JP2018016842A - Semiconductor electrode, light energy conversion device and method for producing semiconductor electrode - Google Patents

Semiconductor electrode, light energy conversion device and method for producing semiconductor electrode Download PDF

Info

Publication number
JP2018016842A
JP2018016842A JP2016147413A JP2016147413A JP2018016842A JP 2018016842 A JP2018016842 A JP 2018016842A JP 2016147413 A JP2016147413 A JP 2016147413A JP 2016147413 A JP2016147413 A JP 2016147413A JP 2018016842 A JP2018016842 A JP 2018016842A
Authority
JP
Japan
Prior art keywords
semiconductor
type
electrode
semiconductor electrode
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016147413A
Other languages
Japanese (ja)
Inventor
佳太 関澤
Keita Sekizawa
佳太 関澤
森川 健志
Kenji Morikawa
健志 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2016147413A priority Critical patent/JP2018016842A/en
Publication of JP2018016842A publication Critical patent/JP2018016842A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To cause a photo-electrochemical hydrogen generation reaction.SOLUTION: A semiconductor electrode has: a p-type semiconductor layer 3 containing Cr as a structure element; and a surface layer 4 that contacts the p-type semiconductor layer and is composed of crystalline metal oxide semiconductors or amorphous metal oxide semiconductors. The surface layer 4 is put on the p-type semiconductor layer 3. Suitably, the surface layer 4 carries a promoter 5 on it.SELECTED DRAWING: Figure 1

Description

本発明はp型Cr系酸化物半導体を含む半導体電極に関する。   The present invention relates to a semiconductor electrode containing a p-type Cr-based oxide semiconductor.

光エネルギーの有効利用に向けた方法の一つとして、水分解を駆動する光電極の開発が活発になされ、それについての文献が発行されている。しかし、水分解水素(H)生成反応に利用できるp型半導体の例は少なく、そのほとんどは、InPやGaPなど、希少金属を含むものである。このため、資源量豊富で安価なp型半導体の開発が望まれている。 As one of the methods for effective use of light energy, development of a photoelectrode for driving water splitting has been actively made, and literature on it has been issued. However, there are few examples of p-type semiconductors that can be used for water-splitting hydrogen (H 2 ) production reaction, and most of them contain rare metals such as InP and GaP. For this reason, it is desired to develop a p-type semiconductor that is rich in resources and inexpensive.

Cr系酸化物半導体は、比較的資源量が豊富であり、その多くはp型半導体特性を示すことから有望な材料である。しかし、Cr系酸化物を光電極として用いた研究例は少ない。例えば、Crはp型半導体材料として知られており、その伝導帯下端電位は水分解水素生成電位よりも負側に位置するが、光電極の光吸収体として利用した報告はない。 Cr-based oxide semiconductors are a promising material because they are relatively abundant in resources and many exhibit p-type semiconductor characteristics. However, there are few studies using Cr-based oxides as photoelectrodes. For example, Cr 2 O 3 is known as a p-type semiconductor material, and its lower end potential of the conduction band is located on the negative side of the water splitting hydrogen generation potential, but there is no report of utilizing it as a light absorber of a photoelectrode.

CuCrOやFe0.84Cr1.0Al0.16は、電解質水溶液中での光電気化学反応に用いられているが、不安定な光電流を観測しただけで、水分解により生成したHを実際に検出するには至っていない(非特許文献1−3)。 CuCrO 2 and Fe 0.84 Cr 1.0 Al 0.16 O 3 are used for photoelectrochemical reactions in aqueous electrolytes, but they are generated by water decomposition only by observing unstable photocurrents. It has not yet been possible to actually detect H 2 (Non-Patent Documents 1-3).

また、p型Fe系酸化物半導体を含む半導体電極についての報告があるが、p型Cr系半導体を用いることについての言及はない(特許文献1)。   Moreover, although there is a report on a semiconductor electrode including a p-type Fe-based oxide semiconductor, there is no mention of using a p-type Cr-based semiconductor (Patent Document 1).

特開2016-50327号公報JP 2016-50327 A

Ana Koriana Diaz-Garcia et al. J. Mater. Chem. A, 2015, 3, 19683-19687Ana Koriana Diaz-Garcia et al. J. Mater. Chem. A, 2015, 3, 19683-19687 Ya-Hui Chuai et al. J Mater Sci, 2016, 51, 3592-3599Ya-Hui Chuai et al. J Mater Sci, 2016, 51, 3592-3599 Ilina Kondofersky et al. J. Am. Chem. Soc., 2016, 138, 1860-1867Ilina Kondofersky et al. J. Am. Chem. Soc., 2016, 138, 1860-1867 Barbra Zydorczak et al. Ind. Eng. Chem. Res. 2012, 51, 16537-16543Barbra Zydorczak et al. Ind. Eng. Chem. Res. 2012, 51, 16537-16543

従来技術のCrやCuCrO、Fe0.84Cr1.0Al0.16では、光電極から電解質溶液の向きに電子が流れる光カソード電流を観測しているが、その光電流は減衰してしまい、Hの実測に至っていない。これらCr酸化物に関する論文の中には、O非存在下の水溶液中で光カソード電流が観測されたことを根拠に水分解水素生成反応が進行したと主張する論文も見られる。しかし、この場合、半導体の光励起により生じた電子が、Hに供与されずに、半導体自身の還元などの、副反応に消費されている可能性があるので、Hを実測していないこれらの従来技術では、光電気化学的な水素生成反応に成功したとは言えない。実際に、後述するように、Cr光電極では、光電流の減衰が観測されるのみで、水素生成量はごくわずかであった。 In the prior art Cr 2 O 3 , CuCrO 2 , and Fe 0.84 Cr 1.0 Al 0.16 O 3 , the photocathode current in which electrons flow from the photoelectrode to the electrolyte solution is observed. current will be attenuated, not yet been measured in H 2. Among these papers on Cr oxides, there are papers that claim that the water-splitting hydrogen generation reaction has progressed based on the observation of the photocathode current in an aqueous solution in the absence of O 2 . However, in this case, electrons generated by the semiconductor light excitation, without being provided to H +, such as the reduction of the semiconductor itself, there is a possibility that is being consumed in side reactions, not actually measured of H 2 these In the prior art, it cannot be said that the photoelectrochemical hydrogen production reaction was successful. Actually, as will be described later, in the Cr 2 O 3 photoelectrode, only the attenuation of the photocurrent was observed, and the amount of hydrogen generation was very small.

Cr系p型半導体を、光電気化学的な水素生成反応に応用できていない原因は2つ考えられる。1つは、Cr酸化物が水溶液中で不安定であることである。例えば、アルカリ性溶液中では、Cr(III)水酸化物種となって溶解してしまうことが知られている(非特許文献4)。もう1つの原因として、Cr系p型半導体表面に、水素発生を触媒する反応サイトを形成できないことが挙げられる。一般に、半導体光触媒では、光を吸収する半導体の表面に、電子を受容して反応サイトとなる助触媒金属を担持することで、光触媒反応が進行する。しかし、後述するように、Cr系p型半導体にPtを担持しても光触媒活性はほとんど向上しなかった。これは、Cr系半導体の表面欠陥に電子がトラップされ、助触媒への電子移動が進行しにくいためではないかと考えられる。   There are two possible reasons why the Cr-based p-type semiconductor cannot be applied to the photoelectrochemical hydrogen production reaction. One is that the Cr oxide is unstable in an aqueous solution. For example, it is known that in an alkaline solution, it becomes a Cr (III) hydroxide species and dissolves (Non-Patent Document 4). Another reason is that reaction sites that catalyze hydrogen generation cannot be formed on the surface of the Cr-based p-type semiconductor. In general, in a semiconductor photocatalyst, a photocatalytic reaction proceeds by supporting a promoter metal that becomes a reaction site by accepting electrons on the surface of a semiconductor that absorbs light. However, as will be described later, the photocatalytic activity was hardly improved even when Pt was supported on a Cr-based p-type semiconductor. This is thought to be because electrons are trapped by surface defects of the Cr-based semiconductor and the electron transfer to the promoter is difficult to proceed.

本発明に係る半導体電極は、導電性基板と、前記導電性基板上に積層され、構成元素としてCrを含むp型酸化物半導体からなるp型Cr系酸化物半導体層と、前記p型Cr系酸化物半導体層上に積層され、n型半導体特性を有する金属酸化物の結晶または該金属酸化物のアモルファスからなる表面層と、前記表面層の上に担持され、化学反応を促進する助触媒と、を含む。   The semiconductor electrode according to the present invention includes a conductive substrate, a p-type Cr-based oxide semiconductor layer made of a p-type oxide semiconductor stacked on the conductive substrate and containing Cr as a constituent element, and the p-type Cr-based semiconductor layer. A surface layer made of a metal oxide crystal having an n-type semiconductor property or an amorphous form of the metal oxide, and a promoter supported on the surface layer and promoting a chemical reaction; ,including.

また、前記p型Cr系酸化物半導体層は、Cr,CuCrO,Fe1−xCrAl,ACrO,ACrの中の少なくとも1つのCr酸化物であって、AはCa,Sr,Cu,Mg,Ni,Zn,Ba,Agのいずれか1つであるCr酸化物、またはこれらCr酸化物に異種元素である、Ca,Sc,Ti,V,Mn,Fe,Co,Ni,Cu,Znの中の少なくとも1つをドープした半導体のうち少なくとも一つ1含むことができる。 The p-type Cr-based oxide semiconductor layer is at least one Cr oxide of Cr 2 O 3 , CuCrO 2 , Fe 1-x CrAl x O 3 , ACrO 2 , and ACr 2 O 4 , A is a Cr oxide which is any one of Ca, Sr, Cu, Mg, Ni, Zn, Ba, and Ag, or Ca, Sc, Ti, V, Mn, and Fe, which are different elements from these Cr oxides. , Co, Ni, Cu, Zn At least one of the semiconductors doped with at least one of them may be included.

また、前記表面層が、TiO,ZnO,Ta,SrTiO,ZrOのうちのいずれか1つを含むことができる。 The surface layer may include any one of TiO 2 , ZnO, Ta 2 O 5 , SrTiO 3 , and ZrO 2 .

また、前記の助触媒は、Pt,Rh,Au,Co,Cu,Ru,Ni,Pd,Agのいずれか1つの金属を含む化合物であることができる。   The promoter may be a compound containing any one metal of Pt, Rh, Au, Co, Cu, Ru, Ni, Pd, and Ag.

また、本発明に係る光エネルギー変換装置は、上述した半導体電極に光を照射することで、水素生成反応またはCO還元光触媒反応を生起する。 The light energy conversion device according to the present invention causes a hydrogen generation reaction or a CO 2 reduction photocatalytic reaction by irradiating the above-described semiconductor electrode with light.

また、本発明は、透明電膜上に、構成元素としてCrを含むp型酸化物半導体からなるp型Cr系酸化物半導体層を形成し、前記p型Cr系酸化物半導体層の上に、n型半導体特性を有する金属酸化物の結晶または該金属酸化物のアモルファスからなる表面層を積層し、前記表面層の上に、化学反応を促進する助触媒を担持する半導体電極の製造方法であって、前記p型Cr系酸化部雨半導体層および前記表面層は、RFマグネトロンスパッタリング法、電着法、スピンコート法、塗布法またはスキージ法のいずれかにより形成する。   In the present invention, a p-type Cr-based oxide semiconductor layer made of a p-type oxide semiconductor containing Cr as a constituent element is formed on the transparent electrode film, and on the p-type Cr-based oxide semiconductor layer, A method for producing a semiconductor electrode comprising laminating a surface layer made of a metal oxide crystal having an n-type semiconductor characteristic or an amorphous form of the metal oxide, and carrying a promoter for promoting a chemical reaction on the surface layer. Then, the p-type Cr-based oxidized portion rain semiconductor layer and the surface layer are formed by any one of an RF magnetron sputtering method, an electrodeposition method, a spin coating method, a coating method, or a squeegee method.

p型Cr系酸化物半導体の表面にn型金属酸化物半導体を積層した半導体電極によれば、p型Cr系酸化物半導体への光照射によって生じた励起電子を利用して水素生成反応を生起することができる。   According to a semiconductor electrode in which an n-type metal oxide semiconductor is laminated on the surface of a p-type Cr-based oxide semiconductor, a hydrogen generation reaction occurs using excited electrons generated by light irradiation on the p-type Cr-based oxide semiconductor. can do.

半導体電極の構成例を示す図である。It is a figure which shows the structural example of a semiconductor electrode. 光電気化学セルの構成を示す模式図である。It is a schematic diagram which shows the structure of a photoelectrochemical cell. 光電流−電位曲線を示す図である。It is a figure which shows a photocurrent-potential curve. 各電極の光電流の経時変化を示す図である。It is a figure which shows the time-dependent change of the photocurrent of each electrode. 各電極の水素発生量を示す図である。It is a figure which shows the hydrogen generation amount of each electrode. 光電流の経時変化を示す図である。It is a figure which shows a time-dependent change of a photocurrent. 光電流の経時変化を示す図である。It is a figure which shows a time-dependent change of a photocurrent.

以下、本発明の実施形態について、図面に基づいて説明する。なお、本発明は、ここに記載される実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments described herein.

<半導体電極の構成>
まず、本実施形態に係る半導体電極の構成例を図1に示す。このように、ガラス基板1上には導電体層2が設けられ、導電性基板が構成されている。このような導電体層2を有するガラス基板1には、例えば市販の透明導電膜積層ガラス基板が利用できる。例えば、ジオマテック株式会社の高耐久性透明導電膜などが利用できる。
<Configuration of semiconductor electrode>
First, a configuration example of the semiconductor electrode according to the present embodiment is shown in FIG. Thus, the conductor layer 2 is provided on the glass substrate 1, and the electroconductive board | substrate is comprised. As the glass substrate 1 having such a conductor layer 2, for example, a commercially available transparent conductive film laminated glass substrate can be used. For example, Geomatic Co., Ltd.'s highly durable transparent conductive film can be used.

なお、ガラス基板1に代えて、光を通さない絶縁物基板などを採用してもよく、また導電体層2に光を通さない各種導体を採用してもよい。この場合には、基板側からの光の入射はなくなる。   Instead of the glass substrate 1, an insulating substrate that does not transmit light may be employed, and various conductors that do not transmit light to the conductor layer 2 may be employed. In this case, no light is incident from the substrate side.

導電体層2の上には、p型Cr系酸化物半導体層3が形成される。このp型Cr系酸化物半導体層3としては、例えばCr,CuCrO,Fe1−xCrAl,ACrO,ACrで表されるCr酸化物またはこれらCr酸化物に異種元素である、Ca,Sc,Ti,V,Mn,Fe,Co,Ni,Cu,Znの中の少なくとも1つをドープしたCr酸化物の中の少なくとも1つ含む半導体が用いられる。ここで、Aは、Ca,Sr,Cu,Mg,Ni,Zn,Ba,Agの中の1つであるとよい。 A p-type Cr-based oxide semiconductor layer 3 is formed on the conductor layer 2. Examples of the p-type Cr-based oxide semiconductor layer 3 include Cr oxides represented by Cr 2 O 3 , CuCrO 2 , Fe 1-x CrAl x O 3 , ACrO 2 , and ACr 2 O 4 , or these Cr oxides. In addition, a semiconductor containing at least one of Cr oxides doped with at least one of Ca, Sc, Ti, V, Mn, Fe, Co, Ni, Cu, and Zn, which are different elements, is used. Here, A may be one of Ca, Sr, Cu, Mg, Ni, Zn, Ba, and Ag.

そして、p型Cr系酸化物半導体層3の表面上には、n型の金属酸化物半導体(n型半導体特性を有する金属酸化物の結晶またはそのアモルファス)からなる表面層4が形成される。n型の金属酸化物半導体としては、例えばTiO,ZnO,Ta,SrTiO,ZrOのうちのいずれか1つを含むn型の金属酸化物半導体とできる。また、その膜厚は、10nm以上120nm以下とできる。 Then, on the surface of the p-type Cr-based oxide semiconductor layer 3, a surface layer 4 made of an n-type metal oxide semiconductor (a metal oxide crystal having an n-type semiconductor characteristic or its amorphous) is formed. As the n-type metal oxide semiconductor, for example, an n-type metal oxide semiconductor containing any one of TiO 2 , ZnO, Ta 2 O 5 , SrTiO 3 , and ZrO 2 can be used. Moreover, the film thickness can be 10 nm or more and 120 nm or less.

そして、表面層4の表面にPtなどの金属または金属酸化物からなる助触媒5を担持している。助触媒5は、膜厚1nm想到の微粒子である。   A cocatalyst 5 made of a metal such as Pt or a metal oxide is supported on the surface of the surface layer 4. The cocatalyst 5 is a fine particle having a thickness of 1 nm.

このように、本実施形態に係る半導体電極では、p型Cr系酸化物半導体層3の表面にn型金属酸化物半導体からなる表面層4を形成した。従って、p型Cr系酸化物半導体層3の表面が溶液(酸性溶液)に接触することを避けることができ、これによってp型Cr系酸化物半導体層3の溶解を防止することができる。表面層4は、n型金属酸化物であり、酸性溶液中で比較的安定であるため、ほとんど溶解しない。   Thus, in the semiconductor electrode according to the present embodiment, the surface layer 4 made of an n-type metal oxide semiconductor was formed on the surface of the p-type Cr-based oxide semiconductor layer 3. Therefore, the surface of the p-type Cr-based oxide semiconductor layer 3 can be prevented from coming into contact with the solution (acidic solution), thereby preventing the p-type Cr-based oxide semiconductor layer 3 from being dissolved. Since the surface layer 4 is an n-type metal oxide and is relatively stable in an acidic solution, it hardly dissolves.

また、表面層4をn型金属酸化物半導体としてため、p型Cr系酸化物半導体層3で生じた電子が、pn接合を介し、表面層4に移動しやすく、これによって光電流を増大することができる。   In addition, since the surface layer 4 is an n-type metal oxide semiconductor, electrons generated in the p-type Cr-based oxide semiconductor layer 3 easily move to the surface layer 4 through the pn junction, thereby increasing the photocurrent. be able to.

そして、表面層4の表面に助触媒を担持している。p型Cr系酸化物半導体層3に直接助触媒を担持した場合、両者において良好な接触界面を形成できないため電子移動は起こりにくいが、触媒と接触する界面が表面層4に変わったことで、助触媒5への電子移動が促進され、助触媒5を介して還元反応を生起できる。これらの結果として、安定かつ大きな光電流と、それに伴う水素生成効率の向上が実現できる。   A promoter is supported on the surface of the surface layer 4. When the co-catalyst is directly supported on the p-type Cr-based oxide semiconductor layer 3, it is difficult to form an excellent contact interface between the two, so that electron transfer is unlikely to occur, but the interface that contacts the catalyst has changed to the surface layer 4, Electron transfer to the cocatalyst 5 is promoted, and a reduction reaction can occur via the cocatalyst 5. As a result, a stable and large photocurrent and an accompanying improvement in hydrogen production efficiency can be realized.

<光電気化学セル>
図2には、実施形態に係る半導体電極を用いた光電気化学セルの構成を示す。図2に示す半導体電極6と、Ag/AgClからなる参照電極7と、Pt(白金)線などで構成された対極8がKSO等の電解質溶液9内に浸漬され、密閉の容器10内に収容される。容器10内には、例えばアルゴン(Ar)ガスが封入される。
<Photoelectrochemical cell>
In FIG. 2, the structure of the photoelectrochemical cell using the semiconductor electrode which concerns on embodiment is shown. A semiconductor electrode 6 shown in FIG. 2, a reference electrode 7 made of Ag / AgCl, and a counter electrode 8 made of a Pt (platinum) wire or the like are immersed in an electrolyte solution 9 such as K 2 SO 4 to form a sealed container 10. Housed inside. For example, argon (Ar) gas is sealed in the container 10.

容器10は、例えばパイレックス(登録商標)ガラス製であり、外部からの光を透過する。そして、半導体電極6の導電体層2、参照電極7、対極8は、ポテンショスタット11に接続される。   The container 10 is made of, for example, Pyrex (registered trademark) glass, and transmits light from the outside. The conductor layer 2, the reference electrode 7, and the counter electrode 8 of the semiconductor electrode 6 are connected to a potentiostat 11.

このような光電気化学セルにより、ポテンショスタット11によって、半導体電極6の参照電極7に対する電位を調整する。これによって、半導体電極6における電解質との反応の際の電位を決定できる。   With such a photoelectrochemical cell, the potential of the semiconductor electrode 6 with respect to the reference electrode 7 is adjusted by the potentiostat 11. Thereby, the electric potential at the time of reaction with the electrolyte in the semiconductor electrode 6 can be determined.

本実施形態では、半導体電極6として、図1に示すp型Cr系酸化物半導体層3に表面層4が形成され、その表面に助触媒5を配置したものを用いる。従って、電解質溶液9の電解質との反応は、光照射によってp型Cr系酸化物半導体層3で生じた電子が表面層4に移動して起こる。そして、生じた光電流が半導体電極6から対極8に向けて流れる。   In the present embodiment, a semiconductor electrode 6 is used in which the surface layer 4 is formed on the p-type Cr-based oxide semiconductor layer 3 shown in FIG. 1 and the promoter 5 is disposed on the surface thereof. Therefore, the reaction of the electrolyte solution 9 with the electrolyte occurs when electrons generated in the p-type Cr-based oxide semiconductor layer 3 by light irradiation move to the surface layer 4. The generated photocurrent flows from the semiconductor electrode 6 toward the counter electrode 8.

<半導体電極の作製>
「Cr系酸化物半導体層3の形成」
RFマグネトロンスパッタリングによって、Arプラズマ中、導電体層2が形成されたガラス基板1の導電体層2上に、Ar/O(45:5 v/v)混合プラズマ中、導電体層2上にCrをスパッタすることで、Cr膜を60 nm堆積させた。その後、N/Oの混合気流下(4:1 v/v)、550℃で熱処理することで結晶化させた。これによって、導電体層2上にCrの結晶からなるCr系酸化物半導体層3が形成される。
<Production of semiconductor electrode>
“Formation of Cr-based oxide semiconductor layer 3”
By RF magnetron sputtering, on the conductor layer 2 of the glass substrate 1 on which the conductor layer 2 is formed in Ar plasma, on the conductor layer 2 in Ar / O 2 (45: 5 v / v) mixed plasma. A Cr 2 O 3 film was deposited to 60 nm by sputtering Cr. Then, N 2 / mixed under a stream of O 2 (4: 1 v / v), was crystallized by heat treatment at 550 ° C.. As a result, the Cr-based oxide semiconductor layer 3 made of Cr 2 O 3 crystals is formed on the conductor layer 2.

「表面層4の積層」
次に、Cr系酸化物半導体層3上に、Ar/O(4:1 v/v)混合プラズマ中、TiOをスパッタすることで、10〜120nmの表面層4を積層させた。ポスト熱処理は、NとOの混合気流下(4:1 v/v)、475℃で行った。これによって、TiOの結晶からなる表面層4が形成される。
“Lamination of surface layer 4”
Next, the surface layer 4 of 10 to 120 nm was laminated on the Cr-based oxide semiconductor layer 3 by sputtering TiO 2 in Ar / O 2 (4: 1 v / v) mixed plasma. The post heat treatment was performed at 475 ° C. under a mixed air stream of N 2 and O 2 (4: 1 v / v). As a result, the surface layer 4 made of TiO 2 crystals is formed.

「助触媒5の担持」
TiOのTiOを表面層4を積層させた半導体電極上に、Arプラズマ中、助触媒5としてPtをスパッタすることで、膜厚1nm相当のPt微粒子(助触媒5)を積層した。
"Supporting promoter 5"
Of TiO 2 TiO 2 on the semiconductor electrode formed by laminating a surface layer 4 in an Ar plasma, by sputtering Pt as cocatalyst 5 was laminated thickness 1nm equivalent Pt particles (cocatalyst 5).

これによって、ガラス基板1上に、導電体層2、CrのCr系酸化物半導体層3、TiOの表面層4が形成され、表面層にPtの助触媒5が担持された半導体電極6(Cr電極)が作製される。 Thus, a conductor layer 2, a Cr-based oxide semiconductor layer 3 of Cr 2 O 3 and a surface layer 4 of TiO 2 are formed on a glass substrate 1, and a semiconductor in which a Pt promoter 5 is supported on the surface layer. Electrode 6 (Cr 2 O 3 electrode) is produced.

<具体例>
半導体電極6について実施例1〜5、比較例1〜3を用意し、これを利用する光電気化学セルについて調べた。以下、これについて説明する。
<Specific example>
Examples 1 to 5 and Comparative Examples 1 to 3 were prepared for the semiconductor electrode 6 and examined for a photoelectrochemical cell using the same. This will be described below.

○実施例1
Cr電極上にTiOを10nm積層しPtを1nm担持した電極
○ Example 1
An electrode in which 10 nm of TiO 2 is stacked on a Cr 2 O 3 electrode and 1 nm of Pt is supported.

○実施例2
Cr電極上にTiOを30nm積層しPtを1nm担持した電極
Example 2
An electrode in which 30 nm of TiO 2 is stacked on a Cr 2 O 3 electrode and 1 nm of Pt is supported

○実施例3
Cr電極上にTiOを60nm積層しPtを1nm担持した電極
Example 3
An electrode in which 60 nm of TiO 2 is stacked on a Cr 2 O 3 electrode and 1 nm of Pt is supported.

○実施例4
Cr電極上にTiOを80nm積層しPtを1nm担持した電極
Example 4
An electrode in which 80 nm of TiO 2 is stacked on a Cr 2 O 3 electrode and 1 nm of Pt is supported.

○実施例5
Cr電極上にTiOを120nm積層しPtを1nm担持した電極
Example 5
Cr 2 O 3 and TiO 2 was 120nm laminated on the electrode electrodes 1nm loading Pt

○比較例1
Cr電極
○ Comparative Example 1
Cr 2 O 3 electrode

○比較例2
Cr電極上に直接Ptを1nm担持した電極
○ Comparative Example 2
Electrode carrying 1 nm of Pt directly on the Cr 2 O 3 electrode

○比較例3
Cr電極上にTiOを60nm積層した電極
○ Comparative Example 3
An electrode in which 60 nm of TiO 2 is laminated on a Cr 2 O 3 electrode

<光電気化学特性の評価>
Ar置換した0.5 M NaCO−NaHCO(1:1; pH9.8)混合溶液を含む密閉したセル中に、実施例1〜5,比較例1〜3のいずれかを作用極とし、対極にPt線、参照極にAg/AgCl電極を用いた三極式の光電気化学セル(図2)を使用して評価実験を行った。測定には、バイポテンショスタットを用いた。
<Evaluation of photoelectrochemical properties>
In a sealed cell containing an Ar-substituted 0.5 M Na 2 CO 3 -NaHCO 3 (1: 1; pH 9.8) mixed solution, any one of Examples 1 to 5 and Comparative Examples 1 to 3 was used as a working electrode. An evaluation experiment was conducted using a tripolar photoelectrochemical cell (FIG. 2) using a Pt wire as a counter electrode and an Ag / AgCl electrode as a reference electrode. A bipotentiostat was used for the measurement.

電流電位特性は、擬似太陽光(AM1.5, 100mWcm−2)の光を間欠照射しながら参照極に対する作用極の電位を掃引することで測定した。光電解は、擬似太陽光(AM1.5, 100mWcm−2)の光を照射しながら、−0.5V vs. Ag/AgCl(+0.1V vs 可逆水素電極電位(参照極))の電位を1時間印加することで行った。 The current-potential characteristic was measured by sweeping the potential of the working electrode with respect to the reference electrode while intermittently irradiating the light of pseudo sunlight (AM1.5, 100 mWcm −2 ). Photoelectrolysis is performed at −0.5 V vs. while irradiating light of pseudo-sunlight (AM1.5, 100 mWcm −2 ). This was performed by applying a potential of Ag / AgCl (+0.1 V vs reversible hydrogen electrode potential (reference electrode)) for 1 hour.

<表面層の導入による光電気化学特性の改善>
比較例1〜3および実施例3の光電流−電位曲線を図3に示す。
<Improvement of photoelectrochemical properties by introduction of surface layer>
The photocurrent-potential curves of Comparative Examples 1 to 3 and Example 3 are shown in FIG.

表面層4および助触媒5のないCr電極(比較例1)の場合、光を照射した時に負の向きの光電流、すなわち光カソード電流が観測されたが、+0.1V〜+0.8 V vs Ag/AgCl付近に暗電流のピークが見られた。表面層4を設けずCr系酸化物半導体層3にPtを助触媒5として担持したCr電極(比較例2)では、光電流は消失し、暗電流が増加した。TiOを積層したCr電極(比較例3)の場合は、光電流は比較例1よりも増大し、暗電流は減少した。 In the case of the Cr 2 O 3 electrode without the surface layer 4 and the promoter 5 (Comparative Example 1), a negative photocurrent, that is, a photocathode current was observed when irradiated with light, but + 0.1V to +0. A dark current peak was observed in the vicinity of 8 V vs Ag / AgCl. In the Cr 2 O 3 electrode (Comparative Example 2) in which the surface oxide layer 4 was not provided and Pt was supported as the promoter 5 on the Cr-based oxide semiconductor layer 3, the photocurrent disappeared and the dark current increased. In the case of the Cr 2 O 3 electrode laminated with TiO 2 (Comparative Example 3), the photocurrent increased compared to Comparative Example 1, and the dark current decreased.

一方、CrのCr系半導体層3上にTiOの表面層4を積層し、表面層4上に助触媒5としてPtを担持したCr電極、すなわちPt担持TiO積層Cr(実施例3)では、比較例1〜3よりも大きな光電流が見られ、暗電流はほとんど見られなくなった。すなわち、電位をマイナス方向に掃引することによって、光のON、OFFにおける電流の差が顕著になり、ON時における負の電流が大きくなる。これより、実施例3により、光電流が効果的に発生していることがわかる。 On the other hand, Cr 2 the surface layer 4 of TiO 2 laminated on O 3 and Cr-based semiconductor layer 3, Cr 2 O 3 electrode carrying Pt as a promoter 5 on the surface layer 4, i.e. Pt supported TiO 2 laminated Cr In 2 O 3 (Example 3), a larger photocurrent was seen than in Comparative Examples 1 to 3, and dark current was hardly seen. That is, by sweeping the potential in the negative direction, the difference in current between when the light is turned on and off becomes significant, and the negative current when the light is turned on increases. From this, it can be seen that the photocurrent was effectively generated in Example 3.

<表面層の導入による光電流の安定化>
比較例1〜3および実施例3に−0.5V vs. Ag/AgCl(+0.1V vs. 可逆水素電極電位)の電位を印加しながら60分間擬似太陽光を照射したときの光電流の経時変化を図4に示す。
<Stabilization of photocurrent by introduction of surface layer>
In Comparative Examples 1 to 3 and Example 3, -0.5 V vs. FIG. 4 shows changes with time in photocurrent when simulated sunlight is irradiated for 60 minutes while applying a potential of Ag / AgCl (+0.1 V vs. reversible hydrogen electrode potential).

Cr電極(比較例1)の場合、光照射開始前から2μA・cm−2程度の暗電流が観測された。光を照射すると12μA・cm−2程度の光電流が観測されたが、減衰し、60分後には1μA・cm−2となった。Ptを担持したCr電極(比較例2)は、暗電流のみしかみられず、光電流は観測されなかった。TiOを積層したCr電極(比較例3)では、暗電流は見られなくなったが、光電流は1μA・cm−2程度しか生じなかった。 In the case of the Cr 2 O 3 electrode (Comparative Example 1), a dark current of about 2 μA · cm −2 was observed before the start of light irradiation. When irradiated with light, a photocurrent of about 12 μA · cm −2 was observed, but attenuated and became 1 μA · cm −2 after 60 minutes. In the Cr 2 O 3 electrode carrying Pt (Comparative Example 2), only dark current was observed, and no photocurrent was observed. In the Cr 2 O 3 electrode laminated with TiO 2 (Comparative Example 3), no dark current was observed, but only a photocurrent of about 1 μA · cm −2 was generated.

一方、Pt担持TiO積層Cr(実施例3)では、光照射開始直後に40μA・cm−2程度の光電流が観測され、光照射1時間後においても、30μA・cm−2程度を維持した。 On the other hand, the Pt-supported TiO 2 multilayer Cr 2 O 3 (Example 3), immediately after the start of light irradiation to the observed 40 .mu.A · cm -2 order of photocurrent, also in the light irradiation 1 h after, 30 .mu.A · cm -2 order Maintained.

これらの光電気化学測定後、それぞれの反応容器内で生成したHの量を図5に示す。比較例1〜3では、ほとんどHを生成せず、実施例3のみHを生成した。これより、実施例3により、水電解による光電流が効果的に発生していることがわかる。 The amount of H 2 produced in each reaction vessel after these photoelectrochemical measurements is shown in FIG. In Comparative Examples 1 to 3, almost no H 2 was produced, and only Example 3 produced H 2 . From this, it can be seen that the photocurrent by water electrolysis is effectively generated in Example 3.

<TiO層の膜厚依存性>
TiOの膜厚が異なるPt担持TiO積層Cr電極(実施例1〜5)に−0.5V vs. Ag/AgCl(+0.1V vs. 可逆水素電極電位)の電位を印加しながら3分間擬似太陽光を照射したときの光電流の経時変化を図6に示す。
<Depends on film thickness of TiO 2 layer>
A Pt-supported TiO 2 laminated Cr 2 O 3 electrode (Examples 1 to 5) having different thicknesses of TiO 2 was applied at −0.5 V vs. FIG. 6 shows the change in photocurrent with time when irradiated with simulated sunlight for 3 minutes while applying a potential of Ag / AgCl (+0.1 V vs. reversible hydrogen electrode potential).

TiO層が10nmの電極(実施例1)は、暗電流が比較的大きく、時間の経過に伴う光電流の減衰も見られたが、30nm以上の電極では、暗電流は小さくなり、光電流の減衰も抑制された。80nm以上では光電流が減少したが、安定な光電流が観測された。これらの結果から、Cr電極にTiOを積層することで、暗電流を抑制し、光電流を増大させる効果が発現することがわかる。TiOの膜厚は、10nm以上であり、望ましい膜厚は30nm以上120nm以下、最適な膜厚は30nm以上60nm以下であるといえる。 The electrode having the TiO 2 layer of 10 nm (Example 1) has a relatively large dark current and attenuation of the photocurrent with the passage of time. However, in the electrode having a thickness of 30 nm or more, the dark current is small and the photocurrent is reduced. The attenuation of was also suppressed. Although the photocurrent decreased at 80 nm or more, a stable photocurrent was observed. From these results, it can be seen that by laminating TiO 2 on the Cr 2 O 3 electrode, the effect of suppressing dark current and increasing photocurrent is exhibited. The film thickness of TiO 2 is 10 nm or more, the desirable film thickness is 30 nm or more and 120 nm or less, and the optimum film thickness is 30 nm or more and 60 nm or less.

<TiO積層の効果>
上述したように、比較例1〜3では、光電流がほとんど発生しないか、発生しても減衰し、水分解水素生成反応が進行しなかった。Cr電極(比較例1)では、光励起電子は水分解反応ではなく、Cr自身の自己還元に消費されてしまったと考えられる。
<Effect of TiO 2 laminated>
As described above, in Comparative Examples 1 to 3, almost no photocurrent was generated, or even when generated, the photocurrent was attenuated and the water splitting hydrogen generation reaction did not proceed. In the Cr 2 O 3 electrode (Comparative Example 1), it is considered that the photoexcited electrons were consumed in the self-reduction of Cr 2 O 3 itself, not in the water splitting reaction.

水素生成助触媒としてPtを担持したCr電極(比較例2)では、暗電流が比較例1よりも増加し、光電流が減少したことから、Crの表面とPtとの間に相互作用があり、これにより生成した準位に電子が流れ込み、水分解反応を阻害していると推測される。 In the Cr 2 O 3 electrode (Comparative Example 2) supporting Pt as a hydrogen generation co-catalyst, the dark current increased from that in Comparative Example 1 and the photocurrent decreased. Therefore, the surface of Cr 2 O 3 and Pt It is presumed that there is an interaction between them, and electrons flow into the generated level, thereby inhibiting the water splitting reaction.

TiOを積層したCr(比較例3)は、暗電流は抑制されたが、TiO表面には水素生成反応を触媒するサイトがないため反応が進行しなかったと考えられる。 In the case of Cr 2 O 3 (Comparative Example 3) in which TiO 2 is laminated, the dark current is suppressed, but the reaction does not proceed because there is no site for catalyzing the hydrogen generation reaction on the TiO 2 surface.

一方、Pt担持TiO積層Cr(実施例1−5)では、Pt担持による暗電流は生じず、光電流が増大し、安定な水分解が進行した。これは、TiO層の、表面を保護する効果、好ましくない相互作用を遮蔽する効果、そして電子移動を促進する効果によるものと考えられる。TiO層の保護効果により、Crと電解質溶液の接触が遮断されたため、Crの自己還元反応が抑制されたと考えられる。また、TiOを挿入することで、CrとPtの接触が遮断されたので、暗電流の原因となるCr表面とPtとの間の相互作用がなくなり、Ptが水素生成反応サイトとして働くようになったと推測される。さらに、p型のCrとn型のTiOとの間のp−n接合形成に伴うバンド曲がりによる電子移動促進効果により、Crに電子が蓄積されにくく、Ptに流れやすくなったと考えられる。これらの結果として、Cr系半導体電極を用いた水分解水素生成が可能となったと考えられる。 On the other hand, in Pt-supported TiO 2 laminated Cr 2 O 3 (Example 1-5), dark current due to Pt support did not occur, photocurrent increased, and stable water decomposition proceeded. This is considered to be due to the effect of protecting the surface of the TiO 2 layer, the effect of shielding unfavorable interactions, and the effect of promoting electron transfer. It is considered that the self-reduction reaction of Cr 2 O 3 was suppressed because the contact between the Cr 2 O 3 and the electrolyte solution was blocked by the protective effect of the TiO 2 layer. Moreover, since the contact between Cr 2 O 3 and Pt was interrupted by inserting TiO 2 , there was no interaction between the Cr 2 O 3 surface and Pt causing dark current, and Pt generated hydrogen. It is presumed that it has become a reaction site. Further, due to the effect of promoting electron transfer due to band bending accompanying the formation of a pn junction between p-type Cr 2 O 3 and n-type TiO 2 , electrons are not easily accumulated in Cr 2 O 3 , and easily flow into Pt. It is thought that it became. As a result of these, it is considered that water-resolved hydrogen generation using a Cr-based semiconductor electrode has become possible.

<Pt担持されたTiO積層Crの水素生成過程>
以上の結果を元に、光電気化学的水素生成過程をさらに説明する。図7に、p型Cr系酸化物半導体層3にCr、表面層4にTiO、助触媒5にPtを用いた、Pt担持TiO積層Crのエネルギーダイアグラムを示す。
<Hydrogen generation process of Pt-supported TiO 2 laminated Cr 2 O 3 >
Based on the above results, the photoelectrochemical hydrogen generation process will be further described. FIG. 7 shows an energy diagram of Pt-supported TiO 2 laminated Cr 2 O 3 using Cr 2 O 3 for the p-type Cr-based oxide semiconductor layer 3, TiO 2 for the surface layer 4, and Pt for the co-catalyst 5.

ここで、TiOを透過した光は、Crのp型Cr系酸化物半導体に吸収され、Crが励起される。 Here, the light transmitted through the TiO 2 is absorbed in the p-type Cr-based oxide semiconductor Cr 2 O 3, Cr 2 O 3 is excited.

これに伴い、Crの価電子帯にはホール(h)、伝導帯には電子(e)が生成する。ホール(h)は、背面の導電体層2(透明電極)へと移動し、対極8へと流れる。一方、電子(e)は、p−n接合により形成されたバンド勾配により、TiOへ移動する。Ptへの電子移動は、Crに直接接触した場合は起こりにくいが、TiOに接触させた場合は起こりやすいので、TiOからPtへの電子移動が進行し、Pt上でH生成が進行する。 Accordingly, holes (h + ) are generated in the valence band of Cr 2 O 3 and electrons (e ) are generated in the conduction band. The hole (h + ) moves to the back conductor layer 2 (transparent electrode) and flows to the counter electrode 8. On the other hand, the electrons (e ) move to TiO 2 due to the band gradient formed by the pn junction. Electron transfer to Pt is unlikely to occur when directly contacting Cr 2 O 3 , but is likely to occur when contacting TiO 2 , so that electron transfer from TiO 2 to Pt proceeds, and H 2 on Pt Generation proceeds.

なお、表面層4として、TiOの代わりに、ZnO,Ta,SrTiO,ZrOなどのn型半導体層を積層した場合、および、助触媒5としてPtに代わり、Rh,Au,Co,Cu,Ru,Ni,Pd,Agなど水素生成を触媒する金属または金属酸化物を導入した場合も同様の機構でH生成が進行するものと考えられる。 When the surface layer 4 is formed by stacking n-type semiconductor layers such as ZnO, Ta 2 O 5 , SrTiO 3 , and ZrO 2 instead of TiO 2 , and as the co-catalyst 5, Rh, Au, When a metal or metal oxide that catalyzes hydrogen generation such as Co, Cu, Ru, Ni, Pd, or Ag is introduced, it is considered that H 2 generation proceeds by the same mechanism.

1 ガラス基板、2 導電体層、3 p型Cr系酸化物半導体層、4 表面層、5 助触媒、6 半導体電極、7 参照電極、8 対極、9 電解質溶液、10 容器、11 ポテンショスタット。   1 glass substrate, 2 conductor layer, 3 p-type Cr-based oxide semiconductor layer, 4 surface layer, 5 promoter, 6 semiconductor electrode, 7 reference electrode, 8 counter electrode, 9 electrolyte solution, 10 container, 11 potentiostat.

Claims (6)

導電性基板と、
前記導電性基板上に積層され、構成元素としてCrを含むp型酸化物半導体からなるp型Cr系酸化物半導体層と、
前記p型Cr系酸化物半導体層上に積層され、n型半導体特性を有する金属酸化物の結晶または該金属酸化物のアモルファスからなる表面層と、
前記表面層の上に担持され、化学反応を促進する助触媒と、
を含む、
半導体電極。
A conductive substrate;
A p-type Cr-based oxide semiconductor layer made of a p-type oxide semiconductor stacked on the conductive substrate and containing Cr as a constituent element;
A surface layer made of a metal oxide crystal or an amorphous metal oxide layered on the p-type Cr-based oxide semiconductor layer and having n-type semiconductor properties;
A promoter supported on the surface layer and promoting a chemical reaction;
including,
Semiconductor electrode.
請求項1に記載の半導体電極であって、
前記p型Cr系酸化物半導体層は、Cr,CuCrO,Fe1−xCrAl,ACrO,ACrの中の少なくとも1つのCr酸化物であって、AはCa,Sr,Cu,Mg,Ni,Zn,Ba,Agのいずれか1つであるCr酸化物、またはこれらCr酸化物に異種元素である、Ca,Sc,Ti,V,Mn,Fe,Co,Ni,Cu,Znの中の少なくとも1つをドープした半導体のうち少なくとも一つ1含む、
半導体電極。
The semiconductor electrode according to claim 1,
The p-type Cr-based oxide semiconductor layer is at least one Cr oxide of Cr 2 O 3 , CuCrO 2 , Fe 1-x CrAl x O 3 , ACrO 2 , and ACr 2 O 4 , wherein A is Cr oxide which is any one of Ca, Sr, Cu, Mg, Ni, Zn, Ba and Ag, or Ca, Sc, Ti, V, Mn, Fe and Co which are different elements from these Cr oxides , Including at least one of semiconductors doped with at least one of Ni, Cu, and Zn,
Semiconductor electrode.
請求項1または2に記載の半導体電極であって、
前記表面層が、TiO,ZnO,Ta,SrTiO,ZrOのうちのいずれか1つを含む、
半導体電極。
The semiconductor electrode according to claim 1 or 2,
The surface layer includes any one of TiO 2 , ZnO, Ta 2 O 5 , SrTiO 3 , and ZrO 2 ;
Semiconductor electrode.
請求項1〜3のいずれか1つに記載の半導体電極であって、
前記の助触媒は、Pt,Rh,Au,Co,Cu,Ru,Ni,Pd,Agのいずれか1つの金属を含む化合物である、
半導体電極。
The semiconductor electrode according to any one of claims 1 to 3,
The promoter is a compound containing any one metal of Pt, Rh, Au, Co, Cu, Ru, Ni, Pd, and Ag.
Semiconductor electrode.
請求項1〜4のいずれか1つに記載の半導体電極を含み、
前記半導体電極に光を照射することで、水素生成反応またはCO還元光触媒反応を生起する、
光エネルギー変換装置。
Including the semiconductor electrode according to any one of claims 1 to 4,
By irradiating the semiconductor electrode with light, a hydrogen generation reaction or a CO 2 reduction photocatalytic reaction occurs.
Light energy conversion device.
透明電膜上に、構成元素としてCrを含むp型酸化物半導体からなるp型Cr系酸化物半導体層を形成し、
前記p型Cr系酸化物半導体層の上に、n型半導体特性を有する金属酸化物の結晶または該金属酸化物のアモルファスからなる表面層を積層し、
前記表面層の上に、化学反応を促進する助触媒を担持する、
半導体電極の製造方法であって、
前記p型Cr系酸化部雨半導体層および前記表面層は、RFマグネトロンスパッタリング法、電着法、スピンコート法、塗布法またはスキージ法のいずれかにより形成する、
半導体電極の製造方法。
Forming a p-type Cr-based oxide semiconductor layer made of a p-type oxide semiconductor containing Cr as a constituent element on the transparent electrode film;
On the p-type Cr-based oxide semiconductor layer, a surface layer made of a metal oxide crystal having n-type semiconductor characteristics or an amorphous form of the metal oxide is laminated,
On the surface layer, a promoter for promoting a chemical reaction is supported.
A method for manufacturing a semiconductor electrode, comprising:
The p-type Cr-based oxidized portion rain semiconductor layer and the surface layer are formed by any one of an RF magnetron sputtering method, an electrodeposition method, a spin coating method, a coating method, or a squeegee method.
A method for manufacturing a semiconductor electrode.
JP2016147413A 2016-07-27 2016-07-27 Semiconductor electrode, light energy conversion device and method for producing semiconductor electrode Pending JP2018016842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016147413A JP2018016842A (en) 2016-07-27 2016-07-27 Semiconductor electrode, light energy conversion device and method for producing semiconductor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016147413A JP2018016842A (en) 2016-07-27 2016-07-27 Semiconductor electrode, light energy conversion device and method for producing semiconductor electrode

Publications (1)

Publication Number Publication Date
JP2018016842A true JP2018016842A (en) 2018-02-01

Family

ID=61081184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016147413A Pending JP2018016842A (en) 2016-07-27 2016-07-27 Semiconductor electrode, light energy conversion device and method for producing semiconductor electrode

Country Status (1)

Country Link
JP (1) JP2018016842A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023117608A (en) * 2022-02-14 2023-08-24 本田技研工業株式会社 Water electrolysis device and water electrolysis method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023117608A (en) * 2022-02-14 2023-08-24 本田技研工業株式会社 Water electrolysis device and water electrolysis method
JP7466582B2 (en) 2022-02-14 2024-04-12 本田技研工業株式会社 Water electrolysis device and method

Similar Documents

Publication Publication Date Title
Yu et al. Fabrication and kinetic study of a ferrihydrite-modified BiVO4 photoanode
Jang et al. Photoelectrochemical water splitting with p‐type metal oxide semiconductor photocathodes
Wang et al. Oxygen defective metal oxides for energy conversion and storage
Tang et al. Highly enhanced photoelectrochemical water oxidation efficiency based on triadic quantum dot/layered double hydroxide/BiVO4 photoanodes
Xu et al. Strategies for efficient charge separation and transfer in artificial photosynthesis of solar fuels
Grigioni et al. Dynamics of photogenerated charge carriers in WO3/BiVO4 heterojunction photoanodes
Zhong et al. Surface modification of CoO x loaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation
Zhu et al. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review
McDowell et al. Improved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer thin TiO2/Ni coatings
Zhong et al. Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W: BiVO4
Zhang et al. Activating the surface and bulk of hematite photoanodes to improve solar water splitting
Kwong et al. Transparent nanoparticulate FeOOH improves the performance of a WO3 photoanode in a tandem water-splitting device
Fang et al. Mo-doping induced crystal orientation reconstruction and oxygen vacancy on BiVO4 homojunction for enhanced solar-driven water splitting
Appavoo et al. Quantifying bulk and surface recombination processes in nanostructured water splitting photocatalysts via in situ ultrafast spectroscopy
Shyamal et al. Amplification of PEC hydrogen production through synergistic modification of Cu2O using cadmium as buffer layer and dopant
JP2007070675A (en) Semiconductor electrode and energy conversion system using the same
Grigioni et al. Photoactivity and stability of WO3/BiVO4 photoanodes: effects of the contact electrolyte and of Ni/Fe oxyhydroxide protection
Gurudayal et al. Revealing the influence of doping and surface treatment on the surface carrier dynamics in hematite nanorod photoanodes
Jeong et al. Lowering the onset potential of Zr-doped hematite nanocoral photoanodes by Al co-doping and surface modification with electrodeposited Co–Pi
Chen et al. Ni-Doped BiVO4 photoanode for efficient photoelectrochemical water splitting
JP6569495B2 (en) Semiconductor electrode, light energy conversion device, and method of manufacturing semiconductor electrode
Pai et al. Enhanced photocurrent density for photoelectrochemical catalyzing water oxidation using novel W-doped BiVO4 and metal organic framework composites
Subramanian et al. An effective strategy to promote hematite photoanode at low voltage bias via Zr4+/Al3+ codoping and CoOx OER co-catalyst
Choi et al. Stabilization of NiFe layered double hydroxides on n-Si by an activated TiO2 interlayer for efficient solar water oxidation
Tian et al. Enhanced charge injection and collection of niobium-doped TiO2/gradient tungsten-doped BiVO4 nanowires for efficient solar water splitting