JP2018016579A - Sialic acid analog - Google Patents

Sialic acid analog Download PDF

Info

Publication number
JP2018016579A
JP2018016579A JP2016147705A JP2016147705A JP2018016579A JP 2018016579 A JP2018016579 A JP 2018016579A JP 2016147705 A JP2016147705 A JP 2016147705A JP 2016147705 A JP2016147705 A JP 2016147705A JP 2018016579 A JP2018016579 A JP 2018016579A
Authority
JP
Japan
Prior art keywords
group
substituted
unsubstituted
compound
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016147705A
Other languages
Japanese (ja)
Other versions
JP6786095B2 (en
Inventor
平井 剛
Takeshi Hirai
剛 平井
亮 深澤
Akira Fukazawa
亮 深澤
袖岡 幹子
Mikiko Sodeoka
幹子 袖岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2016147705A priority Critical patent/JP6786095B2/en
Publication of JP2018016579A publication Critical patent/JP2018016579A/en
Application granted granted Critical
Publication of JP6786095B2 publication Critical patent/JP6786095B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Saccharide Compounds (AREA)
  • Pyrane Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel sialic acid analog that is useful as a sialidase inhibitor.SOLUTION: Provided are: a compound represented by the following formula (I) or a salt thereof; a sialidase inhibitor containing said compound or a salt thereof as an active ingredient; and a process for producing said compound or a salt thereof. [Xis -O-Ror F; Xis -O-R, an azido group, a guanidino group or -N(R)(R); Xis an alkyl group or an alkoxy group; Xis H, a methyl group or a halogen; Xis -NHCO-R, a hydroxyl group or an alkoxy group; Xis a carboxyl group, a phosphoric acid group, a phosphono group, a sulfo group or the like; Ris a sugar residue, an aromatic group or an aliphatic group; Ris H, an aromatic group or an alkyl; Rand Rare each independently H, alkyl or alkoxy; and Ris H, alkyl or hydroxymethyl.].SELECTED DRAWING: None

Description

本発明は、シアリダーゼ阻害剤として有用な新規シアル酸類縁体、並びにその用途及び製造方法に関する。   The present invention relates to a novel sialic acid analog useful as a sialidase inhibitor, and its use and production method.

シアル酸は、生体内において糖蛋白質や糖脂質の末端に存在し、糖蛋白質や糖脂質の生理活性に関与している。シアル酸の機能を分子レベルで解明するため、シアル酸誘導体の合成が活発に行われてきている。   Sialic acid is present at the end of glycoproteins and glycolipids in vivo and is involved in the physiological activities of glycoproteins and glycolipids. In order to elucidate the function of sialic acid at the molecular level, synthesis of sialic acid derivatives has been actively carried out.

シアリダーゼ(シアル酸加水分解酵素)は、ノイラミニダーゼとも呼ばれ、ウイルス感染細胞表面の糖鎖末端に存在するシアル酸を加水分解することによってウイルスの放出に関与するため、この酵素を阻害することは体内でのウイルスの増殖を防ぐことにつながる。シアリダーゼ阻害剤はシアリダーゼの加水分解反応におけるシアル酸の遷移状態構造を模倣することによって開発されており、これは「遷移状態アナログ」と呼ばれている。シアリダーゼ阻害剤は、抗ウイルス剤、免疫調節剤、抗癌剤などの医薬として有用である。   Sialidase (sialic acid hydrolase), also called neuraminidase, is involved in virus release by hydrolyzing sialic acid present at the sugar chain end of the virus-infected cell surface. Will help prevent virus growth in Sialidase inhibitors have been developed by mimicking the transition state structure of sialic acid in sialidase hydrolysis reactions, which are called “transition state analogs”. Sialidase inhibitors are useful as pharmaceuticals such as antiviral agents, immunomodulators, and anticancer agents.

「遷移状態アナログ」は2-deoxy-2,3-didehydro-N-acetylneuraminic acid(DANA)をベースにした構造展開がされており、シアル酸4位に高極性官能基を導入することによりシアリダーゼとの親和性が向上することが報告されている(非特許文献1及び2)。例えば、シアル酸4位にグアニジノ基を導入したシアル酸誘導体として、DANAと同様にシアル酸の2位及び3位にsp炭素を持つ構造を有するリレンザTM、イナビルTMが実用化されている。
シアル酸の2位にsp炭素、3位にsp炭素を持つ構造はこれまで報告されていない。
“Transition state analogs” are based on 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (DANA), and are introduced with a sialidase by introducing a highly polar functional group at the 4-position of sialic acid. It has been reported that the affinity of is improved (Non-patent Documents 1 and 2). For example, the sialic acid derivative obtained by introducing a guanidino group at the 4-position of sialic acid, Relenza TM having a structure having a sp 2 carbon in position 2 and 3 of the same sialic acid and DANA, Inabiru TM has been put into practical use.
2-position sp 3 carbon of sialic acid, a structure having a sp 2 carbon position 3 has not been reported so far.

Nature 1993, 363, 418.Nature 1993, 363, 418. Glycoconj. J. 1993, 10, 40.Glycoconj. J. 1993, 10, 40.

本発明の課題は、シアリダーゼ阻害剤として有用な新規シアル酸類縁体を提供することである。   An object of the present invention is to provide a novel sialic acid analog useful as a sialidase inhibitor.

本発明者らは前記の課題を解決すべく、鋭意研究を重ねた結果、従来の「遷移状態アナログ」の構造展開のベースになっていたDANAとは基本骨格が異なる、シアル酸の2位にsp炭素、3位にsp炭素を持つ構造を有する3位エキソメチレン型のシアル酸類縁体を新たに合成し、シアリダーゼ阻害活性を調べたところ、DANAに比較して顕著に高い活性を有することを見出し、本発明を完成させるに至った。 As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention are in the second position of sialic acid, which has a basic skeleton different from DANA, which has been the basis of the structural development of the conventional “transition state analog”. Sp 3 carbon, 3 position exomethylene type sialic acid analog having a structure with sp 2 carbon at 3 position was newly synthesized and examined for sialidase inhibitory activity, it was significantly higher than DANA As a result, the present invention has been completed.

すなわち、本発明の要旨は以下のとおりである。
(1)次式(I):

Figure 2018016579
[式中、Xは−O−R(式中、Rは置換又は非置換の糖残基、置換又は非置換の芳香族基、又は置換又は非置換のC1−6−脂肪族炭化水素基を表す。)又はフッ素原子を表し;Xは−O−R(式中、Rは水素原子、置換又は非置換の芳香族基、又は置換又は非置換のC1−6−アルキル基を表す。)、C1−6−アルキル基で置換されていてもよいアジド基、C1−6−アルキル基で置換されていてもよいグアニジノ基又は−N(R)(R)(式中、R及びRは同一又は異なり、水素原子又はC1−6−アルキル基を表す。)を表し;Xは置換又は非置換のC1−6−アルキル基、又は置換又は非置換のC1−6−アルコキシ基を表し;Xは水素原子、メチル基又はハロゲン原子を表し、Xは−NHCO−R(式中、Rは水素原子、置換又は非置換のC1−6−アルキル基又はヒドロキシメチル基を表す。)、水酸基、又は置換又は非置換のC1−6−アルコキシ基を表し;Xはカルボキシル基、リン酸基、ホスホノ基、スルホ基、スルフィノ基、アルコキシカルボニル基、リン酸アルキルエステル基、ホスホン酸アルキルエステル基、スルホン酸アルキルエステル基又はスルフィン酸アルキルエステル基を表す。]
で示される化合物又はその塩。
(2)Rが置換又は非置換の糖残基である前記(1)に記載の化合物又はその塩。
(3)Rが置換又は非置換のガラクトース残基である前記(1)に記載の化合物又はその塩。
(4)Rが置換又は非置換のフェニル基で1位の水酸基が置換されたガラクトース残基である前記(1)に記載の化合物又はその塩。
(5)前記(1)〜(4)のいずれかに記載の化合物又はその塩を有効成分として含有するシアリダーゼ阻害剤。
(6)次式(II):
Figure 2018016579
[式中、Xは−O−R(式中、Rは水素原子、置換又は非置換の芳香族基、又は置換又は非置換のC1−6−アルキル基を表す。)、C1−6−アルキル基で置換されていてもよいアジド基、C1−6−アルキル基で置換されていてもよいグアニジノ基又は−N(R)(R)(式中、R及びRは同一又は異なり、水素原子又はC1−6−アルキル基を表す。)を表し;Xは置換又は非置換のC1−6−アルキル基、又は置換又は非置換のC1−6−アルコキシ基を表し;Xは水素原子、メチル基又はハロゲン原子を表し、Xは−NHCO−R(式中、Rは水素原子、置換又は非置換のC1−6−アルキル基又はヒドロキシメチル基を表す。)、水酸基、又は置換又は非置換のC1−6−アルコキシ基を表し;X6aはアルコキシカルボニル基、リン酸アルキルエステル基、ホスホン酸アルキルエステル基、スルホン酸アルキルエステル基又はスルフィン酸アルキルエステル基を表し;R’は炭素原子を介して結合している有機基を表す。]
で示される化合物又はその塩を、1価の金の塩又は錯体の存在下、次式(III):
−OH (III)
(式中、Rは置換又は非置換の糖残基、置換又は非置換の芳香族基、又は置換又は非置換のC1−6−脂肪族炭化水素基を表す。)
で示される化合物と反応させることを含む次式(I’):
Figure 2018016579
(式中、X、X、X、X、X6a及びRは前記と同義である。)
で示される化合物又はその塩の製造方法。 That is, the gist of the present invention is as follows.
(1) The following formula (I):
Figure 2018016579
[Wherein, X 1 represents —O—R 1 , wherein R 1 represents a substituted or unsubstituted sugar residue, a substituted or unsubstituted aromatic group, or a substituted or unsubstituted C 1-6 -aliphatic. Represents a hydrocarbon group.) Or a fluorine atom; X 2 represents —O—R 2 (wherein R 2 represents a hydrogen atom, a substituted or unsubstituted aromatic group, or a substituted or unsubstituted C 1-6. -. represents an alkyl group), C 1-6 - alkyl optionally azido group optionally substituted with a group, C 1-6 - alkyl group optionally substituted guanidino group, or -N (R a) (R b ) (wherein R a and R b are the same or different and each represents a hydrogen atom or a C 1-6 -alkyl group); X 3 represents a substituted or unsubstituted C 1-6 -alkyl group, or Represents a substituted or unsubstituted C 1-6 -alkoxy group; X 4 represents a hydrogen atom, a methyl group or a halogen atom; 5 represents —NHCO—R 3 (wherein R 3 represents a hydrogen atom, a substituted or unsubstituted C 1-6 -alkyl group or a hydroxymethyl group), a hydroxyl group, or a substituted or unsubstituted C 1-6. -Represents an alkoxy group; X 6 represents a carboxyl group, a phosphate group, a phosphono group, a sulfo group, a sulfino group, an alkoxycarbonyl group, a phosphoric acid alkyl ester group, a phosphonic acid alkyl ester group, a sulfonic acid alkyl ester group or a sulfinic acid alkyl group. Represents an ester group. ]
Or a salt thereof.
(2) The compound or salt thereof according to (1), wherein R 1 is a substituted or unsubstituted sugar residue.
(3) The compound or salt thereof according to (1), wherein R 1 is a substituted or unsubstituted galactose residue.
(4) The compound or salt thereof according to (1), wherein R 1 is a galactose residue in which the hydroxyl group at position 1 is substituted with a substituted or unsubstituted phenyl group.
(5) A sialidase inhibitor containing the compound or salt thereof according to any one of (1) to (4) as an active ingredient.
(6) The following formula (II):
Figure 2018016579
[Wherein, X 2 represents —O—R 2 (wherein R 2 represents a hydrogen atom, a substituted or unsubstituted aromatic group, or a substituted or unsubstituted C 1-6 -alkyl group), C An azido group optionally substituted with a 1-6 -alkyl group, a guanidino group optionally substituted with a C 1-6 -alkyl group, or —N (R a ) (R b ) (wherein R a and R b is the same or different and represents a hydrogen atom or a C 1-6 -alkyl group.); X 3 is a substituted or unsubstituted C 1-6 -alkyl group, or a substituted or unsubstituted C 1-6 -Represents an alkoxy group; X 4 represents a hydrogen atom, a methyl group or a halogen atom; X 5 represents -NHCO-R 3 (wherein R 3 represents a hydrogen atom, a substituted or unsubstituted C 1-6 -alkyl group; or represents a hydroxymethyl group), a hydroxyl group, or a substituted or unsubstituted C 1-6 -. al It represents a carboxymethyl group; X 6a alkoxycarbonyl group, phosphoric acid alkyl ester group, a phosphonic acid alkyl ester group, a sulfonic acid alkyl ester group or a sulfinic acid alkyl ester group; R 'is bonded via a carbon atom Represents an organic group. ]
In the presence of a monovalent gold salt or complex, the compound represented by the following formula (III):
R 1 —OH (III)
(In the formula, R 1 represents a substituted or unsubstituted sugar residue, a substituted or unsubstituted aromatic group, or a substituted or unsubstituted C 1-6 -aliphatic hydrocarbon group.)
Comprising reacting with a compound of formula (I ′):
Figure 2018016579
(In the formula, X 2 , X 3 , X 4 , X 5 , X 6a and R 1 are as defined above.)
Or a salt thereof.

本発明によれば、従来のシアル酸誘導体の「遷移状態アナログ」の構造展開のベースになっていたDANAとは基本骨格が異なり、新たなシアリダーゼ阻害剤のリード化合物になると期待される3位エキソメチレン型のシアル酸類縁体を提供することができる。   According to the present invention, the basic skeleton is different from DANA, which was the basis for the structural development of the “transition state analog” of the conventional sialic acid derivative, and the 3-position exo, which is expected to become a new sialidase inhibitor lead compound. Methylene type sialic acid analogs can be provided.

本発明の化合物のうち、糖タンパク質を模倣した構造を有する化合物の一例を示す図である。It is a figure which shows an example of the compound which has a structure which imitated glycoprotein among the compounds of this invention. 本発明の化合物のうち、糖脂質を模倣した構造を有する化合物の一例を示す図である。It is a figure which shows an example of the compound which has a structure imitating glycolipid among the compounds of this invention. 被検化合物のシアリダーゼ阻害活性を測定した結果を示す図である。It is a figure which shows the result of having measured the sialidase inhibitory activity of the test compound.

本発明は、前記式(I)で示される化合物又はその塩、当該化合物又はその塩を有効成分として含有するシアリダーゼ阻害剤、及び当該化合物又はその塩の製造方法に関する。   The present invention relates to a compound represented by the formula (I) or a salt thereof, a sialidase inhibitor containing the compound or a salt thereof as an active ingredient, and a method for producing the compound or a salt thereof.

本明細書において、芳香族基としては、例えばフェニル基、トリル基、ナフチル基等の芳香族炭化水素基;フリル基、チエニル基、ピロリル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基、イミダゾリル基、トリアゾリル基(例えば1H−1,2,4−トリアゾール−1−イル基)、ピラゾリル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、キノリル基、イソキノリル基等の芳香族複素環基が挙げられる。   In the present specification, examples of the aromatic group include an aromatic hydrocarbon group such as phenyl group, tolyl group, and naphthyl group; furyl group, thienyl group, pyrrolyl group, oxazolyl group, isoxazolyl group, thiazolyl group, isothiazolyl group, imidazolyl. An aromatic heterocyclic group such as a group, triazolyl group (for example, 1H-1,2,4-triazol-1-yl group), pyrazolyl group, pyridyl group, pyrimidinyl group, pyridazinyl group, pyrazinyl group, quinolyl group, and isoquinolyl group. Can be mentioned.

前記芳香族基は、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、アシル基(例えばホルミル基、アセチル基、プロパノイル基、ブタノイル基、ペンタノイル基、ヘキサノイル基等のC1−6−脂肪族アシル基;ベンゾイル基、トルオイル基等のアロイル基)、アシルオキシ基(例えばホルミルオキシ基、アセトキシ基、プロパノイルオキシ基、ブタノイルオキシ基、ペンタノイルオキシ基、ヘキサノイルオキシ基等のC1−6−脂肪族アシルオキシ基;ベンゾイルオキシ基、トルオイルオキシ基等のアロイルオキシ基)、水酸基、カルボキシル基、C1−6−アルコキシ基(例えばメトキシ基、エトキシ基、プロポキシ基)、アセトアミド基、カルバモイル基、シアノ基、ニトロ基、芳香族基(例えばフェニル基)等から選ばれる1以上の置換基で置換されていてもよい。 The aromatic group is a C 1-6 such as a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), acyl group (eg, formyl group, acetyl group, propanoyl group, butanoyl group, pentanoyl group, hexanoyl group). -Aliphatic acyl group; aroyl group such as benzoyl group and toluoyl group), acyloxy group (for example, formyloxy group, acetoxy group, propanoyloxy group, butanoyloxy group, pentanoyloxy group, hexanoyloxy group, etc.) 1-6 -aliphatic acyloxy group; aroyloxy groups such as benzoyloxy group and toluoyloxy group), hydroxyl group, carboxyl group, C 1-6 -alkoxy group (for example, methoxy group, ethoxy group, propoxy group), acetamide group, Carbamoyl group, cyano group, nitro group, aromatic group (eg phenyl ) May be substituted with one or more substituents selected from the like.

1−6−アルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基(1−メチルプロピル基)、tert−ブチル基、ペンチル基、イソペンチル基、1−エチルプロピル基、ヘキシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基が挙げられる。前記C1−6−アルキル基は、水酸基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、アミノ基、モノ又はジアルキルアミノ基、C1−6−アルコキシ基、オキソ基、芳香族基、複素環基等から選ばれる1以上の置換基で置換されていてもよい。 Examples of the C 1-6 -alkyl group include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl (1-methylpropyl), tert-butyl, pentyl, and isopentyl. Group, 1-ethylpropyl group, hexyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group and cyclohexyl group. The C 1-6 -alkyl group is a hydroxyl group, a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), amino group, mono- or dialkylamino group, C 1-6 -alkoxy group, oxo group, aromatic It may be substituted with one or more substituents selected from group, heterocyclic groups and the like.

1−6−脂肪族炭化水素基としては、前記C1−6−アルキル基の他に、ビニル基、1−プロペニル基、アリル基、1−ブテニル基、2−ブテニル(クロチル)基、ペンテニル基、3−メチル−2−ブテニル(プレニル)基、ヘキセニル基等のC2−6−アルケニル基;エチニル基、1−プロピニル基、2−プロピニル(プロパルギル)基、3−ブチニル基、ペンチニル基、ヘキシニル基等のC2−6−アルキニル基が挙げられる。前記C1−6−脂肪族炭化水素基は、水酸基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、アミノ基、モノ又はジアルキルアミノ基、C1−6−アルコキシ基、オキソ基、芳香族基、複素環基等から選ばれる1以上の置換基で置換されていてもよい。 As the C 1-6 -aliphatic hydrocarbon group, in addition to the C 1-6 -alkyl group, a vinyl group, 1-propenyl group, allyl group, 1-butenyl group, 2-butenyl (crotyl) group, pentenyl Group, C 2-6 -alkenyl group such as 3-methyl-2-butenyl (prenyl) group, hexenyl group; ethynyl group, 1-propynyl group, 2-propynyl (propargyl) group, 3-butynyl group, pentynyl group, C 2-6 -alkynyl groups such as a hexynyl group can be mentioned. The C 1-6 -aliphatic hydrocarbon group includes a hydroxyl group, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), an amino group, a mono- or dialkylamino group, a C 1-6 -alkoxy group, oxo It may be substituted with one or more substituents selected from a group, an aromatic group, a heterocyclic group and the like.

1−6−アルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ヘキシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基が挙げられる。前記C1−6−アルコキシ基は、芳香族基、アシル基、水酸基、カルボキシル基、ハロゲン原子、C1−6−アルコキシ基等から選ばれる1以上の置換基で置換されていてもよい。 Examples of the C 1-6 -alkoxy group include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, isopentyloxy group, hexyl. Examples thereof include an oxy group, a cyclopropyloxy group, a cyclobutyloxy group, a cyclopentyloxy group, and a cyclohexyloxy group. The C 1-6 -alkoxy group may be substituted with one or more substituents selected from an aromatic group, an acyl group, a hydroxyl group, a carboxyl group, a halogen atom, a C 1-6 -alkoxy group, and the like.

ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。   Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

アルコキシカルボニル基としては、例えば前記C1−6−アルコキシ基で置換されたカルボニル基が挙げられる。 Examples of the alkoxycarbonyl group include a carbonyl group substituted with the above C 1-6 -alkoxy group.

リン酸アルキルエステル基、例えばアルキルが前記C1−6−アルキル基であるリン酸アルキルエステル基が挙げられる。 Examples thereof include phosphoric acid alkyl ester groups, for example, phosphoric acid alkyl ester groups in which alkyl is the C 1-6 -alkyl group.

ホスホン酸アルキルエステル基としては、例えばアルキルが前記C1−6−アルキル基であるホスホン酸アルキルエステル基が挙げられる。 Examples of the phosphonic acid alkyl ester group include a phosphonic acid alkyl ester group in which alkyl is the C 1-6 -alkyl group.

スルホン酸アルキルエステル基としては、例えばアルキルが前記C1−6−アルキル基であるスルホン酸アルキルエステル基が挙げられる。 Examples of the sulfonic acid alkyl ester group include a sulfonic acid alkyl ester group in which alkyl is the C 1-6 -alkyl group.

スルフィン酸アルキルエステル基としては、例えばアルキルが前記C1−6−アルキル基であるスルフィン酸アルキルエステル基が挙げられる。 Examples of the sulfinic acid alkyl ester group include a sulfinic acid alkyl ester group in which alkyl is the C 1-6 -alkyl group.

前記式(I)においてXで表される−O−RにおけるRとしては、シアリダーゼ阻害活性の点から、置換又は非置換の糖残基が好ましい。 As R 1 in the -O-R 1 represented by X 1 in the formula (I) is, in terms of sialidase inhibitory activity, a substituted or unsubstituted sugar residue are preferred.

前記糖残基としては、特に制限はないが、例えば、ガラクトース残基、グルコース残基、N−アセチルグルコサミン残基、グルクロン酸残基、グルコサミン残基、マンノース残基、キシロース残基、N−アセチルガラクトサミン残基、ガラクトサミン残基、N−アセチルマンノサミン残基、マンノサミン残基、シアル酸残基等から選ばれる単糖残基、及び前記単糖残基から構成されるオリゴ糖又は多糖残基が挙げられる。   The sugar residue is not particularly limited, and for example, galactose residue, glucose residue, N-acetylglucosamine residue, glucuronic acid residue, glucosamine residue, mannose residue, xylose residue, N-acetyl Monosaccharide residues selected from galactosamine residues, galactosamine residues, N-acetyl mannosamine residues, mannosamine residues, sialic acid residues and the like, and oligosaccharides or polysaccharide residues composed of the monosaccharide residues Is mentioned.

で表される置換又は非置換の糖残基としては、好ましくは置換又は非置換のガラクトース残基、更に好ましくは置換又は非置換のフェニル基(例えば、p−ニトロフェニル基)で1位の水酸基が置換されたガラクトース残基が挙げられる。 The substituted or unsubstituted sugar residue represented by R 1 is preferably a substituted or unsubstituted galactose residue, more preferably a substituted or unsubstituted phenyl group (eg, p-nitrophenyl group) at the 1-position. A galactose residue substituted with a hydroxyl group.

本発明の化合物としては、シアリダーゼ阻害活性の点から、2,3−シアリルガラクトース構造を有する化合物が特に好ましい。   As the compound of the present invention, a compound having a 2,3-sialylgalactose structure is particularly preferable from the viewpoint of sialidase inhibitory activity.

前記置換又は非置換の糖残基としては、糖脂質(例えば、ガングリオシド(シアロ糖脂質))又は糖タンパク質を模倣した構造も挙げられる(図1及び2)。図1において、Rとしては特に制限はなく、例えば糖鎖、ペプチド、アルキル基が挙げられる。   Examples of the substituted or unsubstituted sugar residue include structures mimicking glycolipids (eg, ganglioside (sialoglycolipid)) or glycoproteins (FIGS. 1 and 2). In FIG. 1, R is not particularly limited, and examples thereof include sugar chains, peptides, and alkyl groups.

で表される置換又は非置換の芳香族基としては、好ましくはニトロ基、C1−6−アルコキシ基、ハロゲン原子、ハロゲン化アルキル基から選ばれる1以上の置換基で置換されているフェニル基が挙げられる。 The substituted or unsubstituted aromatic group represented by R 1 is preferably substituted with one or more substituents selected from a nitro group, a C 1-6 -alkoxy group, a halogen atom, and a halogenated alkyl group. A phenyl group is mentioned.

で表される置換又は非置換のC1−6−脂肪族炭化水素基としては、好ましくはアリル基、2−ブテニル(クロチル)基、3−メチル−2−ブテニル(プレニル)基等が挙げられる。 The substituted or unsubstituted C 1-6 -aliphatic hydrocarbon group represented by R 1 is preferably an allyl group, a 2-butenyl (crotyl) group, a 3-methyl-2-butenyl (prenyl) group, or the like. Can be mentioned.

としては、好ましくは水酸基、C1−6−アルコキシ基、アジド基、アミノ基、グアニジノ基、又はC1−6−アルキル基で置換されたアジド基、アミノ基もしくはグアニジノ基が挙げられる。 X 2 is preferably a hydroxyl group, a C 1-6 -alkoxy group, an azide group, an amino group, a guanidino group, or an azide group, amino group or guanidino group substituted with a C 1-6 -alkyl group.

としては、好ましくは−CH(OH)−CH(OH)−CHOH、−O−CH(CHCHが挙げられる。 X 3 is preferably —CH (OH) —CH (OH) —CH 2 OH or —O—CH (CH 2 CH 3 ) 2 .

としては、好ましくは水素原子、フッ素原子、塩素原子が挙げられる。 X 4 is preferably a hydrogen atom, a fluorine atom, or a chlorine atom.

としては、好ましくはアセトアミド基、−NHCOCHOHが挙げられる。 X 5 is preferably an acetamide group or —NHCOCH 2 OH.

としては、好ましくはカルボキシル基、リン酸基、ホスホノ基、スルホ(スルホン酸)基、スルフィノ基が挙げられる。 X 6 is preferably a carboxyl group, a phosphoric acid group, a phosphono group, a sulfo (sulfonic acid) group, or a sulfino group.

前記式(I)で示される化合物の塩としては、薬学的に許容される塩が好ましく、前記式(I)で示される化合物がカルボキシル基、フェノール性水酸基等の酸性置換基を有する場合には、例えばナトリウム塩、カリウム塩等のアルカリ金属塩、リジン塩、アルギニン塩が挙げられる。また、前記式(I)で示される化合物がアミノ基、グアニジノ基等の塩基性置換基を有する場合には、例えば塩酸、硫酸、リン酸、臭化水素酸、ヨウ化水素酸、硝酸、ピロ硫酸、メタリン酸等の無機酸、又はクエン酸、安息香酸、酢酸、プロピオン酸、フマル酸、マレイン酸、酒石酸、コハク酸、スルホン酸(例えば、メタンスルホン酸、p−トルエンスルホン酸、ナフタレンスルホン酸)、アミノ酸(例えば、グルタミン酸)等の有機酸との塩が挙げられる。   As the salt of the compound represented by the formula (I), a pharmaceutically acceptable salt is preferable, and when the compound represented by the formula (I) has an acidic substituent such as a carboxyl group or a phenolic hydroxyl group. Examples thereof include alkali metal salts such as sodium salt and potassium salt, lysine salt, and arginine salt. When the compound represented by the formula (I) has a basic substituent such as an amino group or a guanidino group, for example, hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydroiodic acid, nitric acid, pyro Inorganic acids such as sulfuric acid and metaphosphoric acid, or citric acid, benzoic acid, acetic acid, propionic acid, fumaric acid, maleic acid, tartaric acid, succinic acid, sulfonic acid (for example, methanesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid) ) And salts with organic acids such as amino acids (for example, glutamic acid).

本発明の化合物は不斉炭素を有しており、光学活性体として存在する場合があるが、光学活性体又はジアステレオ異性体などの立体異性体、立体異性体の任意の混合物、又はラセミ体などは、いずれも本発明の範囲に包含される。   The compound of the present invention has an asymmetric carbon and may exist as an optically active substance, but may be a stereoisomer such as an optically active substance or a diastereoisomer, an arbitrary mixture of stereoisomers, or a racemate. Etc. are all included in the scope of the present invention.

前記式(I)で示される化合物は、例えば、次のようにして製造することができる。   The compound represented by the formula (I) can be produced, for example, as follows.

Figure 2018016579
(式中、X、X、X、X、X6a、R及びR’は前記と同義であり、Auは1価の金の塩又は錯体を表す。)
Figure 2018016579
(Wherein X 2 , X 3 , X 4 , X 5 , X 6a , R 1 and R ′ are as defined above, and Au I represents a monovalent gold salt or complex.)

R’で表される炭素原子を介して結合している有機基は特に制限はなく、例えばC1−6−アルキル基、好ましくはブチル基、シクロプロピル基が挙げられる。 The organic group bonded through the carbon atom represented by R ′ is not particularly limited, and examples thereof include a C 1-6 -alkyl group, preferably a butyl group and a cyclopropyl group.

Auで表される1価の金の塩又は錯体としては、好ましくはPhPAuNTf、PhPAuOTfが挙げられる。 Preferred examples of the monovalent gold salt or complex represented by Au I include Ph 3 PAuNTf 2 and Ph 3 PAuOTf.

前記の反応は、例えば、アルゴンガス等の不活性ガスの雰囲気下、化合物(II)と化合物(III)と脱水剤(例えば、モレキュラーシーブ)の有機溶媒(例えば、ジクロロメタン等のハロゲン化炭化水素系溶媒)溶液に、1価の金の塩又は錯体の有機溶媒(例えば、ジクロロメタン等のハロゲン化炭化水素系溶媒)溶液を加えて行うことができる。   For example, the reaction is performed under an atmosphere of an inert gas such as argon gas, and an organic solvent (for example, a halogenated hydrocarbon such as dichloromethane) of the compound (II), the compound (III), and a dehydrating agent (for example, molecular sieve). Solvent) solution can be carried out by adding a monovalent gold salt or complex organic solvent (for example, halogenated hydrocarbon solvent such as dichloromethane) solution.

前記反応の反応温度は、通常−78〜30℃、好ましくは0〜25℃であり、反応時間は、通常24時間以内、好ましくは1〜12時間である。   The reaction temperature of the reaction is usually −78 to 30 ° C., preferably 0 to 25 ° C., and the reaction time is usually within 24 hours, preferably 1 to 12 hours.

前記式(II)で示される化合物が水酸基を有する場合は、水酸基をアセチル基、ピコロイル基等のアシル基、又はトリチル基で、2つの水酸基をメチリデン基、プロパン−2−イリデン基のアルキリデン基で保護して前記の反応を行った後、必要に応じて脱保護することが好ましい(下式参照)。   When the compound represented by the formula (II) has a hydroxyl group, the hydroxyl group is an acyl group such as an acetyl group or a picoyl group, or a trityl group, and the two hydroxyl groups are a methylidene group or an alkylidene group of a propane-2-ylidene group. After carrying out the above reaction with protection, it is preferable to deprotect as necessary (see the following formula).

Figure 2018016579
(式中、X6a、R、R’及びAuは前記と同義である。)
Figure 2018016579
(In the formula, X 6a , R 1 , R ′ and Au I are as defined above.)

シアル酸の4位の置換基(前記式(I)及び(I’)のX)がアジド基、アミノ基又はグアニジノ基である誘導体の合成法として、以下に示すように、共通の合成中間体を利用してアジド基を導入したグリコシルドナーを合成した後、4位の置換基を順次変換する方法が挙げられる。 As a synthesis method of a derivative in which the substituent at the 4-position of sialic acid (X 2 in the above formulas (I) and (I ′)) is an azide group, an amino group or a guanidino group, An example is a method of synthesizing a glycosyl donor into which an azide group has been introduced using the body, and then sequentially converting the substituent at the 4-position.

Figure 2018016579
Figure 2018016579

Figure 2018016579
(式中、R、R’及びAuは前記と同義であり、TMSOTfはトリメチルシリルトリフラートを表し、TMSNはトリメチルシリルアジドを表し、2,2−DMPは2,2−ジメトキシプロパンを表し、CSAは10−カンファースルホン酸を表し、COMUはウロニウム系縮合剤COMUを表し、o−substituted BzClはo−位がR’−C≡C−(例えば、ヘキシニル基)で置換されたベンゾイルクロリドを表し、TFAはトリフルオロ酢酸を表し、bisBocPCHはN,N’−ビス(tert−ブトキシカルボニル)−1H−ピラゾール−1−カルボキサミジンを表す。)
Figure 2018016579
Wherein R 1 , R ′ and Au I are as defined above, TMSOTf represents trimethylsilyl triflate, TMSN 3 represents trimethylsilyl azide, 2,2-DMP represents 2,2-dimethoxypropane, CSA Represents 10-camphorsulfonic acid, COMU represents uronium-based condensing agent COMU, o-substituted BzCl represents benzoyl chloride substituted at the o-position with R′—C≡C— (for example, hexynyl group), TFA represents trifluoroacetic acid, bisBocPCH represents N, N′-bis (tert-butoxycarbonyl) -1H-pyrazole-1-carboxamidine)

前記式(I)で示される化合物は、シアリダーゼ阻害剤、より具体的には、抗ウイルス剤、免疫調節剤、抗癌剤などとして、慣用の製剤担体と組み合わせて製剤化することができる。投与形態としては、特に限定はなく、必要に応じ適宜選択して使用され、錠剤、カプセル剤、顆粒剤、細粒剤、散剤、徐放性製剤、液剤、懸濁剤、エマルジョン剤、シロップ剤、エリキシル剤等の経口剤、注射剤、吸入剤、坐剤等の非経口剤が挙げられる。   The compound represented by the formula (I) can be formulated as a sialidase inhibitor, more specifically, as an antiviral agent, an immunomodulator, an anticancer agent or the like in combination with a conventional pharmaceutical carrier. The dosage form is not particularly limited, and can be appropriately selected and used as necessary. Tablets, capsules, granules, fine granules, powders, sustained-release preparations, solutions, suspensions, emulsions, syrups And oral agents such as elixirs, and parenteral agents such as injections, inhalants and suppositories.

経口剤は、例えばデンプン、乳糖、白糖、マンニット、カルボキシメチルセルロース、無機塩類等を用いて常法に製造される。また、これらに加えて、結合剤、崩壊剤、界面活性剤、滑沢剤、流動性促進剤、矯味剤、着色剤、香料等を適宜添加することができる。   Oral preparations are produced in a conventional manner using, for example, starch, lactose, sucrose, mannitol, carboxymethylcellulose, inorganic salts and the like. In addition to these, a binder, a disintegrant, a surfactant, a lubricant, a fluidity promoter, a corrigent, a colorant, a fragrance, and the like can be appropriately added.

結合剤としては、例えばデンプン、デキストリン、アラビアゴム、ゼラチン、ヒドロキシプロピルスターチ、メチルセルロース、カルボキシメチルセルロースナトリウム、ヒドロキシプロピルセルロース、結晶セルロース、エチルセルロース、ポリビニルピロリドン、マクロゴール等が挙げられる。   Examples of the binder include starch, dextrin, gum arabic, gelatin, hydroxypropyl starch, methylcellulose, sodium carboxymethylcellulose, hydroxypropylcellulose, crystalline cellulose, ethylcellulose, polyvinylpyrrolidone, macrogol and the like.

崩壊剤としては、例えばデンプン、ヒドロキシプロピルスターチ、カルボキシメチルセルロースナトリウム、カルボキシメチルセルロースカルシウム、カルボキシメチルセルロース、低置換ヒドロキシプロピルセルロース等が挙げられる。   Examples of the disintegrant include starch, hydroxypropyl starch, carboxymethylcellulose sodium, carboxymethylcellulose calcium, carboxymethylcellulose, and low-substituted hydroxypropylcellulose.

界面活性剤としては、例えばラウリル硫酸ナトリウム、大豆レシチン、ショ糖脂肪酸エステル、ポリソルベート80等が挙げられる。   Examples of the surfactant include sodium lauryl sulfate, soybean lecithin, sucrose fatty acid ester, polysorbate 80 and the like.

滑沢剤としては、例えばタルク、ロウ類、水素添加植物油、ショ糖脂肪酸エステル、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸アルミニウム、ポリエチレングリコール等が挙げられる。   Examples of the lubricant include talc, waxes, hydrogenated vegetable oil, sucrose fatty acid ester, magnesium stearate, calcium stearate, aluminum stearate, polyethylene glycol and the like.

流動性促進剤としては、例えば軽質無水ケイ酸、乾燥水酸化アルミニウムゲル、合成ケイ酸アルミニウム、ケイ酸マグネシウム等が挙げられる。   Examples of the fluidity promoter include light anhydrous silicic acid, dry aluminum hydroxide gel, synthetic aluminum silicate, magnesium silicate and the like.

注射剤は、常法に従って製造され、希釈剤として一般に注射用蒸留水、生理食塩水、ブドウ糖水溶液、オリーブ油、ゴマ油、ラッカセイ油、ダイズ油、トウモロコシ油、プロピレングリコール、ポリエチレングリコール等を用いることができる。更に必要に応じて、殺菌剤、防腐剤、安定剤、等張化剤、無痛化剤等を加えてもよい。また、注射剤は、安定性の観点から、バイアル等に充填後冷凍し、通常の凍結乾燥技術により水分を除去し、使用直前に凍結乾燥物から液剤を再調製することもできる。   Injectables are produced according to conventional methods. In general, distilled water for injection, physiological saline, aqueous glucose solution, olive oil, sesame oil, peanut oil, soybean oil, corn oil, propylene glycol, polyethylene glycol and the like can be used as diluents. . Further, if necessary, bactericides, preservatives, stabilizers, isotonic agents, soothing agents and the like may be added. In addition, from the viewpoint of stability, the injection can be frozen after filling into a vial or the like, the water can be removed by a normal freeze-drying technique, and the solution can be re-prepared from the freeze-dried product immediately before use.

その他の非経口剤としては、吸入剤、直腸内投与のための坐剤等が挙げられ、常法に従って製造される。   Other parenteral agents include inhalants, suppositories for rectal administration, and the like, and are produced according to conventional methods.

製剤化したシアリダーゼ阻害剤は、剤形、投与経路等により異なるが、例えば、1日1〜4回を1週間から3ヶ月の期間、投与することが可能である。   The formulated sialidase inhibitor varies depending on the dosage form, administration route and the like, but can be administered, for example, 1 to 4 times a day for a period of 1 week to 3 months.

経口剤として所期の効果を発揮するためには、患者の年令、体重、疾患の程度により異なるが、通常成人の場合、前記式(I)で示される化合物の重量として、例えば5〜500mgを、1日1回又は数回に分けて服用することが適当である。   In order to exert the desired effect as an oral preparation, although it varies depending on the age, body weight, and degree of disease of the patient, the weight of the compound represented by the formula (I) is usually 5 to 500 mg in the case of an adult Is suitably taken once a day or divided into several times a day.

非経口剤として所期の効果を発揮するためには、患者の年令、体重、疾患の程度により異なるが、通常成人の場合、前記式(I)で示される化合物の重量として、例えば1〜500mgを、静注、点滴静注、皮下注射、筋肉注射、吸入により投与することが適当である。   In order to exert the desired effect as a parenteral agent, it varies depending on the age, body weight, and degree of disease of the patient. It is appropriate to administer 500 mg by intravenous injection, intravenous infusion, subcutaneous injection, intramuscular injection, or inhalation.

また、前記式(I)で示される化合物は、シアリダーゼ阻害剤と併用可能な他の薬剤と組み合わせて使用してもよい。これらは、治療の過程において別々に投与されるか、例えば錠剤、静脈用溶液、又はカプセルのような単一の剤形において、前記式(I)で示される化合物と組み合わせられる。   In addition, the compound represented by the formula (I) may be used in combination with other drugs that can be used in combination with sialidase inhibitors. These are administered separately during the course of therapy or combined with a compound of formula (I) above in a single dosage form, such as a tablet, intravenous solution, or capsule.

以下に実施例を示し、本発明を更に詳細に説明するが、本発明の範囲は下記の実施例の範囲に限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the scope of the present invention is not limited to the scope of the following examples.

(実施例1)
(1)化合物2の合成

Figure 2018016579
Example 1
(1) Synthesis of compound 2
Figure 2018016579

化合物1(von Itzstein, M.; Dyason, J. C.; Thomson, R.; Rudrawar, S.; Pascolutti. M. US2012202877A1に記載の化合物)(0.79 g, 1.5 mmol)のメタノール溶液(30 ml)にナトリウムメトキシド(83 mg, 1.5 mmol)を加えた。反応溶液を室温で17時間撹拌した後、アンバーライトIR120(H+型)で中和した。反応混合物の固形物をろ別し、溶液を減圧留去することで、化合物2(0.50 g, 97%)を淡黄色非結晶質固体として得た。
1H-NMR (401 MHz, CD3OD) δ 1.79 (dd, J = 6.9, 1.4 Hz, 3H), 2.01 (s, 3H), 3.55 (dd, J = 8.7, 1.4 Hz, 1H), 3.63 (dd, J = 11.5, 5.5 Hz, 1H), 3.76 (s, 3H), 3.82-3.84 (m, 2H), 4.03 (dd, J = 9.7, 1.4 Hz, 1H), 4.13 (dd, J = 9.7, 6.9 Hz, 1H), 4.52 (d, J = 6.9 Hz, 1H), 6.05 (dq, J = 16.1, 6.9 Hz, 1H), 6.82 (dd, J = 16.1, 1.4 Hz, 1H).
Compound 1 (von Itzstein, M .; Dyason, JC; Thomson, R .; Rudrawar, S .; Pascolutti. M. Compound described in US2012202877A1) (0.79 g, 1.5 mmol) in methanol solution (30 ml) with sodium methoxy (83 mg, 1.5 mmol) was added. The reaction solution was stirred at room temperature for 17 hours and then neutralized with Amberlite IR120 (H + form). The solid in the reaction mixture was filtered off, and the solution was evaporated under reduced pressure to give compound 2 (0.50 g, 97%) as a pale yellow amorphous solid.
1 H-NMR (401 MHz, CD 3 OD) δ 1.79 (dd, J = 6.9, 1.4 Hz, 3H), 2.01 (s, 3H), 3.55 (dd, J = 8.7, 1.4 Hz, 1H), 3.63 ( dd, J = 11.5, 5.5 Hz, 1H), 3.76 (s, 3H), 3.82-3.84 (m, 2H), 4.03 (dd, J = 9.7, 1.4 Hz, 1H), 4.13 (dd, J = 9.7, 6.9 Hz, 1H), 4.52 (d, J = 6.9 Hz, 1H), 6.05 (dq, J = 16.1, 6.9 Hz, 1H), 6.82 (dd, J = 16.1, 1.4 Hz, 1H).

(2)化合物3の合成

Figure 2018016579
(2) Synthesis of compound 3
Figure 2018016579

アルゴン雰囲気下、化合物2(0.50 g, 1.4 mmol)のN,N-ジメチルホルムアミド溶液(14 ml)に、2,2-ジメトキシプロパン(0.21 ml, 1.7 mmol)と10-カンファースルホン酸(32 mg, 0.14 mmol)を加えた。反応溶液を室温で24時間撹拌した後、トリエチルアミンを加えて中和した。反応混合物をトルエンで共沸し(3回)、N,N-ジメチルホルムアミドを減圧留去し、残渣をシリカゲルクロマトグラフィー(溶離液:ヘキサン/アセトン = 1/4)で粗精製した。   Under an argon atmosphere, a solution of compound 2 (0.50 g, 1.4 mmol) in N, N-dimethylformamide (14 ml) was added to 2,2-dimethoxypropane (0.21 ml, 1.7 mmol) and 10-camphorsulfonic acid (32 mg, 0.14 mmol) was added. The reaction solution was stirred at room temperature for 24 hours, and then neutralized by adding triethylamine. The reaction mixture was azeotroped with toluene (3 times), N, N-dimethylformamide was distilled off under reduced pressure, and the residue was roughly purified by silica gel chromatography (eluent: hexane / acetone = 1/4).

得られた粗生成物のピリジン溶液(12 ml)を-40 ℃ に冷却し、無水酢酸(6.0 ml)を加えた。反応溶液を-40 ℃で44時間撹拌した後、メタノールを加えて反応を停止した。反応混合物をトルエンで共沸し(3回)、残渣をシリカゲルクロマトグラフィー(溶離液:ヘキサン/アセトン = 1/1)で精製し、化合物3(0.26 g, 2段階収率48%)を無色非結晶質固体として得た。
1H-NMR (401 MHz, CDCl3) δ 1.34 (s, 3H), 1.38 (s, 3H), 1.78 (dd, J = 6.9, 1.8 Hz, 3H), 2.05 (s, 3H), 2.08 (s, 3H), 3.46 (brd, J = 8.3 Hz, 1H), 3.79 (s, 3H), 3.86 (dd, J = 11.0, 0.9 Hz, 1H), 4.06 (dd, J = 8.7, 5.1 Hz, 1H), 4.14 (dd, J = 8.7, 6.4 Hz, 1H), 4.25-4.36 (m, 2H), 4.82 (br, 1H), 5.42 (dq, J = 16.1, 6.4 Hz, 1H), 5.92 (d, J = 8.7 Hz, 1H), 6.03 (d, J = 7.4 Hz, 1H), 6.92 (dd, J = 16.1, 1.8 Hz, 1H).
A pyridine solution (12 ml) of the obtained crude product was cooled to −40 ° C., and acetic anhydride (6.0 ml) was added. The reaction solution was stirred at −40 ° C. for 44 hours, and methanol was added to stop the reaction. The reaction mixture was azeotroped with toluene (3 times), and the residue was purified by silica gel chromatography (eluent: hexane / acetone = 1/1) to give compound 3 (0.26 g, 2-step yield 48%) as colorless Obtained as a crystalline solid.
1 H-NMR (401 MHz, CDCl 3 ) δ 1.34 (s, 3H), 1.38 (s, 3H), 1.78 (dd, J = 6.9, 1.8 Hz, 3H), 2.05 (s, 3H), 2.08 (s , 3H), 3.46 (brd, J = 8.3 Hz, 1H), 3.79 (s, 3H), 3.86 (dd, J = 11.0, 0.9 Hz, 1H), 4.06 (dd, J = 8.7, 5.1 Hz, 1H) , 4.14 (dd, J = 8.7, 6.4 Hz, 1H), 4.25-4.36 (m, 2H), 4.82 (br, 1H), 5.42 (dq, J = 16.1, 6.4 Hz, 1H), 5.92 (d, J = 8.7 Hz, 1H), 6.03 (d, J = 7.4 Hz, 1H), 6.92 (dd, J = 16.1, 1.8 Hz, 1H).

(3)化合物4の合成

Figure 2018016579
(3) Synthesis of compound 4
Figure 2018016579

アルゴン雰囲気下、化合物3(261 mg, 0.611 mmol)とピコリン酸(90.3 mg, 0.733 mmol)のジクロロメタン溶液(15 ml)に縮合剤COMU(340 mg, 0.794 mmol)とN,N-ジイソプロピルエチルアミン(0.32 ml, 1.8 mmol)、及びN,N-ジメチル-4-アミノピリジン(7.5 mg, 0.061 mmol)を加えた。室温で3時間撹拌した後、飽和炭酸水素ナトリウム水溶液を加えて反応を停止した。その後、酢酸エチルを加え、有機層を水と飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤をろ別し、溶媒を減圧留去して得た残渣を中圧分取液体クロマトグラフィー(カラム:山善ULTRAPACK Silica-40B、溶離液:ヘキサン/酢酸エチル = 1/1)とゲル浸透クロマトグラフィー(溶離液:クロロホルム)で精製し、化合物4(167 mg, 51%)を無色非結晶質固体として得た。
1H-NMR (401 MHz, CDCl3) δ 1.21 (s, 3H), 1.32 (s, 3H), 1.75 (dd, J = 6.4, 1.4 Hz, 3H), 1.92 (s, 3H), 1.98 (s, 3H), 3.77 (s, 3H), 4.07 (ddd, J = 9.7, 8.3, 6.9 Hz, 1H), 4.13 (dd, J = 9.2, 6.4 Hz, 1H), 4.19 (dd, J = 9.2, 6.4 Hz, 1H), 4.46 (td, J = 6.4, 4.1 Hz, 1H), 4.67 (dd, J = 9.7, 2.8 Hz, 1H), 5.61 (dq, J = 16.1, 6.4 Hz, 1H), 5.78 (dd, J = 4.1, 2.8 Hz, 1H), 6.19 (d, J = 6.9 Hz, 1H), 6.37 (d, J = 8.3 Hz, 1H), 6.88 (dd, J = 16.1, 1.4 Hz, 1H), 7.42 (ddd, J = 7.8, 4.6, 0.9 Hz, 1H), 7.79 (td, J = 7.8, 1.8 Hz, 1H), 8.04 (brd, J = 7.8 Hz, 1H), 8.72 (brd, J = 4.6 Hz, 1H).
Under an argon atmosphere, compound 3 (261 mg, 0.611 mmol) and picolinic acid (90.3 mg, 0.733 mmol) in dichloromethane (15 ml) were mixed with condensing agent COMU (340 mg, 0.794 mmol) and N, N-diisopropylethylamine (0.32). ml, 1.8 mmol) and N, N-dimethyl-4-aminopyridine (7.5 mg, 0.061 mmol) were added. After stirring at room temperature for 3 hours, a saturated aqueous sodium hydrogen carbonate solution was added to stop the reaction. Thereafter, ethyl acetate was added, and the organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. Filter off the desiccant and evaporate the solvent under reduced pressure. The residue is medium pressure preparative liquid chromatography (column: Yamazen ULTRAPACK Silica-40B, eluent: hexane / ethyl acetate = 1/1) and gel permeation chromatography. Purification by chromatography (eluent: chloroform) gave Compound 4 (167 mg, 51%) as a colorless amorphous solid.
1 H-NMR (401 MHz, CDCl 3 ) δ 1.21 (s, 3H), 1.32 (s, 3H), 1.75 (dd, J = 6.4, 1.4 Hz, 3H), 1.92 (s, 3H), 1.98 (s , 3H), 3.77 (s, 3H), 4.07 (ddd, J = 9.7, 8.3, 6.9 Hz, 1H), 4.13 (dd, J = 9.2, 6.4 Hz, 1H), 4.19 (dd, J = 9.2, 6.4 Hz, 1H), 4.46 (td, J = 6.4, 4.1 Hz, 1H), 4.67 (dd, J = 9.7, 2.8 Hz, 1H), 5.61 (dq, J = 16.1, 6.4 Hz, 1H), 5.78 (dd , J = 4.1, 2.8 Hz, 1H), 6.19 (d, J = 6.9 Hz, 1H), 6.37 (d, J = 8.3 Hz, 1H), 6.88 (dd, J = 16.1, 1.4 Hz, 1H), 7.42 (ddd, J = 7.8, 4.6, 0.9 Hz, 1H), 7.79 (td, J = 7.8, 1.8 Hz, 1H), 8.04 (brd, J = 7.8 Hz, 1H), 8.72 (brd, J = 4.6 Hz, 1H).

(4)化合物5の合成

Figure 2018016579
(4) Synthesis of compound 5
Figure 2018016579

化合物4(261 mg, 0.611 mmol)のジオキサン/水(3/1, v/v, 8.0 ml)溶液に、2,6-ルチジン(0.072 ml, 0.63 mmol)と過ヨウ素酸ナトリウム(268 mg, 1.25 mmol)、及び50 mM OsO4水溶液(0.26 ml, 13 μmol)を加えた。室温で30分間撹拌した後、酢酸エチルを加えた。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤をろ別し、溶媒を減圧留去して得た残渣をシリカゲルクロマトグラフィー(溶離液:クロロホルム/メタノール = 98/2)で精製し、化合物5(167 mg, 51%)を無色非結晶質固体として得た。
1H-NMR (401 MHz, CDCl3) δ 1.31 (s, 3H), 1.35 (s, 3H), 1.94 (s, 3H), 1.95 (s, 3H), 3.90 (s, 3H), 4.08 (dd, J = 9.2, 6.0 Hz, 1H), 4.16 (dd, J = 9.2, 6.0 Hz, 1H), 4.25 (ddd, J = 8.3, 6.9, 6.0 Hz, 1H), 4.51 (q, J = 6.0 Hz, 1H), 4.83 (dd, J = 6.0, 3.2 Hz, 1H), 5.73 (dd, J = 6.0, 3.2 Hz, 1H), 6.12 (d, J = 6.9 Hz, 1H), 6.30 (d, J = 8.3 Hz, 1H), 7.48 (ddd, J = 7.8, 5.1, 1.4 Hz, 1H), 7.84 (td, J = 7.8, 1.8 Hz, 1H), 8.08 (brd, J = 7.8 Hz, 1H), 8.75 (brd, J = 5.1 Hz, 1H), 10.0 (s, 1H).
To a solution of compound 4 (261 mg, 0.611 mmol) in dioxane / water (3/1, v / v, 8.0 ml), 2,6-lutidine (0.072 ml, 0.63 mmol) and sodium periodate (268 mg, 1.25 mmol), and 50 mM OsO 4 aqueous solution (0.26 ml, 13 μmol). After stirring at room temperature for 30 minutes, ethyl acetate was added. The organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The desiccant was filtered off and the solvent was distilled off under reduced pressure. The resulting residue was purified by silica gel chromatography (eluent: chloroform / methanol = 98/2) to give Compound 5 (167 mg, 51%) as colorless and amorphous. Obtained as a fine solid.
1 H-NMR (401 MHz, CDCl 3 ) δ 1.31 (s, 3H), 1.35 (s, 3H), 1.94 (s, 3H), 1.95 (s, 3H), 3.90 (s, 3H), 4.08 (dd , J = 9.2, 6.0 Hz, 1H), 4.16 (dd, J = 9.2, 6.0 Hz, 1H), 4.25 (ddd, J = 8.3, 6.9, 6.0 Hz, 1H), 4.51 (q, J = 6.0 Hz, 1H), 4.83 (dd, J = 6.0, 3.2 Hz, 1H), 5.73 (dd, J = 6.0, 3.2 Hz, 1H), 6.12 (d, J = 6.9 Hz, 1H), 6.30 (d, J = 8.3 Hz, 1H), 7.48 (ddd, J = 7.8, 5.1, 1.4 Hz, 1H), 7.84 (td, J = 7.8, 1.8 Hz, 1H), 8.08 (brd, J = 7.8 Hz, 1H), 8.75 (brd , J = 5.1 Hz, 1H), 10.0 (s, 1H).

(5)化合物6の合成

Figure 2018016579
(5) Synthesis of compound 6
Figure 2018016579

化合物5(15.6 mg, 30.0 μmol)と塩化セリウム7水和物(22 mg, 60 μmol)のテトラヒドロフラン/メタノール(1/1, v/v, 1.0 ml)溶液を-78 ℃に冷却し、水素化ホウ素ナトリウム(1.4 mg, 36 μmol)を加えた。-78 ℃で30分間撹拌した後、リン酸緩衝液(pH7)で反応を停止した。反応混合物に酢酸エチルを加え、有機層を水と飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤をろ別し、溶媒を減圧留去して粗生成物を得た。   A solution of compound 5 (15.6 mg, 30.0 μmol) and cerium chloride heptahydrate (22 mg, 60 μmol) in tetrahydrofuran / methanol (1/1, v / v, 1.0 ml) is cooled to -78 ° C and hydrogenated Sodium boron (1.4 mg, 36 μmol) was added. After stirring at -78 ° C for 30 minutes, the reaction was stopped with a phosphate buffer (pH 7). Ethyl acetate was added to the reaction mixture, and the organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. The desiccant was filtered off, and the solvent was distilled off under reduced pressure to obtain a crude product.

前記の粗生成物のジクロロメタン(1.0 ml)溶液に、アルゴン雰囲気下で、o-ヘキシニル安息香酸塩化物(ca.33 mg/ml ジクロロメタン溶液, 1.0 ml)、N,N-ジメチル-4-アミノピリジン(一粒)、ピリジン(24 μl, 0.30 mmol)を加えた。室温で4時間撹拌した後、氷冷下で飽和炭酸水素ナトリウム水溶液を加えて反応を停止した。酢酸エチルを加え、有機層を水と飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤をろ別し、溶媒を減圧留去して得た残渣をシリカゲルクロマトグラフィー(溶離液:ヘキサン/アセトン = 1/1)とゲル浸透クロマトグラフィー(溶離液: クロロホルム)で精製し、化合物6(12.2 mg, 2段階収率58%)を無色油状物質として得た。
1H-NMR (401 MHz, CDCl3) δ 0.93 (t, J = 7.4 Hz, 3H), 1.27 (s, 3H), 1.34 (s, 3H), 1.43-1.53 (m, 2H), 1.55-1.63 (m, 2H), 1.92 (s, 3H), 1.96 (s, 3H), 2.45 (t, J = 6.9 Hz, 2H), 3.84 (s, 3H), 4.10-4.20 (m, 3H), 4.51 (td, J = 6.4, 5.1 Hz, 1H), 4.72 (dd, J = 10.6, 1.8 Hz, 1H), 5.00 (dd, J = 12.9, 0.9 Hz, 1H), 5.47 (d, J = 12.9 Hz, 1H), 5.71 (dd, J = 5.1, 1.8 Hz, 1H), 5.88 (brd, J = 8.7 Hz, 1H), 6.06 (brd, J = 8.7 Hz, 1H), 7.28 (td, J = 7.4, 0.9 Hz, 1H), 7.40 (td, J = 7.4, 1.4 Hz, 1H), 7.44-7.49 (m, 2H), 7.81 (dd, J = 7.4, 0.9 Hz, 1H), 7.83 (td, J = 7.8, 1.8 Hz, 1H), 8.09 (brd, J = 7.8 Hz, 1H), 8.77 (m, 1H).
To a solution of the above crude product in dichloromethane (1.0 ml) under an argon atmosphere, o-hexynylbenzoic acid chloride (ca. 33 mg / ml in dichloromethane, 1.0 ml), N, N-dimethyl-4-aminopyridine (One grain) and pyridine (24 μl, 0.30 mmol) were added. After stirring at room temperature for 4 hours, the reaction was stopped by adding a saturated aqueous solution of sodium bicarbonate under ice cooling. Ethyl acetate was added, and the organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. The desiccant was filtered off and the solvent was distilled off under reduced pressure. The residue obtained was purified by silica gel chromatography (eluent: hexane / acetone = 1/1) and gel permeation chromatography (eluent: chloroform) to give compound 6 (12.2 mg, 2-step yield 58%) was obtained as a colorless oil.
1 H-NMR (401 MHz, CDCl 3 ) δ 0.93 (t, J = 7.4 Hz, 3H), 1.27 (s, 3H), 1.34 (s, 3H), 1.43-1.53 (m, 2H), 1.55-1.63 (m, 2H), 1.92 (s, 3H), 1.96 (s, 3H), 2.45 (t, J = 6.9 Hz, 2H), 3.84 (s, 3H), 4.10-4.20 (m, 3H), 4.51 ( td, J = 6.4, 5.1 Hz, 1H), 4.72 (dd, J = 10.6, 1.8 Hz, 1H), 5.00 (dd, J = 12.9, 0.9 Hz, 1H), 5.47 (d, J = 12.9 Hz, 1H ), 5.71 (dd, J = 5.1, 1.8 Hz, 1H), 5.88 (brd, J = 8.7 Hz, 1H), 6.06 (brd, J = 8.7 Hz, 1H), 7.28 (td, J = 7.4, 0.9 Hz , 1H), 7.40 (td, J = 7.4, 1.4 Hz, 1H), 7.44-7.49 (m, 2H), 7.81 (dd, J = 7.4, 0.9 Hz, 1H), 7.83 (td, J = 7.8, 1.8 Hz, 1H), 8.09 (brd, J = 7.8 Hz, 1H), 8.77 (m, 1H).

(6)化合物8の合成

Figure 2018016579
(式中、PNPはp−ニトロフェニル基を表す。) (6) Synthesis of Compound 8
Figure 2018016579
(In the formula, PNP represents a p-nitrophenyl group.)

アルゴン雰囲気下、化合物7(409 mg, 1.36 mmol)とイミダゾール(120 mg, 1.76 mmol)のN,N-ジメチルホルムアミド溶液(10 ml)に、氷冷下、トリイソプロピルシリルクロリド(0.34 ml, 1.6 mmol)を加えた。13時間30分撹拌後、イミダゾール(65 mg, 0.95 mmol)とトリイソプロピルシリルクロリド(0.17 ml, 0.82 mmol)を加え、更に4時間撹拌した。反応混合物にクロロホルムを加え、有機層を水、1M塩酸水溶液、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤をろ別し、溶媒を減圧留去して粗生成物を得た。   Under an argon atmosphere, triisopropylsilyl chloride (0.34 ml, 1.6 mmol) was added to an N, N-dimethylformamide solution (10 ml) of compound 7 (409 mg, 1.36 mmol) and imidazole (120 mg, 1.76 mmol) under ice-cooling. ) Was added. After stirring for 13 hours and 30 minutes, imidazole (65 mg, 0.95 mmol) and triisopropylsilyl chloride (0.17 ml, 0.82 mmol) were added, and the mixture was further stirred for 4 hours. Chloroform was added to the reaction mixture, and the organic layer was washed with water, 1M aqueous hydrochloric acid solution and saturated brine, and dried over anhydrous sodium sulfate. The desiccant was filtered off, and the solvent was distilled off under reduced pressure to obtain a crude product.

前記の粗生成物のピリジン溶液(6.0 ml)に、無水酢酸(4.0 ml)を加えた。室温で11時間30分撹拌した後、メタノールを加えて反応を停止した。反応混合物をトルエンで共沸し(3回)、ピリジンと無水酢酸を減圧留去した後、残渣を中圧分取液体クロマトグラフィー(カラム:Yamazen, ULTRAPACK Silica-40B、溶離液:ヘキサン/酢酸エチル = 3:1)で精製し、化合物8(706 mg, 2段階収率89%)を得た。
1H-NMR (401 MHz, CDCl3) δ 0.99-1.06 (m, 21H), 2.02 (s, 3H), 2.07 (s, 3H), 2.16 (s, 3H), 3.76 (dd, J = 9.9, 6.0 Hz, 1H), 3.83 (dd, J = 9.9, 6.7 Hz, 1H), 3.95 (dd, J = 6.7, 6.0 Hz, 1H), 5.15 (dd, J =10.1, 3.7 Hz, 1H), 5.17 (d, 8.3 Hz, 1H), 5.49-5.55 (m, 2H), 7.10 (d, J = 9.2 Hz, 2H), 8.19 (d, J = 9.2 Hz, 2H).
Acetic anhydride (4.0 ml) was added to a pyridine solution (6.0 ml) of the crude product. After stirring at room temperature for 11 hours and 30 minutes, methanol was added to stop the reaction. The reaction mixture was azeotroped with toluene (3 times), pyridine and acetic anhydride were distilled off under reduced pressure, and the residue was subjected to medium pressure preparative liquid chromatography (column: Yamazen, ULTRAPACK Silica-40B, eluent: hexane / ethyl acetate) = 3: 1) to give compound 8 (706 mg, 2-step yield 89%).
1 H-NMR (401 MHz, CDCl 3 ) δ 0.99-1.06 (m, 21H), 2.02 (s, 3H), 2.07 (s, 3H), 2.16 (s, 3H), 3.76 (dd, J = 9.9, 6.0 Hz, 1H), 3.83 (dd, J = 9.9, 6.7 Hz, 1H), 3.95 (dd, J = 6.7, 6.0 Hz, 1H), 5.15 (dd, J = 10.1, 3.7 Hz, 1H), 5.17 ( d, 8.3 Hz, 1H), 5.49-5.55 (m, 2H), 7.10 (d, J = 9.2 Hz, 2H), 8.19 (d, J = 9.2 Hz, 2H).

(7)化合物9の合成

Figure 2018016579
(7) Synthesis of compound 9
Figure 2018016579

アルゴン雰囲気下、化合物8(348 mg, 0.597 mmol)のテトラヒドロフラン溶液(2.0ml)に、氷冷下、フッ化テトラ-n-ブチルアンモニウム/酢酸(1/1, v/v, 2.0 ml)を加えた。反応溶液を室温で5時間30分撹拌した後、氷冷下、飽和塩化アンモニウム水溶液を加えて反応を停止した。反応混合物に酢酸エチルを加え、有機層を水と飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤をろ別し、溶媒を減圧留去して得た残渣をシリカゲルクロマトグラフィー(溶離液:ヘキサン/酢酸エチル = 1/1)で精製し、化合物9(230 mg, 90%)を無色油状物質として得た。
1H-NMR (401 MHz, CDCl3) δ 2.02 (s, 3H), 2.05 (s, 3H), 2.18 (s, 3H), 2.58 (br, 1H), 3.58 (dd, J = 11.5, 6.0 Hz, 1H), 3.76 (dd, J = 11.5, 6.0 Hz, 1H), 3.98 (brt, J = 6.0 Hz, 1H), 5.16 (dd, J = 10.3, 3.2 Hz, 1H), 5.22 (d, J = 7.8 Hz, 1H), 5.47 (brd, J = 3.2 Hz, 1H), 5.52 (dd, J = 10.3, 7.8 Hz, 1H), 7.08 (d, J = 9.2 Hz, 2H), 8.18 (d, J = 9.2 Hz, 2H).
Under argon atmosphere, tetra-n-butylammonium fluoride / acetic acid (1/1, v / v, 2.0 ml) was added to a tetrahydrofuran solution (2.0 ml) of compound 8 (348 mg, 0.597 mmol) under ice cooling. It was. The reaction solution was stirred at room temperature for 5 hours and 30 minutes, and then the reaction was stopped by adding a saturated aqueous solution of ammonium chloride under ice cooling. Ethyl acetate was added to the reaction mixture, and the organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. The desiccant was filtered off and the solvent was distilled off under reduced pressure. The resulting residue was purified by silica gel chromatography (eluent: hexane / ethyl acetate = 1/1) to give Compound 9 (230 mg, 90%) as a colorless oil Obtained as material.
1 H-NMR (401 MHz, CDCl 3 ) δ 2.02 (s, 3H), 2.05 (s, 3H), 2.18 (s, 3H), 2.58 (br, 1H), 3.58 (dd, J = 11.5, 6.0 Hz , 1H), 3.76 (dd, J = 11.5, 6.0 Hz, 1H), 3.98 (brt, J = 6.0 Hz, 1H), 5.16 (dd, J = 10.3, 3.2 Hz, 1H), 5.22 (d, J = 7.8 Hz, 1H), 5.47 (brd, J = 3.2 Hz, 1H), 5.52 (dd, J = 10.3, 7.8 Hz, 1H), 7.08 (d, J = 9.2 Hz, 2H), 8.18 (d, J = (9.2 Hz, 2H).

(8)化合物11の合成

Figure 2018016579
(8) Synthesis of Compound 11
Figure 2018016579

アルゴン雰囲気下、化合物6(29.1 mg, 41.2 μmol)とガラクトース9(35.2 mg, 82.4 μmol)とモレキュラーシーブ4Åのジクロロメタン溶液(4.0 ml)に、氷冷下、金錯体Ph3PAuNTf2(65 mg/ml ジクロロメタン溶液, 0.10 ml)を加えた。4時間30分後、Ph3PAuNTf2(65 mg/ml ジクロロメタン溶液, 0.10 ml)を追加した。更に9時間撹拌した後、クロロホルムを加え、セライトろ過により固形物をろ別した。溶媒を減圧留去して得た残渣をシリカゲルクロマトグラフィー(溶離液:ヘキサン/アセトン = 1/1)と高速液体クロマトグラフィー(溶離液:クロロホルム/メタノール = 98/2)で精製し、化合物11(12.2 mg, 32%)を無色油状物質として得た。
1H-NMR (401 MHz, CDCl3) δ 1.30 (s, 3H), 1.36 (s, 3H), 1.94 (s, 3H), 2.02 (s, 3H), 2.09 (s, 6H), 2.19 (s, 3H), 3.77-3.82 (m, 2H), 3.86 (s, 3H), 3.94 (dd, J = 10.6, 7.4 Hz, 1H), 4.13-4.21 (m, 2H), 4.24 (m, 1H), 4.50 (m, 1H), 4.57 (dd, J = 10.6, 1.4 Hz, 1H), 5.19 (dd, J = 10.3, 3.4 Hz, 1H), 5.25 (d, J = 7.8 Hz, 1H), 5.34 (d, J = 2.3 Hz, 1H), 5.52-5.58 (m, 4H), 5.63 (dd, J = 4.6, 1.4 Hz, 1H), 5.78 (dt, J = 10.6, 2.3 Hz, 1H), 7.14 (d, J = 9.2 Hz, 2H), 7.46 (brdd, J = 7.6, 4.8 Hz, 1H), 7.85 (td, J = 7.8, 1.4 Hz, 1H), 8.07 (brd, J = 7.8 Hz, 1H), 8.19 (d, J = 9.2 Hz, 2H), 8.75 (d, J = 4.8 Hz, 1H).
In an argon atmosphere, compound 6 (29.1 mg, 41.2 μmol), galactose 9 (35.2 mg, 82.4 μmol) and molecular sieve 4Å in dichloromethane solution (4.0 ml) were mixed with gold complex Ph 3 PAuNTf 2 (65 mg / ml dichloromethane solution, 0.10 ml) was added. After 4 hours and 30 minutes, Ph 3 PAuNTf 2 (65 mg / ml in dichloromethane, 0.10 ml) was added. After further stirring for 9 hours, chloroform was added, and the solid matter was separated by filtration through celite. The residue obtained by distilling off the solvent under reduced pressure was purified by silica gel chromatography (eluent: hexane / acetone = 1/1) and high performance liquid chromatography (eluent: chloroform / methanol = 98/2) to give compound 11 ( 12.2 mg, 32%) was obtained as a colorless oil.
1 H-NMR (401 MHz, CDCl 3 ) δ 1.30 (s, 3H), 1.36 (s, 3H), 1.94 (s, 3H), 2.02 (s, 3H), 2.09 (s, 6H), 2.19 (s , 3H), 3.77-3.82 (m, 2H), 3.86 (s, 3H), 3.94 (dd, J = 10.6, 7.4 Hz, 1H), 4.13-4.21 (m, 2H), 4.24 (m, 1H), 4.50 (m, 1H), 4.57 (dd, J = 10.6, 1.4 Hz, 1H), 5.19 (dd, J = 10.3, 3.4 Hz, 1H), 5.25 (d, J = 7.8 Hz, 1H), 5.34 (d , J = 2.3 Hz, 1H), 5.52-5.58 (m, 4H), 5.63 (dd, J = 4.6, 1.4 Hz, 1H), 5.78 (dt, J = 10.6, 2.3 Hz, 1H), 7.14 (d, J = 9.2 Hz, 2H), 7.46 (brdd, J = 7.6, 4.8 Hz, 1H), 7.85 (td, J = 7.8, 1.4 Hz, 1H), 8.07 (brd, J = 7.8 Hz, 1H), 8.19 ( d, J = 9.2 Hz, 2H), 8.75 (d, J = 4.8 Hz, 1H).

(9)化合物12の合成

Figure 2018016579
(式中、PNPはp−ニトロフェニル基を表し、Trはトリチル基を表す。) (9) Synthesis of Compound 12
Figure 2018016579
(In the formula, PNP represents a p-nitrophenyl group, and Tr represents a trityl group.)

アルゴン雰囲気下、化合物6(5.6 mg, 7.9 μmol)、化合物10(Ekborg, G.; Vranesic, B.; Bhattacharjee, A. K.; Kovac, P.; Glaudemans, C. P. J. Carbohydrate Research, 1985, 142, 203-211に記載の化合物)(8.6 mg, 16 μmol)、及びモレキュラーシーブ4Åのジクロロメタン溶液(0.59 ml)に、氷冷下、金錯体Ph3PAuNTf2(12 mg/ml ジクロロメタン溶液, 0.10 ml)を加えた。1時間後、Ph3PAuNTf2(12 mg/ml ジクロロメタン溶液, 0.10 ml)を追加した。更に1時間撹拌した後にクロロホルムを加え、セライトろ過により固形物をろ別した。溶媒を減圧留去して得た残渣をシリカゲルクロマトグラフィー(溶離液:クロロホルム/メタノール = 99/1から97/3)と高速液体クロマトグラフィー(溶離液:クロロホルム/メタノール = 97/3)で精製し、化合物12(1.0 mg, 12%)を無色油状物質として得た。
1H-NMR (401 MHz, CDCl3) δ 1.33 (s, 3H), 1.37 (s, 3H), 1.95 (s, 3H), 2.08 (s, 3H), 3.31 (dd, J = 9.9, 3.9 Hz, 1H), 3.62 (dd, J = 9.9, 7.5, 1H), 3.75 (dd, J = 7.5, 3.9, 1H), 3.84 (s, 3H), 3.88 (m, 1H), 4.01-4.05 (m, 3H), 4.14 (dd, J = 9.0, 7.4 Hz, 1H), 4.21 (dd, J = 9.0, 3.0 Hz, 1H), 4.43 (m, 1H), 4.67 (dd, J = 11.9, 1.4 Hz, 1H), 5.00 (d, J = 7.4 Hz, 1H), 5.46-5.48 (m, 2H), 5.63 (d, J = 8.7 Hz, 1H), 5.75 (d, J = 1.8 Hz, 1H), 5.86 (dt, J = 9.7, 1.8 Hz, 1H), 7.20-7.26 (m, 11H), 7.38-7.41 (m, 7H), 7.80 (td, J = 7.8, 1.8 Hz, 1H), 8.12 (brd, J = 7.8 Hz, 1H), 8.17 (d, J = 9.2 Hz, 2H), 8.68 (brd, J = 4.6 Hz, 1H).
Under argon atmosphere, compound 6 (5.6 mg, 7.9 μmol), compound 10 (Ekborg, G .; Vranesic, B .; Bhattacharjee, AK; Kovac, P .; Glaudemans, CPJ Carbohydrate Research, 1985, 142, 203-211 The gold complex Ph 3 PAuNTf 2 (12 mg / ml dichloromethane solution, 0.10 ml) was added to a dichloromethane solution (0.59 ml) of the described compound) (8.6 mg, 16 μmol) and molecular sieve 4Å under ice-cooling. After 1 hour, Ph 3 PAuNTf 2 (12 mg / ml dichloromethane solution, 0.10 ml) was added. After further stirring for 1 hour, chloroform was added, and the solid matter was separated by filtration through celite. The residue obtained by distilling off the solvent under reduced pressure was purified by silica gel chromatography (eluent: chloroform / methanol = 99/1 to 97/3) and high performance liquid chromatography (eluent: chloroform / methanol = 97/3). Compound 12 (1.0 mg, 12%) was obtained as a colorless oil.
1 H-NMR (401 MHz, CDCl 3 ) δ 1.33 (s, 3H), 1.37 (s, 3H), 1.95 (s, 3H), 2.08 (s, 3H), 3.31 (dd, J = 9.9, 3.9 Hz , 1H), 3.62 (dd, J = 9.9, 7.5, 1H), 3.75 (dd, J = 7.5, 3.9, 1H), 3.84 (s, 3H), 3.88 (m, 1H), 4.01-4.05 (m, 3H), 4.14 (dd, J = 9.0, 7.4 Hz, 1H), 4.21 (dd, J = 9.0, 3.0 Hz, 1H), 4.43 (m, 1H), 4.67 (dd, J = 11.9, 1.4 Hz, 1H ), 5.00 (d, J = 7.4 Hz, 1H), 5.46-5.48 (m, 2H), 5.63 (d, J = 8.7 Hz, 1H), 5.75 (d, J = 1.8 Hz, 1H), 5.86 (dt , J = 9.7, 1.8 Hz, 1H), 7.20-7.26 (m, 11H), 7.38-7.41 (m, 7H), 7.80 (td, J = 7.8, 1.8 Hz, 1H), 8.12 (brd, J = 7.8 Hz, 1H), 8.17 (d, J = 9.2 Hz, 2H), 8.68 (brd, J = 4.6 Hz, 1H).

(10)化合物13の合成

Figure 2018016579
(10) Synthesis of Compound 13
Figure 2018016579

アルゴン雰囲気下、化合物6(4.9 mg, 6.9 μmol)とモレキュラーシーブ4Åのジクロロメタン/エーテル(3/7, v/v, 0.50 ml)溶液に、室温で3-フェニル-1-プロパノール(19 mg/ml ジクロロメタン溶液)を0.10 ml(14 μmol相当)加えた。これを氷冷し、金錯体Ph3PAuNTf2(11 mg/ml ジクロロメタン溶液, 0.10 ml)を加えた。2時間後、Ph3PAuNTf2(11 mg/ml ジクロロメタン溶液, 0.10 ml)を追加した。更に4時間撹拌した後にクロロホルムを加え、セライトろ過により固形物をろ別した。溶媒を減圧留去して得た残渣をシリカゲルクロマトグラフィー(溶離液:ヘキサン/酢酸エチル = 9/1からヘキサン/アセトン = 7/3)と高速液体クロマトグラフィー(溶離液:クロロホルム/メタノール = 99/1)で精製し、化合物13(2.1 mg, 52%, α/β = ca.12:1)を無色油状物質として得た。
1H-NMR (401 MHz, CDCl3) δ 1.26 (s, 3H), 1.34 (s, 3H), 1.93 (s, 3H), 1.93-2.03 (m, 2H), 2.09 (s, 3H), 2.68-2.80 (m, 2H), 3.53 (dt, J = 9.2, 6.4 Hz, 1H), 3.77-3.85 (m, 2H), 3.80 (s, 3H), 4.12 (dd, J = 8.3, 6.9 Hz, 1H), 4.19 (dd, J = 8.3, 6.4 Hz, 1H), 4.52 (ddd, J = 6.9, 6.4, 4.1 Hz, 1H), 4.58 (dd, J = 11.0, 1.8 Hz, 1H), 5.33 (d, J = 1.8 Hz, 1H), 5.60 (brd, J = 9.2 Hz, 1H), 5.64 (d, J = 1.8 Hz, 1H), 5.69 (dd, J = 4.1, 1.8 Hz, 1H), 5.74 (dt, J = 10.1, 1.8 Hz, 1H), 7.16-7.22 (m, 3H), 7.26-7.29 (m, 2H), 7.47 (brdd, J = 7.8, 4.6 Hz, 1H), 7.81 (td, J = 7.8, 1.4 Hz, 1H), 8.08 (d, J = 7.8 Hz, 1H), 8.76 (brd, J = 4.6 Hz, 1H).
3-phenyl-1-propanol (19 mg / ml) at room temperature in a dichloromethane / ether (3/7, v / v, 0.50 ml) solution of compound 6 (4.9 mg, 6.9 μmol) and molecular sieve 4Å in an argon atmosphere 0.10 ml (equivalent to 14 μmol) of dichloromethane solution was added. This was ice-cooled, and gold complex Ph 3 PAuNTf 2 (11 mg / ml in dichloromethane, 0.10 ml) was added. Two hours later, Ph 3 PAuNTf 2 (11 mg / ml in dichloromethane, 0.10 ml) was added. After further stirring for 4 hours, chloroform was added, and the solid was filtered off through Celite filtration. The residue obtained by distilling off the solvent under reduced pressure was subjected to silica gel chromatography (eluent: hexane / ethyl acetate = 9/1 to hexane / acetone = 7/3) and high performance liquid chromatography (eluent: chloroform / methanol = 99 / Purification by 1) gave Compound 13 (2.1 mg, 52%, α / β = ca. 12: 1) as a colorless oil.
1 H-NMR (401 MHz, CDCl 3 ) δ 1.26 (s, 3H), 1.34 (s, 3H), 1.93 (s, 3H), 1.93-2.03 (m, 2H), 2.09 (s, 3H), 2.68 -2.80 (m, 2H), 3.53 (dt, J = 9.2, 6.4 Hz, 1H), 3.77-3.85 (m, 2H), 3.80 (s, 3H), 4.12 (dd, J = 8.3, 6.9 Hz, 1H ), 4.19 (dd, J = 8.3, 6.4 Hz, 1H), 4.52 (ddd, J = 6.9, 6.4, 4.1 Hz, 1H), 4.58 (dd, J = 11.0, 1.8 Hz, 1H), 5.33 (d, J = 1.8 Hz, 1H), 5.60 (brd, J = 9.2 Hz, 1H), 5.64 (d, J = 1.8 Hz, 1H), 5.69 (dd, J = 4.1, 1.8 Hz, 1H), 5.74 (dt, J = 10.1, 1.8 Hz, 1H), 7.16-7.22 (m, 3H), 7.26-7.29 (m, 2H), 7.47 (brdd, J = 7.8, 4.6 Hz, 1H), 7.81 (td, J = 7.8, 1.4 Hz, 1H), 8.08 (d, J = 7.8 Hz, 1H), 8.76 (brd, J = 4.6 Hz, 1H).

(11)化合物14の合成

Figure 2018016579
(11) Synthesis of Compound 14
Figure 2018016579

化合物11(12.2 mg, 13.1 μmol)のジクロロメタン溶液(2.0 ml)を、-20 ℃に冷却し、トリフルオロ酢酸(100 μl)を加えた。反応溶液を、-20 ℃冷却下、1時間30分撹拌した後、トリエチルアミンを加えて中和した。溶媒を減圧留去して得た残渣をSep-Pak(R)(溶離液:水/メタノール = 100/0から0/100)で粗精製した。 A dichloromethane solution (2.0 ml) of compound 11 (12.2 mg, 13.1 μmol) was cooled to −20 ° C., and trifluoroacetic acid (100 μl) was added. The reaction solution was stirred for 1 hour and 30 minutes under cooling at −20 ° C., and then neutralized by adding triethylamine. The residue obtained by evaporating the solvent under reduced pressure was roughly purified by Sep-Pak (R) (eluent: water / methanol = 100/0 to 0/100).

前記粗生成物のメタノール溶液(2.0 ml)にナトリウムメトキシド(3.5 mg, 0.065 mmol)を加えた。反応溶液を室温で3時間撹拌した後、アンバーライトIRC50(H+型)で中和した。反応混合物の固形物をろ別し、溶媒を減圧留去した。残渣を高速液体クロマトグラフィー(溶離液:クロロホルム/メタノール = 80/20)で精製し、ヘプタオールを得た。 Sodium methoxide (3.5 mg, 0.065 mmol) was added to a methanol solution (2.0 ml) of the crude product. The reaction solution was stirred at room temperature for 3 hours, and then neutralized with Amberlite IRC50 (H + form). The solid of the reaction mixture was filtered off and the solvent was distilled off under reduced pressure. The residue was purified by high performance liquid chromatography (eluent: chloroform / methanol = 80/20) to obtain heptaol.

前記ヘプタオールのメタノール溶液(1.0 ml)に1 M水酸化ナトリウム(23 μl)を加えた。5時間50分後、及び7時間15分後、それぞれ1 M水酸化ナトリウム(23 μl)を加えた。開始から9時間後、アンバーライトIRC50(H+型)で中和した。反応混合物の固形物をろ別し、溶媒を減圧留去した。これをメタノール(1.0 ml)に溶解させ、Chelex(R)100と15分間処理し、固形物をろ別した。溶媒を減圧留去して得た残渣をSep-Pak(R)(溶離液:水)で精製し、化合物14(2.6 mg, 3段階収率78%)を無色非結晶質固体として得た。
1H-NMR (401 MHz, D2O) δ 2.02 (s, 3H), 3.55 (dd, J = 9.2, 1.8 Hz, 1H), 3.60 (dd, J = 12.2, 6.2 Hz, 1H), 3.74-3.90 (m, 7H), 3.98 (dd, J = 10.1, 8.3 Hz, 1H), 4.06 (d, J = 3.2 Hz, 1H), 4.10-4.14 (m, 2H), 5.22 (d, J = 7.4 Hz, 1H), 5.50 (m, 1H), 5.61 (m, 1H), 7.27 (d, J = 9.2 Hz, 2H), 8.26 (d, J = 9.2 Hz, 2H).
1 M sodium hydroxide (23 μl) was added to the methanol solution of heptaol (1.0 ml). After 5 hours 50 minutes and 7 hours 15 minutes, 1 M sodium hydroxide (23 μl) was added, respectively. Nine hours after the start, the mixture was neutralized with Amberlite IRC50 (H + type). The solid of the reaction mixture was filtered off and the solvent was distilled off under reduced pressure. This was dissolved in methanol (1.0 ml), treated with Chelex (R) 100 for 15 minutes, and the solid was filtered off. The residue obtained by evaporating the solvent under reduced pressure was purified by Sep-Pak (R) (eluent: water) to obtain Compound 14 (2.6 mg, 3-step yield 78%) as a colorless amorphous solid.
1 H-NMR (401 MHz, D 2 O) δ 2.02 (s, 3H), 3.55 (dd, J = 9.2, 1.8 Hz, 1H), 3.60 (dd, J = 12.2, 6.2 Hz, 1H), 3.74- 3.90 (m, 7H), 3.98 (dd, J = 10.1, 8.3 Hz, 1H), 4.06 (d, J = 3.2 Hz, 1H), 4.10-4.14 (m, 2H), 5.22 (d, J = 7.4 Hz , 1H), 5.50 (m, 1H), 5.61 (m, 1H), 7.27 (d, J = 9.2 Hz, 2H), 8.26 (d, J = 9.2 Hz, 2H).

(12)化合物15の合成

Figure 2018016579
(12) Synthesis of Compound 15
Figure 2018016579

化合物12(3.4 mg, 3.2 μmol)のジクロロメタン溶液(1.0 ml)を、-20 ℃に冷却し、トリフルオロ酢酸(10 μl)を加えた。1時間30分撹拌した後、トリエチルアミンを加えて中和した。溶媒を減圧留去して得た残渣をSep-Pak(R)(溶離液:水/メタノール = 100/0から0/100)で粗精製した。 A dichloromethane solution (1.0 ml) of compound 12 (3.4 mg, 3.2 μmol) was cooled to −20 ° C., and trifluoroacetic acid (10 μl) was added. After stirring for 1 hour and 30 minutes, triethylamine was added to neutralize. The residue obtained by evaporating the solvent under reduced pressure was roughly purified by Sep-Pak (R) (eluent: water / methanol = 100/0 to 0/100).

前記粗生成物のメタノール溶液(0.8 ml)にナトリウムメトキシド(1.8 mg, 32 μmol)を加えた。反応溶液を室温で1.5時間撹拌した後、アンバーライトIRC50(H+型)で中和した。反応混合物の固形物をろ別し、溶媒を減圧留去した。残渣を高速液体クロマトグラフィー(溶離液:クロロホルム/メタノール = 80/20)で精製し、純粋なヘプタオールを得た。 Sodium methoxide (1.8 mg, 32 μmol) was added to a methanol solution (0.8 ml) of the crude product. The reaction solution was stirred at room temperature for 1.5 hours and then neutralized with Amberlite IRC50 (H + form). The solid of the reaction mixture was filtered off and the solvent was distilled off under reduced pressure. The residue was purified by high performance liquid chromatography (eluent: chloroform / methanol = 80/20) to obtain pure heptaol.

前記ヘプタオールのメタノール溶液(0.4 ml)に1 M水酸化ナトリウム(28 μl)を加えた。2時間30分撹拌した後、アンバーライトIRC50(H+型)で中和した。反応混合物の固形物をろ別し、溶媒を減圧留去した。これをメタノール(0.4 ml)に溶解させ、Chelex(R)100と15分処理し、固形物をろ別した。溶媒を減圧留去して得た残渣をSep-Pak(R)(溶離液:水)で精製し、化合物15(1.1 mg, 3段階収率56%)を無色非結晶質固体として得た。
1H-NMR (401 MHz, D2O) δ 2.03 (s, 3H), 3.59-3.63 (m, 2H), 3.76-3.78 (m, 2H), 3.84 (dd, J = 11.5, 1.8 Hz, 1H), 3.87-3.94 (m, 4H), 3.99 (dd, J = 9.7, 7.8 Hz, 1H), 4.10 (d, J = 2.8 Hz, 1H), 4.14 (m, 1H), 4.32 (m, 1H), 5.32 (d, J = 7.8 Hz, 1H), 5.51 (s, 1H), 5.80 (s, 1H), 7.26 (d, J = 9.2 Hz, 2H), 8.27 (d, J = 9.2 Hz, 2H).
1 M sodium hydroxide (28 μl) was added to the methanolic solution of heptaol (0.4 ml). After stirring for 2 hours and 30 minutes, the mixture was neutralized with Amberlite IRC50 (H + type). The solid of the reaction mixture was filtered off and the solvent was distilled off under reduced pressure. This was dissolved in methanol (0.4 ml), treated with Chelex (R) 100 for 15 minutes, and the solid was filtered off. The residue obtained by evaporating the solvent under reduced pressure was purified by Sep-Pak (R) (eluent: water) to obtain Compound 15 (1.1 mg, 3-step yield 56%) as a colorless amorphous solid.
1 H-NMR (401 MHz, D 2 O) δ 2.03 (s, 3H), 3.59-3.63 (m, 2H), 3.76-3.78 (m, 2H), 3.84 (dd, J = 11.5, 1.8 Hz, 1H ), 3.87-3.94 (m, 4H), 3.99 (dd, J = 9.7, 7.8 Hz, 1H), 4.10 (d, J = 2.8 Hz, 1H), 4.14 (m, 1H), 4.32 (m, 1H) , 5.32 (d, J = 7.8 Hz, 1H), 5.51 (s, 1H), 5.80 (s, 1H), 7.26 (d, J = 9.2 Hz, 2H), 8.27 (d, J = 9.2 Hz, 2H) .

(13)化合物16の合成

Figure 2018016579
(13) Synthesis of Compound 16
Figure 2018016579

化合物13(0.4 mg, 0.6 μmol)のジクロロメタン/トリフルオロ酢酸/水(1/4/0.1, v/v, 244 μl)溶液を室温で20分撹拌した後、飽和炭酸水素ナトリウム水溶液を加えて中和した。その後、酢酸エチルを加え、有機層を水と飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥剤をろ別し、溶媒を減圧留去して粗生成物を得た。   A solution of compound 13 (0.4 mg, 0.6 μmol) in dichloromethane / trifluoroacetic acid / water (1/4 / 0.1, v / v, 244 μl) was stirred at room temperature for 20 minutes, and then added with saturated aqueous sodium hydrogen carbonate solution. It was summed up. Thereafter, ethyl acetate was added, and the organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. The desiccant was filtered off, and the solvent was distilled off under reduced pressure to obtain a crude product.

前記粗生成物のメタノール溶液(100μl)にナトリウムメトキシド(0.3 mg, 5.6 μmol)を加えた。反応溶液を室温で1時間撹拌した後、アンバーライトIR120(H+型)で中和した。反応混合物の固形物をろ別し、溶媒を減圧留去して粗生成物を得た。 Sodium methoxide (0.3 mg, 5.6 μmol) was added to a methanol solution (100 μl) of the crude product. The reaction solution was stirred at room temperature for 1 hour and then neutralized with Amberlite IR120 (H + form). The solid of the reaction mixture was filtered off, and the solvent was distilled off under reduced pressure to obtain a crude product.

粗生成物(4.1 mg, 9.0 μmol)のメタノール溶液(0.8 ml)に1 M水酸化ナトリウム(20 μl)を加えた。37時間撹拌した後、溶媒を減圧留去して得た残渣をSep-Pak(R)(溶離液:水)で精製し、化合物16(2.6 mg, 64%)を無色非結晶質固体として得た。
1H-NMR (401 MHz, D2O) δ 1.85-1.98 (m, 2H), 2.01 (s, 3H), 2.64-2.78 (m, 2H), 3.51 (dt, J = 9.2, 6.9 Hz, 1H), 3.58 (dd, J = 9.2, 1.8 Hz, 1H), 3.61 (dd, J = 12.0, 5.5 Hz, 1H), 3.75-3.87 (m, 5H), 4.07 (dt, J = 10.1, 2.3 Hz, 1H), 5.44 (m, 1H), 5.58 (m, 1H), 7.22-7.36 (m, 5H).
1 M sodium hydroxide (20 μl) was added to a methanol solution (0.8 ml) of the crude product (4.1 mg, 9.0 μmol). After stirring for 37 hours, the solvent was distilled off under reduced pressure, and the resulting residue was purified by Sep-Pak (R) (eluent: water) to obtain Compound 16 (2.6 mg, 64%) as a colorless amorphous solid. It was.
1 H-NMR (401 MHz, D 2 O) δ 1.85-1.98 (m, 2H), 2.01 (s, 3H), 2.64-2.78 (m, 2H), 3.51 (dt, J = 9.2, 6.9 Hz, 1H ), 3.58 (dd, J = 9.2, 1.8 Hz, 1H), 3.61 (dd, J = 12.0, 5.5 Hz, 1H), 3.75-3.87 (m, 5H), 4.07 (dt, J = 10.1, 2.3 Hz, 1H), 5.44 (m, 1H), 5.58 (m, 1H), 7.22-7.36 (m, 5H).

(実施例2)
ウェルシュ菌シアリダーゼを用いて、被検化合物のシアリダーゼ阻害活性を以下のようにして測定した。
(Example 2)
Using C. perfringens sialidase, the sialidase inhibitory activity of the test compound was measured as follows.

(96ウェルプレートを用いて実施)50 mM酢酸ナトリウム緩衝液pH5.0(38.5 μl)、シアリダーゼ(ノイラミニダーゼ、Clostridium perfringens由来N2133、Aldrich、3.33 U/ml緩衝溶液,1 μl)、シアル酸類縁体14又は15(0.5 μl)の混合溶液に、2'-(4-メチルウンベリフェリル)-α-D-N-アセチルノイラミン酸(Aldrich、M8639、1.5 mM水溶液,10 μl)を加えて37 ℃でインキュベートした。反応溶液の蛍光(励起波長365 nm、蛍光波長450 nm)を測定し、7分30秒時点での蛍光値によってシアリダーゼ阻害活性を評価した(参考文献:Chen, X. ChemBioChem 2007, 8, 194 − 201.)。   (Performed using a 96-well plate) 50 mM sodium acetate buffer pH 5.0 (38.5 μl), sialidase (neuraminidase, Clostridium perfringens-derived N2133, Aldrich, 3.33 U / ml buffer solution, 1 μl), sialic acid analog 14 Alternatively, add 2 '-(4-methylumbelliferyl) -α-DN-acetylneuraminic acid (Aldrich, M8639, 1.5 mM aqueous solution, 10 μl) to 15 (0.5 μl) mixed solution and incubate at 37 ° C did. The fluorescence of the reaction solution (excitation wavelength: 365 nm, fluorescence wavelength: 450 nm) was measured, and the sialidase inhibitory activity was evaluated based on the fluorescence value at 7 minutes 30 seconds (Reference: Chen, X. ChemBioChem 2007, 8, 194 − 201.).

結果を図3に示す。
2,3−シアリルガラクトース構造を有する化合物15は、従来の「遷移状態アナログ」の構造展開のベースになっていたDANAよりも100倍以上のシアリダーゼ阻害活性を示した。
The results are shown in FIG.
Compound 15 having a 2,3-sialylgalactose structure exhibited a sialidase inhibitory activity 100 times or more that of DANA, which was the basis of the structural development of the conventional “transition state analog”.

Claims (6)

次式(I):
Figure 2018016579
[式中、Xは−O−R(式中、Rは置換又は非置換の糖残基、置換又は非置換の芳香族基、又は置換又は非置換のC1−6−脂肪族炭化水素基を表す。)又はフッ素原子を表し;Xは−O−R(式中、Rは水素原子、置換又は非置換の芳香族基、又は置換又は非置換のC1−6−アルキル基を表す。)、C1−6−アルキル基で置換されていてもよいアジド基、C1−6−アルキル基で置換されていてもよいグアニジノ基又は−N(R)(R)(式中、R及びRは同一又は異なり、水素原子又はC1−6−アルキル基を表す。)を表し;Xは置換又は非置換のC1−6−アルキル基、又は置換又は非置換のC1−6−アルコキシ基を表し;Xは水素原子、メチル基又はハロゲン原子を表し、Xは−NHCO−R(式中、Rは水素原子、置換又は非置換のC1−6−アルキル基又はヒドロキシメチル基を表す。)、水酸基、又は置換又は非置換のC1−6−アルコキシ基を表し;Xはカルボキシル基、リン酸基、ホスホノ基、スルホ基、スルフィノ基、アルコキシカルボニル基、リン酸アルキルエステル基、ホスホン酸アルキルエステル基、スルホン酸アルキルエステル基又はスルフィン酸アルキルエステル基を表す。]
で示される化合物又はその塩。
Formula (I):
Figure 2018016579
[Wherein, X 1 represents —O—R 1 , wherein R 1 represents a substituted or unsubstituted sugar residue, a substituted or unsubstituted aromatic group, or a substituted or unsubstituted C 1-6 -aliphatic. Represents a hydrocarbon group.) Or a fluorine atom; X 2 represents —O—R 2 (wherein R 2 represents a hydrogen atom, a substituted or unsubstituted aromatic group, or a substituted or unsubstituted C 1-6. -. represents an alkyl group), C 1-6 - alkyl optionally azido group optionally substituted with a group, C 1-6 - alkyl group optionally substituted guanidino group, or -N (R a) (R b ) (wherein R a and R b are the same or different and each represents a hydrogen atom or a C 1-6 -alkyl group); X 3 represents a substituted or unsubstituted C 1-6 -alkyl group, or Represents a substituted or unsubstituted C 1-6 -alkoxy group; X 4 represents a hydrogen atom, a methyl group or a halogen atom; 5 represents —NHCO—R 3 (wherein R 3 represents a hydrogen atom, a substituted or unsubstituted C 1-6 -alkyl group or a hydroxymethyl group), a hydroxyl group, or a substituted or unsubstituted C 1-6. -Represents an alkoxy group; X 6 represents a carboxyl group, a phosphate group, a phosphono group, a sulfo group, a sulfino group, an alkoxycarbonyl group, a phosphoric acid alkyl ester group, a phosphonic acid alkyl ester group, a sulfonic acid alkyl ester group or a sulfinic acid alkyl group. Represents an ester group. ]
Or a salt thereof.
が置換又は非置換の糖残基である請求項1記載の化合物又はその塩。 The compound or a salt thereof according to claim 1, wherein R 1 is a substituted or unsubstituted sugar residue. が置換又は非置換のガラクトース残基である請求項1記載の化合物又はその塩。 The compound or a salt thereof according to claim 1, wherein R 1 is a substituted or unsubstituted galactose residue. が置換又は非置換のフェニル基で1位の水酸基が置換されたガラクトース残基である請求項1記載の化合物又はその塩。 The compound or a salt thereof according to claim 1, wherein R 1 is a galactose residue in which the hydroxyl group at position 1 is substituted with a substituted or unsubstituted phenyl group. 請求項1〜4のいずれか1項に記載の化合物又はその塩を有効成分として含有するシアリダーゼ阻害剤。   The sialidase inhibitor which contains the compound or its salt of any one of Claims 1-4 as an active ingredient. 次式(II):
Figure 2018016579
[式中、Xは−O−R(式中、Rは水素原子、置換又は非置換の芳香族基、又は置換又は非置換のC1−6−アルキル基を表す。)、C1−6−アルキル基で置換されていてもよいアジド基、C1−6−アルキル基で置換されていてもよいグアニジノ基又は−N(R)(R)(式中、R及びRは同一又は異なり、水素原子又はC1−6−アルキル基を表す。)を表し;Xは置換又は非置換のC1−6−アルキル基、又は置換又は非置換のC1−6−アルコキシ基を表し;Xは水素原子、メチル基又はハロゲン原子を表し、Xは−NHCO−R(式中、Rは水素原子、置換又は非置換のC1−6−アルキル基又はヒドロキシメチル基を表す。)、水酸基、又は置換又は非置換のC1−6−アルコキシ基を表し;X6aはアルコキシカルボニル基、リン酸アルキルエステル基、ホスホン酸アルキルエステル基、スルホン酸アルキルエステル基又はスルフィン酸アルキルエステル基を表し;R’は炭素原子を介して結合している有機基を表す。]
で示される化合物又はその塩を、1価の金の塩又は錯体の存在下、次式(III):
−OH (III)
(式中、Rは置換又は非置換の糖残基、置換又は非置換の芳香族基、又は置換又は非置換のC1−6−脂肪族炭化水素基を表す。)
で示される化合物と反応させることを含む次式(I’):
Figure 2018016579
(式中、X、X、X、X、X6a及びRは前記と同義である。)
で示される化合物又はその塩の製造方法。
Formula (II):
Figure 2018016579
[Wherein, X 2 represents —O—R 2 (wherein R 2 represents a hydrogen atom, a substituted or unsubstituted aromatic group, or a substituted or unsubstituted C 1-6 -alkyl group), C An azido group optionally substituted with a 1-6 -alkyl group, a guanidino group optionally substituted with a C 1-6 -alkyl group, or —N (R a ) (R b ) (wherein R a and R b is the same or different and represents a hydrogen atom or a C 1-6 -alkyl group.); X 3 is a substituted or unsubstituted C 1-6 -alkyl group, or a substituted or unsubstituted C 1-6 -Represents an alkoxy group; X 4 represents a hydrogen atom, a methyl group or a halogen atom; X 5 represents -NHCO-R 3 (wherein R 3 represents a hydrogen atom, a substituted or unsubstituted C 1-6 -alkyl group; or represents a hydroxymethyl group), a hydroxyl group, or a substituted or unsubstituted C 1-6 -. al It represents a carboxymethyl group; X 6a alkoxycarbonyl group, phosphoric acid alkyl ester group, a phosphonic acid alkyl ester group, a sulfonic acid alkyl ester group or a sulfinic acid alkyl ester group; R 'is bonded via a carbon atom Represents an organic group. ]
In the presence of a monovalent gold salt or complex, the compound represented by the following formula (III):
R 1 —OH (III)
(In the formula, R 1 represents a substituted or unsubstituted sugar residue, a substituted or unsubstituted aromatic group, or a substituted or unsubstituted C 1-6 -aliphatic hydrocarbon group.)
Comprising reacting with a compound of formula (I ′):
Figure 2018016579
(In the formula, X 2 , X 3 , X 4 , X 5 , X 6a and R 1 are as defined above.)
Or a salt thereof.
JP2016147705A 2016-07-27 2016-07-27 Sialic acid analog Active JP6786095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016147705A JP6786095B2 (en) 2016-07-27 2016-07-27 Sialic acid analog

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016147705A JP6786095B2 (en) 2016-07-27 2016-07-27 Sialic acid analog

Publications (2)

Publication Number Publication Date
JP2018016579A true JP2018016579A (en) 2018-02-01
JP6786095B2 JP6786095B2 (en) 2020-11-18

Family

ID=61081392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016147705A Active JP6786095B2 (en) 2016-07-27 2016-07-27 Sialic acid analog

Country Status (1)

Country Link
JP (1) JP6786095B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189734A1 (en) * 2019-03-20 2020-09-24 国立大学法人九州大学 Novel compound, and enzyme inhibitor and abp comprising related novel compound

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131074A (en) * 1999-08-20 2001-05-15 Inst Of Physical & Chemical Res Medicament containing sialic acid derivative as active component
JP2012532894A (en) * 2009-07-16 2012-12-20 グリフィス ユニバーシティ Anti-influenza drugs

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131074A (en) * 1999-08-20 2001-05-15 Inst Of Physical & Chemical Res Medicament containing sialic acid derivative as active component
JP2012532894A (en) * 2009-07-16 2012-12-20 グリフィス ユニバーシティ Anti-influenza drugs

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189734A1 (en) * 2019-03-20 2020-09-24 国立大学法人九州大学 Novel compound, and enzyme inhibitor and abp comprising related novel compound

Also Published As

Publication number Publication date
JP6786095B2 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
JP5973551B2 (en) Process for preparing compounds useful as inhibitors of SGLT2
EP2272854B1 (en) Novel glycolipid and use thereof
US5935938A (en) Substituted liposaccharides useful in the treatment and prevention of endotoxemia
KR100281264B1 (en) New Spinosaccharide Lipids and Their Uses
AU2005316922B2 (en) Amide prodrug of gemcitabine, compositions and use thereof
CA2998189A1 (en) Methods for treating arenaviridae and coronaviridae virus infections
EP3052500B1 (en) Inhibitors of 5'-nucleotidases and therapeutic uses thereof
JPH0637394B2 (en) Tumor therapeutic agent
KR20010020465A (en) Benzimidazole derivatives
JP2873086B2 (en) Heterocyclic compounds
JP2020122021A (en) Novel galactoside inhibitor of galectins
JP2010540555A (en) Azacitidine analogues and uses thereof
CN106536537A (en) Novel hybrid galactoside inhibitor of galectins
CN103781472A (en) Synthesis and use of glycoside derivatives of propofol
NL8403554A (en) RETINOIDS, THEIR PREPARATION AND USE AND PHARMACEUTICAL PREPARATIONS BASED ON THESE RETINOIDS.
WO2019213335A1 (en) Orally bioavailable prodrugs of edaravone with altered pharmacokinetic properties and methods of use thereof
JP6786095B2 (en) Sialic acid analog
JP2009541344A (en) Crystalline form of gemcitabine amide prodrug, its composition and use
WO2011122468A1 (en) Pyripyropene derivative having acat2 inhibiting activity and stable to metabolizing enzymes
US20140155334A1 (en) Polyphosphate and pyrophosphate derivative of saccharides
FR2584076A1 (en) NOVEL DISACCHARIDES, THEIR PREPARATION AND THEIR USE AS MEDICAMENTS
WO2019135257A1 (en) Artemisinic acid glycoconjugate compounds, process for preparation and use thereof
WO2004101493A1 (en) Acid addition salt of carbasugar amine derivative
CN103275157B (en) The rupestonic acid amide derivatives containing heterocycle and sugar and preparation method and purposes
US6187755B1 (en) Benzylmaltosides as inhibitors of smooth muscle cell proliferation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201021

R150 Certificate of patent or registration of utility model

Ref document number: 6786095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250