JP2018022614A - Fuel battery - Google Patents

Fuel battery Download PDF

Info

Publication number
JP2018022614A
JP2018022614A JP2016153313A JP2016153313A JP2018022614A JP 2018022614 A JP2018022614 A JP 2018022614A JP 2016153313 A JP2016153313 A JP 2016153313A JP 2016153313 A JP2016153313 A JP 2016153313A JP 2018022614 A JP2018022614 A JP 2018022614A
Authority
JP
Japan
Prior art keywords
gas
supply
discharge
fuel cell
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016153313A
Other languages
Japanese (ja)
Other versions
JP6679443B2 (en
Inventor
正之 勝野
Masayuki Katsuno
正之 勝野
米澤 諭
Satoshi Yonezawa
諭 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2016153313A priority Critical patent/JP6679443B2/en
Publication of JP2018022614A publication Critical patent/JP2018022614A/en
Application granted granted Critical
Publication of JP6679443B2 publication Critical patent/JP6679443B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a fuel battery that exhibits excellent power generation efficiency since it is able to supply gas to a membrane electrode assembly satisfactorily and, moreover, is able to hinder variation in gas concentration in the direction of inside of a face of an electrode catalyst layer.SOLUTION: In a separator 14 of a fuel battery 10, a gas supply passage 50 and a gas discharge passage 52 are alternately provided in parallel. The gas supply passage 50 is closed at one end and has a supply opening 54 for supplying gas at the other end. A plurality of supply holes 24 for discharging the gas supplied from the supply opening 54 are provided at predetermined intervals on a side wall facing a membrane electrode assembly 12. The gas discharge passage 52 is closed at one end and has a discharge opening 56 for discharging gas at the other end. A plurality of discharge holes 26 into which gas discharged from the supply holes 24 flows are provided at predetermined intervals on the side wall facing the membrane electrode assembly 12. The ratio of a short side to a long side of a square S defined by four discharge holes 26 adjacent to one supply hole 24 is 1.00 to 1.33.SELECTED DRAWING: Figure 2

Description

本発明は、電解質膜・電極構造体に臨むセパレータを備える燃料電池に関する。   The present invention relates to a fuel cell including a separator facing an electrolyte membrane / electrode structure.

固体高分子型の燃料電池の単位セルは、電解質膜・電極構造体(MEA)を一組のセパレータによって挟持することで構成される(例えば、特許文献1)。電解質膜・電極構造体は電解質高分子からなる電解質膜の両面に、触媒を備えた電極触媒層と、電極触媒層に燃料ガスや酸化剤ガスを供給するためのガス拡散層とが積層されて構成される。   A unit cell of a polymer electrolyte fuel cell is configured by sandwiching an electrolyte membrane / electrode structure (MEA) with a pair of separators (for example, Patent Document 1). In the electrolyte membrane / electrode structure, an electrode catalyst layer provided with a catalyst and a gas diffusion layer for supplying fuel gas and oxidant gas to the electrode catalyst layer are laminated on both sides of an electrolyte membrane made of an electrolyte polymer. Composed.

セパレータにはガス流路が設けられている。ガス流路はガス拡散層に沿って延在し、このガス流路を流れる前記ガスがガス拡散層に拡散していき、さらに電極触媒層に到達する。電極触媒層では電気化学反応が生じ、発電が行われる。   The separator is provided with a gas flow path. The gas flow path extends along the gas diffusion layer, and the gas flowing through the gas flow path diffuses into the gas diffusion layer and further reaches the electrode catalyst layer. An electrochemical reaction occurs in the electrode catalyst layer, and power generation is performed.

しかしながら、上記のようにガス拡散層に沿って延在するガス流路では、例えば、前記電気化学反応に伴う生成水等がガス拡散層に滞留した場合、ガス流路からのガスの拡散が妨げられてしまう虞がある。この場合、ガスがガス拡散層に供給されることなくガス流路を通過し、単位セル内から排出されてしまうことになり、その結果、燃料電池の発電効率が低下してしまう懸念がある。   However, in the gas flow path extending along the gas diffusion layer as described above, for example, when generated water or the like accompanying the electrochemical reaction stays in the gas diffusion layer, gas diffusion from the gas flow path is hindered. There is a risk that it will be. In this case, the gas passes through the gas flow path without being supplied to the gas diffusion layer, and is discharged from the unit cell. As a result, there is a concern that the power generation efficiency of the fuel cell is lowered.

そこで、例えば、特許文献2には、ガス拡散層に前記生成水等が滞留しているか否かに関わらず、電解質膜・電極構造体の積層方向に沿ってガスを供給することが可能なセパレータを備える燃料電池が提案されている。具体的には、このセパレータには、延在方向の一端が閉塞し且つ他端が開口した角筒状のガス供給流路及びガス排出流路が複数並設されている。このガス供給流路及びガス排出流路のガス拡散層に臨む側壁には、矩形状の供給孔及び排出孔がそれぞれ設けられている。   Therefore, for example, Patent Document 2 discloses a separator capable of supplying gas along the stacking direction of the electrolyte membrane / electrode structure regardless of whether the generated water or the like is retained in the gas diffusion layer. Has been proposed. Specifically, the separator is provided with a plurality of rectangular gas supply passages and gas discharge passages that are closed at one end in the extending direction and opened at the other end. Rectangular supply holes and discharge holes are respectively provided on the side walls of the gas supply flow path and the gas discharge flow path facing the gas diffusion layer.

このように、一端が閉塞したガス供給流路に対して、他端の開口からガスを供給して内圧を高めることで、該ガス供給流路に供給したガスのほぼ全てを、供給孔を介して電解質膜・電極構造体の積層方向に沿って供給することができる。このようにして供給孔から電解質膜・電極構造体に供給されたガスのうち、電極触媒層内の電気化学反応により消費されなかった残余のガス等は、排出孔を介してガス排出流路に流入し、該排出流路の開口から排出される。   In this way, by supplying gas from the opening at the other end to the gas supply channel closed at one end and increasing the internal pressure, almost all of the gas supplied to the gas supply channel is passed through the supply hole. Thus, it can be supplied along the stacking direction of the electrolyte membrane / electrode structure. Of the gas supplied from the supply hole to the electrolyte membrane / electrode structure in this way, the remaining gas that has not been consumed by the electrochemical reaction in the electrode catalyst layer is passed through the discharge hole to the gas discharge channel. It flows in and is discharged from the opening of the discharge channel.

特許第5042618号公報Japanese Patent No. 5042618 特開2006−114414号公報JP 2006-114414 A

上記のように、電解質膜・電極構造体の積層方向に沿ってガスを供給する場合、供給孔及び排出孔の配置によっては電極触媒層の供給孔近傍に比して、排出孔近傍のガス濃度が低くなるため、該排出孔近傍で十分に電気化学反応を生じさせることが困難になる。つまり、電極触媒層の面内方向に生じるガス濃度のばらつきにより、燃料電池の発電効率が低下してしまう懸念がある。   As described above, when gas is supplied along the stacking direction of the electrolyte membrane / electrode structure, the gas concentration in the vicinity of the discharge hole may be larger than that in the vicinity of the supply hole of the electrode catalyst layer depending on the arrangement of the supply hole and the discharge hole Therefore, it becomes difficult to cause an electrochemical reaction sufficiently in the vicinity of the discharge hole. That is, there is a concern that the power generation efficiency of the fuel cell may be reduced due to variations in the gas concentration generated in the in-plane direction of the electrode catalyst layer.

本発明は、この種の問題を解決するものであり、電解質膜・電極構造体に良好にガスを供給でき、しかも、電極触媒層の面内方向にガス濃度のばらつきが生じることを抑制できるため、優れた発電効率を示す燃料電池を提供することを目的とする。   The present invention solves this type of problem, because it can supply gas to the electrolyte membrane / electrode structure well, and it is possible to suppress variation in gas concentration in the in-plane direction of the electrode catalyst layer. An object of the present invention is to provide a fuel cell exhibiting excellent power generation efficiency.

前記の目的を達成するために、本発明は、電解質膜・電極構造体に臨むセパレータを備える燃料電池であって、前記セパレータは、一端が閉塞するとともに他端にガスが供給される供給開口を備え、前記供給開口から供給された前記ガスを吐出する供給孔が前記電解質膜・電極構造体に臨む側壁に所定の間隔をおいて複数設けられたガス供給流路と、一端が閉塞するとともに他端に前記ガスを排出する排出開口を備え、前記供給孔から吐出された前記ガスが流入する排出孔が前記電解質膜・電極構造体に臨む側壁に所定の間隔をおいて複数設けられたガス排出流路と、を備え、前記ガス供給流路と前記ガス排出流路とは交互に複数並設され、一つの前記供給孔に隣接する四つの前記排出孔による方形において、短辺に対する長辺の長さの比が1.00〜1.33であることを特徴とする。   To achieve the above object, the present invention provides a fuel cell comprising a separator facing an electrolyte membrane / electrode structure, wherein the separator has a supply opening that is closed at one end and supplied with gas at the other end. A gas supply flow path in which a plurality of supply holes for discharging the gas supplied from the supply opening are provided at predetermined intervals on a side wall facing the electrolyte membrane / electrode structure; A gas exhaust having a discharge opening for discharging the gas at an end, and a plurality of discharge holes into which the gas discharged from the supply hole flows is provided at a predetermined interval on a side wall facing the electrolyte membrane / electrode structure. A plurality of the gas supply flow paths and the gas discharge flow paths are alternately arranged in parallel, and in the square formed by the four discharge holes adjacent to the one supply hole, the long side with respect to the short side is provided. Length ratio is Characterized in that it is a .00~1.33.

本発明に係る燃料電池では、一端が閉塞したガス供給流路に対して、他端の供給開口からガスを供給することで、該ガス供給流路の内圧を高めて、供給孔から吐出するガスの圧力を増大させることができる。これによって、例えば、電極触媒層での電気化学反応に伴う生成水等がガス拡散層に滞留しているか否かに関わらず、ガス供給流路に供給されたガスのほぼ全てを電解質膜・電極構造体の積層方向に沿って良好に供給することができる。   In the fuel cell according to the present invention, the gas discharged from the supply hole by increasing the internal pressure of the gas supply flow path by supplying gas from the supply opening at the other end to the gas supply flow path closed at one end. The pressure of can be increased. Thus, for example, almost all of the gas supplied to the gas supply flow path can be removed from the electrolyte membrane / electrode regardless of whether or not the water produced by the electrochemical reaction in the electrode catalyst layer is retained in the gas diffusion layer. It can be satisfactorily supplied along the stacking direction of the structures.

この際、一つの前記排出孔に隣接する四つの前記供給孔による方形において、短辺に対する長辺の長さの比が1.00〜1.33となるように、供給孔の配置が調整されている。なお、ここでは、前記長さの比が1.00となり、前記方形が正方形からなる場合も、説明の便宜上、該方形の一辺を短辺といい、他辺を長辺という。すなわち、短辺と長辺とは互いに同じ長さであってもよい。供給孔から吐出されたガスは球面波として電解質膜・電極構造体中を拡散していくため、上記の条件となるように供給孔を配置することで、電極触媒層の面内方向に生じるガス濃度のばらつきを十分に低減することができる。すなわち、電極触媒層内で電気化学反応を効果的に生じさせることが可能となる。   At this time, the arrangement of the supply holes is adjusted so that the ratio of the length of the long side to the short side is 1.00 to 1.33 in the square formed by the four supply holes adjacent to the one discharge hole. ing. Here, even when the ratio of the length is 1.00 and the square is a square, for convenience of explanation, one side of the square is referred to as a short side and the other side is referred to as a long side. That is, the short side and the long side may have the same length. Since the gas discharged from the supply hole diffuses in the electrolyte membrane / electrode structure as a spherical wave, the gas generated in the in-plane direction of the electrode catalyst layer by arranging the supply hole to satisfy the above conditions Variation in density can be sufficiently reduced. That is, it is possible to effectively cause an electrochemical reaction in the electrode catalyst layer.

以上から、本発明に係る燃料電池によれば、電極触媒層に対して、その面内方向にガス濃度のばらつきが生じることを抑制しつつ良好にガスを供給して電気化学反応を促進することができるため、発電効率を向上させることができる。   From the above, according to the fuel cell according to the present invention, the electrochemical reaction is promoted by supplying the gas satisfactorily while suppressing the variation of the gas concentration in the in-plane direction with respect to the electrode catalyst layer. Therefore, power generation efficiency can be improved.

上記の燃料電池において、前記供給孔は前記方形の対角線の交点の位置に配置されていることが好ましい。この場合、電極触媒層の供給孔近傍と排出孔近傍との間におけるガス濃度のばらつきを一層良好に低減することができるため、電極触媒層全体における電気化学反応を促して、燃料電池の発電効率のさらなる向上を図ることが可能になる。   In the above fuel cell, it is preferable that the supply hole is disposed at the intersection of the rectangular diagonal lines. In this case, the variation in gas concentration between the vicinity of the supply hole and the discharge hole of the electrode catalyst layer can be further reduced, so that the electrochemical reaction in the entire electrode catalyst layer is promoted and the power generation efficiency of the fuel cell is increased. Can be further improved.

上記の燃料電池において、前記供給孔及び前記排出孔の少なくとも何れか一方は平面視で円形状であることが好ましい。この場合、上記の通り、球面波として拡散するガスを、供給孔又は排出孔を介して一層円滑に流通させることが可能になり、電極触媒層での電気化学反応を促進させることができるため、燃料電池の発電効率のさらなる向上を図ることが可能になる。   In the fuel cell, it is preferable that at least one of the supply hole and the discharge hole has a circular shape in a plan view. In this case, as described above, the gas diffusing as a spherical wave can be circulated more smoothly through the supply hole or the discharge hole, and the electrochemical reaction in the electrode catalyst layer can be promoted. It becomes possible to further improve the power generation efficiency of the fuel cell.

上記の燃料電池において、前記セパレータは、複数の前記ガス供給流路及び前記ガス排出流路のそれぞれの前記電解質膜・電極構造体に臨む前記側壁を一体に形成する板部材と、前記板部材が重ね合わされることで、前記ガス供給流路及び前記ガス排出流路を構成する複数のガス供給流路溝及びガス排出流路溝が交互に複数並設された溝板部材と、を有することが好ましい。この場合、複数のガス供給流路及びガス排出流路を有するセパレータを、簡素な構成によって容易に得ることができ、ひいては、燃料電池の製造コストを低減すること等が可能となる。   In the above fuel cell, the separator includes a plate member integrally forming the side walls facing the electrolyte membrane / electrode structure of each of the plurality of gas supply channels and the gas discharge channels, and the plate member includes A plurality of gas supply flow channel grooves and gas discharge flow channel grooves constituting the gas supply flow channel and the gas discharge flow channel, and a groove plate member in which a plurality of gas discharge flow channel grooves are alternately arranged. preferable. In this case, a separator having a plurality of gas supply passages and gas discharge passages can be easily obtained with a simple configuration, and thus the manufacturing cost of the fuel cell can be reduced.

本発明に係る燃料電池では、一端が閉塞し、他端に供給開口が設けられ、電解質膜・電極構造体に臨む側壁に複数の供給孔が設けられたガス供給流路に対して、該供給開口からガスを供給する。これによって、ガス供給流路の内圧を高めて、供給孔から吐出するガスの圧力を増大させることができるため、該ガス供給流路に供給されたガスのほぼ全てを電解質膜・電極構造体に、その積層方向に沿って良好に供給することができる。   In the fuel cell according to the present invention, the supply is made with respect to a gas supply channel in which one end is closed, a supply opening is provided at the other end, and a plurality of supply holes are provided in a side wall facing the electrolyte membrane / electrode structure. Gas is supplied from the opening. As a result, the internal pressure of the gas supply channel can be increased and the pressure of the gas discharged from the supply hole can be increased, so almost all of the gas supplied to the gas supply channel is transferred to the electrolyte membrane / electrode structure. , Can be supplied well along the stacking direction.

また、一つの前記供給孔に隣接する四つの前記排出孔による方形において、短辺に対する長辺の長さの比が1.00〜1.33となるように配置されている。このため、上記のように、供給孔から電解質膜・電極構造体の積層方向に沿ってガスを供給しても、電極触媒層の面内方向にガス濃度のばらつきが生じることを抑制して、電気化学反応を効果的に生じさせることができる。その結果、燃料電池の発電効率を向上させることができる。   Moreover, in the square by the four said discharge holes adjacent to the said one supply hole, it arrange | positions so that the ratio of the length of the long side with respect to a short side may be set to 1.00-1.33. For this reason, as described above, even if gas is supplied from the supply hole along the stacking direction of the electrolyte membrane / electrode structure, the variation in gas concentration in the in-plane direction of the electrode catalyst layer is suppressed, An electrochemical reaction can be effectively generated. As a result, the power generation efficiency of the fuel cell can be improved.

本発明の実施形態に係る燃料電池の要部分解斜視図である。It is a principal part disassembled perspective view of the fuel cell which concerns on embodiment of this invention. 図1のセパレータの板部材側の正面図である。It is a front view by the side of the plate member of the separator of FIG. 第1線分L1(短辺)に対する第2線分L2(長辺)の比(長辺/短辺)と、燃料電池のセル電圧との関係を示すグラフである。It is a graph which shows the relationship between ratio (long side / short side) of 2nd line segment L2 (long side) with respect to 1st line segment L1 (short side), and the cell voltage of a fuel cell.

以下、本発明に係る燃料電池につき好適な実施形態を挙げ、添付の図面を参照して詳細に説明する。   Preferred embodiments of a fuel cell according to the present invention will be described below in detail with reference to the accompanying drawings.

図1に示すように、本実施形態に係る燃料電池10の単位セルは、電解質膜・電極構造体12と、電解質膜・電極構造体12の一方の面に臨むセパレータ14と、電解質膜・電極構造体12の他方の面に臨む不図示のセパレータとを有する。なお、不図示のセパレータは、セパレータ14とほぼ同様に構成されるため、以下では、セパレータ14の説明をもって不図示のセパレータの説明を省略する。   As shown in FIG. 1, the unit cell of the fuel cell 10 according to the present embodiment includes an electrolyte membrane / electrode structure 12, a separator 14 facing one surface of the electrolyte membrane / electrode structure 12, and an electrolyte membrane / electrode. And a separator (not shown) facing the other surface of the structure 12. In addition, since the separator not shown is comprised in the substantially same manner as the separator 14, description of a separator not shown is abbreviate | omitted with description of the separator 14 below.

電解質膜・電極構造体12は、電解質高分子からなる電解質膜と、該電解質膜の両面にそれぞれ電極反応の反応場となる電極触媒層と、該電極触媒層の各々に燃料ガスや酸化剤ガス等のガスを拡散して供給するガス拡散層とが積層されて構成される。すなわち、電解質膜の両側に電極触媒層が配設され、さらに該電極触媒層の両側にガス拡散層が配設される。なお、電解質膜・電極構造体12の各構成要素についての図示は省略する。   The electrolyte membrane / electrode structure 12 includes an electrolyte membrane made of an electrolyte polymer, an electrode catalyst layer serving as a reaction field for electrode reaction on both surfaces of the electrolyte membrane, and a fuel gas and an oxidant gas on each of the electrode catalyst layers. And a gas diffusion layer that diffuses and supplies a gas such as the like. That is, an electrode catalyst layer is disposed on both sides of the electrolyte membrane, and a gas diffusion layer is disposed on both sides of the electrode catalyst layer. Note that illustration of each component of the electrolyte membrane / electrode structure 12 is omitted.

セパレータ14は、例えば、鋼、ステンレス鋼、チタン、アルミニウム、めっき処理鋼、あるいはその金属表面に防食用の表面処理を施した金属や、カーボン等からなる矩形状であり、板部材20及び溝板部材22を有する。板部材20は、電解質膜・電極構造体12のガス拡散層に臨み、複数の供給孔24及び排出孔26が後述するように貫通形成されている。   The separator 14 is, for example, a rectangular shape made of steel, stainless steel, titanium, aluminum, plated steel, or a metal whose surface is subjected to anticorrosion surface treatment, carbon, etc., and the plate member 20 and the groove plate A member 22 is provided. The plate member 20 faces the gas diffusion layer of the electrolyte membrane / electrode structure 12, and a plurality of supply holes 24 and discharge holes 26 are formed therethrough as will be described later.

溝板部材22は、該溝板部材22の短辺方向に沿って延在する複数のガス供給流路溝32及びガス排出流路溝34が、該溝板部材22の長辺方向に所定の間隔をおいて交互に複数並設される。また、溝板部材22の短辺方向の一端側にはガス供給口40が設けられ、該ガス供給口40は、該溝板部材22の長辺方向に沿って延在するガス供給連通路42を介して複数のガス供給流路溝32のそれぞれと連通する。一方、溝板部材22の短辺方向の他端側にはガス排出口44が設けられ、該ガス排出口44は、該溝板部材22の長辺方向に沿って延在するガス排出連通路46を介して複数のガス排出流路溝34のそれぞれと連通する。   The groove plate member 22 includes a plurality of gas supply flow channel grooves 32 and gas discharge flow channel grooves 34 that extend along the short side direction of the groove plate member 22. A plurality of lines are alternately arranged at intervals. A gas supply port 40 is provided on one end side in the short side direction of the groove plate member 22, and the gas supply port 40 extends along the long side direction of the groove plate member 22. And communicate with each of the plurality of gas supply channel grooves 32. On the other hand, a gas discharge port 44 is provided on the other end side in the short side direction of the groove plate member 22, and the gas discharge port 44 extends along the long side direction of the groove plate member 22. The plurality of gas discharge passage grooves 34 communicate with each other through 46.

図2に示すように、板部材20と溝板部材22とは、供給孔24がガス供給流路溝32に臨み、且つ排出孔26がガス排出流路溝34に臨むように重ね合わされた状態で位置決め固定される。これによって、ガス供給流路溝32と板部材20との間にガス供給流路50が形成され、ガス排出流路溝34と板部材20との間にガス排出流路52が形成される。   As shown in FIG. 2, the plate member 20 and the groove plate member 22 are overlapped so that the supply hole 24 faces the gas supply flow channel groove 32 and the discharge hole 26 faces the gas discharge flow channel groove 34. It is fixed by positioning. As a result, a gas supply channel 50 is formed between the gas supply channel groove 32 and the plate member 20, and a gas discharge channel 52 is formed between the gas discharge channel groove 34 and the plate member 20.

すなわち、電解質膜・電極構造体12に臨むガス供給流路50及びガス排出流路52の側壁は、板部材20によって一体的に形成される。また、ガス供給流路50及びガス排出流路52は、セパレータ14の短辺方向に沿って延在し、且つセパレータ14の長辺方向に所定の間隔をおいて交互に複数配設される。   That is, the side walls of the gas supply channel 50 and the gas discharge channel 52 facing the electrolyte membrane / electrode structure 12 are integrally formed by the plate member 20. In addition, the gas supply channel 50 and the gas discharge channel 52 extend along the short side direction of the separator 14 and are alternately arranged at predetermined intervals in the long side direction of the separator 14.

ガス供給流路50は、一端が閉塞し且つ他端にガス供給連通路42を介してガス供給口40と連通する供給開口54が設けられる。このため、ガス供給口40からガス供給連通路42に供給された燃料ガスや酸化剤ガス等のガス(以下、単にガスともいう)は、供給開口54を介してガス供給流路50内に流入する。ガス排出流路52は、一端が閉塞し且つ他端にガス排出連通路46を介してガス排出口44と連通する排出開口56が設けられる。ガス排出流路52内のガスは、排出開口56を介してガス排出連通路46に流通し、ガス排出口44からセパレータ14の外部へと排出される。   The gas supply channel 50 is provided with a supply opening 54 that is closed at one end and communicates with the gas supply port 40 through the gas supply communication path 42 at the other end. For this reason, a gas such as a fuel gas or an oxidant gas (hereinafter also simply referred to as a gas) supplied from the gas supply port 40 to the gas supply communication passage 42 flows into the gas supply channel 50 through the supply opening 54. To do. The gas discharge passage 52 is provided with a discharge opening 56 that is closed at one end and communicates with the gas discharge port 44 through the gas discharge communication passage 46 at the other end. The gas in the gas discharge channel 52 flows to the gas discharge communication path 46 through the discharge opening 56 and is discharged from the gas discharge port 44 to the outside of the separator 14.

供給孔24は、例えば、平面視で直径がほぼ0.1〜3.0mmの円形状であり、複数のガス供給流路50のそれぞれの延在方向に所定の間隔(〜20mm)をおいて複数配設される。これによって、ガス供給流路50内のガスは、供給孔24を介して電解質膜・電極構造体12の積層方向に沿って吐出されることが可能となっている。   The supply hole 24 is, for example, a circular shape having a diameter of approximately 0.1 to 3.0 mm in plan view, and has a predetermined interval (up to 20 mm) in the extending direction of each of the plurality of gas supply flow paths 50. A plurality are arranged. As a result, the gas in the gas supply channel 50 can be discharged along the stacking direction of the electrolyte membrane / electrode structure 12 through the supply hole 24.

排出孔26は、例えば、平面視で直径がほぼ0.1〜3.0mmの円形状であり、複数のガス排出流路52のそれぞれの延在方向に所定の間隔(〜20mm)をおいて複数配設される。これによって、電解質膜・電極構造体12に供給されたガスのうち、電極触媒層での電気化学反応で消費されなかった残余のガス等が排出孔26を介してガス排出流路52に流入することが可能になっている。   The discharge holes 26 have, for example, a circular shape with a diameter of approximately 0.1 to 3.0 mm in plan view, and have a predetermined interval (up to 20 mm) in the extending direction of each of the plurality of gas discharge channels 52. A plurality are arranged. As a result, of the gas supplied to the electrolyte membrane / electrode structure 12, the remaining gas that has not been consumed by the electrochemical reaction in the electrode catalyst layer flows into the gas discharge channel 52 through the discharge hole 26. It is possible.

すなわち、供給孔24及び排出孔26は、板部材20に格子点状に配置される。具体的には、一つの供給孔24を囲んで隣接する四つの排出孔26、26、26、26を頂点とする方形Sの短辺(図2における第1線分L1)に対する、長辺(図2における第2線分L2)の長さの比が1.00〜1.33となるように設定される。また、前記方形Sの対角線の交点となる位置に供給孔24が設けられる。なお、ここでは、前記長さの比が1.00となり、方形Sが正方形からなる場合も、説明の便宜上、該方形Sの一辺(第1線分L1)を短辺といい、他辺(第2線分L2)を長辺という。すなわち、短辺と長辺とは互いに同じ長さであってもよい。   That is, the supply holes 24 and the discharge holes 26 are arranged on the plate member 20 in lattice points. Specifically, the long side (the first line segment L1 in FIG. 2) with respect to the short side (first line segment L1 in FIG. 2) that surrounds one supply hole 24 and has the four discharge holes 26, 26, 26, 26 adjacent to each other as apexes. The length ratio of the second line segment L2) in FIG. 2 is set to be 1.00 to 1.33. Further, a supply hole 24 is provided at a position that is an intersection of diagonal lines of the square S. Here, even when the ratio of the length is 1.00 and the square S is a square, for convenience of explanation, one side (first line segment L1) of the square S is referred to as a short side, and the other side ( The second line segment L2) is referred to as the long side. That is, the short side and the long side may have the same length.

基本的には上記のように構成される燃料電池10について、その動作との関係で作用効果を説明する。   Basically, the effects of the fuel cell 10 configured as described above will be described in relation to its operation.

先ず、ガス供給口40から、ガス供給連通路42にガスが供給される。このガスは、供給開口54を介してガス供給流路50にそれぞれ導入される。ガス供給流路50では、その一端が閉塞するため、供給開口54に比して小径の供給孔24のみがガスの出口となる。このため、ガス供給流路50内で圧力が高められたガスが供給孔24から吐出される。これによって、例えば、前記電気化学反応に伴う生成水等がガス拡散層に滞留しているか否かに関わらず、ガス供給流路50に供給されたガスのほぼ全てを供給孔24から電解質膜・電極構造体12の積層方向に沿って良好に供給することができる。   First, gas is supplied from the gas supply port 40 to the gas supply communication path 42. This gas is introduced into the gas supply channel 50 via the supply opening 54. Since one end of the gas supply channel 50 is closed, only the supply hole 24 having a smaller diameter than the supply opening 54 serves as a gas outlet. For this reason, the gas whose pressure is increased in the gas supply channel 50 is discharged from the supply hole 24. As a result, for example, almost all of the gas supplied to the gas supply flow channel 50 is supplied from the supply hole 24 to the electrolyte membrane, regardless of whether the generated water or the like accompanying the electrochemical reaction is retained in the gas diffusion layer. It can be satisfactorily supplied along the stacking direction of the electrode structure 12.

このようにして供給孔24から供給されたガスは、ガス拡散層でさらに拡散されつつ電極触媒層に到達し、該電極触媒層内での電気化学反応により消費される。この際、第1線分L1に対する第2線分L2の比が上記の範囲となるように排出孔26の配置が設定され、排出孔26、26、26、26に対して上記のように供給孔24が設けられている。また、供給孔24及び排出孔26が平面視で円形状である。これらによって、球面波であるガスを電解質膜・電極構造体12中に円滑に流通させて効果的に拡散させることができるため、電極触媒層の供給孔24近傍と排出孔26近傍との間におけるガス濃度のばらつきを良好に低減することができる。   Thus, the gas supplied from the supply hole 24 reaches the electrode catalyst layer while being further diffused in the gas diffusion layer, and is consumed by the electrochemical reaction in the electrode catalyst layer. At this time, the arrangement of the discharge holes 26 is set so that the ratio of the second line segment L2 to the first line segment L1 falls within the above range, and the supply to the discharge holes 26, 26, 26, and 26 is performed as described above. A hole 24 is provided. Further, the supply hole 24 and the discharge hole 26 are circular in plan view. By these, the gas that is a spherical wave can be smoothly circulated through the electrolyte membrane / electrode structure 12 and effectively diffused, so that the gas is provided between the vicinity of the supply hole 24 and the vicinity of the discharge hole 26 of the electrode catalyst layer. Variations in gas concentration can be reduced satisfactorily.

したがって、上記のように、電解質膜・電極構造体12に良好にガスを供給するべく、その積層方向に沿ってガスを供給しても、電極触媒層の面内方向にガス濃度のばらつきが生じることを抑制して、電極触媒層全体における電気化学反応を促すことができる。これによって、燃料電池10の発電効率を向上させることが可能になる。   Therefore, as described above, in order to supply gas to the electrolyte membrane / electrode structure 12 satisfactorily, even if gas is supplied along the stacking direction, the gas concentration varies in the in-plane direction of the electrode catalyst layer. This can be suppressed and the electrochemical reaction in the entire electrode catalyst layer can be promoted. As a result, the power generation efficiency of the fuel cell 10 can be improved.

一方、供給孔24から電解質膜・電極構造体12に供給されたガスのうち、電気化学反応により消費されなかった残余のガス等は、排出孔26を介してガス排出流路52に流入し、排出開口56及びガス排出連通路46を介して、ガス排出口44からセパレータ14の外部へ排出される。これによって、電解質膜・電極構造体12に対して良好にガスを供給することができる。   On the other hand, of the gas supplied from the supply hole 24 to the electrolyte membrane / electrode structure 12, the remaining gas that has not been consumed by the electrochemical reaction flows into the gas discharge passage 52 through the discharge hole 26, The gas is discharged from the gas discharge port 44 to the outside of the separator 14 through the discharge opening 56 and the gas discharge communication passage 46. Thereby, the gas can be satisfactorily supplied to the electrolyte membrane / electrode structure 12.

また、この燃料電池10では、セパレータ14が板部材20と溝板部材22とを有し、板部材20に設けられた供給孔24及び排出孔26と、溝板部材22に設けられたガス供給流路溝32及びガス排出流路溝34とを重ね合わせることで、ガス供給流路50及びガス排出流路52が形成されることとした。これによって、複数のガス供給流路50及びガス排出流路52を有するセパレータ14を、簡素な構成によって容易に得ることができ、ひいては、燃料電池10の製造コストを低減すること等が可能となる。   In the fuel cell 10, the separator 14 includes a plate member 20 and a groove plate member 22. A supply hole 24 and a discharge hole 26 provided in the plate member 20, and a gas supply provided in the groove plate member 22. The gas supply channel 50 and the gas discharge channel 52 are formed by overlapping the channel groove 32 and the gas discharge channel groove 34. As a result, the separator 14 having the plurality of gas supply channels 50 and the gas discharge channels 52 can be easily obtained with a simple configuration, and as a result, the manufacturing cost of the fuel cell 10 can be reduced. .

なお、本発明は、上記した実施形態に特に限定されるものではなく、その要旨を逸脱しない範囲で種々の変形が可能である。   In addition, this invention is not specifically limited to above-described embodiment, A various deformation | transformation is possible in the range which does not deviate from the summary.

例えば、上記の実施形態では同じガス排出流路52にある排出孔26間の長さである第2線分L2を長辺とし、ガス供給流路50を挟んで異なるガス排出流路52にある排出孔26間の長さである第1線分L1を短辺としたが、これとは逆に第1線分L1を第2線分L2よりも長くすることもできる。あるいは、供給孔24の位置は、供給孔24近傍と排出孔26近傍との間におけるガス濃度のばらつきを十分に低減することが可能な位置であれば、排出孔26による方形Sの対角線の交点からずれていてもよい。   For example, in the above embodiment, the second line segment L2 that is the length between the discharge holes 26 in the same gas discharge flow path 52 is a long side, and the gas supply flow path 50 is sandwiched between different gas discharge flow paths 52. The first line segment L1 which is the length between the discharge holes 26 is a short side, but conversely, the first line segment L1 can be longer than the second line segment L2. Alternatively, if the position of the supply hole 24 is a position that can sufficiently reduce the variation in gas concentration between the vicinity of the supply hole 24 and the vicinity of the discharge hole 26, the intersection of the diagonal lines of the square S by the discharge hole 26. May deviate from.

また、上記の実施形態では、供給孔24及び排出孔26の両方が平面視で円形状であることとしたが、供給孔24及び排出孔26の形状は特に限定されるものではない。例えば、供給孔24及び排出孔26の何れか一方のみが平面視で円形状であり、他方が平面視で多角形状であってもよい。また、供給孔24及び排出孔26の両方が平面視で多角形状であってもよい。   In the above embodiment, both the supply hole 24 and the discharge hole 26 are circular in plan view, but the shapes of the supply hole 24 and the discharge hole 26 are not particularly limited. For example, only one of the supply hole 24 and the discharge hole 26 may be circular in plan view, and the other may be polygonal in plan view. Further, both the supply hole 24 and the discharge hole 26 may be polygonal in plan view.

さらに、上記の実施形態では、セパレータ14が板部材20と溝板部材22とを有することとしたが、特にこれに限定されるものではなく、例えば、セパレータ14は、それぞれ別部材から形成されたガス供給流路50及びガス排出流路52を有していてもよい。   Further, in the above-described embodiment, the separator 14 has the plate member 20 and the groove plate member 22, but is not particularly limited thereto. For example, the separator 14 is formed from a separate member. The gas supply channel 50 and the gas discharge channel 52 may be provided.

以下、本発明に係る実験結果を示す。本実験では、1つの供給孔の周囲に該供給孔から等距離(8.5mm)で且つその位置がそれぞれ長(正)方形の頂点となるよう4つの排出孔を配置したセパレータで、前記長(正)方形の短辺と長辺の長さの比率が異なるものを複数用意し、それぞれ燃料電池の単位セルを作成して前記長さの比率の違いによる燃料電池の性能を検証した。なお長さの比は、1.0、1.2、1.4、1.6の4種類で、供給孔、排出孔ともに平面視で直径が0.5mmの円形状である。   Hereinafter, experimental results according to the present invention will be shown. In this experiment, a separator in which four discharge holes are arranged around one supply hole so as to be equidistant (8.5 mm) from the supply hole and the position thereof is a vertex of a long (positive) square, (Correct) A plurality of cells having different ratios of the short side and the long side of the square were prepared, and unit cells of the fuel cell were prepared respectively, and the performance of the fuel cell according to the difference in the length ratio was verified. There are four types of length ratios of 1.0, 1.2, 1.4, and 1.6. Both the supply hole and the discharge hole have a circular shape with a diameter of 0.5 mm in plan view.

4種の単位セルに対して、燃料ガスとして水素ガスを供給し、酸化剤ガスとして空気を供給して発電を行い、電圧を測定した。結果を図3に示す。   For four types of unit cells, hydrogen gas was supplied as a fuel gas, and air was supplied as an oxidant gas to generate power, and the voltage was measured. The results are shown in FIG.

図3から、前記長さの比率が1から大きくなるにつれてセル電圧が低下する傾向にあることが分かる。また、図3に示す特性の近似式では、変曲点(2階微分が0になる点)における比率が1.33であった。すなわち、短辺に対する長辺の長さの比率が1.00〜1.33の範囲内であれば、良好なセル電圧を示すといえる。   It can be seen from FIG. 3 that the cell voltage tends to decrease as the length ratio increases from 1. Further, in the approximate expression of the characteristic shown in FIG. 3, the ratio at the inflection point (the point at which the second derivative becomes 0) was 1.33. That is, if the ratio of the length of the long side to the short side is in the range of 1.00 to 1.33, it can be said that a good cell voltage is exhibited.

以上から、短辺に対する長辺の長さの比率を1.00〜1.33とする本実施形態に係る燃料電池では、電極触媒層に対して、その面内方向にガス濃度のばらつきが生じることを抑制しつつ良好にガスを供給して電気化学反応を促進できるため、発電効率を向上させることができる。   From the above, in the fuel cell according to this embodiment in which the ratio of the length of the long side to the short side is 1.00 to 1.33, the gas concentration varies in the in-plane direction with respect to the electrode catalyst layer. Since the gas can be supplied satisfactorily and the electrochemical reaction can be promoted while suppressing this, the power generation efficiency can be improved.

10…燃料電池 12…電解質膜・電極構造体
14…セパレータ 20…板部材
22…溝板部材 24…供給孔
26…排出孔 32…ガス供給流路溝
34…ガス排出流路溝 40…ガス供給口
42…ガス供給連通路 44…ガス排出口
46…ガス排出連通路 50…ガス供給流路
52…ガス排出流路 54…供給開口
56…排出開口 S…方形
DESCRIPTION OF SYMBOLS 10 ... Fuel cell 12 ... Electrolyte membrane electrode assembly 14 ... Separator 20 ... Plate member 22 ... Groove plate member 24 ... Supply hole 26 ... Discharge hole 32 ... Gas supply flow path groove 34 ... Gas discharge flow path groove 40 ... Gas supply Port 42 ... Gas supply communication passage 44 ... Gas discharge port 46 ... Gas discharge communication passage 50 ... Gas supply passage 52 ... Gas discharge passage 54 ... Supply opening 56 ... Discharge opening S ... Square

Claims (4)

電解質膜・電極構造体に臨むセパレータを備える燃料電池であって、
前記セパレータは、
一端が閉塞するとともに他端にガスが供給される供給開口を備え、前記供給開口から供給された前記ガスを吐出する供給孔が前記電解質膜・電極構造体に臨む側壁に所定の間隔をおいて複数設けられたガス供給流路と、
一端が閉塞するとともに他端に前記ガスを排出する排出開口を備え、前記供給孔から吐出された前記ガスが流入する排出孔が前記電解質膜・電極構造体に臨む側壁に所定の間隔をおいて複数設けられたガス排出流路と、を備え、
前記ガス供給流路と前記ガス排出流路とは交互に複数並設され、
一つの前記供給孔に隣接する四つの前記排出孔による方形において、短辺に対する長辺の長さの比が1.00〜1.33であることを特徴とする燃料電池。
A fuel cell comprising a separator facing the electrolyte membrane / electrode structure,
The separator is
A supply opening for closing one end and supplying gas to the other end is provided, and a supply hole for discharging the gas supplied from the supply opening is spaced apart from a side wall facing the electrolyte membrane / electrode structure. A plurality of gas supply passages;
One end is closed and the other end is provided with a discharge opening for discharging the gas, and the discharge hole into which the gas discharged from the supply hole flows is spaced from the side wall facing the electrolyte membrane / electrode structure at a predetermined interval. A plurality of gas discharge passages provided,
A plurality of the gas supply flow paths and the gas discharge flow paths are alternately arranged in parallel,
A fuel cell, wherein a ratio of a length of a long side to a short side is 1.00 to 1.33 in a square formed by four discharge holes adjacent to one supply hole.
請求項1記載の燃料電池において、
前記供給孔は前記方形の対角線の交点の位置に配置されていることを特徴とする燃料電池。
The fuel cell according to claim 1, wherein
The fuel cell according to claim 1, wherein the supply hole is disposed at an intersection of the rectangular diagonal lines.
請求項1又は2記載の燃料電池において、
前記供給孔及び前記排出孔の少なくとも何れか一方は平面視で円形状であることを特徴とする燃料電池。
The fuel cell according to claim 1 or 2,
At least one of the supply hole and the discharge hole has a circular shape in a plan view.
請求項1〜3の何れか1項に記載の燃料電池において、
前記セパレータは、
複数の前記ガス供給流路及び前記ガス排出流路のそれぞれの前記電解質膜・電極構造体に臨む前記側壁を一体に形成する板部材と、
前記板部材が重ね合わされることで、前記ガス供給流路及び前記ガス排出流路を構成する複数のガス供給流路溝及びガス排出流路溝が交互に複数並設された溝板部材と、
を有することを特徴とする燃料電池。
The fuel cell according to any one of claims 1 to 3,
The separator is
A plate member integrally forming the side walls facing the electrolyte membrane / electrode structure of each of the plurality of gas supply channels and the gas discharge channels;
A plurality of gas supply flow channel grooves and gas discharge flow channel grooves that constitute the gas supply flow channel and the gas discharge flow channel, and a plurality of the gas supply flow channel grooves alternately arranged in parallel;
A fuel cell comprising:
JP2016153313A 2016-08-04 2016-08-04 Fuel cell Expired - Fee Related JP6679443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016153313A JP6679443B2 (en) 2016-08-04 2016-08-04 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016153313A JP6679443B2 (en) 2016-08-04 2016-08-04 Fuel cell

Publications (2)

Publication Number Publication Date
JP2018022614A true JP2018022614A (en) 2018-02-08
JP6679443B2 JP6679443B2 (en) 2020-04-15

Family

ID=61165803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016153313A Expired - Fee Related JP6679443B2 (en) 2016-08-04 2016-08-04 Fuel cell

Country Status (1)

Country Link
JP (1) JP6679443B2 (en)

Also Published As

Publication number Publication date
JP6679443B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
JP4960415B2 (en) Fuel cell
JP5422700B2 (en) Fuel cell
US9065090B2 (en) Fuel battery
JP5197995B2 (en) Fuel cell
JP2010129265A (en) Fuel cell
JP2007250297A (en) Fuel cell
JP2007207586A (en) Fuel cell
JP2006236612A (en) Fuel cell
JP2008277185A (en) Fuel cell
KR102173663B1 (en) Fuel cell
US9065088B2 (en) Modification to stampable flowfields to improve flow distribution in the channels of PEM fuel cells
JP2007018742A (en) Fuel cell
JP4578997B2 (en) Fuel cell separator and fuel cell
JP5872995B2 (en) Fuel cell stack
JP2008293835A (en) Fuel cell
JP2018022614A (en) Fuel battery
JP2015015235A (en) Fuel cell
JP6403099B2 (en) Fuel cell module
JP2020107397A (en) Fuel battery cell
JP2007141574A (en) Fuel cell stack
JP2015060732A (en) Fuel cell
JP5423699B2 (en) Gas flow path forming body and fuel cell
JP5665900B2 (en) Fuel cell separator
JP5730708B2 (en) Fuel cell
JP2009134996A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200318

R150 Certificate of patent or registration of utility model

Ref document number: 6679443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees