JP2018016872A - Method for producing electrode for generating hydrogen, and electrolysis method using the electrode for generating hydrogen - Google Patents

Method for producing electrode for generating hydrogen, and electrolysis method using the electrode for generating hydrogen Download PDF

Info

Publication number
JP2018016872A
JP2018016872A JP2016150244A JP2016150244A JP2018016872A JP 2018016872 A JP2018016872 A JP 2018016872A JP 2016150244 A JP2016150244 A JP 2016150244A JP 2016150244 A JP2016150244 A JP 2016150244A JP 2018016872 A JP2018016872 A JP 2018016872A
Authority
JP
Japan
Prior art keywords
electrode
catalyst layer
hydrogen generation
producing
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016150244A
Other languages
Japanese (ja)
Other versions
JP6753195B2 (en
Inventor
健二 坂本
Kenji Sakamoto
健二 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2016150244A priority Critical patent/JP6753195B2/en
Publication of JP2018016872A publication Critical patent/JP2018016872A/en
Application granted granted Critical
Publication of JP6753195B2 publication Critical patent/JP6753195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an electrode for generating hydrogen, the electrode having excellent durability, wherein the method does not cause poisoning influence due to an iron ion, and does not cause elevation of hydrogen overvoltage and separation of a supporting material during operation, startup and suspension.SOLUTION: An electrode for generating hydrogen is configured by supporting a catalyst layer mainly comprising platinum, nickel, and palladium on a conductive base material. The method for producing the electrode for generating the hydrogen sequentially conducts: a first step of applying a liquid for forming a catalyst layer on a conductive base material, the liquid containing platinum, nickel and palladium, and drying and pyrolyzing the liquid to form the catalyst layer on the conductive base material; and a second step of conduct calcination at 300-500°C.SELECTED DRAWING: None

Description

本発明は水の電気分解又は食塩などのアルカリ金属塩化物水溶液の電気分解に使用する水素発生用電極の製造方法及び水素発生用電極を用いた電気分解方法に関するものである。   The present invention relates to a method for producing an electrode for hydrogen generation used for electrolysis of water or electrolysis of an aqueous solution of an alkali metal chloride such as salt, and an electrolysis method using the electrode for hydrogen generation.

水又はアルカリ金属塩化物水溶液の電解工業は電力多消費型産業であり、省エネルギー化のために様々な技術開発が行われている。その省エネルギー化の手段とは、電解電圧の低減、及び/又は、電流効率の向上により、電解時に発生する電力ロスを削減することである。例えば、食塩電解工業において、電流効率は95%以上で操業されており、向上余地は少ない。それに対し、電解電圧は理論分解電圧の約2.3Vに対し3.0V前後で操業されており、電圧削減余地が大きく、電圧を削減するための研究開発が盛んに成されている。   The water or alkali metal chloride aqueous solution electrolysis industry is a power-intensive industry, and various technological developments have been made to save energy. The energy saving means is to reduce power loss generated during electrolysis by reducing electrolysis voltage and / or improving current efficiency. For example, in the salt electrolysis industry, the current efficiency is operated at 95% or more, and there is little room for improvement. On the other hand, the electrolysis voltage is operated at around 3.0 V with respect to the theoretical decomposition voltage of about 2.3 V, and there is a lot of room for voltage reduction, and research and development for reducing the voltage are actively conducted.

特に、過電圧の低減に関しては、その過電圧値が電極の触媒材料や電極表面のモルフォロジーに左右されることから、その改良についてこれまで多くの研究開発が行われてきた。例えば、イオン交換膜法食塩電解用陽極について、陽極過電圧の低減に盛んな研究開発が行われてきた結果、陽極過電圧が低く、耐久性に優れた寸法安定性電極[例えば、デノラ・ペルメレック株式会社製のDSE塩素発生用電極(登録商標)]が実用化された。   In particular, regarding the reduction of the overvoltage, since the overvoltage value depends on the electrode catalyst material and the morphology of the electrode surface, many researches and developments have been conducted on the improvement thereof. For example, as a result of vigorous research and development for reducing anode overvoltage for the ion exchange membrane salt electrolysis anode, a dimensional stability electrode with low anode overvoltage and excellent durability [eg Denora Permerek Co., Ltd. DSE chlorine-generating electrode (registered trademark)] made commercially available.

一方、陰極過電圧を低減するための水素発生用電極、いわゆる活性陰極に関してもこれまで多くの提案がなされている。例えば、特許文献1には「電気めっき法で導電性基材表面に、ニッケルと鉄、コバルト、インジウムとの組み合わせに加えてアミノ酸、カルボン酸、アミンなどの有機化合物を含んだ物質を担持した」水素発生用電極が提案されている。   On the other hand, many proposals have been made regarding an electrode for hydrogen generation for reducing cathode overvoltage, so-called active cathode. For example, Patent Document 1 states that “a material containing an organic compound such as an amino acid, a carboxylic acid, or an amine in addition to a combination of nickel, iron, cobalt, and indium is supported on the surface of a conductive substrate by electroplating”. An electrode for hydrogen generation has been proposed.

特許文献1の水素発生用電極は、特許文献1[0011]記載の通り、「被覆層の厚みとしては、薄すぎると十分な低水素過電圧性能が得られず、厚すぎると剥離しやすくなるので、20μm〜300μmが適当」である。   As described in Patent Document 1 [0011], the hydrogen generating electrode disclosed in Patent Document 1 is “if the coating layer is too thin, sufficient low hydrogen overvoltage performance cannot be obtained, and if it is too thick, it tends to peel off. 20 μm to 300 μm is suitable ”.

近年、陽極とイオン交換膜と陰極を密着させた、所謂、「ゼロギャップ型イオン交換膜法電解槽」が実用化されており、例えば、特許文献2の請求項2記載の通り、「刻み巾が0.1mm以上1.0mm以下、短径が0.5mm以上5.0mm以下、長径が1.0mm以上10mm以下、板厚が0.1mm以上1.0mm以下であり、開口率が48〜60%であるエキスパンドメタルに電極触媒が担持されている」水素発生用電極を用いることが提案されている。この様な、薄く、開孔が小さいエキスパンドメタル(「エキスパンドメッシュ」とも言う)に電極触媒を担持する場合、被覆層が20μm〜300μmでは厚すぎるため、特許文献1記載の陰極を特許文献2記載のゼロギャップ電解槽で使用すると、これらの効果が発揮されない場合もある。   In recent years, a so-called “zero-gap ion exchange membrane electrolytic cell” in which an anode, an ion exchange membrane and a cathode are brought into close contact with each other has been put into practical use. 0.1 mm to 1.0 mm, the minor axis is 0.5 mm to 5.0 mm, the major axis is 1.0 mm to 10 mm, the plate thickness is 0.1 mm to 1.0 mm, and the aperture ratio is 48 to 48 mm. It has been proposed to use an electrode for hydrogen generation in which an electrode catalyst is supported on 60% expanded metal. When the electrocatalyst is supported on such an expanded metal (also referred to as “expanded mesh”) that is thin and has a small aperture, the coating layer is too thick at 20 μm to 300 μm. These effects may not be exhibited when used in a zero gap electrolytic cell.

近年、白金を含有する触媒を用いた水素発生用電極が提案されている。白金を含有する触媒を用いた水素発生用電極は、例えば、特許文献3の[0036]記載の通り、「触媒層の重量は、1〜15g/m程度が最良であり、最適な厚さは0.1〜10μm程度」であり、前記の特許文献2記載のゼロギャップ型イオン交換膜法電解槽にも好ましく用いることができ、盛んに研究開発が成されている。 In recent years, an electrode for hydrogen generation using a catalyst containing platinum has been proposed. The electrode for hydrogen generation using the catalyst containing platinum is, for example, as described in [0036] of Patent Document 3, “The weight of the catalyst layer is best at about 1 to 15 g / m 2 and the optimum thickness. Is about 0.1 to 10 μm ”and can be preferably used in the zero-gap ion exchange membrane electrolytic cell described in Patent Document 2 as well, and research and development has been actively conducted.

中でも、導電性基材上に、白金、ニッケルおよびパラジウムを主成分とする触媒層が担持されてなる水素発生用電極は、例えば、特許文献4[0047]記載の通り、「従来の白金系触媒の欠点とされていた電解液中の鉄イオンの被毒によって、水素過電圧が上昇することがなく、さらに、電解運転中や停止・起動操作中に流れる逆電流により触媒が剥離・脱落することもない」優れた性能を発揮する。   Among them, an electrode for hydrogen generation in which a catalyst layer mainly composed of platinum, nickel and palladium is supported on a conductive substrate is disclosed in, for example, “conventional platinum-based catalyst” as described in Patent Document 4 [0047]. The hydrogen overvoltage does not increase due to the poisoning of iron ions in the electrolyte, which has been regarded as a disadvantage of the above, and the catalyst may be peeled off or dropped due to the reverse current that flows during the electrolysis operation or stop / start operation. "No" excellent performance.

白金、ニッケルおよびパラジウムを主成分とする触媒層が担持されてなる水素発生用電極は、例えば、特許文献4の表1に記載の通り、水素過電圧が70〜80mVである。これは従来技術に対し、十分な高性能と位置付けることが出来るが、環境保護の観点からは、更に水素過電圧を低減可能な技術が求められている。   The electrode for hydrogen generation in which the catalyst layer which has platinum, nickel, and palladium as a main component is carry | supported has a hydrogen overvoltage of 70-80 mV as described in Table 1 of patent document 4, for example. This can be positioned as sufficiently high performance as compared with the prior art, but from the viewpoint of environmental protection, a technology capable of further reducing hydrogen overvoltage is required.

特許第3319370号公報Japanese Patent No. 3319370 特許第5583002号公報Japanese Patent No. 5582002 特許第5042389号公報Japanese Patent No. 5042389 特開2015−143389号公報JP2015-143389A

本発明の目的は、水又はアルカリ金属塩化物水溶液電解工業等で使用可能で、鉄イオンによる被毒の影響がなく、かつ、運転中や起動・停止中にも水素過電圧の上昇や担持物の脱落がなく、耐久性に優れた水素発生用電極であって、さらに、90℃の32wt%水酸化ナトリウム水溶液中で、6kA/mで測定した水素過電圧が70mV未満を示す、白金、ニッケル及びパラジウムを主成分とする触媒層が担持されてなる水素発生用電極の製造方法を提供することにある。 The object of the present invention is that it can be used in the water or alkali metal chloride aqueous solution electrolysis industry, etc., and is not affected by poisoning by iron ions. Platinum, nickel, and an electrode for hydrogen generation excellent in durability with no dropout, and further having a hydrogen overvoltage of less than 70 mV measured at 6 kA / m 2 in a 32 wt% sodium hydroxide aqueous solution at 90 ° C. The object is to provide a method for producing an electrode for hydrogen generation in which a catalyst layer mainly composed of palladium is supported.

発明者は上記の課題を解決するために、白金、ニッケル及びパラジウムを主成分とする触媒層が担持されてなる水素発生用電極の製造方法について、鋭意検討を重ねた結果、白金、ニッケル、パラジウムを含む触媒層形成用液を導電性基材上に塗布、乾燥、熱分解し、導電性基材上に触媒層を形成する第1工程を行った後、300〜500℃で焼成する第2工程を行うことにより、水素過電圧が70mV未満を示す、白金、ニッケル及びパラジウムを主成分とする触媒層が担持されてなる水素発生用電極が得られることを見出し、本発明に至ったものである。すなわち、本発明は、白金、ニッケル及びパラジウムを含む触媒層形成用液を導電性基材上に塗布、乾燥、熱分解し、導電性基材上に触媒層を形成する第1工程を行った後、300〜500℃で焼成を行う第2工程を行うことを特徴とする、導電性基材上に、白金、ニッケル及びパラジウムを主成分とする触媒層が担持されてなる水素発生用電極の製造方法、並びに水素発生用電極を用いた電気分解方法である。   In order to solve the above-mentioned problems, the inventor has conducted extensive studies on a method for producing an electrode for hydrogen generation in which a catalyst layer mainly composed of platinum, nickel, and palladium is supported. As a result, platinum, nickel, palladium A catalyst layer forming solution containing a catalyst is applied onto a conductive substrate, dried, thermally decomposed, and subjected to a first step of forming a catalyst layer on the conductive substrate, followed by baking at 300 to 500 ° C. By carrying out the process, it was found that a hydrogen generation electrode in which a catalyst layer mainly composed of platinum, nickel and palladium showing a hydrogen overvoltage of less than 70 mV was supported was obtained, and the present invention has been achieved. . That is, the present invention performs the first step of forming a catalyst layer on a conductive substrate by applying a catalyst layer forming liquid containing platinum, nickel and palladium on the conductive substrate, drying and pyrolyzing the solution. Thereafter, a second step of firing at 300 to 500 ° C. is performed. A hydrogen generating electrode comprising a conductive base material and a catalyst layer mainly composed of platinum, nickel, and palladium supported thereon. A production method and an electrolysis method using an electrode for hydrogen generation.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の水素発生用電極の製造方法は、白金、ニッケル、パラジウムを含む触媒層形成用液を導電性基材上に塗布、乾燥、熱分解し、導電性基材上に触媒層を形成する第1工程を行った後、300〜500℃で焼成する第2工程を行うことが必須である。
In the method for producing an electrode for hydrogen generation according to the present invention, a catalyst layer forming liquid containing platinum, nickel, and palladium is applied on a conductive substrate, dried, and thermally decomposed to form a catalyst layer on the conductive substrate. After performing the first step, it is essential to perform the second step of baking at 300 to 500 ° C.

本発明の水素発生用電極の製造方法で用いられる、白金、ニッケル、パラジウムを含む触媒層形成用液は、白金化合物とニッケル化合物とパラジウム化合物を溶媒に溶解させることで作製できる。   The catalyst layer forming liquid containing platinum, nickel, and palladium used in the method for producing an electrode for hydrogen generation of the present invention can be prepared by dissolving a platinum compound, a nickel compound, and a palladium compound in a solvent.

触媒層形成用液の作製に用いられる白金化合物は、例えば、塩化白金酸、ジニトロジアミン白金などの白金塩等を用いることができる。特にアンミン錯体を形成するジニトロジアンミン白金を用いると、還元処理後の白金合金の結晶子径を例えば200オングストローム以下まで微細化し、反応比表面積を増大させられるため好ましい。これは、前記ジニトロジアミン白金は熱分解温度が約550℃と高いために、熱分解中の白金の凝集を抑制し、熱分解後に白金とニッケルとパラジウムが均一に混合した被膜が得られ、還元処理により微細な結晶子系の合金が得られるためと推定される。   Examples of the platinum compound used for preparing the catalyst layer forming liquid include platinum salts such as chloroplatinic acid and dinitrodiamine platinum. In particular, it is preferable to use dinitrodiammine platinum that forms an ammine complex because the crystallite diameter of the platinum alloy after the reduction treatment can be reduced to, for example, 200 angstroms or less to increase the reaction specific surface area. This is because the thermal decomposition temperature of the dinitrodiamine platinum is as high as about 550 ° C., so that aggregation of platinum during thermal decomposition is suppressed, and a film in which platinum, nickel and palladium are uniformly mixed after thermal decomposition is obtained. It is estimated that a fine crystallite-based alloy is obtained by the treatment.

触媒層形成用液の作製に用いられるニッケル化合物、パラジウム化合物は、触媒層の組成が均一になり易く、また、担持物の表面積を高め易い等のため、溶媒に可溶な原料が好ましく、例えば、ニッケル塩、ニッケル微粒子、パラジウム塩、パラジウム微粒子等があげられる。ニッケル塩、パラジウム塩における塩としては、例えば、硝酸塩、硫酸塩、塩化物、炭酸塩、酢酸塩、スルファミン酸塩などの塩類等を用いることができる。   The nickel compound and palladium compound used for the preparation of the catalyst layer forming liquid are preferably a material that is soluble in a solvent because the composition of the catalyst layer tends to be uniform and the surface area of the support is easily increased. Nickel salt, nickel fine particles, palladium salt, palladium fine particles and the like. Examples of the salt in the nickel salt and the palladium salt include nitrates, sulfates, chlorides, carbonates, acetates, sulfamates, and the like.

前記溶媒は白金化合物とニッケル化合物とパラジウム化合物が完全に溶解できるものが好ましく、水、硝酸、塩酸、硫酸、酢酸溶液などの無機酸、メタノール、エタノール、プロパノール、ブタノールなどの有機溶媒、またはこれらを混合物として用いることもできる。また、塗布液中へ基材金属の溶解を抑制する目的で触媒層形成用液のpHを調製して用いてもよく、担持物の表面積を高めるためにリシン、クエン酸等の錯塩を添加し、ニッケルおよびパラジウムを錯体化させてもよい。   The solvent is preferably one in which a platinum compound, a nickel compound and a palladium compound can be completely dissolved, an inorganic acid such as water, nitric acid, hydrochloric acid, sulfuric acid and acetic acid solution, an organic solvent such as methanol, ethanol, propanol and butanol, or these. It can also be used as a mixture. In addition, the pH of the catalyst layer forming solution may be adjusted and used for the purpose of suppressing dissolution of the base metal in the coating solution, and complex salts such as lysine and citric acid may be added to increase the surface area of the support. Nickel and palladium may be complexed.

本発明の水素発生用電極の製造方法で形成される触媒層の組成(白金、ニッケル及びパラジウムの比率)は、触媒層形成用液の組成で定まるため、触媒層形成用液の白金、ニッケル及びパラジウムは、所望の水素発生用電極の触媒層の組成と同一に調整すればよい。また、触媒層形成用液の金属成分濃度は、特に限定されるものではなく、例えば、白金濃度を40〜80g/Lとし、ニッケル及びパラジウムを白金に対して所望の比率になるようにすればよい。   The composition (ratio of platinum, nickel and palladium) of the catalyst layer formed by the method for producing the electrode for hydrogen generation of the present invention is determined by the composition of the catalyst layer forming solution. What is necessary is just to adjust palladium to the same composition as the catalyst layer of the electrode for hydrogen generation desired. Moreover, the metal component concentration of the catalyst layer forming liquid is not particularly limited. For example, if the platinum concentration is 40 to 80 g / L and nickel and palladium are in a desired ratio with respect to platinum. Good.

水素発生用電極としての高い性能を発現する上で、白金、ニッケル及びパラジウムを主成分とする触媒層は、白金、ニッケル及びパラジウムが、原子レベルで適度に分散できていることが望ましい。特にパラジウムは、白金及びニッケルに対して相互に親和性が高いので、この3成分を適度に分散させることに重要な役割を果たす。   In order to express high performance as an electrode for hydrogen generation, it is desirable that platinum, nickel and palladium be appropriately dispersed at the atomic level in the catalyst layer mainly composed of platinum, nickel and palladium. In particular, palladium has a high affinity for platinum and nickel, and therefore plays an important role in appropriately dispersing these three components.

適度な分散状態を得るため、前記触媒層形成用液中のパラジウム含有量が1〜55モル%であることが好ましい。   In order to obtain an appropriate dispersion state, the palladium content in the catalyst layer forming liquid is preferably 1 to 55 mol%.

また、さらに適度な分散状態を得るため、前記触媒層形成用液中のパラジウム含有量が4〜48モル%、ニッケル含有量が48〜4モル%、残部が白金であることが好ましい。   Further, in order to obtain a more appropriate dispersed state, it is preferable that the palladium content in the catalyst layer forming liquid is 4 to 48 mol%, the nickel content is 48 to 4 mol%, and the balance is platinum.

次に、本発明で用いられる導電性基材について説明する。用いられる導電性基材の材質は、例えば、ニッケル、鉄、銅、チタンやステンレス合金鋼が挙げられ、特にアルカリ性溶液に対して耐食性の優れたニッケルが好ましい。   Next, the conductive substrate used in the present invention will be described. Examples of the material of the conductive substrate used include nickel, iron, copper, titanium, and stainless steel alloy, and nickel having excellent corrosion resistance against an alkaline solution is particularly preferable.

導電性基材の形状は、特に限定されるものではなく、一般に電解槽の電極に合せた形状でよく、例えば、平板、曲板等が使用可能である。   The shape of the conductive substrate is not particularly limited, and may generally be a shape that matches the electrode of the electrolytic cell. For example, a flat plate, a curved plate, or the like can be used.

また、用いられる導電性基材は、多孔板が好ましく、例えば、エキスパンドメタル、パンチングメタル、網等が使用できる。   In addition, the conductive substrate used is preferably a perforated plate, and for example, expanded metal, punching metal, nets, and the like can be used.

導電性基材は、予め基材表面を粗面化することが好ましい。これは、粗面化によって接触表面積を大きくでき、基材と担持物の密着性が向上するためである。粗面化の手段としては特に限定されず、公知の方法、例えば、サンドブラスト処理、蓚酸、塩酸溶液などによりエッチング処理し、水洗、乾燥する方法等を用いることができる。   The conductive substrate is preferably roughened in advance. This is because the contact surface area can be increased by roughening, and the adhesion between the substrate and the support is improved. The surface roughening means is not particularly limited, and a known method such as sand blasting, etching with oxalic acid or hydrochloric acid solution, washing with water, drying and the like can be used.

本発明の第1工程は、前記触媒層形成用液を前記導電性基材上に塗布し、乾燥し、熱分解を行う一連の操作を行い、導電性基材上に触媒層を形成する。   In the first step of the present invention, the catalyst layer forming solution is applied on the conductive substrate, dried, and subjected to a series of operations for thermal decomposition to form a catalyst layer on the conductive substrate.

前記触媒層形成用液を前記導電性基材に塗布する方法は、例えば、白金塩とニッケル塩とパラジウム塩を含む触媒層形成用液を、刷毛などを用いて導電性基材に塗布してもよい。また、刷毛塗り以外にスプレー法、ディップコート法など、全ての既知の方法を好適に用いることができる。   The method for applying the catalyst layer forming liquid to the conductive base material is, for example, by applying a catalyst layer forming liquid containing a platinum salt, a nickel salt, and a palladium salt to the conductive base material using a brush or the like. Also good. In addition to brush coating, all known methods such as a spray method and a dip coating method can be suitably used.

塗布後の乾燥温度は、例えば、200℃以下の温度で5〜60分間行えばよく、150℃以下の乾燥温度が好ましい。   What is necessary is just to perform the drying temperature after application | coating at the temperature of 200 degrees C or less for 5 to 60 minutes, for example, and the drying temperature of 150 degrees C or less is preferable.

乾燥後の熱分解温度は200℃を超え700℃以下の範囲で5〜60分間行えばよいが、好ましくは350℃を超え500℃以下の範囲で行うとよい。例えば、ジニトロジアミン白金溶液を用いた場合、ジニトロジアミン白金の熱分解温度は550℃であり、500℃以下で熱分解を行うことで白金のシンタリングが抑制され、水素過電圧がより一層低い水素発生用電極を得ることができる。   The thermal decomposition temperature after drying may be performed for 5 to 60 minutes in the range of over 200 ° C. and 700 ° C. or less, but preferably over 350 ° C. and 500 ° C. or less. For example, when a dinitrodiamine platinum solution is used, the thermal decomposition temperature of dinitrodiamine platinum is 550 ° C., and by performing thermal decomposition at 500 ° C. or less, platinum sintering is suppressed and hydrogen overvoltage is further reduced. A working electrode can be obtained.

本発明では、前記触媒層形成用液の塗布量、塗布回数は特に制約はなく、例えば、導電基材の投影面積あたり13〜31mL/mに制御して塗布した後、乾燥、熱分解する工程を4〜8回繰返し、最終的な触媒層重量として10g/m以上とすればよい。触媒層の重量は、12g/m以上が好ましく、14g/m以上であることがさらに好ましい。 In the present invention, the coating amount and the number of coatings of the catalyst layer forming liquid are not particularly limited. For example, the coating is performed by controlling the coating amount to 13 to 31 mL / m 2 per projected area of the conductive substrate, and then drying and pyrolyzing The process may be repeated 4 to 8 times, and the final catalyst layer weight may be 10 g / m 2 or more. The weight of the catalyst layer is preferably 12 g / m 2 or more, and more preferably 14 g / m 2 or more.

また、触媒層形成用液は基材の片面のみに塗布しても良いが、特に基材が多孔板の場合は、両面に塗布することが好ましい。   Further, the catalyst layer forming solution may be applied only to one side of the substrate, but it is preferably applied to both sides particularly when the substrate is a perforated plate.

本発明では、第1工程を終了した後、300〜500℃で焼成を行う第2工程を行う。この温度範囲を逸脱すると70mV未満の過電圧が得られない。その理由は必ずしも明確ではないが、300℃未満で焼成を行うと、焼成の効果が得られず第2工程を実施していない場合と同じとなり、500℃を超えて焼成を行うと、触媒層の白金成分などが凝集し比表面積が低下するため、本発明の効果が得られないと推定している。低過電圧を得るため、好ましい焼成温度は、350〜450℃である。なお、焼成時間は特に制約はないが、作業性の観点から、0.2〜8時間とすることができる。   In this invention, after complete | finishing a 1st process, the 2nd process of baking at 300-500 degreeC is performed. If it deviates from this temperature range, an overvoltage of less than 70 mV cannot be obtained. The reason for this is not necessarily clear, but if the firing is performed at a temperature lower than 300 ° C., the effect of the firing is not obtained, and the same as when the second step is not performed. It is presumed that the effects of the present invention cannot be obtained because the platinum component and the like are aggregated and the specific surface area is reduced. In order to obtain a low overvoltage, a preferable firing temperature is 350 to 450 ° C. The firing time is not particularly limited, but can be 0.2 to 8 hours from the viewpoint of workability.

第1工程終了から第2工程を開始するまでの期間は特に制限はない。すなわち、第1工程が終了した後、直ちに第2工程を実施しても良いし、第1工程が終了した後に保管し、例えば、150日経過後に第2工程を施しても良い。   There is no particular limitation on the period from the end of the first step to the start of the second step. That is, the second step may be performed immediately after the first step is completed, or may be stored after the first step is completed. For example, the second step may be performed after 150 days have elapsed.

第2工程は、第1工程により触媒層が形成された導電性基材を、300〜500℃で焼成を行えばよく、その他の制約は特にない。焼成は空気中で行えばよく、窒素ガス、アルゴンガス、真空等、特別な雰囲気は不要である。   In the second step, the conductive substrate on which the catalyst layer is formed in the first step may be baked at 300 to 500 ° C., and there are no other restrictions. Firing may be performed in air, and a special atmosphere such as nitrogen gas, argon gas, or vacuum is not necessary.

第2工程が終了した後に、導電性基材に形成した触媒層を金属状態に還元、合金化させることを目的とした還元処理を行うことが好ましい。還元処理方法は特に限定されないが、例えば、ヒドラジン、ギ酸、蓚酸などの還元力の強い物質との接触による化学還元法、白金とニッケルとパラジウムに対し、還元電位を与える電気化学的還元法等を用いることができる。   After the 2nd process is complete | finished, it is preferable to perform the reduction process aiming at reducing and alloying the catalyst layer formed in the electroconductive base material to a metal state. Although the reduction treatment method is not particularly limited, for example, a chemical reduction method by contact with a substance having a strong reducing power such as hydrazine, formic acid or oxalic acid, an electrochemical reduction method for giving a reduction potential to platinum, nickel and palladium, etc. Can be used.

第2工程終了から還元処理を開始するまでの期間は特に制限はない。すなわち、第2工程が終了した後、直ちに還元処理を実施しても良いし、第2工程が終了した後に保管し、例えば、150日経過後に還元処理を施しても良い。   The period from the end of the second step to the start of the reduction process is not particularly limited. That is, the reduction process may be performed immediately after the second process is completed, or may be stored after the second process is completed, for example, the reduction process may be performed after 150 days.

本発明の製造方法で得られた水素発生用電極を、水又はアルカリ金属塩化物水溶液の電気分解をするときの陰極に用いる場合、導電性基材に形成した触媒層の還元は電気化学的還元法が好ましい。なお、本発明でいう「水の電気分解」とは、「純水の電気分解」ではなく、「NaOH、KOH、HCl、HSO等の電解質を含む水の電気分解」を意味する。 When the electrode for hydrogen generation obtained by the production method of the present invention is used as a cathode when electrolyzing water or an aqueous alkali metal chloride solution, the reduction of the catalyst layer formed on the conductive substrate is an electrochemical reduction. The method is preferred. The “electrolysis of water” in the present invention means not “electrolysis of pure water” but “electrolysis of water containing an electrolyte such as NaOH, KOH, HCl, H 2 SO 4 ”.

例えば、第2工程が終了した後、本発明の水素発生用電極をイオン交換膜法食塩電解槽に陰極として取り付け、食塩電解を開始すれば、導電性基材上の触媒層が電気化学的に還元される。   For example, after the second step is completed, if the electrode for hydrogen generation of the present invention is attached as a cathode to an ion exchange membrane salt electrolysis tank and salt electrolysis is started, the catalyst layer on the conductive substrate is electrochemically formed. Reduced.

電解開始条件は、特に制約はなく、イオン交換膜法食塩電解の電解開始条件をそのまま適用すればよい。例えば、温度:70〜90℃、電解電流密度:0.05〜1kA/mで実施すればよく、好ましくは、温度:80〜88℃、電解電流密度:0.1〜0.5kA/mである。触媒層の還元に要する時間は、電解電流密度に比例するが、0.1〜0.5kA/mの場合は、1〜3分間で触媒層の還元が終了し、その後は、水素発生用電極として使用し得る。 The electrolysis start conditions are not particularly limited, and the electrolysis start conditions for ion exchange membrane salt electrolysis may be applied as they are. For example, it may be carried out at a temperature of 70 to 90 ° C. and an electrolytic current density of 0.05 to 1 kA / m 2 , preferably a temperature of 80 to 88 ° C. and an electrolytic current density of 0.1 to 0.5 kA / m. 2 . The time required for the reduction of the catalyst layer is proportional to the electrolysis current density, but in the case of 0.1 to 0.5 kA / m 2 , the reduction of the catalyst layer is completed in 1 to 3 minutes, and thereafter, for hydrogen generation Can be used as an electrode.

電解槽装着前に、何らかの方法で触媒層を還元してもよく、その場合も本発明の効果が十分発揮される。しかし、前記で示した通り、電解槽に装着し、電解開始時に還元すると、余分なコストが生じず、好ましい。   Before the electrolytic cell is mounted, the catalyst layer may be reduced by any method, and in that case, the effect of the present invention is sufficiently exhibited. However, as described above, it is preferable that the battery is mounted in an electrolytic cell and reduced at the start of electrolysis because no extra cost is generated.

この様にして得られる本発明の水素発生用電極は、水又はアルカリ金属塩化物水溶液を電気分解し、前記陰極上から水素ガス及びアルカリ金属水酸化物水溶液を生成し、陽極上から酸素ガス又は塩素ガスを生成することを特徴とする電解、すなわち、隔膜を挟んで陽極を配置した電解槽で水又は食塩などのアルカリ金属塩化物水溶液の電気分解での用途において、水素発生用電極として用いると、低水素過電圧が得られると共に、陰極液中に鉄イオンを混入させない特別な工夫をすることなく低過電圧特性を長期間安定に維持し、かつ、停止や再起動操作時に触媒が剥離や脱落を生じることもない、すなわち、水素過電圧性能と耐久性に極めて優れた水素発生用電極である。ここで、隔膜とは、代表的に、陽イオンを選択的に透過する陽イオン交換膜などが挙げられる。   The electrode for hydrogen generation of the present invention thus obtained is obtained by electrolyzing water or an aqueous alkali metal chloride solution to produce hydrogen gas and an aqueous alkali metal hydroxide solution from above the cathode, and oxygen gas or from above the anode. When used as an electrode for hydrogen generation in electrolysis characterized by producing chlorine gas, i.e., in an electrolytic cell in which an anode is placed with a diaphragm in between, electrolysis of an aqueous solution of alkali metal chloride such as water or salt In addition to providing a low hydrogen overvoltage, the low overvoltage characteristics can be maintained stably for a long time without special measures to prevent iron ions from being mixed into the catholyte, and the catalyst can be peeled off or dropped during a stop or restart operation. This is an electrode for hydrogen generation that does not occur, that is, extremely excellent in hydrogen overvoltage performance and durability. Here, the diaphragm typically includes a cation exchange membrane that selectively permeates cations.

従って、水又は食塩などのアルカリ金属塩化物水溶液の電気分解工業分野において、水素発生用電極を本発明が提供する水素発生用電極に変更するのみで、当該電気分解工業の所要エネルギーが低減可能となる。   Therefore, in the field of electrolysis industry of an aqueous solution of alkali metal chloride such as water or salt, the energy required for the electrolysis industry can be reduced only by changing the electrode for hydrogen generation to the electrode for hydrogen generation provided by the present invention. Become.

本発明によれば、初期の水素過電圧が十分に低く、かつ、耐久性に優れた水素発生用電極が容易に得られる。   According to the present invention, it is possible to easily obtain an electrode for hydrogen generation in which the initial hydrogen overvoltage is sufficiently low and the durability is excellent.

本発明の水素発生用電極は、従来の白金系触媒の欠点とされていた電解液中の鉄イオンの被毒によって、水素過電圧が上昇することがなく、さらに、電解運転中や停止・起動操作中に流れる逆電流により触媒が剥離・脱落することもない。そのため、白金が本来有する低水素過電圧特性を長期間に渡り安定に維持でき、特に年間数回の停止、再起動の際に流れる逆電流や陰極液中への鉄混入が余儀なくされる水又はアルカリ金属水溶液の電気分解工業等の所要エネルギーを大幅に削減可能である。   The hydrogen generating electrode of the present invention does not increase the hydrogen overvoltage due to iron ion poisoning in the electrolytic solution, which has been regarded as a drawback of the conventional platinum-based catalyst. The catalyst does not peel off or fall off due to the reverse current flowing inside. Therefore, the low hydrogen overvoltage characteristic inherent in platinum can be stably maintained over a long period of time, and in particular, water or alkali that is forced to contain iron in the catholyte and reverse current that flows several times a year during shutdown and restart. The energy required for the electrolysis industry of metal aqueous solutions can be greatly reduced.

以下の実施例により、本発明を具体的に説明するが、本発明は実施例のみに限定されるものではない。   The present invention will be specifically described by the following examples, but the present invention is not limited to the examples.

<導電性基材>
導電性基材はニッケルエキスパンドメタルを用いた。ニッケルエキスパンドメタルは、前処理として、10wt%の塩酸溶液を用いて温度50℃で10分間エッチングした後、水洗、乾燥した。
<Conductive substrate>
Nickel expanded metal was used as the conductive substrate. Nickel expanded metal was etched as a pretreatment using a 10 wt% hydrochloric acid solution at a temperature of 50 ° C. for 10 minutes, and then washed with water and dried.

<触媒層形成用液の作製>
白金含有量が100g/Lのジニトロジアンミン白金硝酸溶液(田中貴金属製)60mlに硝酸ニッケル6水和物8.94gと硝酸パラジウム2水和物(小島化学薬品製)0.82gを溶解し、次いで、水を用いて100mlにメスアップし、白金、ニッケル及びパラジウムを含む触媒層形成用液(白金:48モル%、ニッケル:48モル%、パラジウム:4モル%)を作製した。
<Preparation of catalyst layer forming liquid>
Dissolve 8.94 g of nickel nitrate hexahydrate and 0.82 g of palladium nitrate dihydrate (manufactured by Kojima Chemical) in 60 ml of dinitrodiammine platinum nitrate solution (manufactured by Tanaka Kikinzoku) with a platinum content of 100 g / L, The solution was made up to 100 ml with water to prepare a catalyst layer forming liquid containing platinum, nickel and palladium (platinum: 48 mol%, nickel: 48 mol%, palladium: 4 mol%).

<水素過電圧測定>
32wt%水酸化ナトリウム水溶液の電解液(容量約1L)を用いて、対極にNi、温度88℃、電流密度6.0kA/mの条件で10分間、水電解を行い、カレントインタラプター法により、水素過電圧を測定した。
<Measurement of hydrogen overvoltage>
Water electrolysis was performed for 10 minutes under the conditions of Ni, temperature 88 ° C., and current density 6.0 kA / m 2 using an electrolytic solution of 32 wt% sodium hydroxide aqueous solution (capacity: about 1 L) by the current interrupter method. The hydrogen overvoltage was measured.

実施例1
以下に示す手法にて第1工程を実施した。
Example 1
The 1st process was implemented with the method shown below.

<触媒層形成用液の作製>で作製した、白金、ニッケル及びパラジウムを含む触媒層形成用液(白金:48モル%、ニッケル:48モル%、パラジウム:4モル%)を、ローラーを用いて、1.2m×0.4mのニッケルエキスパンドメタルの片面に10mL/mの塗布量で塗布し、引き続き、ニッケルエキスパンドメタルの他方の面に10mL/mの塗布量で塗布し、熱風式乾燥機内で80℃にて10分間乾燥後、箱型焼成炉を用いて空気流通下のもと400℃で10分間熱分解した。この一連の操作を6回繰り返し、導電性基材上に触媒層を形成した。 Using a roller, the catalyst layer forming solution containing platinum, nickel and palladium (platinum: 48 mol%, nickel: 48 mol%, palladium: 4 mol%) prepared in <Preparation of catalyst layer forming solution> , Applied to one side of a 1.2 m × 0.4 m nickel expanded metal at a coating amount of 10 mL / m 2 , then applied to the other side of the nickel expanded metal at a coating amount of 10 mL / m 2 and dried with hot air After drying in the machine at 80 ° C. for 10 minutes, the mixture was pyrolyzed at 400 ° C. for 10 minutes under an air flow using a box-type baking furnace. This series of operations was repeated 6 times to form a catalyst layer on the conductive substrate.

第1工程実施前と実施後の重量差は16.4g/mであった。 The difference in weight before and after the first step was 16.4 g / m 2 .

次に、第1工程終了後のメッシュから0.1m×0.1mを切出し、箱型焼成炉を用いて空気流通下のもと300℃で8時間焼成し、第2工程を行った。第2工程前後で重量変化はなく、触媒層の重量は16.4g/mと判断した。なお、実施例1で切り出した残りのメッシュは、他の実施例と比較例で使用した。 Next, 0.1 m × 0.1 m was cut out from the mesh after completion of the first step, and baked at 300 ° C. for 8 hours under an air flow using a box-type baking furnace, and the second step was performed. There was no change in weight before and after the second step, and the weight of the catalyst layer was determined to be 16.4 g / m 2 . The remaining mesh cut out in Example 1 was used in other examples and comparative examples.

次に、第2工程終了後のメッシュを、32wt%水酸化ナトリウム水溶液の電解液を用いて、対極にNi、温度88℃、電流密度0.3kA/mの条件で水電解を行い、前記電極の触媒層を電気化学的還元処理を行った。水電解の開始当初は前記電極からガス発生は観測されず、水電解開始から1分35秒後に前記電極から水素ガスの発生が目視観察された。前記電極からの水素ガス発生の様子から、触媒層の還元は水電解開始から1分35秒間で終了したと判断した。 Next, the electrolysis of the mesh after the completion of the second step is performed using water electrolyte of 32 wt% sodium hydroxide aqueous solution under the conditions of Ni, temperature 88 ° C., current density 0.3 kA / m 2 on the counter electrode, The catalyst layer of the electrode was subjected to electrochemical reduction treatment. At the beginning of water electrolysis, gas generation was not observed from the electrode, and generation of hydrogen gas from the electrode was visually observed 1 minute and 35 seconds after the start of water electrolysis. From the state of hydrogen gas generation from the electrode, it was determined that the reduction of the catalyst layer was completed in 1 minute 35 seconds from the start of water electrolysis.

電気化学的還元処理を終了した後、水電解の電流密度を6kA/mに増電流し、水素過電圧を測定したところ、65mVであり、第1工程と第2工程を行い製造した電極は水素発生過電圧が70mV未満の優れた性能であることが確認された。 After the electrochemical reduction treatment was completed, the current density of water electrolysis was increased to 6 kA / m 2 and the hydrogen overvoltage was measured to be 65 mV. The electrode manufactured by performing the first and second steps was hydrogen. It was confirmed that the generated overvoltage was an excellent performance of less than 70 mV.

実施例2
実施例1の第1工程終了後のメッシュから0.1m×0.1mを切出し、第2工程として、箱型焼成炉を用いて空気流通下のもと450℃で1時間焼成した。第2工程前後で重量変化はなく、触媒層の重量は16.4g/mと判断した。
Example 2
A 0.1 m × 0.1 m piece was cut out from the mesh after completion of the first step in Example 1, and as a second step, it was fired at 450 ° C. for 1 hour under an air flow using a box-type firing furnace. There was no change in weight before and after the second step, and the weight of the catalyst layer was determined to be 16.4 g / m 2 .

その後、実施例1と同様の条件で還元処理を施し、次いで、実施例1と同様の条件で水素過電圧を測定した。測定された水素過電圧は65mVであった。   Thereafter, reduction treatment was performed under the same conditions as in Example 1, and then the hydrogen overvoltage was measured under the same conditions as in Example 1. The measured hydrogen overvoltage was 65 mV.

比較例1
実施例1の第1工程終了後のメッシュから0.1m×0.1mを切出し、第2工程を行うことなく、実施例1と同様の条件で還元処理を施し、次いで、実施例1と同様の条件で水素過電圧を測定した。測定された水素過電圧は71mVであり、70mV以上の水素過電圧を示した。
Comparative Example 1
Cut out 0.1 m × 0.1 m from the mesh after the completion of the first step of Example 1, perform the reduction treatment under the same conditions as in Example 1 without performing the second step, and then perform the same as in Example 1. The hydrogen overvoltage was measured under the following conditions. The measured hydrogen overvoltage was 71 mV, indicating a hydrogen overvoltage of 70 mV or higher.

実施例3
実施例1の第1工程終了後のメッシュから0.1m×0.1mを切出し、第2工程として、箱型焼成炉を用いて空気流通下のもと400℃で0.5時間焼成した。第2工程前後で重量変化はなく、触媒層の重量は16.4g/mと判断した。
Example 3
A 0.1 m × 0.1 m piece was cut out from the mesh after completion of the first step of Example 1, and as a second step, it was fired at 400 ° C. for 0.5 hours under an air flow using a box-type firing furnace. There was no change in weight before and after the second step, and the weight of the catalyst layer was determined to be 16.4 g / m 2 .

その後、実施例1と同様の条件で還元処理を施し、次いで、実施例1と同様の条件で水素過電圧を測定した。測定された水素過電圧は67mVであった。   Thereafter, reduction treatment was performed under the same conditions as in Example 1, and then the hydrogen overvoltage was measured under the same conditions as in Example 1. The measured hydrogen overvoltage was 67 mV.

実施例4
実施例1の第1工程終了後のメッシュから0.1m×0.1mを切出し、第2工程として、箱型焼成炉を用いて空気流通下のもと350℃で1時間焼成した。第2工程前後で重量変化はなく、触媒層の重量は16.4g/mと判断した。
Example 4
A 0.1 m × 0.1 m piece was cut out from the mesh after completion of the first step in Example 1, and as a second step, it was fired at 350 ° C. for 1 hour under an air flow using a box-type firing furnace. There was no change in weight before and after the second step, and the weight of the catalyst layer was determined to be 16.4 g / m 2 .

その後、実施例1と同様の条件で還元処理を施し、次いで、実施例1と同様の条件で水素過電圧を測定した。測定された水素過電圧は64mVであった。   Thereafter, reduction treatment was performed under the same conditions as in Example 1, and then the hydrogen overvoltage was measured under the same conditions as in Example 1. The measured hydrogen overvoltage was 64 mV.

実施例5
実施例1の第1工程終了後のメッシュから0.1m×0.1mを切出し、第2工程として、箱型焼成炉を用いて空気流通下のもと450℃で0.5時間焼成した。第2工程前後で重量変化はなく、触媒層の重量は16.4g/mと判断した。
Example 5
A 0.1 m × 0.1 m piece was cut out from the mesh after completion of the first step in Example 1, and as a second step, it was fired at 450 ° C. for 0.5 hours under an air flow using a box-type firing furnace. There was no change in weight before and after the second step, and the weight of the catalyst layer was determined to be 16.4 g / m 2 .

その後、実施例1と同様の条件で還元処理を施し、次いで、実施例1と同様の条件で水素過電圧を測定した。測定された水素過電圧は64mVであった。   Thereafter, reduction treatment was performed under the same conditions as in Example 1, and then the hydrogen overvoltage was measured under the same conditions as in Example 1. The measured hydrogen overvoltage was 64 mV.

実施例6
実施例1の第1工程終了後のメッシュから0.1m×0.1mを切出し、第2工程として、箱型焼成炉を用いて空気流通下のもと500℃で0.2時間焼成した。第2工程前後で重量変化はなく、触媒層の重量は16.4g/mと判断した。
Example 6
A 0.1 m × 0.1 m piece was cut out from the mesh after completion of the first step of Example 1, and as a second step, it was fired at 500 ° C. for 0.2 hours under an air flow using a box-type firing furnace. There was no change in weight before and after the second step, and the weight of the catalyst layer was determined to be 16.4 g / m 2 .

その後、実施例1と同様の条件で還元処理を施し、次いで、実施例1と同様の条件で水素過電圧を測定した。測定された水素過電圧は64mVであった。   Thereafter, reduction treatment was performed under the same conditions as in Example 1, and then the hydrogen overvoltage was measured under the same conditions as in Example 1. The measured hydrogen overvoltage was 64 mV.

比較例2
実施例1の第1工程終了後のメッシュから0.1m×0.1mを切出し、第2工程として、箱型焼成炉を用いて空気流通下のもと575℃で0.1時間焼成した。第2工程前後で重量変化はなく、触媒層の重量は16.4g/mと判断した。
Comparative Example 2
A 0.1 m × 0.1 m piece was cut out from the mesh after completion of the first step in Example 1, and as a second step, it was fired at 575 ° C. for 0.1 hour under an air flow using a box-type firing furnace. There was no change in weight before and after the second step, and the weight of the catalyst layer was determined to be 16.4 g / m 2 .

その後、実施例1と同様の条件で還元処理を施し、次いで、実施例1と同様の条件で水素過電圧を測定した。測定された水素過電圧は72mVであり、70mV以上の水素過電圧を示した。   Thereafter, reduction treatment was performed under the same conditions as in Example 1, and then the hydrogen overvoltage was measured under the same conditions as in Example 1. The measured hydrogen overvoltage was 72 mV, indicating a hydrogen overvoltage of 70 mV or higher.

実施例と比較例の結果から、本発明の製造方法を適用した場合、水素過電圧が70mV未満の低い値が得られるが、本発明の製造方法の範囲を逸脱すると、水素過電圧が70mV以上となることが分かった。   From the results of Examples and Comparative Examples, when the production method of the present invention is applied, a low value of hydrogen overvoltage of less than 70 mV is obtained. However, if the production method of the present invention is deviated, the hydrogen overvoltage becomes 70 mV or more. I understood that.

本発明の製造方法で得られた水素発生用電極は、水の電気分解又は食塩などのアルカリ金属塩化物水溶液の電気分解に使用でき、食塩電解工業を始めとして広範な電解工業に利用される可能性を有する。   The electrode for hydrogen generation obtained by the production method of the present invention can be used for electrolysis of water or electrolysis of an aqueous solution of alkali metal chloride such as sodium chloride, and can be used in a wide range of electrolysis industries including the salt electrolysis industry. Have sex.

Claims (8)

白金、ニッケル及びパラジウムを含む触媒層形成用液を導電性基材上に塗布、乾燥、熱分解し、導電性基材上に触媒層を形成する第1工程を行った後、300〜500℃で焼成を行う第2工程を行うことを特徴とする、導電性基材上に、白金、ニッケル及びパラジウムを主成分とする触媒層が担持されてなる水素発生用電極の製造方法。 After performing the 1st process which apply | coats the liquid for catalyst layer formation containing platinum, nickel, and palladium on an electroconductive base material, drys and thermally decomposes and forms a catalyst layer on an electroconductive base material, 300-500 degreeC A method for producing an electrode for hydrogen generation in which a catalyst layer mainly composed of platinum, nickel and palladium is supported on a conductive base material, wherein the second step of firing is performed. 前記触媒層形成用液中のパラジウム含有量が1〜55モル%であることを特徴とする請求項1に記載の水素発生用電極の製造方法。 The method for producing an electrode for hydrogen generation according to claim 1, wherein the palladium content in the catalyst layer forming liquid is 1 to 55 mol%. 前記触媒層形成用液中のパラジウム含有量が4〜48モル%、ニッケル含有量が48〜4モル%、残部が白金であることを特徴とする請求項1に記載の水素発生用電極の製造方法。 2. The production of an electrode for hydrogen generation according to claim 1, wherein the catalyst layer forming liquid has a palladium content of 4 to 48 mol%, a nickel content of 48 to 4 mol%, and the balance being platinum. Method. 前記第1工程を行うに際し、前記触媒層形成用液の塗布量を導電性基材の投影面積あたり13〜31mL/mに制御して塗布した後、乾燥、熱分解する工程を4〜8回繰返し行うことを特徴とする請求項1〜請求項3のいずれかの項に記載の水素発生用電極の製造方法。 In performing the first step, the step of applying the catalyst layer forming liquid by controlling the coating amount of the liquid for forming the catalyst layer to 13 to 31 mL / m 2 per projected area of the conductive substrate, followed by drying and pyrolysis is performed in 4 to 8 steps. The method for producing an electrode for hydrogen generation according to any one of claims 1 to 3, wherein the method is repeated twice. 前記第2工程を行った後に、導電性基板上の触媒層を還元処理することを特徴とする請求項1〜請求項4のいずれかの項に記載の水素発生用電極の製造方法。 The method for producing an electrode for hydrogen generation according to any one of claims 1 to 4, wherein after the second step is performed, the catalyst layer on the conductive substrate is subjected to a reduction treatment. 還元処理が、水又はアルカリ金属塩化物水溶液の電気分解での電気化学的還元処理であることを特徴とする請求項5に記載の水素発生用電極の製造方法。 6. The method for producing an electrode for hydrogen generation according to claim 5, wherein the reduction treatment is an electrochemical reduction treatment in electrolysis of water or an aqueous alkali metal chloride solution. 請求項1〜請求項6のいずれかの項に記載の水素発生用電極の製造方法により得た水素発生用電極を陰極として使用し、隔膜を挟んで陽極を配置した電解槽で水又はアルカリ金属塩化物水溶液を電気分解し、前記陰極上から水素ガスおよびアルカリ金属水酸化物水溶液を生成し、陽極上から酸素ガス又は塩素ガスを生成することを特徴とする電気分解方法。 The electrode for hydrogen generation obtained by the method for producing an electrode for hydrogen generation according to any one of claims 1 to 6 is used as a cathode, and water or alkali metal is used in an electrolytic cell in which the anode is arranged with a diaphragm interposed therebetween. An electrolysis method comprising electrolyzing an aqueous chloride solution to produce hydrogen gas and an alkali metal hydroxide aqueous solution from above the cathode, and producing oxygen gas or chlorine gas from above the anode. 隔膜が陽イオン交換膜であることを特徴とする請求項7に記載の電気分解方法。 The electrolysis method according to claim 7, wherein the diaphragm is a cation exchange membrane.
JP2016150244A 2016-07-29 2016-07-29 Manufacturing method of hydrogen generation electrode and electrolysis method using hydrogen generation electrode Active JP6753195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016150244A JP6753195B2 (en) 2016-07-29 2016-07-29 Manufacturing method of hydrogen generation electrode and electrolysis method using hydrogen generation electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016150244A JP6753195B2 (en) 2016-07-29 2016-07-29 Manufacturing method of hydrogen generation electrode and electrolysis method using hydrogen generation electrode

Publications (2)

Publication Number Publication Date
JP2018016872A true JP2018016872A (en) 2018-02-01
JP6753195B2 JP6753195B2 (en) 2020-09-09

Family

ID=61081501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016150244A Active JP6753195B2 (en) 2016-07-29 2016-07-29 Manufacturing method of hydrogen generation electrode and electrolysis method using hydrogen generation electrode

Country Status (1)

Country Link
JP (1) JP6753195B2 (en)

Also Published As

Publication number Publication date
JP6753195B2 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
US7232509B2 (en) Hydrogen evolving cathode
US7258778B2 (en) Electrocatalytic coating with lower platinum group metals and electrode made therefrom
US7959774B2 (en) Cathode for hydrogen generation
JP4142191B2 (en) Method for producing activated cathode
JP4673628B2 (en) Cathode for hydrogen generation
WO2015098058A1 (en) Electrode for hydrogen generation, process for producing same, and method of electrolysis therewith
TW200304503A (en) Electrode for generation of hydrogen
CN102666932B (en) The electrolysis electrolyzer of negative electrode, alkali metal chloride and the manufacture method of negative electrode
CN102762776B (en) Activated cathode for hydrogen evolution
JP4882218B2 (en) Electrode for hydrogen generation, method for producing the same, and electrolysis method using the same
JP6515509B2 (en) ELECTRODE FOR HYDROGEN GENERATION, METHOD FOR PRODUCING THE SAME, AND ELECTROLYTIC METHOD USING THE SAME
JP2024010240A (en) Method of producing hydrogen generating electrode, and electrolysis method using hydrogen generating electrode
JP2019119930A (en) Chlorine generating electrode
JP6878917B2 (en) Electrode for hydrogen generation, its manufacturing method, and electrolysis method using it
JP6753195B2 (en) Manufacturing method of hydrogen generation electrode and electrolysis method using hydrogen generation electrode
US20220018032A1 (en) Electrode For Electrolysis
JP6926782B2 (en) Hydrogen generation electrode and its manufacturing method and electrolysis method using hydrogen generation electrode
WO2020110527A1 (en) Hydrogen generation electrode, method of producing same, and hydrogen production method
JP6609913B2 (en) Electrode for hydrogen generation, method for producing the same, and electrolysis method using the same
JP2024010642A (en) Electrode for generating chlorine
EP4204608A1 (en) Electrode for gas evolution in electrolytic processes
US20150017554A1 (en) Process for producing transport and storage-stable oxygen-consuming electrode
US20220364250A1 (en) Electrode for Electrolysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200803

R151 Written notification of patent or utility model registration

Ref document number: 6753195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151