JP2018024607A - Method of separating and producing aliphatic hydrocarbon-substituted benzaldehyde - Google Patents

Method of separating and producing aliphatic hydrocarbon-substituted benzaldehyde Download PDF

Info

Publication number
JP2018024607A
JP2018024607A JP2016157358A JP2016157358A JP2018024607A JP 2018024607 A JP2018024607 A JP 2018024607A JP 2016157358 A JP2016157358 A JP 2016157358A JP 2016157358 A JP2016157358 A JP 2016157358A JP 2018024607 A JP2018024607 A JP 2018024607A
Authority
JP
Japan
Prior art keywords
aliphatic hydrocarbon
separation
adsorbent
isomers
isomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016157358A
Other languages
Japanese (ja)
Other versions
JP6813986B2 (en
Inventor
吉朗 古家
Yoshiro Furuya
吉朗 古家
和広 小谷
Kazuhiro Kotani
和広 小谷
貴司 鍋田
Takashi Nabeta
貴司 鍋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2016157358A priority Critical patent/JP6813986B2/en
Publication of JP2018024607A publication Critical patent/JP2018024607A/en
Application granted granted Critical
Publication of JP6813986B2 publication Critical patent/JP6813986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of economically separating and purifying a specific isomer at high purity from an isomer mixture of aliphatic hydrocarbon-substituted benzaldehydes.SOLUTION: The method of separating an isomer of aliphatic hydrocarbon-substituted benzaldehydes includes: separating respective isomers from a mixture of aliphatic hydrocarbon-substituted benzaldehydes containing at least two kinds of isomers using an adsorbent and a desorbent, where the adsorbent is an adsorbent including faujasite type zeolite containing potassium.SELECTED DRAWING: Figure 1

Description

本発明は脂肪族炭化水素置換ベンズアルデヒド類の異性体の分離方法に関する。   The present invention relates to a method for separating isomers of aliphatic hydrocarbon-substituted benzaldehydes.

脂肪族炭化水素置換ベンズアルデヒド類を芳香族置換反応により合成する場合、一般にオルト体、メタ体、パラ体の異性体混合物として得られる場合が多い。
これらの異性体を分離精製する場合に、もっとも広く利用されている分離精製方法である蒸留法が適用できない場合がある。例えば、沸点が比較的高い場合、共沸が生じる場合、分解する場合、沸点が近接している場合がこれに当たる。特に異性体の内、メタ体、パラ体は沸点が近接している場合が多く、蒸留法によって特定の異性体を高純度で得るためには、非常に多くの蒸留段数を必要とし、消費エネルギーや設備費等の経済的な困難を伴う。
When an aliphatic hydrocarbon-substituted benzaldehyde is synthesized by an aromatic substitution reaction, generally, it is often obtained as an ortho, meta, or para isomer mixture.
When these isomers are separated and purified, the distillation method, which is the most widely used separation and purification method, may not be applicable. For example, when the boiling point is relatively high, when azeotrope occurs, when it decomposes, or when the boiling points are close to each other. In particular, among the isomers, the meta and para isomers are often close in boiling point, and in order to obtain a specific isomer with high purity by the distillation method, a very large number of distillation stages are required and the energy consumption is reduced. And economic difficulties such as equipment costs.

蒸留法とは別に晶析法も広く利用されているが、融点が過度に低いもの、共晶を生じるもの、固溶体になるもの、など技術的、経済的に処理し難い場合も少なくない。例えば、特許文献1や特許文献2に記載の方法は、イソプロピルベンズアルデヒドの異性体分離において、100MPa以上の高圧条件で晶析を行い、メタ体とパラ体の混合物からメタ体を高純度で得ることに成功しているが、極端な高圧条件を必要とするため設備費の増大や、安全性の面で課題がある。また晶析法は異性体混合物から1種類の異性体のみを結晶化させるため、2種類の異性体が含まれた混合物から両成分とも高純度で得たい場合は、結晶化した片方の異性体を固液分離し回収したのち、もう片方の異性体を含む母液を回収し、再び別の条件で晶析を行うか、もしくは蒸留など別の方法で精製する必要があり、この方法を用いて製造する場合、操作が煩雑となり、プロセスの長大化に伴う設備費やエネルギー面で経済的ではない。   Aside from the distillation method, a crystallization method is also widely used, but there are many cases where it is difficult to process technically and economically, such as an excessively low melting point, a eutectic crystal, or a solid solution. For example, in the methods described in Patent Document 1 and Patent Document 2, in the isomer separation of isopropylbenzaldehyde, crystallization is performed under a high pressure condition of 100 MPa or more, and the meta isomer is obtained with a high purity from a mixture of the meta isomer and the para isomer. However, since extreme high pressure conditions are required, there are problems in terms of increased equipment costs and safety. Since the crystallization method crystallizes only one isomer from the isomer mixture, if you want to obtain both components with high purity from a mixture containing two isomers, one crystallized isomer. It is necessary to recover the mother liquor containing the other isomer and collect it again under different conditions or purify it by another method such as distillation. In the case of manufacturing, the operation becomes complicated, and it is not economical in terms of equipment cost and energy accompanying the lengthening of the process.

特公昭57-30092号公報Japanese Patent Publication No.57-30092 特公昭57-35814号公報Japanese Patent Publication No.57-35814

本発明の目的は、脂肪族炭化水素置換ベンズアルデヒド類の異性体混合物から経済的かつ高純度で特定の異性体を分離精製する方法を提供することである。   An object of the present invention is to provide a method for separating and purifying specific isomers economically and with high purity from isomer mixtures of aliphatic hydrocarbon-substituted benzaldehydes.

上記課題の解決のため鋭意検討を重ねた結果、カリウムを含むフォージャサイト型ゼオライトを吸着剤に用いたクロマトグラフィーにより(以下、クロマト分離と呼ぶ)、脂肪族炭化水素置換ベンズアルデヒド類の異性体を高純度かつ経済的に分離できることを見出し、本発明に到達した。   As a result of repeated studies to solve the above problems, isomers of aliphatic hydrocarbon-substituted benzaldehydes were obtained by chromatography using faujasite-type zeolite containing potassium as an adsorbent (hereinafter referred to as chromatographic separation). The inventors have found that it can be separated with high purity and economically, and reached the present invention.

本発明は、以下の(1)〜(6)のとおりである。
(1)吸着剤と脱着剤を用いて、芳香環に脂肪族炭化水素類を有するベンズアルデヒド類の少なくとも2種の異性体を含む脂肪族炭化水素置換ベンズアルデヒド類の混合物からそれぞれの異性体を分離する方法であって、吸着剤がカリウムを含有するフォージャサイト型ゼオライトを含む吸着剤であることを特徴とする脂肪族炭化水素置換ベンズアルデヒド類の異性体の分離方法。
(2)脱着剤が、数式(1)で示されるハンセン溶解度パラメーター(δ)が18MPa1/2以上、30MPa1/2以下の範囲を示す溶媒である上記(1)記載の分離方法。
The present invention is as follows (1) to (6).
(1) Using an adsorbent and a desorbent, each isomer is separated from a mixture of aliphatic hydrocarbon-substituted benzaldehydes containing at least two isomers of benzaldehydes having aliphatic hydrocarbons in the aromatic ring. A method for separating isomers of aliphatic hydrocarbon-substituted benzaldehydes, wherein the adsorbent is an adsorbent containing faujasite-type zeolite containing potassium.
(2) desorbing agent, Equation (1) Hansen solubility parameter represented by ([delta]) is 18 MPa 1/2 or more, the a solvent having a range of 30 MPa 1/2 or less (1) The method of separating according.

Figure 2018024607
数式(1)の、δd、δpおよびδhは、ハンセン溶解度パラメーターにおける溶媒の分散項、極性項および水素結合項をそれぞれ示し、単位はいずれもMPa1/2である。
(3)脱着剤がアルコールを含む溶媒である上記(1)又は(2)記載の分離方法。
(4)アルコールがC4〜C8の脂肪族アルコールである上記(3)記載の分離方法。
(5)脂肪族炭化水素置換ベンズアルデヒド類がイソプロピルベンズアルデヒドである上記(1)から(4)のいずれかに記載の分離方法。
(6)脂肪族炭化水素置換ベンズアルデヒド類を製造する方法において、前記(1)から(5)のいずれかに記載の分離方法を用いることを特徴とする脂肪族炭化水素置換ベンズアルデヒド類の製造方法。
Figure 2018024607
In Equation (1), δ d , δ p and δ h represent the solvent dispersion term, polar term and hydrogen bond term in the Hansen solubility parameter, respectively, and the unit is MPa 1/2 .
(3) The separation method according to (1) or (2) above, wherein the desorbent is a solvent containing alcohol.
(4) The separation method according to the above (3), wherein the alcohol is a C4 to C8 aliphatic alcohol.
(5) The separation method according to any one of (1) to (4) above, wherein the aliphatic hydrocarbon-substituted benzaldehyde is isopropylbenzaldehyde.
(6) A method for producing an aliphatic hydrocarbon-substituted benzaldehyde, wherein the separation method according to any one of (1) to (5) is used in the method for producing an aliphatic hydrocarbon-substituted benzaldehyde.

本発明により、脂肪族炭化水素置換ベンズアルデヒド類の異性体混合物から経済的かつ高純度で特定の異性体を分離精製することが可能となる。混合物中の複数の異性体をそれぞれ高純度で製造したい場合、特に効果を発揮する。   The present invention makes it possible to separate and purify specific isomers economically and with high purity from isomer mixtures of aliphatic hydrocarbon-substituted benzaldehydes. This is particularly effective when it is desired to produce a plurality of isomers in a mixture with high purity.

脂肪族炭化水素置換ベンズアルデヒド異性体の分離により得られたクロマトグラフ(実施例1)Chromatograph obtained by separation of aliphatic hydrocarbon-substituted benzaldehyde isomers (Example 1) 脱着剤のハンセン溶解度パラメーターδと分離係数αの関係(実施例1および実施例4〜7)Relationship between Hansen solubility parameter δ of desorbent and separation factor α (Example 1 and Examples 4-7)

<脂肪族炭化水素置換ベンズアルデヒド類>
本発明の方法で分離できる脂肪族炭化水素置換ベンズアルデヒド類としては、アルデヒド基に対して、芳香環に置換された脂肪族炭化水素基がオルト体、メタ体、パラ体に位置する化合物であり、一般的にそれぞれ化学式(1)、(2)、(3)で示される化合物である。化学式(1)〜(3)中のXは化学式(4)で示される脂肪族炭化水素基であり、nは炭素数、mは不飽和度を示す。前記脂肪族炭化水素基としては、アルキル基、アルケニル基、アルキニル基を挙げることができる。前記脂肪族炭化水素基は鎖状でも環状でもよい。前記脂肪族炭化水素基は炭素数nが1〜6のものが好ましい。脂肪族炭化水素置換ベンズアルデヒド類としては、メチルベンズアルデヒド、エチルベンズアルデヒド、イソプロピルベンズアルデヒド、イソブチルベンズアルデヒド、t−ブチルベンズアルデヒド等の置換基Xの炭素数nが1〜4、不飽和度mが0のものが好ましい。さらに、n=3、m=0のものが好ましく、特にイソプロピルベンズアルデヒドが好ましい。
<Aliphatic hydrocarbon-substituted benzaldehydes>
Aliphatic hydrocarbon-substituted benzaldehydes that can be separated by the method of the present invention are compounds in which an aliphatic hydrocarbon group substituted with an aromatic ring is located in an ortho, meta, or para isomer with respect to an aldehyde group, Generally, they are compounds represented by chemical formulas (1), (2), and (3), respectively. X in the chemical formulas (1) to (3) is an aliphatic hydrocarbon group represented by the chemical formula (4), n is the number of carbon atoms, and m is the degree of unsaturation. Examples of the aliphatic hydrocarbon group include an alkyl group, an alkenyl group, and an alkynyl group. The aliphatic hydrocarbon group may be linear or cyclic. The aliphatic hydrocarbon group preferably has 1 to 6 carbon atoms. As the aliphatic hydrocarbon-substituted benzaldehydes, those having a substituent group X such as methylbenzaldehyde, ethylbenzaldehyde, isopropylbenzaldehyde, isobutylbenzaldehyde, t-butylbenzaldehyde, etc., having 1 to 4 carbon atoms and 0 unsaturated degree m are preferable. . Further, n = 3 and m = 0 are preferable, and isopropylbenzaldehyde is particularly preferable.

Figure 2018024607
Figure 2018024607

Figure 2018024607
Figure 2018024607

Figure 2018024607
Figure 2018024607

Figure 2018024607
化学式(1)〜(3)における、脂肪族炭化水素基以外の置換基R1、R2、R3、R4、R5については特に制限はないが、好ましくは、酸素や窒素などのヘテロ原子を含まないものが良く、さらに好ましくはR1〜R5が水素が良い。
Figure 2018024607
In the chemical formulas (1) to (3), the substituents R 1 , R 2 , R 3 , R 4 , and R 5 other than the aliphatic hydrocarbon group are not particularly limited, but are preferably heterogeneous such as oxygen and nitrogen. What does not contain an atom is good, More preferably, R < 1 > -R < 5 > is hydrogen.

また脂肪族炭化水素基の置換基の数については特に制限はないが、好ましくは脂肪族炭化水素基が一つのものが良い。
本発明では、脂肪族炭化水素置換ベンズアルデヒド類のオルト体、メタ体、パラ体の異性体の内、2成分以上含む混合物を分離することができる。
The number of substituents on the aliphatic hydrocarbon group is not particularly limited, but preferably one having one aliphatic hydrocarbon group.
In the present invention, a mixture containing two or more components among ortho, meta, and para isomers of aliphatic hydrocarbon-substituted benzaldehydes can be separated.

<吸着剤>
本発明の方法で用いる吸着剤は、フォージャサイト型ゼオライトである。フォージャサイト型ゼオライトにはX型とY型があり、カチオンがNa型の場合の単位組成はNanAlnSi192-n384であり、一般的にnが48〜76をY型、nが77〜96をX型と呼ぶ。ゼオライトのカチオンとしてはカリウムを含んでいれば良く、カリウム以外のカチオンとしてメンデレーエフの周期表に示される1族、2族の原子が1種以上含まれていても良い。
<Adsorbent>
The adsorbent used in the method of the present invention is a faujasite type zeolite. There are X-type and Y-type faujasite-type zeolites. When the cation is Na-type, the unit composition is Na n Al n Si 192-n O 384 , and generally n is 48-76 in Y-type, An n of 77 to 96 is called an X type. The cation of the zeolite only needs to contain potassium, and as a cation other than potassium, one or more atoms of groups 1 and 2 shown in the Mendeleev periodic table may be included.

本発明に係るフォージャサイト型ゼオライトを含む吸着剤の形状は特に制限はなく、粉末状や、ゼオライトを柱状、球状などに成形したものも使用できるが、形状は装置サイズによる圧壊や粉化の有無、原料や脱着剤を通液したときの圧損や偏流を考慮して適宜選択できる。また、成型されたゼオライトを使用する場合は、ゼオライトを成型する時に一般的に使用される粘土やアルミナを含んでいてもよく、バインダレスと呼ばれるゼオライト自体で成型したものを含んでいても良い。成型されたゼオライトを用いる場合、その粒径は特に制限はないが、原料や脱着剤の通液量により適宜決定するのが好ましい。例えば、原料や脱着剤を吸着剤が充填されたカラムに通液する際、通液速度に対して粒径が小さすぎると、液が流れにくくなり装置内の圧力が上昇する。逆に粒径が大きすぎる場合は、圧壊や粉化の懸念があり、また吸着剤を充填した際の空隙が大きくなり装置サイズ大きくなる傾向にあるため好ましくない。また粒径もできるだけ揃っていた方が好く、粒径分布が広すぎる場合は原料や脱着剤が編流する可能性があり、良好な分離が得られない。   The shape of the adsorbent containing the faujasite-type zeolite according to the present invention is not particularly limited, and it can be used in the form of powder or zeolite formed into a columnar shape or a spherical shape. It can be appropriately selected in consideration of presence / absence, pressure loss or drift when the raw material or desorbent is passed. Moreover, when using the shape | molded zeolite, the clay and alumina generally used when shape | molding a zeolite may be included, and what was shape | molded by the zeolite itself called binderless may be included. In the case of using a molded zeolite, the particle size is not particularly limited, but it is preferable to appropriately determine the particle size depending on the raw material and the amount of the desorbent passing therethrough. For example, when a raw material or a desorbent is passed through a column filled with an adsorbent, if the particle size is too small with respect to the flow rate, the liquid will hardly flow and the pressure in the apparatus will increase. Conversely, when the particle size is too large, there is a concern of crushing or pulverization, and there is a tendency that the gap when the adsorbent is filled becomes larger and the apparatus size tends to be larger, which is not preferable. Further, it is preferable that the particle diameters are as uniform as possible. If the particle size distribution is too wide, the raw materials and the desorbent may be knitted, and good separation cannot be obtained.

また、使用されるフォージャサイト型ゼオライトを含む吸着剤には水を含んでいてもよいが、水分は分離性能に影響を与えるため、分離処理中の水分量は常時把握しておいた方が好ましい。   In addition, the adsorbent containing faujasite-type zeolite used may contain water, but since moisture affects the separation performance, it is better to always know the amount of moisture during the separation process. preferable.

<脱着剤>
本発明の分離方法で用いる脱着剤に特に制限はないが、フォージャサイト型ゼオライトを含む吸着剤に吸着された脂肪族炭化水素置換ベンズアルデヒド類を液相へ溶解できる適度な極性を持つ溶媒が良い。
<Desorption agent>
The desorbent used in the separation method of the present invention is not particularly limited, but a solvent having an appropriate polarity capable of dissolving the aliphatic hydrocarbon-substituted benzaldehyde adsorbed on the adsorbent containing faujasite type zeolite in the liquid phase is preferable. .

脱着剤は特に制限されるものではないが、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素、アセトン、ジエチルケトン、メチルエチルケトン、メチルイソブチルケトン(MIBK)、シクロヘキサノン等のケトン類、エタノール、2−プロパノール、1−ブタノール、2-ブタノール、t-ブチルアルコール、1-ペンタノール、2-ペンタノール、
1-オクタノール、2-オクタノール、ベンジルアルコール等のアルコール類、ジエチルエーテル、イソプロピルエーテル、1,4−ジオキサン、テトラヒドロフラン(THF)、アニソール等のエーテル類、アセトニトリル、ベンゾニトリル等のニトリル類、酢酸エチル、エチレンカーボネート等のエステル類、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)等の非プロトン性高極性溶媒を挙げることができる。
The desorbing agent is not particularly limited, and examples thereof include aromatic hydrocarbons such as benzene, toluene and xylene, ketones such as acetone, diethyl ketone, methyl ethyl ketone, methyl isobutyl ketone (MIBK), cyclohexanone, ethanol, 2- Propanol, 1-butanol, 2-butanol, t-butyl alcohol, 1-pentanol, 2-pentanol,
Alcohols such as 1-octanol, 2-octanol, benzyl alcohol, diethyl ether, isopropyl ether, 1,4-dioxane, tetrahydrofuran (THF), ethers such as anisole, nitriles such as acetonitrile and benzonitrile, ethyl acetate, Examples include esters such as ethylene carbonate, and aprotic highly polar solvents such as dimethylformamide (DMF) and dimethyl sulfoxide (DMSO).

中でも、脂肪族アルコール類が含まれる溶媒が好ましく、より好ましくは炭素数が4から8の脂肪族アルコールであり、さらに好ましくは、1-ブタノールである。
溶媒の極性を表す指標として数式(1)で示されるハンセン溶解度パラメーターδがある。
Among them, a solvent containing an aliphatic alcohol is preferable, an aliphatic alcohol having 4 to 8 carbon atoms is more preferable, and 1-butanol is more preferable.
As an index representing the polarity of the solvent, there is a Hansen solubility parameter δ represented by the formula (1).

脱着剤としては、ハンセン溶解度パラメーターδが18以上、30以下の範囲が好ましく、より好ましくは19以上、27以下の範囲、さらに好ましくは19.6以上、23.6以下の範囲の値を示す溶媒である。またハンセン溶解度パラメーターが前述の範囲の値を示す、2成分あるいは3成分以上の混合溶媒も使用できる。   The desorbent is a solvent having a Hansen solubility parameter δ in the range of 18 or more and 30 or less, more preferably in the range of 19 or more and 27 or less, and still more preferably in the range of 19.6 or more and 23.6 or less. Also, a mixed solvent of two components or three or more components having a Hansen solubility parameter in the above range can be used.

なお、数式(1)中のδd、δpおよびδhは、ハンセン溶解度パラメーターにおける脱着剤の分散項、極性項および水素結合項をそれぞれ示し、単位はいずれもMPa1/2である。 In the formula (1), δ d , δ p and δ h represent the desorption agent dispersion term, polar term and hydrogen bond term in the Hansen solubility parameter, respectively, and the unit is MPa 1/2 .

Figure 2018024607
Figure 2018024607

<脂肪族炭化水素置換ベンズアルデヒド類の分離方法>
本発明の脂肪族炭化水素置換ベンズアルデヒド類の分離方法は、吸着剤と脱着剤を用いて、前記少なくとも2種の異性体を含む脂肪族炭化水素置換ベンズアルデヒド類の混合物からそれぞれの異性体を分離する方法であって、吸着剤がカリウムを含有するフォージャサイト型ゼオライトを含む吸着剤であることを特徴とする脂肪族炭化水素置換ベンズアルデヒド類の異性体の分離方法である。
<Method for separating aliphatic hydrocarbon-substituted benzaldehydes>
The method for separating aliphatic hydrocarbon-substituted benzaldehydes of the present invention separates each isomer from a mixture of aliphatic hydrocarbon-substituted benzaldehydes containing at least two isomers using an adsorbent and a desorbent. A method for separating isomers of aliphatic hydrocarbon-substituted benzaldehydes, characterized in that the adsorbent is an adsorbent containing faujasite-type zeolite containing potassium.

本発明の分離方法に用いる脂肪族炭化水素置換ベンズアルデヒド類(以下、「原料」と呼称する場合がある。)としては、上記異性体の混合物に限らず、脂肪族炭化水素置換ベンズアルデヒド類を合成した際の反応液や、製造の過程で蒸留、ろ過、晶析工程などから回収される液でもよい。また、製造工程から不要物として処理される廃液から脂肪族炭化水素置換ベンズアルデヒド類の異性体を回収する目的で使用することも可能である。   The aliphatic hydrocarbon-substituted benzaldehydes used in the separation method of the present invention (hereinafter sometimes referred to as “raw materials”) are not limited to the mixture of isomers described above, and aliphatic hydrocarbon-substituted benzaldehydes were synthesized. It may be a reaction solution at the time, or a liquid recovered from distillation, filtration, crystallization process, etc. in the course of production. Moreover, it can also be used for the purpose of recovering isomers of aliphatic hydrocarbon-substituted benzaldehydes from waste liquids that are treated as unnecessary substances from the production process.

上記異性体の混合物に、分離目的物である脂肪族炭化水素置換ベンズアルデヒド類の異性体以外の吸着剤に強く吸着される成分を含む場合は、その含量が多い場合、処理量に影響を与え、分離性能の低下、あるいはフォージャサイト型ゼオライトを含む吸着剤の早期の劣化を招くため、少ないほど良い。そのため、適宜、前処理を行いそれらの不純物を除去した原料を用いる方がよい。前処理の方法は不純物が除去できればなんでも良く、例えば、蒸留、ろ過、晶析、吸着、膜分離、電気透析などがあげられる。   When the mixture of isomers contains a component that is strongly adsorbed by an adsorbent other than the isomers of the aliphatic hydrocarbon-substituted benzaldehydes that are separation targets, if the content is large, the amount of treatment is affected. The lower the better, the lower the separation performance or the early deterioration of the adsorbent containing faujasite type zeolite. For this reason, it is better to use a raw material from which impurities have been removed by pretreatment as appropriate. Any pretreatment method may be used as long as impurities can be removed. Examples thereof include distillation, filtration, crystallization, adsorption, membrane separation, and electrodialysis.

上記原料中の脂肪族炭化水素置換ベンズアルデヒド類の濃度が高すぎる場合やフォージャサイト型ゼオライトを含む吸着剤の使用量が少ない場合は、フォージャサイト型ゼオライトを含む吸着剤の飽和吸着量を超えてしまい、良好な分離性能が得られないことがある。その場合は原料を、フォージャサイト型ゼオライトを含む吸着剤に接触させる前に、適当な溶媒で希釈し濃度を調整することが好ましい。その際の希釈後の脂肪族炭化水素置換ベンズアルデヒド類の濃度は特に制限はないが、事前に破過試験などを行い、用いるフォージャサイト型ゼオライトを含む吸着剤の飽和吸着量を把握するか、または、実際に濃度を変えた原料を使用しクロマト分離試験を行い、分離性能を確認することで最適な濃度を把握することが好ましい。その際、目的の生産量を達成するために、希釈剤の使用量やフォージャサイト型ゼオライトを含む吸着剤量などから経済性を考慮して濃度を決定できる。また、希釈する溶媒は特に制限はないが、脱着剤と同じ溶媒を使用することが、分離成績や経済性、製造時の運転管理の面から好ましい。   If the concentration of aliphatic hydrocarbon-substituted benzaldehydes in the raw material is too high or if the amount of adsorbent containing faujasite type zeolite is low, the amount of adsorbent containing faujasite type zeolite will exceed the saturated adsorption amount. Therefore, good separation performance may not be obtained. In that case, it is preferable to adjust the concentration by diluting the raw material with an appropriate solvent before contacting the raw material with the adsorbent containing faujasite type zeolite. The concentration of the aliphatic hydrocarbon-substituted benzaldehydes after dilution at that time is not particularly limited, but a breakthrough test or the like is performed in advance, and the saturated adsorption amount of the adsorbent containing the faujasite type zeolite to be used is grasped. Alternatively, it is preferable to grasp the optimum concentration by performing a chromatographic separation test using raw materials actually having different concentrations and confirming the separation performance. At that time, in order to achieve the target production amount, the concentration can be determined in consideration of economic efficiency from the amount of diluent used and the amount of adsorbent containing faujasite type zeolite. Further, the solvent to be diluted is not particularly limited, but it is preferable to use the same solvent as the desorbent from the viewpoints of separation results, economic efficiency, and operation management during production.

本発明におけるフォージャサイト型ゼオライトを含む吸着剤の使用量は、原料中に含まれる脂肪族炭化水素置換ベンズアルデヒド類の量に対して決定され、具体的には、脂肪族炭化水素置換ベンズアルデヒド類を十分吸着できる量であればよい。その量はあらかじめ実際に用いるフォージャサイト型ゼオライトを含む吸着剤を用いて破過試験を行うことで、吸着剤の飽和吸着量を測定するか、実際に濃度を変えた原料を使用しクロマト分離試験を行い、分離性能を確認することで最適な吸着剤の量を決めることができる。   The amount of the adsorbent containing faujasite-type zeolite in the present invention is determined with respect to the amount of aliphatic hydrocarbon-substituted benzaldehydes contained in the raw material, specifically, the aliphatic hydrocarbon-substituted benzaldehydes are Any amount that can be sufficiently adsorbed is acceptable. The amount is determined by performing a breakthrough test using an adsorbent containing faujasite-type zeolite that is actually used in advance to measure the saturated adsorption amount of the adsorbent, or by using a raw material with actually changed concentration. An optimal amount of adsorbent can be determined by conducting a test and confirming the separation performance.

本発明におけるクロマト分離の条件の温度について制限はないが、脂肪族炭化水素置換ベンズアルデヒド類が熱で変性しない、分解しない、脱着剤が気化しない、脂肪族炭化水素置換ベンズアルデヒド類や脱着剤が凝固しない、脱着剤への溶解度が低下しすぎない範囲で適用可能である。具体的には10〜150℃の範囲で実施することが好ましく、30〜100℃の範囲で実施することがより好ましい。   The temperature of the chromatographic separation conditions in the present invention is not limited, but the aliphatic hydrocarbon-substituted benzaldehydes are not denatured by heat, do not decompose, the desorbent does not vaporize, and the aliphatic hydrocarbon-substituted benzaldehydes and desorbent do not coagulate. In addition, the present invention can be applied as long as the solubility in the desorbent does not decrease too much. Specifically, it is preferably carried out in the range of 10 to 150 ° C, more preferably in the range of 30 to 100 ° C.

本発明の分離方法における圧力について特に制限はないが、脱着剤や脂肪族炭化水素置換ベンズアルデヒド類の沸点以上で行う場合は、気化しない蒸気圧以上の圧力で行う必要がある。   Although there is no restriction | limiting in particular about the pressure in the separation method of this invention, When performing above the boiling point of a desorbent or aliphatic hydrocarbon substituted benzaldehyde, it is necessary to carry out at the pressure more than the vapor pressure which does not vaporize.

本発明における脱着剤の流速は特に制限はないが、目的とする生産量および分離後の異性体の純度、収率を達成できるよう、原料の処理量や装置サイズを考慮して最適な流速を決定できる。   The flow rate of the desorbent in the present invention is not particularly limited, but an optimal flow rate is considered in consideration of the raw material throughput and the apparatus size so that the target production amount and the purity and yield of the isomer after separation can be achieved. Can be determined.

本発明の分離方法の形式は、回分式、連続式でもよく、回分式の場合は分離時間の経過に合わせて脱着剤の組成を変えるグラジエント法と一般的に呼ばれる方法も使用できる。連続式の場合は擬似移動層式クロマト分離にも適用できる。   The separation method of the present invention may be a batch method or a continuous method. In the case of a batch method, a method generally called a gradient method in which the composition of the desorbent is changed as the separation time elapses can be used. In the case of the continuous type, it can also be applied to pseudo moving bed type chromatographic separation.

フォージャサイト型ゼオライトを含む吸着剤を充填する装置の形状は、回分式および擬似移動層式においてはカラム型のものが好ましいが、吸着剤を固相として固定できる形状なら特に制限はない。   The shape of the apparatus for filling the adsorbent containing faujasite-type zeolite is preferably a column type in the batch type and simulated moving bed type, but is not particularly limited as long as the adsorbent can be fixed as a solid phase.

フォージャサイト型ゼオライトを含む吸着剤を充填する装置の材質について制限はなく、分離の際の温度、圧力、使用する物質の薬品耐性を考慮して金属製、樹脂製、ガラス製、その他内面に特殊なコーティングを施した材質から適宜選択し使用できる。   There are no restrictions on the material of the device filled with the adsorbent containing faujasite-type zeolite, and it is made of metal, resin, glass, and other inner surfaces in consideration of the temperature, pressure, and chemical resistance of the substances used. It can be used by appropriately selecting from materials with special coating.

フォージャサイト型ゼオライトを含む吸着剤からの流出液中の脂肪族炭化水素置換ベンズアルデヒド類の異性体の純度を確認するために、適宜、サンプル採取し分析してもよいが、オンライン分析装置を設けることで、時間のロスなく組成を把握でき、目的の異性体の純度が高い流出液のみを回収することができる。この時の分析方法は目的の異性体の組成が分析できれば何でも良く、例えばガスクロマトグラフィーや液体クロマトグラフィー、IR、UV吸収を利用した分析方法がある。   To confirm the purity of the isomers of aliphatic hydrocarbon-substituted benzaldehydes in the effluent from the adsorbent containing faujasite-type zeolite, samples may be collected and analyzed as appropriate, but an on-line analyzer will be provided. Thus, the composition can be grasped without time loss, and only the effluent having a high purity of the target isomer can be recovered. Any analysis method may be used as long as the composition of the target isomer can be analyzed. For example, there are analysis methods using gas chromatography, liquid chromatography, IR, and UV absorption.

分離された脂肪族炭化水素置換ベンズアルデヒド類の異性体を含む流出液から脱着剤を除去する方法は、一般的な方法でよく、蒸留、晶析、抽出、吸着、膜分離などがあり、異性体および脱着剤の沸点、融点などの物性から経済性に見合う方法を適宜選択し使用することが好ましい。   The method for removing the desorbent from the effluent containing the isomers of the separated aliphatic hydrocarbon-substituted benzaldehydes may be a general method, such as distillation, crystallization, extraction, adsorption, membrane separation, etc. In addition, it is preferable to select and use a method that suits the economy from the physical properties such as boiling point and melting point of the desorbent.

流出液のうち目的の脂肪族炭化水素置換ベンズアルデヒド類の異性体が分離できず、両成分が含まれる液は回収し、蒸留などで濃縮するなどした後、原料として再利用することもできる。これにより、収率を損なうことなく、脂肪族炭化水素置換ベンズアルデヒド類の異性体の分離精製を行うことができる。   The isomers of the desired aliphatic hydrocarbon-substituted benzaldehydes cannot be separated from the effluent, and the liquid containing both components can be recovered, concentrated by distillation, etc., and reused as a raw material. Thereby, separation and purification of isomers of aliphatic hydrocarbon-substituted benzaldehydes can be performed without impairing the yield.

流出液のうち脂肪族炭化水素置換ベンズアルデヒド類の異性体を含まない部分は、適宜回収し、蒸留などにより不純物の除去処理をしたのち、再び脱着剤として使用することができる。このとき、異性体を含む留出液から除去した脱着剤も合わせて使用することもできる。これにより脱着剤のロスを減らし、新たに使用する脱着剤の量を減らすことができ、経済的に有利になる。   The portion of the effluent that does not contain the isomers of the aliphatic hydrocarbon-substituted benzaldehydes can be recovered as appropriate, treated for impurities by distillation, and then used again as a desorbent. At this time, the desorbent removed from the distillate containing the isomer can also be used. Thereby, the loss of the desorbent can be reduced, and the amount of the desorbent to be newly used can be reduced, which is economically advantageous.

本発明の方法ではフォージャサイト型ゼオライトを含む吸着材を繰り返し利用が可能であるが、繰り返し使用によりフォージャサイト型ゼオライトを含む吸着剤の劣化により分離性能が低下した場合は、吸着剤の全量または一部を新しい吸着剤に入れ替えることができる。また劣化が原料に含まれる不純物や水分の吸着による場合は、焼成または窒素流通などにより、不純物や水分を除去したのち再び使用できる。焼成する場合の温度はゼオライトの結晶構造が壊れない程度で行い、100〜600℃の範囲が好ましく、300〜500℃の範囲がより好ましい。   In the method of the present invention, an adsorbent containing faujasite type zeolite can be used repeatedly, but if the separation performance is reduced due to deterioration of the adsorbent containing faujasite type zeolite by repeated use, the total amount of adsorbent Or a part can be replaced with a new adsorbent. If the deterioration is due to the adsorption of impurities and moisture contained in the raw material, they can be used again after removing the impurities and moisture by firing or nitrogen circulation. The temperature for calcination is such that the crystal structure of the zeolite is not broken, and is preferably in the range of 100 to 600 ° C, more preferably in the range of 300 to 500 ° C.

本発明分離方法で分離して得られた脂肪族炭化水素置換ベンズアルデヒド類の異性体の用途は特に制限はなく、医薬品や農薬、香料の合成原料あるいは香料、医薬品などにも使用できる。用途によっては純度をさらに上げる必要がある場合は、分離後得られた異性体をさらに蒸留、晶析、抽出、吸着、膜分離などを行ってもよく、再度別の異性体あるいは不純物を分離するためにクロマト分離を行ってもよい。   The use of the isomers of the aliphatic hydrocarbon-substituted benzaldehydes obtained by separation according to the separation method of the present invention is not particularly limited, and can be used for pharmaceuticals, agricultural chemicals, synthetic raw materials for fragrances, fragrances, pharmaceuticals and the like. If it is necessary to further increase the purity depending on the application, the isomer obtained after separation may be further distilled, crystallized, extracted, adsorbed, membrane separated, etc., and another isomer or impurity is separated again. Therefore, chromatographic separation may be performed.

以下、本発明を実施例によって説明するが、これらの実施例によって限定されるものではない。例中の%、濃度、量比は特にことわりがない限り、重量基準である。
また、以下の実施例において、脂肪族炭化水素置換ベンズアルデヒド類の異性体の分離性能を表す指標として、分離係数αを用いた。
EXAMPLES Hereinafter, although an Example demonstrates this invention, it is not limited by these Examples. Unless otherwise specified,%, concentration, and quantity ratio in the examples are based on weight.
In the following examples, the separation factor α was used as an index representing the separation performance of isomers of aliphatic hydrocarbon-substituted benzaldehydes.

分離係数αは脂肪族炭化水素置換ベンズアルデヒド類の異性体であるメタ体、パラ体に対する分離選択性を示し、α>1であれば両成分の分離が可能となる。
本発明の分離方法で、実施例中のαは数式(2)にて計算した。なお以下の数式中の添え字m, p, 0はそれぞれ成分メタ体、パラ体、基準物質を示す。
The separation coefficient α indicates separation selectivity with respect to the meta-isomer and para-isomer, which are isomers of aliphatic hydrocarbon-substituted benzaldehydes. If α> 1, both components can be separated.
In the separation method of the present invention, α in the examples was calculated by Equation (2). Note that the subscripts m, p, and 0 in the following formulas indicate the component meta body, para body, and reference material, respectively.

Figure 2018024607
数式(2)のk' p、k' mはキャパシティーファクターであり、分離対象成分の平均滞留時間tおよび基準物質の平均滞留時間t0から数式(3a)、(3b)より算出した。なおtおよびt0の単位はminである。
Figure 2018024607
K p and k m in Equation (2) are capacity factors, and were calculated from Equations (3a) and (3b) from the average residence time t of the component to be separated and the average residence time t 0 of the reference substance. The unit of t and t 0 is min.

Figure 2018024607
各成分の平均滞留時間tm, tp, t0は数式(4a)、(4b)、(4c)で定義される規格化された1次絶対モーメントで与えられ、実施例で分画回収された流出液の組成分析値から台形公式により算出した。
Figure 2018024607
The average residence time t m , t p , t 0 of each component is given by the normalized first-order absolute moment defined by the mathematical expressions (4a), (4b), (4c), and fractionated and recovered in the examples. It was calculated by the trapezoid formula from the composition analysis value of the effluent.

Figure 2018024607
なお、数式(4a)〜(4c)中のC(Z,t)は時間tにおける成分濃度であり、Zはカラム長を示す。
上記の数式(2)から(4)は、下記の文献に記載のものを参考にした。
「クロマト分離工学」、橋本健治 編著、培風館、2005年
Figure 2018024607
In the equations (4a) to (4c), C (Z, t) is the component concentration at time t, and Z indicates the column length.
The above formulas (2) to (4) were referred to those described in the following documents.
"Chromatophoretic separation engineering", edited by Kenji Hashimoto, Baifukan, 2005

〔実施例1〕
〈カリウムY型ゼオライトの作製〉
市販のナトリウムY型ゼオライトの成型体を粉砕後、ふるいにて分級し、メッシュサイズが16〜26(JIS)の粉砕ゼオライトを得た。
[Example 1]
<Preparation of potassium Y-type zeolite>
A commercially available molded product of sodium Y-type zeolite was pulverized and classified with a sieve to obtain a pulverized zeolite having a mesh size of 16 to 26 (JIS).

粉砕ゼオライト 47 gに1 mol/L塩化カリウム水溶液をゼオライト1 gに対して20 mLになるように加え、25℃で4時間攪拌した後、水溶液を取り除き、イオン交換水にて洗浄し過剰の塩を取り除いた。この操作を合計4回行った。水洗後ゼオライトを70℃で2時間真空乾燥した後、電気炉にて500℃で4時間乾燥を行いカリウムY型ゼオライト 40 gを得た。このゼオライトを元素分析にて分析した結果、処理前のナトリウムに対するカリウムのモル基準の交換率は94%であった。   Add 1 mol / L potassium chloride aqueous solution to 47 g of pulverized zeolite to 20 mL with respect to 1 g of zeolite, stir at 25 ° C for 4 hours, remove the aqueous solution, wash with ion-exchanged water, and remove excess salt. Removed. This operation was performed 4 times in total. After washing with water, the zeolite was vacuum dried at 70 ° C. for 2 hours and then dried at 500 ° C. for 4 hours in an electric furnace to obtain 40 g of potassium Y-type zeolite. As a result of elemental analysis of this zeolite, the exchange rate based on molar ratio of potassium to sodium before treatment was 94%.

〈イソプロピルベンズアルデヒド異性体の分離〉
前記方法で作製したカリウムY型ゼオライトをステンレス製カラム(8mmφ×16cm)に乾式充填し、恒温槽内で60℃に加温しながら、1-ブタノールを0.8 mL/minにて通液し、カラムの脱気を行った。次にメタ体/パラ体の比が55 / 45であるイソプロピルベンズアルデヒドが20%含まれる1-ブタノール溶液を原料溶液としてカラム上部より0.8 mL/minで4分間通液した後、脱着剤として1-ブタノールを0.8 mL/minで通液しながら、カラム流出液を1分間隔で分画回収した。この間、恒温槽内の温度は60℃に保った。
<Separation of Isopropylbenzaldehyde Isomers>
The potassium Y-type zeolite prepared by the above method is dry-packed into a stainless steel column (8mmφ × 16cm), and 1-butanol is passed through the column at 0.8 mL / min while heating to 60 ° C in a constant temperature bath. Was degassed. Next, a 1-butanol solution containing 20% isopropylbenzaldehyde with a meta / para ratio of 55/45 was passed as a raw material solution at 0.8 mL / min from the top of the column for 4 minutes, and then 1- The column effluent was fractionated and collected at 1-minute intervals while butanol was passed at 0.8 mL / min. During this time, the temperature in the thermostat was kept at 60 ° C.

回収した流出液をガスクロマトグラフィーで分析し、通液倍率(BV、カラム容量に対する通液量の体積比)に対するイソプロピルベンズアルデヒド異性体の濃度をプロットして作成したクロマトグラムを図1に示す。なお、原料溶液には基準物質としてノナンを6%添加しており、そのクロマトグラムも合わせて図1に示す。
実施例1の方法で得られた分離性能を算出した結果、メタ体、パラ体の分離係数(α)は5.4であった。
The collected effluent is analyzed by gas chromatography, and a chromatogram prepared by plotting the concentration of isopropylbenzaldehyde isomer against the flow rate (BV, volume ratio of flow rate to column volume) is shown in FIG. Note that 6% nonane was added to the raw material solution as a reference substance, and the chromatogram thereof is also shown in FIG.
As a result of calculating the separation performance obtained by the method of Example 1, the separation factor (α) of the meta and para isomers was 5.4.

〔実施例2〕
実施例1の恒温槽内の温度を80℃に変更する以外は実施例1と同様に行い、イソプロピルベンズアルデヒド異性体をメタ体とパラ体に分離した。得られた分離係数(α)は5.4であった。
[Example 2]
The isopropyl benzaldehyde isomer was separated into a meta isomer and a para isomer in the same manner as in Example 1 except that the temperature in the thermostatic chamber of Example 1 was changed to 80 ° C. The obtained separation factor (α) was 5.4.

〔実施例3〕
〈バリウム−カリウムY型ゼオライトの作製〉
実施例1で得られたカリウムY型ゼオライト12 gに0.5 mol/L塩化バリウム水溶液をゼオライト1 gに対して20 mLになるように加え、80℃で4時間攪拌した後、水溶液を取り除いた。その後、イオン交換水にて洗浄し過剰の塩を取り除き、70℃で2時間真空乾燥した後、電気炉にて500℃で4時間乾燥を行い、バリウム−カリウムY型ゼオライト 13 gを得た。このゼオライトを元素分析にて分析した結果、交換後のバリウム/カリウムのモル比は1.0であった。
Example 3
<Preparation of barium-potassium Y-type zeolite>
A 0.5 mol / L barium chloride aqueous solution was added to 12 g of the potassium Y-type zeolite obtained in Example 1 so as to be 20 mL with respect to 1 g of zeolite, and stirred at 80 ° C. for 4 hours, and then the aqueous solution was removed. Thereafter, the excess salt was removed by washing with ion-exchanged water, vacuum-dried at 70 ° C. for 2 hours, and then dried at 500 ° C. for 4 hours in an electric furnace to obtain 13 g of barium-potassium Y-type zeolite. As a result of elemental analysis of the zeolite, the molar ratio of barium / potassium after exchange was 1.0.

〈イソプロピルベンズアルデヒド異性体の分離〉
前記方法で得られたバリウム−カリウムY型ゼオライトを吸着材に用いる以外は実施例1と同様に行い、イソプロピルベンズアルデヒド異性体をメタ体とパラ体に分離した。得られた分離係数(α)は3.9であった。
<Separation of Isopropylbenzaldehyde Isomers>
The isopropylbenzaldehyde isomer was separated into a meta isomer and a para isomer in the same manner as in Example 1 except that the barium-potassium Y-type zeolite obtained by the above method was used as an adsorbent. The obtained separation factor (α) was 3.9.

〔比較例1、2〕
実施例1で用いたカリウムY型ゼオライトからなる吸着剤に替えて、ナトリウムY型ゼオライト(Na-Y型)またはカリウムL型ゼオライト(K-L型)を用いた以外は実施例1と同様に行い、イソプロピルベンズアルデヒド異性体をメタ体とパラ体に分離した。
それぞれの分離係数(α)を表1に示す。なお吸着剤は市販のゼオライト成型体を粉砕後、分級しメッシュサイズ16〜26で回収された粉砕ゼオライトを用いた。
[Comparative Examples 1 and 2]
The same procedure as in Example 1 was performed except that sodium Y zeolite (Na-Y type) or potassium L zeolite (KL type) was used instead of the adsorbent composed of potassium Y zeolite used in Example 1. Isopropylbenzaldehyde isomers were separated into meta and para isomers.
The respective separation factors (α) are shown in Table 1. The adsorbent used was a crushed zeolite recovered after pulverization of a commercially available zeolite compact and classification with a mesh size of 16 to 26.

Figure 2018024607
Figure 2018024607

〔実施例4〜7〕
実施例1で用いた1-ブタノールからなる脱着剤に替えて、表2に示す脱着剤を用いる以外は実施例1と同様に行い、イソプロピルベンズアルデヒド異性体をメタ体とパラ体に分離した。得られた分離係数(α)を表2に示す。
[Examples 4 to 7]
The isopropyl benzaldehyde isomer was separated into a meta isomer and a para isomer in the same manner as in Example 1 except that the desorbent shown in Table 2 was used instead of the desorbent composed of 1-butanol used in Example 1. The obtained separation factor (α) is shown in Table 2.

なお表2中のハンセン溶解度パラメーターδは数式(1)より下記の数値を用い算出した。これらの計算元となった数値および計算方法は、下記に示す文献に記載のものを使用した。
1-ブタノール:(δd, δp、δh) = (16.0、5.7、15.8)
エタノール:(δd, δp、δh) = (15.8、8.8、19.4)
2-プロパノール:(δd, δp、δh) = (15.8、6.1、16.4)
シクロヘキサノン:(δd, δσp、δh) = (17.8、6.3、5.1)
トルエン:(δd, δp、δσh) = (18.0、1.4、2.0)
C. M. Hansen, "Hansen Solubility Parameters: a user handbook", CRC Press, 2000.
The Hansen solubility parameter δ in Table 2 was calculated from the formula (1) using the following numerical values. The numerical values and calculation methods used for these calculation sources were those described in the following literature.
1-butanol: (δ d , δ p , δ h ) = (16.0, 5.7, 15.8)
Ethanol: (δ d , δ p , δ h ) = (15.8, 8.8, 19.4)
2-propanol: (δ d , δ p , δ h ) = (15.8, 6.1, 16.4)
Cyclohexanone: (δ d , δσ p , δ h ) = (17.8, 6.3, 5.1)
Toluene: (δ d , δ p , δσ h ) = (18.0, 1.4, 2.0)
CM Hansen, "Hansen Solubility Parameters: a user handbook", CRC Press, 2000.

Figure 2018024607
Figure 2018024607

図2に実施例1および実施例4〜7における、ハンセン溶解度パラメーターδと分離係数αの関係を示す。図2から脱着剤のハンセン溶解度パラメーターのδの値は良好な分離を達成するために最適な範囲があることが分かる。   FIG. 2 shows the relationship between the Hansen solubility parameter δ and the separation factor α in Example 1 and Examples 4-7. It can be seen from FIG. 2 that the value of the Hansen solubility parameter δ of the desorbent has an optimal range to achieve good separation.

本発明により、脂肪族炭化水素置換ベンズアルデヒド類の異性体を効率的に分離精製でき、それぞれの異性体を高純度で製造することが可能となるため、従来の分離方法では高純度で得ることができないことが原因で利用されてこなかった異性体も、医薬品、農薬、香料などの合成原料として活用することが可能となる。   According to the present invention, isomers of aliphatic hydrocarbon-substituted benzaldehydes can be efficiently separated and purified, and each isomer can be produced with high purity. Therefore, conventional separation methods can obtain high purity. Isomers that have not been used due to the inability to use can also be used as synthetic raw materials for pharmaceuticals, agricultural chemicals, and fragrances.

Claims (6)

吸着剤と脱着剤を用いて、少なくとも2種の異性体を含む脂肪族炭化水素置換ベンズアルデヒド類の混合物からそれぞれの異性体を分離する方法であって、吸着剤がカリウムを含有するフォージャサイト型ゼオライトを含む吸着剤であることを特徴とする脂肪族炭化水素置換ベンズアルデヒド類の異性体の分離方法。   A method for separating each isomer from a mixture of aliphatic hydrocarbon-substituted benzaldehydes containing at least two isomers using an adsorbent and a desorbent, wherein the adsorbent contains potassium A method for separating isomers of aliphatic hydrocarbon-substituted benzaldehydes, which is an adsorbent containing zeolite. 脱着剤が、数式(1)で示されるハンセン溶解度パラメーター(δ)が18MPa1/2以上、30MPa1/2以下の範囲を示す溶媒である請求項1記載の分離方法。
Figure 2018024607
数式(1)の、δd、δpおよびδhは、ハンセン溶解度パラメーターにおける溶媒の分散項、極性項および水素結合項をそれぞれ示し、単位はいずれもMPa1/2である。
Desorbent, Equation (1) Hansen solubility parameter represented by ([delta]) is 18 MPa 1/2 or more, the method of separation according to claim 1, wherein a solvent having a range of 30 MPa 1/2 or less.
Figure 2018024607
In Equation (1), δ d , δ p and δ h represent the solvent dispersion term, polar term and hydrogen bond term in the Hansen solubility parameter, respectively, and the unit is MPa 1/2 .
脱着剤がアルコールを含む溶媒である請求項1又は2記載の分離方法。   The separation method according to claim 1 or 2, wherein the desorbing agent is a solvent containing alcohol. アルコールがC4〜C8の脂肪族アルコールである請求項3記載の分離方法。   The separation method according to claim 3, wherein the alcohol is a C4-C8 aliphatic alcohol. 脂肪族炭化水素置換ベンズアルデヒド類がイソプロピルベンズアルデヒドである請求項1から4のいずれかに記載の分離方法。   The separation method according to any one of claims 1 to 4, wherein the aliphatic hydrocarbon-substituted benzaldehyde is isopropylbenzaldehyde. 脂肪族炭化水素置換ベンズアルデヒド類を製造する方法において、請求項1から5のいずれかに記載の分離方法を用いることを特徴とする脂肪族炭化水素置換ベンズアルデヒド類の製造方法。   A method for producing an aliphatic hydrocarbon-substituted benzaldehyde, wherein the separation method according to any one of claims 1 to 5 is used.
JP2016157358A 2016-08-10 2016-08-10 Separation method and production method of isomers of aliphatic hydrocarbon-substituted benzaldehydes Active JP6813986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016157358A JP6813986B2 (en) 2016-08-10 2016-08-10 Separation method and production method of isomers of aliphatic hydrocarbon-substituted benzaldehydes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016157358A JP6813986B2 (en) 2016-08-10 2016-08-10 Separation method and production method of isomers of aliphatic hydrocarbon-substituted benzaldehydes

Publications (2)

Publication Number Publication Date
JP2018024607A true JP2018024607A (en) 2018-02-15
JP6813986B2 JP6813986B2 (en) 2021-01-13

Family

ID=61193626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016157358A Active JP6813986B2 (en) 2016-08-10 2016-08-10 Separation method and production method of isomers of aliphatic hydrocarbon-substituted benzaldehydes

Country Status (1)

Country Link
JP (1) JP6813986B2 (en)

Also Published As

Publication number Publication date
JP6813986B2 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
FR2538379A1 (en) PROCESS FOR SEPARATING ISOMERS OF SUBSTITUTED BENZENE
RU2670962C2 (en) Method for separation of mixture of c8 aromatic compounds
KR102652080B1 (en) How to Dry HCFO-1233ZD
JP6813986B2 (en) Separation method and production method of isomers of aliphatic hydrocarbon-substituted benzaldehydes
RU2673663C2 (en) Method of separation of ethylbenzene
JP6998371B2 (en) Method for producing an aqueous solution of zinc halide
JPS61236735A (en) Selective separation of 2,6-dichlorotoluene
CN114262261A (en) Separation method of 2-methyl-3-butyne-2-ol crude product
JP6168934B2 (en) Treatment of wastewater streams generated during post-treatment of reaction mixtures containing triacetoneamine.
JP2021095412A (en) Purified product containing trans-1,2-difluoroethylene (hfo-1132(e)) and/or cis-1,2-difluoroethylene (hfo-1132(z)) and water
JP5017952B2 (en) Method for separating p-dichlorobenzene
US5143685A (en) Process for purification of ortho-chlorotoluene
JP4411711B2 (en) Method for producing halogenated aromatic isomers
JPS6115049B2 (en)
JPS632956A (en) Method for separating dichloronitrobenzene isomers
JP3807061B2 (en) Separation method of halogenated ethylbenzene isomers
JP2576725B2 (en) Method for separating 2,4-dichlorotoluene
JPH09316014A (en) Separation of 2,4-dichlorotoluene or 2,6-dichlorotoluene
JP2009084184A (en) Process for preparing 2,5-dichlorotoluene
JPS58131923A (en) Separation of chlorotoluene isomers
JPS61254535A (en) Method of desorbing dichlorotoluene
JPH06239808A (en) Separation of 2-methyl-3-nitrobenzotrifluoride
JP3879290B2 (en) Process for producing aromatic compounds
JP2002226406A (en) Method for producing 1,3,5-trimethylbenzene
JPH09316015A (en) Separation of 2,4-dichlorotoluene or 2,6dichlorotoluene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201218

R150 Certificate of patent or registration of utility model

Ref document number: 6813986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250