abbe number of d-line. In the lower column of Table 1 (various data), the specifications (effective F number, focal length (unit: mm) of the entire system, optical magnification, half angle of view of the objective optical system 100 for an endoscope according to the first embodiment are shown. (Unit: degree), image height (unit: mm)).

Figure 2018025591
Figure 2018025591

本実施例1に係る内視鏡用対物光学系100に対して条件(1)〜(4)を適用したときに算出される値の一覧を示す。   A list of values calculated when conditions (1) to (4) are applied to the endoscope objective optical system 100 according to the first embodiment is shown.

条件(1):f/f =0.35
条件(2):ED/f =4.17
条件(3):|f/f|=1.10
条件(4):ED/y =3.11
Condition (1): f 1 / f F = 0.35
Condition (2): ED / f = 4.17
Condition (3): | f 2 / f F | = 1.10
Condition (4): ED / y = 3.11

図3のグラフA〜Dは、本実施例1に係る内視鏡用対物光学系100の各種収差図である。グラフAは、d線、g線(波長436nm)、C線(波長656nm)での球面収差及び軸上色収差を示す。グラフBは、d線、g線、C線での倍率色収差を示す。グラフA、B中、実線はd線での収差を、点線はg線での収差を、一点鎖線はC線での収差を、それぞれ示す。グラフCは、非点収差を示す。グラフC中、実線はサジタル成分を、点線はメリディオナル成分を、それぞれ示す。グラフDは、歪曲収差を示す。グラフA〜Cの縦軸は像高を、横軸は収差量を、それぞれ示す。グラフDの縦軸は像高を、横軸は歪曲率を、それぞれ示す。なお、本実施例1の図表についての説明は、以降の各実施例で提示される図表においても適用する。   Graphs A to D in FIG. 3 are various aberration diagrams of the endoscope objective optical system 100 according to the first example. Graph A shows spherical aberration and axial chromatic aberration at d-line, g-line (wavelength 436 nm), and C-line (wavelength 656 nm). Graph B shows chromatic aberration of magnification at d-line, g-line, and C-line. In the graphs A and B, the solid line indicates the aberration at the d line, the dotted line indicates the aberration at the g line, and the alternate long and short dash line indicates the aberration at the C line. Graph C shows astigmatism. In the graph C, a solid line indicates a sagittal component, and a dotted line indicates a meridional component. Graph D shows distortion. In the graphs A to C, the vertical axis represents the image height, and the horizontal axis represents the aberration amount. The vertical axis of the graph D represents the image height, and the horizontal axis represents the distortion. In addition, the description about the chart of this Example 1 is applied also to the chart presented in each subsequent Example.

図4は、本発明の実施例2に係る内視鏡用対物光学系100を含む各光学部品の配置を示す断面図である。図5のグラフA〜Dは、本実施例2に係る内視鏡用対物光学系100の各種収差(球面収差、軸上色収差、倍率色収差、非点収差、歪曲収差)図である。表2は、本実施例2に係る内視鏡用対物光学系100の具体的数値構成及び仕様を示す。   FIG. 4 is a cross-sectional view showing the arrangement of optical components including the endoscope objective optical system 100 according to Embodiment 2 of the present invention. Graphs A to D in FIG. 5 are graphs showing various aberrations (spherical aberration, longitudinal chromatic aberration, lateral chromatic aberration, astigmatism, distortion) of the endoscope objective optical system 100 according to the second embodiment. Table 2 shows specific numerical configurations and specifications of the endoscope objective optical system 100 according to the second embodiment.

Figure 2018025591
Figure 2018025591

本実施例2に係る内視鏡用対物光学系100に対して条件(1)〜(4)を適用したときに算出される値の一覧を示す。   A list of values calculated when conditions (1) to (4) are applied to the endoscope objective optical system 100 according to the second embodiment is shown.

条件(1):f/f =0.37
条件(2):ED/f =4.07
条件(3):|f/f|=1.34
条件(4):ED/y =3.07
Condition (1): f 1 / f F = 0.37
Condition (2): ED / f = 4.07
Condition (3): | f 2 / f F | = 1.34
Condition (4): ED / y = 3.07

図6は、本発明の実施例3に係る内視鏡用対物光学系100を含む各光学部品の配置を示す断面図である。図7のグラフA〜Dは、本実施例3に係る内視鏡用対物光学系100の各種収差(球面収差、軸上色収差、倍率色収差、非点収差、歪曲収差)図である。表3は、本実施例3に係る内視鏡用対物光学系100の具体的数値構成及び仕様を示す。   FIG. 6 is a cross-sectional view showing the arrangement of optical components including the endoscope objective optical system 100 according to the third embodiment of the present invention. Graphs A to D in FIG. 7 are graphs showing various aberrations (spherical aberration, axial chromatic aberration, lateral chromatic aberration, astigmatism, distortion) of the endoscope objective optical system 100 according to the third embodiment. Table 3 shows specific numerical configurations and specifications of the endoscope objective optical system 100 according to the third embodiment.

Figure 2018025591
Figure 2018025591

本実施例3に係る内視鏡用対物光学系100に対して条件(1)〜(4)を適用したときに算出される値の一覧を示す。   A list of values calculated when conditions (1) to (4) are applied to the endoscope objective optical system 100 according to the third embodiment is shown.

条件(1):f/f =0.23
条件(2):ED/f =4.14
条件(3):|f/f|=0.67
条件(4):ED/y =3.07
Condition (1): f 1 / f F = 0.23
Condition (2): ED / f = 4.14
Condition (3): | f 2 / f F | = 0.67
Condition (4): ED / y = 3.07

図8は、本発明の実施例4に係る内視鏡用対物光学系100を含む各光学部品の配置を示す断面図である。図9のグラフA〜Dは、本実施例4に係る内視鏡用対物光学系100の各種収差(球面収差、軸上色収差、倍率色収差、非点収差、歪曲収差)図である。表4は、本実施例4に係る内視鏡用対物光学系100の具体的数値構成及び仕様を示す。   FIG. 8 is a cross-sectional view showing the arrangement of optical components including the endoscope objective optical system 100 according to Embodiment 4 of the present invention. Graphs A to D in FIG. 9 are graphs showing various aberrations (spherical aberration, axial chromatic aberration, lateral chromatic aberration, astigmatism, distortion) of the endoscope objective optical system 100 according to the fourth embodiment. Table 4 shows specific numerical configurations and specifications of the endoscope objective optical system 100 according to the fourth embodiment.

Figure 2018025591
Figure 2018025591

本実施例4に係る内視鏡用対物光学系100に対して条件(1)〜(4)を適用したときに算出される値の一覧を示す。   A list of values calculated when conditions (1) to (4) are applied to the endoscope objective optical system 100 according to the fourth embodiment is shown.

条件(1):f/f =0.37
条件(2):ED/f =4.46
条件(3):|f/f|=1.22
条件(4):ED/y =3.33
Condition (1): f 1 / f F = 0.37
Condition (2): ED / f = 4.46
Condition (3): | f 2 / f F | = 1.22
Condition (4): ED / y = 3.33

図10は、本発明の実施例5に係る内視鏡用対物光学系100を含む各光学部品の配置を示す断面図である。図11のグラフA〜Dは、本実施例5に係る内視鏡用対物光学系100の各種収差(球面収差、軸上色収差、倍率色収差、非点収差、歪曲収差)図である。表5は、本実施例5に係る内視鏡用対物光学系100の具体的数値構成及び仕様を示す。   FIG. 10 is a cross-sectional view showing the arrangement of optical components including the endoscope objective optical system 100 according to the fifth embodiment of the present invention. Graphs A to D in FIG. 11 are graphs showing various aberrations (spherical aberration, axial chromatic aberration, lateral chromatic aberration, astigmatism, distortion aberration) of the endoscope objective optical system 100 according to the fifth example. Table 5 shows specific numerical configurations and specifications of the endoscope objective optical system 100 according to the fifth embodiment.

Figure 2018025591
Figure 2018025591

本実施例5に係る内視鏡用対物光学系100に対して条件(1)〜(4)を適用したときに算出される値の一覧を示す。   A list of values calculated when conditions (1) to (4) are applied to the endoscope objective optical system 100 according to the fifth embodiment is shown.

条件(1):f/f =0.41
条件(2):ED/f =4.29
条件(3):|f/f|=1.45
条件(4):ED/y =3.25
Condition (1): f 1 / f F = 0.41
Condition (2): ED / f = 4.29
Condition (3): | f 2 / f F | = 1.45
Condition (4): ED / y = 3.25

図12は、本発明の実施例6に係る内視鏡用対物光学系100を含む各光学部品の配置を示す断面図である。図13のグラフA〜Dは、本実施例6に係る内視鏡用対物光学系100の各種収差(球面収差、軸上色収差、倍率色収差、非点収差、歪曲収差)図である。表6は、本実施例6に係る内視鏡用対物光学系100の具体的数値構成及び仕様を示す。   FIG. 12 is a cross-sectional view showing the arrangement of optical components including the endoscope objective optical system 100 according to Example 6 of the present invention. Graphs A to D in FIG. 13 are graphs showing various aberrations (spherical aberration, axial chromatic aberration, lateral chromatic aberration, astigmatism, distortion aberration) of the endoscope objective optical system 100 according to the sixth embodiment. Table 6 shows specific numerical configurations and specifications of the endoscope objective optical system 100 according to the sixth embodiment.

Figure 2018025591
Figure 2018025591

本実施例6に係る内視鏡用対物光学系100に対して条件(1)〜(4)を適用したときに算出される値の一覧を示す。   A list of values calculated when conditions (1) to (4) are applied to the endoscope objective optical system 100 according to the sixth embodiment is shown.

条件(1):f/f =0.47
条件(2):ED/f =4.75
条件(3):|f/f|=1.83
条件(4):ED/y =3.45
Condition (1): f 1 / f F = 0.47
Condition (2): ED / f = 4.75
Condition (3): | f 2 / f F | = 1.83
Condition (4): ED / y = 3.45

(比較検証)
本実施例1〜6に対する比較例として特許文献1の第1実施例を挙げる。比較例に係る内視鏡用対物光学系は、負のパワーを持つ前群(物体側から順に、物体側に凸面を向けた負メニスカスレンズ、物体側に凹面を向けた負メニスカスレンズからなる群)及び正のパワーを持つ後群(物体側から順に、像側に凸面を向けた平凸レンズ(正レンズ)、正レンズである両凸レンズと物体側に凹面を向けた負メニスカスレンズとの接合レンズからなる群)を有しており、条件(1)〜(4)の何れも満たさない構成となっている。そのため、比較例に係る内視鏡用対物光学系は、広画角化が達成されているものの、十分な小型化が達成されていない。また、広画角化を達成するため、周辺解像、入射光量等に関する一部の光学特性が犠牲となっている。
(Comparison verification)
A first example of Patent Document 1 is given as a comparative example for Examples 1-6. The endoscope objective optical system according to the comparative example includes a front group having negative power (a negative meniscus lens having a convex surface facing the object side and a negative meniscus lens having a concave surface facing the object side in order from the object side). ) And a rear lens group having a positive power (in order from the object side, a plano-convex lens with a convex surface facing the image side (positive lens), a cemented lens of a biconvex lens that is a positive lens and a negative meniscus lens with a concave surface facing the object side) Group), and none of the conditions (1) to (4) is satisfied. Therefore, the endoscope objective optical system according to the comparative example has achieved a wide angle of view, but has not been sufficiently reduced in size. In addition, in order to achieve a wide angle of view, some optical characteristics related to peripheral resolution, incident light quantity, etc. are sacrificed.

なお、参考として、比較例に係る内視鏡用対物光学系に対して条件(1)〜(4)を適用したときに算出される値の一覧を示す。   For reference, a list of values calculated when conditions (1) to (4) are applied to the endoscope objective optical system according to the comparative example is shown.

条件(1):f/f =1.38
条件(2):ED/f =2.98
条件(3):|f/f|=4.75
条件(4):ED/y =2.31
Condition (1): f 1 / f F = 1.38
Condition (2): ED / f = 2.98
Condition (3): | f 2 / f F | = 4.75
Condition (4): ED / y = 2.31

これに対し、本実施例1〜6の各実施例に係る内視鏡用対物光学系100は、負のパワーを持つ第一のレンズ群G1(物体側から順に、像側に凹面を向けた負レンズ、像側に凸面を向けた正レンズ、を少なくとも有するレンズ群)及び正のパワーを持つ第二のレンズ群G2(物体側から順に、像側に凸面を向けた正レンズ、負のレンズと正のレンズとを接合した接合レンズを少なくとも有するレンズ群)を有しており、条件(1)及び条件(2)を満たす構成となっている。そのため、各実施例に係る内視鏡用対物光学系100は、各表及び各種収差図に示されるように、良好な光学性能を有しつつも小型化かつ広画角化が達成された構成となっている。   In contrast, the endoscope objective optical system 100 according to each of Examples 1 to 6 has a first lens group G1 having negative power (in order from the object side, a concave surface is directed to the image side). A lens group having at least a negative lens, a positive lens having a convex surface facing the image side) and a second lens group G2 having a positive power (a positive lens having a convex surface facing the image side in order from the object side), a negative lens And a lens group having at least a cemented lens in which a positive lens and a positive lens are cemented, and satisfies the conditions (1) and (2). Therefore, as shown in each table and various aberration diagrams, the endoscope objective optical system 100 according to each example has a configuration in which a small size and a wide angle of view are achieved while having good optical performance. It has become.

また、本実施例1〜6の各実施例に係る内視鏡用対物光学系100は、条件(3)及び条件(4)を更に満たす構成となっている。本実施例1〜6の各実施例では、条件(3)及び条件(4)を満たすことによる更なる効果が奏される。   In addition, the endoscope objective optical system 100 according to each of Examples 1 to 6 is configured to further satisfy the conditions (3) and (4). In each Example of the present Examples 1-6, the further effect by satisfy | filling condition (3) and condition (4) is show | played.

以上が本発明の例示的な実施形態の説明である。本発明の実施形態は、上記に説明した内容に限定されず、本発明の技術的思想の範囲において様々な変形が可能である。例えば明細書中に例示的に明示される実施形態等又は自明な実施形態等を適宜組み合わせた内容も本願の実施形態に含まれる。   The above is the description of the exemplary embodiments of the present invention. The embodiment of the present invention is not limited to the contents described above, and various modifications are possible within the scope of the technical idea of the present invention. For example, the embodiment of the present application also includes an embodiment that is exemplarily specified in the specification or a combination of obvious embodiments and the like as appropriate.

1 電子スコープ
100 内視鏡用対物光学系
1 Electronic scope 100 Objective optical system for endoscope

Claims (7)

物体側から順に、負のパワーを持つ第一のレンズ群、正のパワーを持つ第二のレンズ群からなり、
前記第一のレンズ群は、
物体側から順に、像側に凹面を向けた負レンズ、像側に凸面を向けた正レンズからなり、
前記第二のレンズ群は、
物体側から順に、像側に凸面を向けた正レンズ、負のレンズと正のレンズとを接合した接合レンズを少なくとも有し、
前記第一のレンズ群内で最も物体側に位置する前記負レンズの焦点距離をf(単位:mm)と定義し、該第一のレンズ群の焦点距離をf(単位:mm)と定義し、該第一のレンズ群内で最も物体側にある面の最大像高における有効径をED(単位:mm)と定義し、該第一のレンズ群及び前記第二のレンズ群の合成焦点距離をf(単位:mm)と定義した場合に、次の2つの条件
0.2<f/f<0.5
4.0<ED/f<5.0
を満たす、
内視鏡用対物光学系。
In order from the object side, it consists of a first lens group with negative power and a second lens group with positive power,
The first lens group includes:
In order from the object side, it consists of a negative lens with a concave surface on the image side and a positive lens with a convex surface on the image side.
The second lens group includes:
In order from the object side, at least a positive lens having a convex surface facing the image side, a cemented lens in which a negative lens and a positive lens are cemented,
The focal length of the negative lens located closest to the object in the first lens group is defined as f 1 (unit: mm), and the focal length of the first lens group is defined as f F (unit: mm). The effective diameter at the maximum image height of the surface closest to the object in the first lens group is defined as ED (unit: mm), and the first lens group and the second lens group are combined. When the focal length is defined as f (unit: mm), the following two conditions 0.2 <f 1 / f F <0.5
4.0 <ED / f <5.0
Meet,
Objective optical system for endoscope.
前記第一のレンズ群と前記第二のレンズ群との間に絞りを有し、
前記第一のレンズ群内で最も絞り側に位置する前記正レンズの焦点距離をf(単位:mm)と定義した場合に、次の条件
0.5<|f/f|<2.0
を満たす、
請求項1に記載の内視鏡用対物光学系。
Having a stop between the first lens group and the second lens group;
When the focal length of the positive lens located closest to the stop in the first lens group is defined as f 2 (unit: mm), the following condition 0.5 <| f 2 / f F | <2 .0
Meet,
The endoscope objective optical system according to claim 1.
前記第一のレンズ群内の前記正レンズは、
物体側の面が平面である、
を満たす、
請求項1又は請求項2に記載の内視鏡用対物光学系。
The positive lens in the first lens group is
The object side surface is a plane,
Meet,
The objective optical system for endoscopes according to claim 1 or 2.
結像面における最大像高をy(単位:mm)と定義した場合に、次の条件
3.0<ED/y<4.0
を満たす、
請求項1から請求項3の何れか一項に記載の内視鏡用対物光学系。
When the maximum image height on the image plane is defined as y (unit: mm), the following condition 3.0 <ED / y <4.0
Meet,
The endoscope objective optical system according to any one of claims 1 to 3.
画角が180°を超える、
請求項1から請求項4の何れか一項に記載の内視鏡用対物光学系。
The angle of view exceeds 180 °,
The objective optical system for endoscopes according to any one of claims 1 to 4.
前記第一のレンズ群及び前記第二のレンズ群に含まれる全てのレンズのレンズ面が球面である、
請求項1から請求項5の何れか一項に記載の内視鏡用対物光学系。
The lens surfaces of all the lenses included in the first lens group and the second lens group are spherical surfaces.
The endoscope objective optical system according to any one of claims 1 to 5.
請求項1から請求項6の何れか一項に記載の内視鏡用対物光学系が先端に組み込まれた、
内視鏡。
The endoscope objective optical system according to any one of claims 1 to 6 is incorporated at a tip.
Endoscope.
JP2016155329A 2016-08-08 2016-08-08 Objective optical system for endoscopes and endoscopes Active JP6774811B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016155329A JP6774811B2 (en) 2016-08-08 2016-08-08 Objective optical system for endoscopes and endoscopes
CN201710666063.4A CN107703606B (en) 2016-08-08 2017-08-07 Objective optical system for endoscope and endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016155329A JP6774811B2 (en) 2016-08-08 2016-08-08 Objective optical system for endoscopes and endoscopes

Publications (2)

Publication Number Publication Date
JP2018025591A true JP2018025591A (en) 2018-02-15
JP6774811B2 JP6774811B2 (en) 2020-10-28

Family

ID=61170219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016155329A Active JP6774811B2 (en) 2016-08-08 2016-08-08 Objective optical system for endoscopes and endoscopes

Country Status (2)

Country Link
JP (1) JP6774811B2 (en)
CN (1) CN107703606B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211598A (en) * 2018-06-04 2019-12-12 株式会社タムロン Image capturing lens and image capturing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111522081A (en) * 2020-05-26 2020-08-11 重庆金山科技(集团)有限公司 Liquid lens, zoom endoscope objective lens, endoscope and zoom method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122634A (en) * 1994-10-25 1996-05-17 Asahi Optical Co Ltd Objective for endoscope
JPH1114902A (en) * 1997-06-24 1999-01-22 Asahi Optical Co Ltd Endoscope objective optical system
JP2004117607A (en) * 2002-09-25 2004-04-15 Pentax Corp Objective system for endoscope
JP2005091655A (en) * 2003-09-17 2005-04-07 Pentax Corp Endoscope objective optical system
JP2006146016A (en) * 2004-11-24 2006-06-08 Matsushita Electric Ind Co Ltd Wide angle lens
US20100245653A1 (en) * 2008-01-14 2010-09-30 Integrated Medical Systems International, Inc. Endoscope Objective Lens and Method of Assembly
WO2011152099A1 (en) * 2010-06-01 2011-12-08 Hoya株式会社 Objective lens for endoscope, and endoscope
JP2013238684A (en) * 2012-05-14 2013-11-28 Tamron Co Ltd Fisheye lens
WO2014088104A1 (en) * 2012-12-07 2014-06-12 オリンパス株式会社 Objective lens and observation device equipped with same
US20150277088A1 (en) * 2014-04-01 2015-10-01 Sintai Optical (Shenzhen) Co., Ltd. Wide-angle lens assembly

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630058B (en) * 2008-07-18 2011-03-23 上海澳华光电内窥镜有限公司 Objective lens of endoscope

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122634A (en) * 1994-10-25 1996-05-17 Asahi Optical Co Ltd Objective for endoscope
JPH1114902A (en) * 1997-06-24 1999-01-22 Asahi Optical Co Ltd Endoscope objective optical system
JP2004117607A (en) * 2002-09-25 2004-04-15 Pentax Corp Objective system for endoscope
JP2005091655A (en) * 2003-09-17 2005-04-07 Pentax Corp Endoscope objective optical system
JP2006146016A (en) * 2004-11-24 2006-06-08 Matsushita Electric Ind Co Ltd Wide angle lens
US20100245653A1 (en) * 2008-01-14 2010-09-30 Integrated Medical Systems International, Inc. Endoscope Objective Lens and Method of Assembly
WO2011152099A1 (en) * 2010-06-01 2011-12-08 Hoya株式会社 Objective lens for endoscope, and endoscope
JP2013238684A (en) * 2012-05-14 2013-11-28 Tamron Co Ltd Fisheye lens
WO2014088104A1 (en) * 2012-12-07 2014-06-12 オリンパス株式会社 Objective lens and observation device equipped with same
US20150277088A1 (en) * 2014-04-01 2015-10-01 Sintai Optical (Shenzhen) Co., Ltd. Wide-angle lens assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211598A (en) * 2018-06-04 2019-12-12 株式会社タムロン Image capturing lens and image capturing device
WO2019234954A1 (en) * 2018-06-04 2019-12-12 株式会社タムロン Imaging lens and imaging device
JP7126868B2 (en) 2018-06-04 2022-08-29 株式会社タムロン Imaging lens and imaging device

Also Published As

Publication number Publication date
JP6774811B2 (en) 2020-10-28
CN107703606B (en) 2021-08-03
CN107703606A (en) 2018-02-16

Similar Documents

Publication Publication Date Title
JP5668059B2 (en) Endoscope objective lens and endoscope
JP6674450B2 (en) Variable magnification optical system for endoscope, and endoscope
JP5601924B2 (en) Endoscope variable magnification optical system and endoscope
JP6636128B2 (en) Variable magnification optical system for endoscope, endoscope and endoscope system
JP5653243B2 (en) Endoscope optical system and endoscope
JP6046322B1 (en) Endoscope variable magnification optical system and endoscope
JP6797105B2 (en) Objective optical system for endoscopes and endoscopes
WO2017043351A1 (en) Variable power optical system for endoscope, and endoscope
JP5031880B2 (en) Endoscope objective lens
JP2004061763A (en) Objective for endoscopes
JP7113783B2 (en) Objective optical system for endoscope and endoscope
JP6774811B2 (en) Objective optical system for endoscopes and endoscopes
JP6800824B2 (en) Objective optical system for endoscopes and endoscopes
JP6861131B2 (en) Objective lens unit for endoscopes and endoscopes
JP6754916B2 (en) Variable magnification optics for endoscopes and endoscopes
JP6877309B2 (en) Objective optical system for endoscopes and endoscopes
JP6807818B2 (en) Objective optical system for endoscopes and endoscopes
JP2005148508A (en) Objective lens for endoscope
WO2019159778A1 (en) Endoscopic optical system and endoscope
WO2024166167A1 (en) Objective optical system, endoscope, and imaging device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170718

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201005

R150 Certificate of patent or registration of utility model

Ref document number: 6774811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250