JP2018017650A - Gas concentration detecting unit and gas concentration measuring method - Google Patents

Gas concentration detecting unit and gas concentration measuring method Download PDF

Info

Publication number
JP2018017650A
JP2018017650A JP2016149304A JP2016149304A JP2018017650A JP 2018017650 A JP2018017650 A JP 2018017650A JP 2016149304 A JP2016149304 A JP 2016149304A JP 2016149304 A JP2016149304 A JP 2016149304A JP 2018017650 A JP2018017650 A JP 2018017650A
Authority
JP
Japan
Prior art keywords
light
measurement
intensity
gas concentration
impurity component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016149304A
Other languages
Japanese (ja)
Other versions
JP6836028B2 (en
Inventor
雄輔 三木
Yusuke Miki
雄輔 三木
泰夫 広瀬
Yasuo Hirose
泰夫 広瀬
仁晃 遠藤
Tomoaki Endo
仁晃 遠藤
敬 戸田
Takashi Toda
敬 戸田
慎一 大平
Shinichi Ohira
慎一 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Kumamoto University NUC
Original Assignee
Taiyo Nippon Sanso Corp
Kumamoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp, Kumamoto University NUC filed Critical Taiyo Nippon Sanso Corp
Priority to JP2016149304A priority Critical patent/JP6836028B2/en
Publication of JP2018017650A publication Critical patent/JP2018017650A/en
Application granted granted Critical
Publication of JP6836028B2 publication Critical patent/JP6836028B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas concentration detecting unit and a gas concentration measuring method, capable of eliminating effects of deterioration and interference and continuously measuring accurate gas concentration for a long time.SOLUTION: A gas concentration detecting unit comprises: a light source 13 which irradiates an optical path for measurement with a measuring beam A1 of a specific wavelength; an impurity component detection body 35 which covers a surface on a light source side of a filter 34 having light permeability; a light-receiving unit 36 for measurement which detects an intensity of a measuring beam transmitted through the impurity component detection body; a measuring object gas supply path which supplies a measuring object gas to the impurity component detection body; a beam splitter 14 which splits a part of a measuring beam traveling from the light source to the impurity component detection body as a reference beam A2; and a light-receiving unit 16 for reference which detects an intensity of the reference beam split by the beam splitter.SELECTED DRAWING: Figure 1

Description

本発明は、ガス濃度検出ユニット及びガス濃度測定方法に関し、詳しくは、測定対象ガスに含まれる不純物成分の濃度を連続的に検出するためのガス濃度検出ユニット及び該ガス濃度検出ユニットを使用したガス濃度測定方法に関する。   The present invention relates to a gas concentration detection unit and a gas concentration measurement method, and more specifically, a gas concentration detection unit for continuously detecting the concentration of an impurity component contained in a measurement target gas and a gas using the gas concentration detection unit. The present invention relates to a concentration measuring method.

一般的に、窒素、アルゴンなどの工業ガスの製造プロセスや、半導体デバイスを製造する半導体デバイス製造装置では、各種ガスに含まれている不純物成分の濃度を管理する必要があることから、様々な手法を適用したガス濃度測定装置及び方法が開発されてきている。ガス濃度の測定に、特定のガス成分に感応して光学的性質が変化する色素を使用したガス濃度センサが知られている(例えば、特許文献1参照。)。   In general, in manufacturing processes of industrial gases such as nitrogen and argon, and semiconductor device manufacturing apparatuses for manufacturing semiconductor devices, it is necessary to control the concentration of impurity components contained in various gases. A gas concentration measuring apparatus and method to which is applied has been developed. A gas concentration sensor using a dye whose optical properties change in response to a specific gas component is known for measuring the gas concentration (see, for example, Patent Document 1).

特開平6−34550号公報JP-A-6-34550

しかしながら、特許文献1に記載されたガス濃度センサは、微小な光学的変化をガス濃度として検出する技術であるため、各光学素子の劣化、干渉などの影響による光学的変化量の増減が最終的な測定ガス濃度に大きな影響を及ぼす。例えば、長期間動作させた場合、光学的性質を検出する光受光部、光源、色素等が経時的に劣化したり、周辺温度からの干渉によって各部の出力精度が低下したりすることにより、センサ出力が不安定となるため、受光部からの出力を安定して取り出すことが困難であり、正確なガス濃度を連続的に、かつ、長期間にわたって測定ことができなかった。   However, since the gas concentration sensor described in Patent Document 1 is a technique for detecting a minute optical change as a gas concentration, the increase or decrease in the optical change amount due to the influence of deterioration or interference of each optical element is finally achieved. Greatly affects the measured gas concentration. For example, when operated for a long period of time, the light receiving part, light source, dye, etc. that detect optical properties deteriorate over time, or the output accuracy of each part deteriorates due to interference from the ambient temperature. Since the output becomes unstable, it is difficult to stably extract the output from the light receiving unit, and the accurate gas concentration cannot be measured continuously and over a long period of time.

そこで本発明は、劣化や干渉による影響を排除して正確なガス濃度を連続的に、かつ、長期間にわたって測定ことができるガス濃度検出ユニット及びガス濃度測定方法を提供することを目的としている。   Therefore, an object of the present invention is to provide a gas concentration detection unit and a gas concentration measurement method capable of measuring an accurate gas concentration continuously and over a long period of time by eliminating the influence of deterioration and interference.

上記目的を達成するため、本発明のガス濃度検出ユニットは、測定対象ガスに含まれる不純物成分の濃度を連続的に検出するためのガス濃度検出ユニットにおいて、特定波長の測定光を照射する光源と、光透過性を有するフィルタの光源側の面を覆う不純物成分検知体と、該不純物成分検知体を透過した前記測定光の強度を検出する測定用受光部と、前記不純物成分検知体に前記測定対象ガスを供給する測定対象ガス供給経路と、前記光源から前記不純物成分検知体に向かう測定光の一部を参照光として分割するビームスプリッタと、該ビームスプリッタで分割された前記参照光の強度を検出する参照用受光部とを備えていることを特徴としている。   In order to achieve the above object, a gas concentration detection unit of the present invention is a gas concentration detection unit for continuously detecting the concentration of an impurity component contained in a measurement target gas, and a light source for irradiating measurement light of a specific wavelength. , An impurity component detector that covers the light source side surface of the light-transmitting filter, a measurement light-receiving unit that detects the intensity of the measurement light that has passed through the impurity component detector, and the measurement on the impurity component detector A measurement target gas supply path for supplying a target gas, a beam splitter that divides a part of measurement light from the light source toward the impurity component detector as reference light, and an intensity of the reference light divided by the beam splitter. And a reference light-receiving unit for detection.

また、本発明のガス濃度測定方法は、前記ガス濃度検出ユニットを用いた不純物成分濃度の測定方法であって、前記光源から前記測定光を連続して照射しながら、前記測定対象ガスを前記測定対象ガス供給経路に連続して供給し、前記測定用受光部で検出した前記測定光の強度と、前記参照用受光部で検出した前記参照光の強度とを比較し、前記参照光の強度の変化に対応させて前記測定光の強度を補正することを特徴としている。   The gas concentration measurement method of the present invention is a method for measuring the impurity component concentration using the gas concentration detection unit, wherein the measurement target gas is measured while continuously irradiating the measurement light from the light source. Continuously supplied to the target gas supply path, the intensity of the measurement light detected by the light receiving unit for measurement is compared with the intensity of the reference light detected by the light receiving unit for reference, and the intensity of the reference light is compared. The intensity of the measurement light is corrected in accordance with the change.

本発明によれば、測定用受光部と参照用受光部とを備えているので、参照用受光部で検出した参照光の強度変化に応じて測定用受光部で検出した測定光の強度を補正することにより、劣化や干渉による影響を排除して正確なガス濃度を連続的に求めることができる。   According to the present invention, since the measuring light receiving unit and the reference light receiving unit are provided, the intensity of the measurement light detected by the measurement light receiving unit is corrected according to the change in the intensity of the reference light detected by the reference light receiving unit. By doing so, it is possible to continuously obtain an accurate gas concentration by eliminating the influence of deterioration and interference.

本発明のガス濃度検出ユニットの第1形態例を示す概略断面図である。It is a schematic sectional drawing which shows the 1st example of a gas concentration detection unit of this invention. 実施例1の比較例で測定用受光部で検出した測定光の強度の変化例を示す図である。It is a figure which shows the example of a change of the intensity | strength of the measurement light detected in the light-receiving part for a measurement in the comparative example of Example 1. FIG. 実施例1において、測定用受光部で検出した測定光の強度と、参照用受光部で検出した参照光の強度と、両強度の差との関係を示す図である。In Example 1, it is a figure which shows the relationship between the intensity | strength of the measurement light detected by the light-receiving part for a measurement, the intensity | strength of the reference light detected by the light-receiving part for a reference, and the difference of both intensity | strength.

図1は、本発明のガス濃度検出ユニットの一形態例を示している。このガス濃度検出ユニット10は、直列に配置された3個の金属製のブロック11,21,31を有しており、各ブロック11,21,31には、各ブロック11,21,31内を一直線状に貫通する測定用光路12,22,32がそれぞれ設けられている。   FIG. 1 shows an example of a gas concentration detection unit according to the present invention. This gas concentration detection unit 10 has three metal blocks 11, 21, 31 arranged in series. Each block 11, 21, 31 includes the inside of each block 11, 21, 31. Measurement optical paths 12, 22, 32 penetrating in a straight line are provided.

第1のブロック11は、外端に光源13を備えるとともに、測定用光路12内にビームスプリッタ14を配置している。光源13は、測定対象ガスに含まれる不純物成分の濃度を測定可能な波長の測定光A1を測定用光路12内に向けて照射するもので、LEDなどの適宜な発光体が用いられている。   The first block 11 includes a light source 13 at the outer end and a beam splitter 14 disposed in the measurement optical path 12. The light source 13 irradiates the measurement light A1 having a wavelength capable of measuring the concentration of the impurity component contained in the measurement target gas toward the measurement optical path 12, and an appropriate light emitter such as an LED is used.

ビームスプリッタ14は、光源13から測定用光路12内に照射された測定光A1の一部を参照光A2として分割するもので、第1のブロック11の内部には、ビームスプリッタ14で分割された参照光A2を参照用受光部15に導くための参照用光路16が形成されている。   The beam splitter 14 divides a part of the measurement light A1 irradiated from the light source 13 into the measurement optical path 12 as the reference light A2. The beam splitter 14 is divided by the beam splitter 14 inside the first block 11. A reference optical path 16 for guiding the reference light A2 to the reference light receiving unit 15 is formed.

第2のブロック21は、測定用光路22の第1のブロック11側端部に、光透過性を有し、ガス不透過性を有する第1フィルタ23が気密に装着されており、測定用光路22の第3のブロック31側には、第2のブロック21と第3のブロック31との間を気密に保持するOリング24を装着するための環状凹部25が設けられている。また、第2のブロック21の側方には、測定対象ガスを測定用光路22内に導入するためのガス導入孔26が設けられている。   In the second block 21, a first filter 23 having optical transparency and gas impermeability is airtightly attached to the end of the optical path 22 for measurement on the first block 11 side. On the side of the third block 31 of 22, an annular recess 25 is provided for mounting an O-ring 24 that keeps the space between the second block 21 and the third block 31 airtight. A gas introduction hole 26 for introducing the measurement target gas into the measurement optical path 22 is provided on the side of the second block 21.

第3のブロック31は、測定用光路32の第2のブロック21側端部に、前記Oリング24を装着するための環状凹部33が設けられるとともに、測定用光路32の外端部には、光透過性を有し、ガス不透過性を有する第2フィルタ34が気密に装着されている。この第2フィルタ34の測定用光路32側の面、すなわち、光源13側の面は、測定対象ガスに含まれる不純物成分の濃度に応じて反応することにより、測定光A1の透過度が変化する不純物成分検知体35で覆われており、第2フィルタ34の外部側には、不純物成分検知体35を透過した測定光A1の強度を検出する測定用受光部36が設けられている。また、第3のブロック31の側方には、測定用光路22内から測定対象ガスを導出するためのガス導出孔37が設けられている。   The third block 31 is provided with an annular recess 33 for mounting the O-ring 24 at the end of the measurement optical path 32 on the second block 21 side, and at the outer end of the measurement optical path 32, A second filter 34 having light permeability and gas impermeability is mounted in an airtight manner. The surface of the second filter 34 on the measurement optical path 32 side, that is, the surface on the light source 13 side reacts according to the concentration of the impurity component contained in the measurement target gas, thereby changing the transmittance of the measurement light A1. A light receiving unit for measurement 36 that detects the intensity of the measurement light A1 that has passed through the impurity component detector 35 is provided outside the second filter 34, which is covered with the impurity component detector 35. Further, on the side of the third block 31, there is provided a gas outlet hole 37 for leading the measurement target gas from the measurement optical path 22.

図示は省略するが、前記光源13には、従来と同様の電源部が接続され、参照用受光部15及び測定用受光部36には、各受光部が検出した光の強度を電圧信号として計測するための計測部がそれぞれ設けられるとともに、各計測部でそれぞれ計測した電圧信号に基づいて測定対象ガスに含まれる不純物成分の濃度を算出する演算手段が設けられている。   Although not shown, the light source 13 is connected to the same power supply unit as in the prior art, and the reference light receiving unit 15 and the measurement light receiving unit 36 measure the intensity of light detected by each light receiving unit as a voltage signal. And measuring means for calculating the concentration of the impurity component contained in the gas to be measured based on the voltage signals respectively measured by the respective measuring units.

このように形成したガス濃度検出ユニット10は、測定対象ガスが流れるガス経路の中間に配置され、測定対象ガス供給経路の上流側ガス経路をガス導入孔26に接続するともに、測定対象ガス供給経路の下流側ガス経路をガス導出孔37に接続し、第2のブロック21内の測定用光路12及び第3のブロック31内の測定用光路22,32内に測定対象ガスを連続して流通できる状態にする。この状態で、光源13からあらかじめ設定された特定波長の測定光A1を測定用光路12,22,32内に照射し、ビームスプリッタ14で分割された参照光A2の強度を参照用受光部15で検出するとともに、測定用受光部36にて不純物成分検知体35を透過した測定光A1の強度を検出する。   The gas concentration detection unit 10 formed in this way is arranged in the middle of the gas path through which the measurement target gas flows, and connects the upstream gas path of the measurement target gas supply path to the gas introduction hole 26 and also the measurement target gas supply path. The downstream gas path is connected to the gas outlet hole 37 so that the measurement target gas can be continuously passed through the measurement optical path 12 in the second block 21 and the measurement optical paths 22 and 32 in the third block 31. Put it in a state. In this state, the measurement light A 1 having a specific wavelength set in advance from the light source 13 is irradiated into the measurement optical paths 12, 22, and 32, and the reference light receiving unit 15 determines the intensity of the reference light A 2 divided by the beam splitter 14. In addition to the detection, the measurement light receiving unit 36 detects the intensity of the measurement light A1 that has passed through the impurity component detector 35.

そして、参照用受光部15で検出した参照光A2の強度の変化に対応させて、測定用受光部36で検出した測定光A1の強度を補正することにより、例えば、測定光A1の強度から参照光A2の強度を差し引いた強度差を基準にして、不純物による測定光A1の強度変化を補正することにより、光源13の経時的劣化による影響を排除することができ、正確なガス濃度を検出することができる。   Then, by correcting the intensity of the measurement light A1 detected by the measurement light receiving unit 36 in accordance with the change in the intensity of the reference light A2 detected by the reference light receiving unit 15, for example, reference is made from the intensity of the measurement light A1. By correcting the change in intensity of the measurement light A1 due to impurities with reference to the intensity difference obtained by subtracting the intensity of the light A2, the influence of the light source 13 due to deterioration over time can be eliminated, and an accurate gas concentration is detected. be able to.

図1に示す構成のガス濃度検出ユニット10を使用して実験を行った。光源13には、Kingbright Electronic Co.Ltd.製のLEDランプL−7113QBC−Dを用い、各受光部にはTAOS Inc.製のTSL−257をそれぞれ使用した。まず、比較例として、ビームスプリッタ14を設けず、ガスも流さない状態で、測定用受光部36で検出した測定光A1の時間経過による強度変化(電圧変化)を測定した。電圧変化状態の結果を図2に示す。   An experiment was conducted using the gas concentration detection unit 10 having the configuration shown in FIG. For the light source 13, an LED lamp L-7113QBC-D made by Kingbright Electronic Co. Ltd. was used, and for each light receiving part, TSL-257 made by TAOS Inc. was used. First, as a comparative example, the intensity change (voltage change) of the measurement light A1 detected by the measurement light receiving unit 36 with the passage of time was measured without providing the beam splitter 14 and flowing gas. The result of the voltage change state is shown in FIG.

図2から明らかなように、時間経過に伴う光源13に劣化により、測定用受光部36で検出した測定光A1の強度が、15時間で約15mV減少した。さらに、単位時間当たりの電圧の減少量も経過時間により変化しているため、測定用受光部36からの電圧信号も一定ではなく、測定が不安定になる傾向にあることが確認できた。   As apparent from FIG. 2, due to the deterioration of the light source 13 with the passage of time, the intensity of the measurement light A1 detected by the measurement light receiving unit 36 decreased by about 15 mV in 15 hours. Furthermore, since the amount of voltage decrease per unit time also varies with the elapsed time, it was confirmed that the voltage signal from the measurement light receiving unit 36 is not constant and the measurement tends to become unstable.

一方、実施例として、ビームスプリッタ14を設け、参照用受光部15で検出した参照光A2の強度及び測定用受光部36で検出した測定光A1の強度の時間経過による強度変化をそれぞれ測定した。また、測定対象ガスとして、純度99.9999%の高純度窒素ガスを流通させ、該高純度窒素ガスに含まれる水分濃度を連続的に測定した。その結果を図3に示す。   On the other hand, as an example, a beam splitter 14 was provided, and changes in intensity of the reference light A2 detected by the reference light receiving unit 15 and the intensity of the measurement light A1 detected by the measurement light receiving unit 36 over time were measured. Further, a high purity nitrogen gas having a purity of 99.9999% was circulated as a measurement target gas, and the moisture concentration contained in the high purity nitrogen gas was continuously measured. The result is shown in FIG.

図3において、測定用受光部36で検出した測定光A1の強度B1は、前記比較例と同様に、時間の経過に伴って次第に減少しており、参照用受光部15で検出した参照光A2の強度B2も、時間経過に伴って次第に減少している。この状態で、測定光A1の強度B1と参照光A2の強度B2とを比較し、各経過時間における測定光A1の強度B1と参照光A2の強度B2との強度差C[ΔV]を求めると、図3に示すように、略一定の値になった。これにより、略一定の値となった強度差Cを基準強度として設定することができる。したがって、高純度窒素ガス中の水分と不純物成分検知体35とが反応し、測定光A1の一部が吸収されて測定用受光部36で検出した測定光A1の強度B1が減少したときに、前記強度差Cも減少することになるので、あらかじめ設定した基準強度に対する強度差Cの減少量から水分濃度を算出することが可能となる。これにより、高純度窒素ガスの濃度(純度)や不純物である水分濃度を正確に求めることができる。   In FIG. 3, the intensity B1 of the measurement light A1 detected by the measurement light receiving unit 36 gradually decreases with the passage of time, as in the comparative example, and the reference light A2 detected by the reference light reception unit 15 The intensity B2 also gradually decreases with time. In this state, the intensity B1 of the measurement light A1 and the intensity B2 of the reference light A2 are compared, and the intensity difference C [ΔV] between the intensity B1 of the measurement light A1 and the intensity B2 of the reference light A2 at each elapsed time is obtained. As shown in FIG. 3, the value was substantially constant. Thereby, the intensity difference C having a substantially constant value can be set as the reference intensity. Therefore, when the moisture in the high-purity nitrogen gas reacts with the impurity component detector 35, a part of the measurement light A1 is absorbed, and the intensity B1 of the measurement light A1 detected by the measurement light receiving unit 36 decreases. Since the intensity difference C also decreases, it becomes possible to calculate the moisture concentration from the amount of decrease in the intensity difference C with respect to a preset reference intensity. Thereby, the concentration (purity) of high-purity nitrogen gas and the moisture concentration that is an impurity can be accurately obtained.

このように、長期間使用したときの劣化によって光源13の照射強度が減少しても、照射強度の減少による影響を排除して不純物である水分濃度を正確に検出することができる。また、環境温度の変化などによって光源13の照射強度が増減した場合も、前記強度差Cの変化は、不純物の有無によるものであると判定できるので、あらかじめ設定した基準強度に対する強度差Cの変化量に基づいて不純物濃度を正確に求めることができる。一方、強度差Cが変化した場合は、参照用受光部15や測定用受光部36に異常が発生したと判断することができる。   Thus, even if the irradiation intensity of the light source 13 decreases due to deterioration after long-term use, it is possible to accurately detect the moisture concentration as an impurity by eliminating the influence of the decrease in irradiation intensity. Further, even when the irradiation intensity of the light source 13 increases or decreases due to a change in the environmental temperature or the like, it can be determined that the change in the intensity difference C is due to the presence or absence of impurities, so the change in the intensity difference C with respect to a preset reference intensity. The impurity concentration can be accurately determined based on the amount. On the other hand, when the intensity difference C changes, it can be determined that an abnormality has occurred in the reference light receiving unit 15 and the measurement light receiving unit 36.

なお、ガス濃度検出ユニットの構成は、前記形態例に限定されるものではなく、測定対象ガスの流量や圧力などの条件に応じて適宜な構成を採用することができる。さらに、光源からの波長は、測定対象となるガスの種類、不純物の種類に応じて適宜設定することができ、不純物成分検知体も、対象となる不純物の種類に応じて適宜選択することができる。また、ガス濃度検出ユニットにおける検出条件によっては、強度差として、測定光A1の強度B1を参照光A2の強度B2で除した商の値を用いることも可能である。   The configuration of the gas concentration detection unit is not limited to the above-described embodiment, and an appropriate configuration can be adopted according to conditions such as the flow rate and pressure of the measurement target gas. Furthermore, the wavelength from the light source can be appropriately set according to the type of gas to be measured and the type of impurity, and the impurity component detector can also be appropriately selected according to the type of impurity to be measured. . Further, depending on the detection conditions in the gas concentration detection unit, it is also possible to use a quotient value obtained by dividing the intensity B1 of the measurement light A1 by the intensity B2 of the reference light A2 as the intensity difference.

10…ガス濃度検出ユニット、11…第1のブロック、12…測定用光路、13…光源、14…ビームスプリッタ、15…参照用受光部、16…参照用光路、21…第2のブロック、22…測定用光路、23…第1フィルタ、24…Oリング、25…環状凹部、26…ガス導入孔、31…第3のブロック、32…測定用光路、33…環状凹部、34…第2フィルタ、35…不純物成分検知体、36…測定用受光部、37…ガス導出孔、A1…測定光、A2…参照光   DESCRIPTION OF SYMBOLS 10 ... Gas concentration detection unit, 11 ... 1st block, 12 ... Measurement optical path, 13 ... Light source, 14 ... Beam splitter, 15 ... Reference light-receiving part, 16 ... Reference optical path, 21 ... 2nd block, 22 ... optical path for measurement, 23 ... first filter, 24 ... O-ring, 25 ... annular recess, 26 ... gas introduction hole, 31 ... third block, 32 ... optical path for measurement, 33 ... annular recess, 34 ... second filter 35 ... Impurity component detector, 36 ... Light receiving part for measurement, 37 ... Gas outlet hole, A1 ... Measuring light, A2 ... Reference light

Claims (2)

測定対象ガスに含まれる不純物成分の濃度を連続的に検出するためのガス濃度検出ユニットにおいて、特定波長の測定光を照射する光源と、光透過性を有するフィルタの光源側の面を覆う不純物成分検知体と、該不純物成分検知体を透過した前記測定光の強度を検出する測定用受光部と、前記不純物成分検知体に前記測定対象ガスを供給する測定対象ガス供給経路と、前記光源から前記不純物成分検知体に向かう測定光の一部を参照光として分割するビームスプリッタと、該ビームスプリッタで分割された前記参照光の強度を検出する参照用受光部とを備えていることを特徴とするガス濃度検出ユニット。   In the gas concentration detection unit for continuously detecting the concentration of the impurity component contained in the measurement target gas, the impurity component that covers the light source side surface of the light source that irradiates the measurement light of the specific wavelength and the light transmissive filter A detector, a measurement light-receiving unit that detects the intensity of the measurement light transmitted through the impurity component detector, a measurement target gas supply path that supplies the measurement target gas to the impurity component detector, and the light source A beam splitter that divides a part of measurement light toward the impurity component detector as reference light, and a reference light receiving unit that detects the intensity of the reference light divided by the beam splitter. Gas concentration detection unit. 請求項1記載のガス濃度検出ユニットを用いた不純物成分濃度の測定方法であって、前記光源から前記測定光を連続して照射しながら、前記測定対象ガスを前記測定対象ガス供給経路に連続して供給し、前記測定用受光部で検出した前記測定光の強度と、前記参照用受光部で検出した前記参照光の強度とを比較し、前記参照光の強度の変化に対応させて前記測定光の強度を補正することを特徴とする不純物成分濃度の測定方法。   A method for measuring an impurity component concentration using the gas concentration detection unit according to claim 1, wherein the measurement target gas is continuously supplied to the measurement target gas supply path while continuously irradiating the measurement light from the light source. The intensity of the measurement light detected by the light receiving unit for measurement and the intensity of the reference light detected by the light receiving unit for reference are compared, and the measurement is performed in response to a change in the intensity of the reference light. A method for measuring the concentration of an impurity component, comprising correcting light intensity.
JP2016149304A 2016-07-29 2016-07-29 Gas concentration detection unit and gas concentration measurement method Active JP6836028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016149304A JP6836028B2 (en) 2016-07-29 2016-07-29 Gas concentration detection unit and gas concentration measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016149304A JP6836028B2 (en) 2016-07-29 2016-07-29 Gas concentration detection unit and gas concentration measurement method

Publications (2)

Publication Number Publication Date
JP2018017650A true JP2018017650A (en) 2018-02-01
JP6836028B2 JP6836028B2 (en) 2021-02-24

Family

ID=61081063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016149304A Active JP6836028B2 (en) 2016-07-29 2016-07-29 Gas concentration detection unit and gas concentration measurement method

Country Status (1)

Country Link
JP (1) JP6836028B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016609A (en) * 2018-07-27 2020-01-30 大陽日酸株式会社 Gas concentration measurement unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599845A (en) * 1991-10-08 1993-04-23 Nippon Sanso Kk Water content analysis device using semiconductor laser
JPH1096699A (en) * 1996-08-02 1998-04-14 Mitsubishi Heavy Ind Ltd Gas detection element and gas-measuring apparatus
US20140107943A1 (en) * 2012-10-17 2014-04-17 Milton Roy Company Gas intensity calibration method and system
JP2015049168A (en) * 2013-09-03 2015-03-16 株式会社島津製作所 Gas absorbance measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599845A (en) * 1991-10-08 1993-04-23 Nippon Sanso Kk Water content analysis device using semiconductor laser
JPH1096699A (en) * 1996-08-02 1998-04-14 Mitsubishi Heavy Ind Ltd Gas detection element and gas-measuring apparatus
US20140107943A1 (en) * 2012-10-17 2014-04-17 Milton Roy Company Gas intensity calibration method and system
JP2015049168A (en) * 2013-09-03 2015-03-16 株式会社島津製作所 Gas absorbance measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016609A (en) * 2018-07-27 2020-01-30 大陽日酸株式会社 Gas concentration measurement unit

Also Published As

Publication number Publication date
JP6836028B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
US8339607B2 (en) Ozone concentration sensor
TWI515421B (en) Raw material fluid concentration detector
US9557261B2 (en) Spectroscopic analysis method and spectroscopic analyzer
KR101487226B1 (en) Standard Calibration Method and Standard Calibration Apparatus for Detecting Ambient Ozone
JP5729285B2 (en) Combustion exhaust gas analyzer
JP2017040655A (en) Cp2Mg CONCENTRATION MEASUREMENT DEVICE
JP2011149965A (en) Absorption analyzer
JP2018017650A (en) Gas concentration detecting unit and gas concentration measuring method
KR20230009513A (en) Mass flow rate control system, and semiconductor manufacturing device and vaporizer including said system
JP2006038721A (en) Gas concentration detector
JP2009281943A (en) Ozone concentration measuring method and device therefor
JP6947700B2 (en) Gas concentration measurement unit
JPWO2020066769A5 (en)
JP6704384B2 (en) Gaseous impurity concentration detection unit and gaseous impurity concentration detection method
JP6643715B2 (en) Ozone measurement device
JP2014085111A (en) Infrared type gas sensor
JP6784444B2 (en) Chromatography system and methods for it
JP6176961B2 (en) Concentration measuring device used in manufacturing process
KR101571859B1 (en) Apparatus and method of analying element concentration using atomic absorption spectrophotometry
JPH0384440A (en) Method and instrument for measuring trace oxygen
JP2005221416A (en) Calibration method for infrared gas analyzer
JP5306052B2 (en) Gas analyzer
JP5483161B2 (en) Zero / span adjustment method for laser gas analyzer
US10571391B2 (en) Method for adjusting a measuring device
JPH01235834A (en) Signal processing system of laser system gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201028

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201126

R150 Certificate of patent or registration of utility model

Ref document number: 6836028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250