JP2018015744A - Circulation type nitrification and denitrification system - Google Patents

Circulation type nitrification and denitrification system Download PDF

Info

Publication number
JP2018015744A
JP2018015744A JP2016150242A JP2016150242A JP2018015744A JP 2018015744 A JP2018015744 A JP 2018015744A JP 2016150242 A JP2016150242 A JP 2016150242A JP 2016150242 A JP2016150242 A JP 2016150242A JP 2018015744 A JP2018015744 A JP 2018015744A
Authority
JP
Japan
Prior art keywords
denitrification system
nitrification denitrification
water
filter bed
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016150242A
Other languages
Japanese (ja)
Other versions
JP6789538B2 (en
Inventor
直之 岸本
Naoyuki Kishimoto
直之 岸本
日野林 譲二
Joji Hinobayashi
譲二 日野林
橋本 敦
Atsushi Hashimoto
敦 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Plastics Co Ltd
Ryukoku University
Original Assignee
Dainippon Plastics Co Ltd
Ryukoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Plastics Co Ltd, Ryukoku University filed Critical Dainippon Plastics Co Ltd
Priority to JP2016150242A priority Critical patent/JP6789538B2/en
Publication of JP2018015744A publication Critical patent/JP2018015744A/en
Application granted granted Critical
Publication of JP6789538B2 publication Critical patent/JP6789538B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a circulation type nitrification and denitrification system having high nitrification performance even in a cold season.SOLUTION: This circulation type nitrification and denitrification system 1 includes a trickling filter apparatus 2 for nitrifying waste water W and an anoxic filter apparatus 3 for denitrifying the waste water W. The trickling filter apparatus 2 is equipped with a trickling filter 22 formed by filling a cylindrical trickling filter cylinder 21 with many filter materials 22a, and a heating water pipe 26 in which water warmer than air flows, for heating the trickling filter 22.SELECTED DRAWING: Figure 1

Description

本発明は、散水ろ床装置を備える循環式硝化脱窒システムに関する。   The present invention relates to a circulation type nitrification denitrification system provided with a trickling filter.

下水や工場排水などの排水を処理する方法として、微生物によって排水を処理する生物学的排水処理法が広く用いられている。生物学的排水処理法には、活性汚泥法、散水ろ床法、循環式硝化脱窒法などが知られている。その中で、循環式硝化脱窒法は、例えば特許文献1に示すように、排水中の有機物の分解処理に加え、排水中のアンモニアを好気性微生物により硝酸イオンに酸化する(硝化する)硝化処理と、硝酸イオンを嫌気性微生物により窒素分子にまで還元する(脱窒する)脱窒処理と、を経て、富栄養化原因物質の一つである窒素の除去を行うことができる。   As a method for treating wastewater such as sewage and factory wastewater, a biological wastewater treatment method for treating wastewater by microorganisms is widely used. As biological wastewater treatment methods, an activated sludge method, a watering filter method, a circulating nitrification denitrification method and the like are known. Among them, the circulation nitrification denitrification method is, for example, as shown in Patent Document 1, in addition to decomposition treatment of organic matter in wastewater, nitrification treatment that oxidizes (nitrifies) ammonia in wastewater to nitrate ions by aerobic microorganisms. Then, the nitrogen ions, which are one of the eutrophication-causing substances, can be removed through a denitrification process in which nitrate ions are reduced (denitrified) to nitrogen molecules by anaerobic microorganisms.

循環式硝化脱窒法では、硝化処理においてアンモニアを硝酸イオンに酸化するために多量の空気が必要であり、曝気が必要となる。硝化処理においては、有機物の酸化分解で必要とされる以上の多量の空気が必要とされる。例えば、有機物の指標である生物化学的酸素要求量(BOD)1mgを酸化分解するのに必要な酸素は1mgでよいが、アンモニア1mg−Nの硝酸イオンへの酸化には4.6mgもの酸素が必要とされるためである。従って、曝気装置により必要な多量の空気を供給する場合には、多量の電力エネルギーが消費される。そのため、非特許文献1に開示されているように、特別な曝気装置を必要としない散水ろ床装置により硝化処理を実現する循環式硝化脱窒システムが本願発明者らにより研究開発されている。   In the circulatory nitrification denitrification method, a large amount of air is required to oxidize ammonia to nitrate ions in the nitrification treatment, and aeration is required. In the nitrification treatment, a larger amount of air than that required for oxidative decomposition of organic matter is required. For example, 1 mg of oxygen is required to oxidatively decompose 1 mg of biochemical oxygen demand (BOD), which is an indicator of organic matter, but 4.6 mg of oxygen is required for oxidation of 1 mg-N of ammonia to nitrate ions. Because it is needed. Therefore, when supplying a large amount of air required by the aeration apparatus, a large amount of electric power energy is consumed. For this reason, as disclosed in Non-Patent Document 1, the inventors of the present application have been researching and developing a circulation type nitrification / denitrification system that realizes nitrification using a sprinkling filter that does not require a special aeration device.

非特許文献1に開示される循環式硝化脱窒システムの散水ろ床装置では、多数のろ材によって形成された散水ろ床の上側から排水を散水し、排水がろ材の表面を滴っていく過程で、ろ材の表面に繁茂した好気性微生物の膜の作用により排水中の有機物の分解を行うとともにアンモニアを硝酸イオンに酸化する。好気性微生物の膜への酸素供給は、多数のろ材の間隙に存在する空気中の酸素の拡散移動又は溶解に依っているため、曝気装置が不要となる。   In the sprinkling filter bed apparatus of the circulation type nitrification denitrification system disclosed in Non-Patent Document 1, drainage is sprinkled from the upper side of the sprinkling filter bed formed by a large number of filter media, and the drainage dripping the surface of the filter media. The organic matter in the wastewater is decomposed by the action of the aerobic microorganism film that proliferated on the surface of the filter medium, and ammonia is oxidized to nitrate ions. The supply of oxygen to the membrane of aerobic microorganisms depends on the diffusion movement or dissolution of oxygen in the air existing in the gaps between a large number of filter media, thus eliminating the need for an aeration apparatus.

特開平11−333494号公報JP-A-11-333494

岸本直之、外3名、“Roughness and temperature effects on the filter media of a trickling filter for nitrification”、Environmental Technology、2014年、第35巻、第12号、P.1549−1555Naoyuki Kishimoto, 3 others, “Roughness and temperature effects on the filter media of a trickling filter for nitrification”, Environmental Technology, 2014, Vol. 35, No. 12, p. 1549-1555

しかしながら、非特許文献1に開示される循環式硝化脱窒システムの散水ろ床装置のろ材は、外気に曝される構造であるため、気温の影響を受けやすく、特に寒冷期の硝化能力の低下が顕著であり、我が国のような寒冷期を有する地域で運用する上で大きな障害となり得る。   However, since the filter medium of the sprinkling filter bed of the circulation type nitrification denitrification system disclosed in Non-Patent Document 1 has a structure that is exposed to the outside air, it is easily affected by the air temperature, and in particular, the nitrification capacity is lowered in the cold season. Is remarkable, and can be a major obstacle to operation in regions with cold seasons like Japan.

本発明は係る事由に鑑みてなされたものであり、その目的は、寒冷期においても高い硝化能力を有する循環式硝化脱窒システムを提供することにある。   This invention is made | formed in view of the reason which concerns, The objective is to provide the circulation type nitrification denitrification system which has high nitrification capability also in a cold season.

上記目的を達成するために、請求項1に記載の循環式硝化脱窒システムは、排水の硝化処理を行う散水ろ床装置と排水の脱窒処理を行う無酸素ろ床装置とを有する循環式硝化脱窒システムであって、前記散水ろ床装置は、筒状の散水ろ床外筒の内方に多数のろ材が充填されることによって形成される散水ろ床と、気温より高い温度を有する温水が流れ前記散水ろ床を加温する加温通水管と、を備えてなることを特徴とする。   In order to achieve the above-mentioned object, the circulation type nitrification denitrification system according to claim 1 is a circulation type having a sprinkling filter apparatus for performing nitrification treatment of waste water and an oxygen-free filter bed apparatus for performing denitrification treatment of waste water. In the nitrification denitrification system, the sprinkling filter bed apparatus has a sprinkling filter bed formed by filling a large number of filter media inside a cylindrical sprinkling filter bed outer cylinder, and a temperature higher than the air temperature. And a warm water pipe for warm water flowing and warming the sprinkling filter bed.

請求項2に記載の循環式硝化脱窒システムは、請求項1に記載の循環式硝化脱窒システムにおいて、前記散水ろ床装置は、前記加温通水管が、前記散水ろ床外筒の側壁を通して前記散水ろ床を加温するよう該側壁の外周面に配置されることを特徴とする。   The circulatory nitrification denitrification system according to claim 2 is the circulatory nitrification denitrification system according to claim 1, wherein the water trickling filter device is configured such that the heated water pipe is a side wall of the water trickling filter outer cylinder. It is arrange | positioned on the outer peripheral surface of this side wall so that the said trickling filter bed may be heated.

請求項3に記載の循環式硝化脱窒システムは、請求項1に記載の循環式硝化脱窒システムにおいて、前記加温通水管は、前記散水ろ床の内部より前記散水ろ床を加温するよう該散水ろ床の内部に配置されることを特徴とする。   The circulation type nitrification denitrification system according to claim 3 is the circulation type nitrification denitrification system according to claim 1, wherein the warming water pipe heats the watering filter bed from the inside of the watering filter bed. It is arranged inside the watering filter bed.

請求項4に記載の循環式硝化脱窒システムは、請求項1〜3のいずれか1項に記載の循環式硝化脱窒システムにおいて、前記温水は、廃熱により調温した温水であることを特徴とする。   The circulating nitrification denitrification system according to claim 4 is the circulation nitrification denitrification system according to any one of claims 1 to 3, wherein the warm water is warm water adjusted by waste heat. Features.

請求項5に記載の循環式硝化脱窒システムは、請求項1〜4のいずれか1項に記載の循環式硝化脱窒システムにおいて、前記温水は、前記排水から生成した温水であることを特徴とする。   The circulation type nitrification denitrification system according to claim 5 is the circulation type nitrification denitrification system according to any one of claims 1 to 4, wherein the warm water is warm water generated from the waste water. And

本発明の循環式硝化脱窒システムによれば、寒冷期においても高い硝化能力を有することができる。   According to the circulation type nitrification denitrification system of the present invention, it is possible to have a high nitrification capacity even in the cold season.

本発明の実施形態に係る循環式硝化脱窒システムを示す概略図である。It is the schematic which shows the circulation type nitrification denitrification system which concerns on embodiment of this invention. 同上の循環式硝化脱窒システムの散水ろ床装置を示すものであって、(a)が正面視断面図、(b)が平面図である。The watering filter apparatus of a circulation type nitrification denitrification system same as the above is shown, (a) is front sectional drawing, (b) is a top view. 同上の循環式硝化脱窒システムの散水ろ床装置のろ材の例を拡大して示す外観図であって、(a)が正面図、(b)が側面図である。It is an external view which expands and shows the example of the filter medium of the sprinkling filter bed apparatus of a circulation type nitrification denitrification system same as the above, (a) is a front view, (b) is a side view. 同上の循環式硝化脱窒システムの散水ろ床装置の変形例を示すものであって、(a)が正面視断面図、(b)が平面図である。The modification of the sprinkling filter bed apparatus of a circulation type nitrification denitrification system same as the above is shown, Comprising: (a) is front view sectional drawing, (b) is a top view. 同上の循環式硝化脱窒システムの変形例を示す概略図である。It is the schematic which shows the modification of the circulation type nitrification denitrification system same as the above. 同上の散水ろ床装置とともに循環式硝化脱窒システムで用いられる無酸素ろ床装置を示すものであって、(a)が平面図、(b)がA−Aで示す切断面での断面図である。The oxygen-free filter bed apparatus used with a circulation type nitrification denitrification system with the sprinkling filter bed apparatus same as the above is shown, (a) is a plan view and (b) is a cross-sectional view taken along the line AA. It is. 同上の循環式硝化脱窒システムの実験1における2個の散水ろ床の内部の温度及び気温の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the temperature inside the two sprinkling filter beds in the experiment 1 of the circulation type nitrification denitrification system same as the above, and an air temperature. 同上の循環式硝化脱窒システムの実験1における2個の散水ろ床の内部の温度の差の平均値と循環通水量の関係を示すグラフである。It is a graph which shows the relationship between the average value of the temperature difference inside two sprinkling filter beds in the experiment 1 of a circulation type nitrification denitrification system same as the above, and the amount of circulating water. 同上の循環式硝化脱窒システムの実験2における気温の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the air temperature in the experiment 2 of the circulation type nitrification denitrification system same as the above. 同上の循環式硝化脱窒システムの実験2における循環式硝化脱窒システムに流入する排水中の各態窒素濃度の経時変化を示すグラフである。It is a graph which shows a time-dependent change of each state nitrogen concentration in the waste_water | drain which flows into the circulation type nitrification denitrification system in Experiment 2 of a circulation type nitrification denitrification system same as the above. 同上の循環式硝化脱窒システムの実験2における処理水中の各態窒素濃度の経時変化を示すグラフであって、加温通水管を設置した循環式硝化脱窒システムについてのものである。It is a graph which shows a time-dependent change of each state nitrogen concentration in the treated water in Experiment 2 of a circulation type nitrification denitrification system same as the above, Comprising: It is a thing about the circulation type nitrification denitrification system which installed the heating water pipe. 同上の循環式硝化脱窒システムの実験2における処理水中の各態窒素濃度の経時変化を示すグラフであって、加温通水管を設置しない循環式硝化脱窒システムについてのものである。It is a graph which shows a time-dependent change of each state nitrogen concentration in the treated water in Experiment 2 of a circulation type nitrification denitrification system same as the above, Comprising: It is a thing about the circulation type nitrification denitrification system which does not install a heating water pipe. 同上の循環式硝化脱窒システムの実験2における硝化率の経時変化を示すグラフであって、加温通水管を設置した循環式硝化脱窒システムと加温通水管を設置しない循環式硝化脱窒システムについて示している。It is a graph which shows a time-dependent change of the nitrification rate in the experiment 2 of the circulation type nitrification denitrification system same as the above, Comprising: The circulation type nitrification denitrification system which installed the heating water pipe, and the circulation type nitrification denitrification which does not install the heating water pipe Shows the system. 同上の散水ろ床装置の実験におけるCODCr(重クロム酸カリウムによる化学的酸素要求量)の経時変化を示すグラフであって、加温通水管を設置した循環式硝化脱窒システムの処理水、加温通水管を設置しない循環式硝化脱窒システムの処理水、循環式硝化脱窒システムに流入する排水について示している。It is a graph which shows a time-dependent change of CODCr (chemical oxygen demand by potassium dichromate) in the experiment of a sprinkling filter apparatus same as the above, Comprising the treated water of the circulation type nitrification denitrification system which installed the heating water pipe, It shows the treated water of the circulatory nitrification denitrification system that does not have a hot water pipe and the wastewater that flows into the circulatory nitrification denitrification system. 同上の散水ろ床装置の実験におけるBOD(生物化学的酸素要求量)の経時変化を示すグラフであって、加温通水管を設置した循環式硝化脱窒システムの処理水、加温通水管を設置しない循環式硝化脱窒システムの処理水、循環式硝化脱窒システムに流入する排水について示している。It is a graph which shows a time-dependent change of BOD (biochemical oxygen demand) in the experiment of a sprinkling filter apparatus same as the above, Comprising the treated water of a circulation type nitrification denitrification system which installed the heating water pipe, and a heating water pipe It shows the treated water of the circulation type nitrification denitrification system that is not installed and the wastewater that flows into the circulation type nitrification denitrification system. 同上の散水ろ床装置の実験におけるSS(浮遊物質量)の経時変化を示すグラフであって、加温通水管を設置した循環式硝化脱窒システムの処理水、加温通水管を設置しない循環式硝化脱窒システムの処理水、循環式硝化脱窒システムに流入する排水について示している。It is a graph which shows a time-dependent change of SS (floating matter amount) in the experiment of a sprinkling filter apparatus same as the above, Comprising the treated water of the circulation type nitrification denitrification system which installed the warming water pipe, the circulation which does not install the heating water pipe This shows the treated water of the nitrification denitrification system and the wastewater flowing into the circulation nitrification denitrification system. 同上の散水ろ床装置の実験におけるpHの経時変化を示すグラフであって、加温通水管を設置した循環式硝化脱窒システムの処理水、加温通水管を設置しない循環式硝化脱窒システムの処理水、循環式硝化脱窒システムに流入する排水について示している。It is a graph which shows the time-dependent change of pH in the experiment of a sprinkling filter apparatus same as the above, Comprising the treated water of the circulation type nitrification denitrification system which installed the warming water pipe, The circulation type nitrification denitrification system which does not install the heating water pipe The treated water and the wastewater flowing into the circulating nitrification denitrification system are shown. 同上の循環式硝化脱窒システムの実験3における2個の散水ろ床の内部の温度及び気温の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the temperature inside the two sprinkling filter beds in the experiment 3 of the circulation type nitrification denitrification system same as the above, and air temperature. 同上の循環式硝化脱窒システムの実験3における2個の散水ろ床の内部の温度の差の平均値と温水の流量の関係を示すグラフである。It is a graph which shows the relationship between the average value of the temperature difference of the inside of two sprinkling filter beds, and the flow volume of warm water in Experiment 3 of a circulation type nitrification denitrification system same as the above.

以下、本発明を実施するための形態を説明する。本発明の実施形態に係る循環式硝化脱窒システム1は、図1に示すように、排水Wの硝化処理を行う散水ろ床装置2と、排水Wの脱窒処理を行う無酸素ろ床装置3を有している。   Hereinafter, modes for carrying out the present invention will be described. As shown in FIG. 1, a circulation type nitrification / denitrification system 1 according to an embodiment of the present invention includes a sprinkling filter apparatus 2 that performs nitrification treatment of the waste water W, and an oxygen-free filter bed apparatus that performs denitrification treatment of the waste water W. 3.

散水ろ床装置2は、排水W中のアンモニアを好気性微生物により硝酸イオンに酸化する(硝化する)硝化処理を行う。また、散水ろ床装置2は、好気性微生物により排水W中の有機物の分解にも寄与する。散水ろ床装置2は、図2(a)、(b)に示すように、筒状の散水ろ床外筒21の内方に、多数のろ材(担体)22aが充填されることによって形成された散水ろ床22を収容する。ろ材22aは、汚泥(堆積汚泥)を捕捉し、ろ材22aの表面には排水W中のアンモニアを硝化し得る好気性微生物が繁茂することになる。散水ろ床22は、その上面及び下面が外気に曝されて空気が供給され、空気中の酸素は、多数のろ材22aの間隙を拡散移動することになる。また、空気中の酸素は、散水ろ床22の上面から供給される排水Wに溶解しても拡散移動する。こうして、好気性微生物の膜への酸素供給が行われる。   The trickling filter apparatus 2 performs a nitrification treatment in which ammonia in the waste water W is oxidized (nitrified) into nitrate ions by an aerobic microorganism. Moreover, the trickling filter apparatus 2 contributes also to decomposition | disassembly of the organic substance in the waste_water | drain W by an aerobic microorganism. As shown in FIGS. 2 (a) and 2 (b), the trickling filter apparatus 2 is formed by filling a large number of filter media (carriers) 22 a inside the tubular trickling filter outer cylinder 21. A sprinkling filter bed 22 is accommodated. The filter medium 22a captures sludge (sediment sludge), and aerobic microorganisms that can nitrify ammonia in the waste water W grow on the surface of the filter medium 22a. The upper and lower surfaces of the sprinkling filter bed 22 are exposed to the outside air and supplied with air, and oxygen in the air diffuses and moves through the gaps between the many filter media 22a. In addition, oxygen in the air diffuses and moves even when dissolved in the waste water W supplied from the upper surface of the trickling filter 22. In this way, oxygen is supplied to the membrane of the aerobic microorganism.

ろ材22aは、プラスチック製(例えば、高密度ポリエチレン製)の成形品とすることができる。また、ろ材22aは、様々な形状のものが可能であるが、例えば、図3に示すように、円筒状のものとすることができる。円筒状のもののように内部に空間を有する多数のろ材22aは、適度に、熱を伝えて、かつ、空間の空気の層により温度を保ち易い。   The filter medium 22a can be a molded product made of plastic (for example, made of high-density polyethylene). Further, the filter medium 22a can have various shapes. For example, as shown in FIG. 3, the filter medium 22a can have a cylindrical shape. A large number of filter media 22a having a space inside such as a cylindrical one can appropriately transmit heat and easily maintain the temperature by the air layer in the space.

散水ろ床外筒21は、その中空部の底部を塞ぐように、多数の網目の有する薄板状の支持体23を取り付けることができる。この網目状の支持体23は、散水ろ床外筒21内に収容する散水ろ床22の多数のろ材22aを支持する。従って、支持体23の網目の大きさは、ろ材22aよりも小さいものである。   The sprinkling filter floor outer cylinder 21 can be attached with a thin plate-like support 23 having a large number of meshes so as to close the bottom of the hollow portion. The mesh-like support body 23 supports a large number of filter media 22 a of the water trickling filter bed 22 accommodated in the water trickling filter outer cylinder 21. Therefore, the mesh size of the support 23 is smaller than that of the filter medium 22a.

また、散水ろ床外筒21には、管取付具24を散水ろ床外筒21の下側に設けることができる。管取付具24は、内部空間を有し、その内部空間に後述する下部排出管25の中空部が連通する。管取付具24は、図示するように略円錐状とすることができる。また、散水ろ床外筒21と管取付具24は、それぞれにフランジ21a、24aを有するようにして、フランジ21a、24aにおいて固定具(ボルト及びナットなど)で互いに固定され、散水ろ床22の直下に管取付具24の内部空間が位置するようにできる。また、支持体23は、散水ろ床外筒21と管取付具24の間に挟み込むことで取り付けることができる。   In addition, the sprinkler filter outer cylinder 21 can be provided with a pipe fitting 24 below the sprinkler filter outer cylinder 21. The pipe fitting 24 has an internal space, and a hollow portion of a lower discharge pipe 25 described later communicates with the internal space. The tube fitting 24 can be substantially conical as shown. Further, the sprinkling filter outer cylinder 21 and the pipe fitting 24 have flanges 21a and 24a, respectively, and are fixed to each other with fixing tools (bolts, nuts, etc.) at the flanges 21a and 24a. The internal space of the pipe fitting 24 can be located immediately below. Moreover, the support body 23 can be attached by inserting | pinching between the sprinkling filter floor outer cylinder 21 and the pipe attachment 24. FIG.

散水ろ床装置2は、散水ろ床22で硝化処理された処理水Pが後述する無酸素ろ床装置3へ排出される下部排出管25を備える。詳細には、下部排出管25は、管取付具24に取り付けることができる。   The trickling filter apparatus 2 includes a lower discharge pipe 25 through which treated water P nitrified by the trickling filter 22 is discharged to an oxygen-free filter bed 3 to be described later. Specifically, the lower discharge pipe 25 can be attached to the pipe fitting 24.

このような散水ろ床装置2は、散水ろ床22の上方から排水Wが散水され、排水Wが散水ろ床22の内部を下方に向かってゆっくりと流れ、ろ材22aの表面を滴っていく過程で、ろ材22aの表面に繁茂した好気性微生物の膜の作用により排水W中のアンモニアを好気性微生物により硝化処理する。散水ろ床装置2からの処理水Pは、下部排出管25を通じて無酸素ろ床装置3に排出される。   In such a sprinkling filter apparatus 2, drainage W is sprinkled from above the sprinkling filter bed 22, and the drainage W slowly flows downward inside the sprinkling filter floor 22 and dripping the surface of the filter medium 22 a. Then, the ammonia in the waste water W is nitrified by the aerobic microorganisms by the action of the aerobic microorganism film proliferating on the surface of the filter medium 22a. The treated water P from the trickling filter apparatus 2 is discharged to the oxygen-free filter bed apparatus 3 through the lower discharge pipe 25.

次に、散水ろ床装置2が更に備える加温通水管26について説明する。加温通水管26は、気温より高い温度を有する温水が流れ散水ろ床22を加温するものである。   Next, the warming water pipe 26 further provided in the sprinkling filter apparatus 2 will be described. The warming water pipe 26 warms the watering filter bed 22 through which warm water having a temperature higher than the temperature flows.

加温通水管26は、散水ろ床外筒21の側壁の外周面に接触して配置することができる(図2(a)、(b)参照)。これにより、散水ろ床22は、散水ろ床外筒21の側壁を通して加温される。加温通水管26は、散水ろ床外筒21にコイル状に巻くことで、容易に配置することができる。   The warming water pipe 26 can be disposed in contact with the outer peripheral surface of the side wall of the sprinkling filter outer cylinder 21 (see FIGS. 2A and 2B). Thereby, the trickling filter 22 is heated through the side wall of the trickling filter outer cylinder 21. The warming water pipe 26 can be easily disposed by winding the sprinkling filter floor outer cylinder 21 in a coil shape.

また、加温通水管26は、図4(a)、(b)に示すように、散水ろ床22の内部に配置することもできる。散水ろ床22は、内部より加温通水管26により加温される。この場合、散水ろ床22の加温は、効率的である。加温通水管26は、コイル状に巻いて散水ろ床22の内部に配置することができる。なお、図4(b)では、加温通水管26は、散水ろ床外筒21に孔を設けて外部に取り出している。   Moreover, the warming water pipe 26 can also be arrange | positioned inside the sprinkling filter bed 22, as shown to Fig.4 (a), (b). The sprinkling filter bed 22 is heated from the inside by a heating water pipe 26. In this case, the heating of the trickling filter 22 is efficient. The warming water pipe 26 can be wound in a coil shape and disposed inside the sprinkling filter bed 22. In addition, in FIG.4 (b), the heating water pipe 26 is taken out outside by providing a hole in the sprinkling filter floor outer cylinder 21.

加温通水管26により加温された散水ろ床22は、密接した多数のろ材22aが互いに熱を伝え合って、全体的に温度を気温よりも高く保つことができる。それにより、寒冷期(例えば、気温が15℃を下回る時期)において、ろ材22aの表面に繁茂した好気性微生物の硝化能力の低下を抑制することができる。   The sprinkling filter bed 22 heated by the warming water pipe 26 can keep the temperature higher than the air temperature as a whole because a large number of close filter media 22a transmit heat to each other. Thereby, in the cold season (for example, the time when the temperature falls below 15 ° C.), it is possible to suppress a decrease in the nitrification ability of the aerobic microorganisms that have prospered on the surface of the filter medium 22a.

加温通水管26の温水には、調温(例えば、20℃以上に調温)した温水を用いることができる。従って、温水は、比較的低温の温水でよいので、省エネルギー化を図ることができる。調温は、温水タンク27において行い、通常の場合は有効利用が困難な比較的温度の低い廃熱でも利用可能であり、例えば、汚泥焼却設備の廃熱等の廃熱を利用することも可能である。なお、図1において符号27Aで示すのは、温水タンク27から加温通水管26に温水を送り込むポンプである。   As the warm water in the warming water pipe 26, warm water adjusted in temperature (for example, adjusted to 20 ° C. or higher) can be used. Therefore, the hot water may be a relatively low temperature hot water, so that energy saving can be achieved. Temperature control is performed in the hot water tank 27 and can be used even with relatively low-temperature waste heat, which is difficult to use in normal cases. For example, waste heat such as waste heat from sludge incineration facilities can be used. It is. In FIG. 1, reference numeral 27 </ b> A denotes a pump that sends hot water from the hot water tank 27 to the warming water pipe 26.

温水は、様々な水(例えば、排水W、ボイラー等の冷却排水など)から生成することが可能である。排水Wを用いる場合、含有する有機物等のために排水W自体が有する熱量を利用することができる。排水Wは、調温して温水に用いることが可能である。或いは、排水Wは、寒冷期がさほど長くない、又は寒冷期の温度がさほど下がらない場合は、調温しないで温水に用いることも可能である。これにより、加温のための追加エネルギー投入を抑制する又は不要とすることができる。調温しない場合は、加温通水管26を無酸素ろ床装置3の後述する排水流入管34に接続し、図5に示すように、排水Wを加温通水管26に通水の後、無酸素ろ床装置3に流入させることができる。   The hot water can be generated from various water (for example, drainage W, cooling drainage such as boiler). When the waste water W is used, the amount of heat of the waste water W itself can be used for the organic matter contained therein. The drainage W can be temperature-controlled and used for warm water. Alternatively, the drainage W can be used for warm water without adjusting the temperature when the cold season is not so long or the temperature of the cold season does not drop so much. Thereby, addition of additional energy for heating can be suppressed or made unnecessary. When the temperature is not adjusted, the warming water pipe 26 is connected to a later-described drainage inflow pipe 34 of the oxygen-free filter bed device 3, and the drainage W is passed through the warming water pipe 26 as shown in FIG. It can flow into the oxygen-free filter bed device 3.

また、気温が非常に低下(例えば、8℃以下にまで低下)した場合は、温水の流量を増大させる(後述する図8及び図17参照)か、温水の温度を増大させることにより、散水ろ床22への熱供給量(熱供給フラックス)を増大させて加温効果を高めることで対応可能である。   In addition, when the temperature is extremely lowered (for example, lowered to 8 ° C. or lower), the flow rate of the hot water is increased by increasing the flow rate of the hot water (see FIGS. 8 and 17 described later) or by increasing the temperature of the hot water. This can be dealt with by increasing the amount of heat supplied to the floor 22 (heat supply flux) to enhance the heating effect.

無酸素ろ床装置3は、排水W中の硝酸イオンを嫌気性脱窒微生物により窒素分子にまで還元する(脱窒する)脱窒処理を行う。また、無酸素ろ床装置3は、嫌気性微生物により排水W中の有機物の分解処理を行うこともできる。無酸素ろ床装置3は、図6に示すように、無酸素ろ床槽31の内部に、嫌気性微生物が繁茂したろ材(担体)によって形成されたろ床32と、ろ床32の中に設けられた複数の仕切板33と、を有している。また、無酸素ろ床装置3は、排水流入管34と排水流出管35と処理水流出管36と、を有している。また、無酸素ろ床装置3は、排水Wと処理水Pを隔絶する隔絶板37を有している。排水流入管34から流入した排水Wは、複数の仕切板33の間を上下に迂流しながら、ろ床32を通って脱窒処理(及び有機物の分解処理)が行われる。ろ床32を通った排水Wは、排水流出管35から流出し、ポンプ3Aにより散水ろ床装置1に送られる(図1参照)。また、散水ろ床装置1から排出された処理水Pは、上方から流入し、処理水Pの一部は、最終の処理水Pとして処理水流出管36から流出し、残りは、再度、ろ床32を通過して散水ろ床装置1へ循環する。   The anoxic filter bed device 3 performs a denitrification treatment that reduces (denitrifies) nitrate ions in the waste water W to nitrogen molecules by anaerobic denitrification microorganisms. Moreover, the oxygen-free filter bed device 3 can also perform an organic substance decomposition process in the waste water W by anaerobic microorganisms. As shown in FIG. 6, the anoxic filter bed device 3 is provided in an anoxic filter bed tank 31 with a filter bed 32 formed of a filter medium (carrier) overgrown with anaerobic microorganisms, and a filter bed 32. A plurality of partition plates 33. The oxygen-free filter bed device 3 includes a drainage inflow pipe 34, a drainage outflow pipe 35, and a treated water outflow pipe 36. Further, the oxygen-free filter bed device 3 includes an isolation plate 37 that isolates the waste water W and the treated water P. The drainage W that has flowed in from the drainage inflow pipe 34 is denitrified (and decomposes organic matter) through the filter bed 32 while vertically diverting between the plurality of partition plates 33. The drainage W that has passed through the filter bed 32 flows out from the drainage outflow pipe 35 and is sent to the sprinkling filter bed apparatus 1 by the pump 3A (see FIG. 1). Further, the treated water P discharged from the sprinkling filter bed apparatus 1 flows from above, a part of the treated water P flows out from the treated water outflow pipe 36 as the final treated water P, and the rest is filtered again. It passes through the floor 32 and circulates to the sprinkling filter apparatus 1.

循環式硝化脱窒システム1は、更に、排水Wの前処理装置として沈殿装置4を備えることができる。沈殿装置4は、排水W中の大きな固形物Sを沈殿分離させる。固形物Sが分離され取り除かれた排水Wは、ポンプ4Aにより、無酸素ろ床装置3に送られる。固形物Sは、所定の機構でもって排出される。   The circulation nitrification denitrification system 1 can further include a precipitation device 4 as a pretreatment device for the waste water W. The precipitation device 4 precipitates and separates a large solid S in the waste water W. The waste water W from which the solid S has been separated and removed is sent to the oxygen-free filter bed device 3 by the pump 4A. The solid material S is discharged by a predetermined mechanism.

次に、本願発明者が行った循環式硝化脱窒システム1の実験について以下説明する。   Next, the experiment of the circulation type nitrification / denitrification system 1 conducted by the present inventor will be described below.

散水ろ床装置2の散水ろ床外筒21は、透明アクリル製の円筒状であり、高さ1000mm、内径80mmとした。ろ材22aは、直径15mm、長さ15mmの円筒状の高密度ポリエチレン製の成形品(比重0.98)(大日本プラスチックス株式会社製のラメールチューブLT−15)を用いた。これらのろ材22aを散水ろ床外筒21に約540g(嵩容積4.5L、充填高さ約900mm)充填して散水ろ床22を形成した。散水ろ床外筒21の底部には、網目状の支持体23が取り付けられている。また、支持体23には、下部排出管25が設けられている。   The sprinkling filter outer cylinder 21 of the sprinkling filter apparatus 2 has a cylindrical shape made of transparent acrylic and has a height of 1000 mm and an inner diameter of 80 mm. As the filter medium 22a, a cylindrical high-density polyethylene molded product (specific gravity 0.98) having a diameter of 15 mm and a length of 15 mm (Ramer tube LT-15 manufactured by Dainippon Plastics Co., Ltd.) was used. About 540 g (bulk volume: 4.5 L, filling height: about 900 mm) was filled in the sprinkling filter bed outer cylinder 21 with these filter media 22 a to form the sprinkling filter bed 22. A mesh-like support body 23 is attached to the bottom of the sprinkling filter floor outer cylinder 21. The support 23 is provided with a lower discharge pipe 25.

無酸素ろ床装置3は幅70mm、高さ125mm、奥行320mmの槽型で有効容積は2.15Lであり、槽内に紐状接触材(大日本プラスチックス株式会社製クレオコードKC−30)を180cm充填した。排水流入管34から流入する排水Wの流量は8L/d(1日の流量が8L)に設定し、排水流出管35から流出する排水Wは排水流入管34から流入する排水Wの3.5倍の流量に設定した。   The oxygen-free filter bed device 3 is a tank type having a width of 70 mm, a height of 125 mm, and a depth of 320 mm, and an effective volume is 2.15 L, and a string-like contact material in the tank (Creocode KC-30 manufactured by Dainippon Plastics Co., Ltd.) Was filled 180 cm. The flow rate of the waste water W flowing from the drainage inflow pipe 34 is set to 8 L / d (the daily flow rate is 8 L), and the wastewater W flowing out from the drainage outflow pipe 35 is 3.5 of the drainage W flowing into the drainage inflow pipe 34. Double flow rate was set.

実験のために、循環式硝化脱窒システム1は2個(循環式硝化脱窒システム1A及び1B)用意した。実験は、3種類(実験1〜3)行った。各実験においては、循環式硝化脱窒システム1A及び循環式硝化脱窒システム1Bの加温通水管26の条件を、それぞれの実験の目的に合わせて異ならせた。   For the experiment, two circulation nitrification denitrification systems 1 (circulation nitrification denitrification systems 1A and 1B) were prepared. Three types of experiments (Experiments 1 to 3) were performed. In each experiment, the conditions of the warming water pipe 26 of the circulation type nitrification denitrification system 1A and the circulation type nitrification denitrification system 1B were varied according to the purpose of each experiment.

実験1は、調温した温水による外部加温実験である。循環式硝化脱窒システム1Aは、散水ろ床外筒21にシリコンチューブをコイル状に巻いて加温通水管26とし、温水タンク27の20℃に調温した温水を加温通水管26に循環通水した。循環式硝化脱窒システム1Bは、循環通水を行わなかった。循環式硝化脱窒システム1Aの循環水量を段階的に変化させ、期間A(2015年12月17日〜12月19日)は16L/d、期間B(12月20日〜12月23日)は32L/d、期間C(12月24日〜12月29日)は64L/d、期間D(2015年12月30日〜2016年1月4日)は128L/d、として、散水ろ床22の内部の温度変化を測定した。   Experiment 1 is an external heating experiment using warm water that has been conditioned. In the circulation type nitrification denitrification system 1A, a water tube 26 is wound around a sprinkling filter outer cylinder 21 in a coil shape to form a warming water pipe 26, and hot water adjusted to 20 ° C. in a warm water tank 27 is circulated to the warming water pipe 26. I passed water. Circulation type nitrification denitrification system 1B did not perform circulation water flow. The amount of circulating water in the circulatory nitrification denitrification system 1A is changed stepwise, and period A (December 17 to December 19, 2015) is 16 L / d, period B (December 20 to December 23) Is 32 L / d, period C (December 24 to December 29) is 64 L / d, period D (December 30, 2015 to January 4, 2016) is 128 L / d, The temperature change inside 22 was measured.

実験1の結果は以下の通りである。図7における曲線aは循環式硝化脱窒システム1Aの散水ろ床22の内部の温度、曲線bは循環式硝化脱窒システム1Bの散水ろ床22の内部の温度、曲線cは気温、の経時変化を示す測定結果である。曲線cより、実験期間中、気温は概ね10℃以下であった。曲線bより、循環式硝化脱窒システム1Bの散水ろ床22の内部の温度は気温よりも1℃弱高い状態で気温変化に合わせて変化していた。一方、曲線aより、循環式硝化脱窒システム1Aの散水ろ床22の内部の温度は気温や循環式硝化脱窒システム1Bと比較して、高い状態が維持されていた。なお、12月29日の循環式硝化脱窒システム1Aにおける一時的な急激な温度上昇は、脱窒槽からの循環水がポンプトラブルにより流れていなかったことが原因である。   The result of Experiment 1 is as follows. The curve a in FIG. 7 is the temperature inside the watering filter bed 22 of the circulating nitrification denitrification system 1A, the curve b is the temperature inside the watering filter bed 22 of the circulation nitrification denitrification system 1B, and the curve c is the temperature over time. It is a measurement result which shows a change. From curve c, the temperature was generally 10 ° C. or lower during the experiment. From the curve b, the temperature inside the sprinkling filter bed 22 of the circulation type nitrification denitrification system 1B was changed in accordance with the temperature change in a state slightly lower by 1 ° C. than the temperature. On the other hand, from the curve a, the temperature inside the sprinkling filter bed 22 of the circulating nitrification denitrification system 1A was maintained higher than the temperature and the circulation nitrification denitrification system 1B. In addition, the temporary rapid temperature rise in the circulating nitrification denitrification system 1A on December 29 is caused by the fact that the circulating water from the denitrification tank did not flow due to a pump trouble.

図8は、循環式硝化脱窒システム1Aの散水ろ床22の内部の温度と循環式硝化脱窒システム1Bの散水ろ床22の内部の温度の差の平均値と循環通水量の関係を示すものである。12月29日の循環式硝化脱窒システム1Aにおけるデータは除いて求めている。図8より、温水の循環水量を増大させると、散水ろ床22の加温効果が高まることがわかる。   FIG. 8 shows the relationship between the average value of the difference between the temperature inside the trickling filter 22 of the circulating nitrification denitrification system 1A and the temperature inside the trickling filter 22 of the circulating nitrification denitrification system 1B and the circulating water flow rate. Is. The data in the circulation type nitrification / denitrification system 1A on December 29 is excluded. It can be seen from FIG. 8 that the heating effect of the water trickling filter 22 is enhanced when the amount of circulating hot water is increased.

実験2は、温水に調温しない排水Wを用いた内部加温実験である。循環式硝化脱窒システム1Aは、散水ろ床22の内部にフッ素樹脂(PFA)製のコイル状の加温通水管26(外径6mm、内径4mm、全長6.0m)を埋め込み、大学構内で生じた排水W(温度20.5±1.9℃)を加温通水管26に通水(通水量は、8L/d)の後、無酸素ろ床装置3に流入させた。循環式硝化脱窒システム1Bは、加温通水管26を設置せず、直接、排水Wを無酸素ろ床装置3に流入させた。そして、処理水P中の各態窒素濃度、CODCr(重クロム酸カリウムによる化学的酸素要求量)、BOD(生物化学的酸素要求量)、SS(浮遊物質量)、及びpHの変化を測定した。   Experiment 2 is an internal heating experiment using waste water W that is not adjusted to warm water. The circulation type nitrification denitrification system 1A embeds a coiled warming water pipe 26 (outer diameter 6 mm, inner diameter 4 mm, total length 6.0 m) made of fluororesin (PFA) inside the sprinkling filter bed 22 at the university campus. The generated waste water W (temperature 20.5 ± 1.9 ° C.) was passed through the warm water pipe 26 (the amount of water passed was 8 L / d) and then flowed into the oxygen-free filter bed device 3. The circulation type nitrification denitrification system 1 </ b> B did not install the warming water pipe 26, and directly caused the waste water W to flow into the anoxic filter bed device 3. And each state nitrogen concentration in the treated water P, CODCr (chemical oxygen demand by potassium dichromate), BOD (biochemical oxygen demand), SS (floating matter amount), and changes in pH were measured. .

実験2の結果は以下の通りである。図9に、実験2の期間における気温の経時変化を示す。気温は、期間1(2015年10月6日〜2015年11月26日)で15℃以上(15.0〜25.3℃)、期間2(2015年11月27日〜2016年1月25日)で15℃未満(4.6〜14.9℃)であり、期間2は硝化反応への温度影響が懸念される寒冷期に当たる。   The result of Experiment 2 is as follows. FIG. 9 shows a change in temperature over time during the period of Experiment 2. Air temperature is 15 ° C or higher (15.0 to 25.3 ° C) in period 1 (October 6, 2015 to November 26, 2015), period 2 (November 27, 2015 to January 25, 2016) The temperature is less than 15 ° C. (4.6 to 14.9 ° C.), and the period 2 corresponds to a cold period in which the temperature influence on the nitrification reaction is concerned.

図10A〜図10Cに各態窒素濃度の経時変化を示す。図10Aは、循環式硝化脱窒システム1A又は1Bに流入する排水W中の各態窒素濃度の経時変化を示し、図10Bは、循環式硝化脱窒システム1Aにおける処理水P中の各態窒素濃度の経時変化を示し、図10Cは、循環式硝化脱窒システム1Bにおける処理水P中の各態窒素濃度の経時変化を示す。図10B及び図10Cの符号gの部分は、亜硝酸イオンの濃度を示す。図10B及び図10Cの符号hの部分は、硝酸イオンの濃度を示す。図10Aの符号dの部分、図10B及び図10Cの符号iの部分は、アンモニアイオンの濃度を示す。図10Aの符号eの部分、図10B及び図10Cの符号jの部分は、その他の態様を示す。また、図10B及び図10Cの曲線fは、循環式硝化脱窒システム1A又は1Bに流入する排水Wの窒素濃度(各態窒素濃度の合計)から処理水P中の窒素濃度(各態窒素濃度の合計)を引いて求めた窒素の除去効率である。   FIG. 10A to FIG. 10C show changes with time in the nitrogen concentration of each state. FIG. 10A shows the change over time in the concentration of nitrogen in the waste water W flowing into the circulatory nitrification denitrification system 1A or 1B, and FIG. 10B shows the nitrogen in the treated water P in the circulatory nitrification denitrification system 1A. FIG. 10C shows changes over time in the concentration of each nitrogen in the treated water P in the circulating nitrification denitrification system 1B. 10B and 10C indicate the concentration of nitrite ions. 10B and 10C indicate the concentration of nitrate ions. The part of the symbol d in FIG. 10A and the part of the symbol i in FIGS. 10B and 10C indicate the concentration of ammonia ions. The part of the symbol e in FIG. 10A and the part of the symbol j in FIGS. 10B and 10C show other modes. Moreover, the curve f of FIG. 10B and FIG. 10C shows the nitrogen concentration (each state nitrogen concentration) in the treated water P from the nitrogen concentration (total of each state nitrogen concentration) of the waste water W which flows into the circulation type nitrification denitrification system 1A or 1B. This is the nitrogen removal efficiency obtained by subtracting

図10A〜図10Cより、期間1及び期間2にわたり、循環式硝化脱窒システム1A又は1Bに流入する排水Wの窒素の大部分はアンモニアイオンであり、硝酸イオン及び亜硝酸イオンはほとんど認められない。一方、期間1及び期間2にわたり、循環式硝化脱窒システム1A又は1Bにおける処理水Pからは硝酸イオン及び亜硝酸イオンが検出されており、窒素除去が進行していることがわかる。期間2では、循環式硝化脱窒システム1Bにおける処理水Pのアンモニアイオンの濃度が相対的に高くなっており、低温による悪影響を受けていると考えられる。また、期間2では、窒素の除去効率は、循環式硝化脱窒システム1Aで71.2±11.6%であったのに対し、循環式硝化脱窒システム1Bでは51.8±15.1%にとどまっており、循環式硝化脱窒システム1Bにおいて有意に窒素の除去効率が低下している。   10A to 10C, over the period 1 and period 2, most of the nitrogen in the waste water W flowing into the circulating nitrification denitrification system 1A or 1B is ammonia ions, and nitrate ions and nitrite ions are hardly recognized. . On the other hand, over the period 1 and the period 2, nitrate ions and nitrite ions are detected from the treated water P in the circulating nitrification denitrification system 1A or 1B, and it is understood that nitrogen removal is in progress. In the period 2, the concentration of ammonia ions in the treated water P in the circulating nitrification denitrification system 1B is relatively high, which is considered to be adversely affected by the low temperature. In period 2, the nitrogen removal efficiency was 71.2 ± 11.6% in the circulating nitrification / denitrification system 1A, whereas in the circulation nitrification / denitrification system 1B, it was 51.8 ± 15.1. The nitrogen removal efficiency is significantly reduced in the circulatory nitrification denitrification system 1B.

図11における曲線kは循環式硝化脱窒システム1Aの散水ろ床22における硝化率、曲線lは循環式硝化脱窒システム1Bの散水ろ床22における硝化率、の経時変化を示している。期間2(寒冷期)に入る少し前までは循環式硝化脱窒システム1A、1Bの硝化率には大きな違いはなかったが、期間2への移行期前後より硝化率の違いが顕著であった。循環式硝化脱窒システム1Bにおける硝化率の低下は、散水ろ床22の硝化菌が低温により硝化能力が低下したために引き起こされたと考えられる。一方、循環式硝化脱窒システム1Aでは、循環式硝化脱窒システム1Bに見られるような期間2全般にわたる硝化率低下は認められない。但し、循環式硝化脱窒システム1Aでは、1月後半の気温が8℃を下回る時期において硝化率が徐々に低下する様子が認められる。この時期は気温低下が著しいことから、排水Wが有する熱量のみでは加温が不十分であったと考えられる。これについては、後に実験3で詳述する。   The curve k in FIG. 11 shows the change over time of the nitrification rate in the trickling filter 22 of the circulating nitrification denitrification system 1A, and the curve l shows the change over time of the nitrification rate in the trickling filter 22 of the circulation nitrification denitrification system 1B. There was no significant difference in the nitrification rate of the circulating nitrification denitrification systems 1A and 1B until just before entering period 2 (cold season), but the difference in nitrification rate was more pronounced than before and after the transition to period 2. . The decrease in the nitrification rate in the circulatory nitrification denitrification system 1B is considered to be caused by the nitrification ability of the watering filter bed 22 being reduced due to the low temperature. On the other hand, in the circulatory nitrification denitrification system 1A, no decrease in the nitrification rate over the entire period 2 as seen in the circulation nitrification denitrification system 1B is observed. However, in the circulatory nitrification denitrification system 1A, it can be seen that the nitrification rate gradually decreases when the temperature in the latter half of January falls below 8 ° C. Since the temperature drop is remarkable at this time, it is considered that the heating is insufficient only with the amount of heat of the drainage W. This will be described in detail later in Experiment 3.

図12〜図15はそれぞれCODCr、BOD、SS、pHの経時変化を示しており、曲線mは環式硝化脱窒システム1Aから排出される処理水Pについてのもの、曲線nは循環式硝化脱窒システム1Bから排出される処理水Pについてのもの、曲線oは循環式硝化脱窒システム1A又は1Bに流入する排水Wについてのもの、である。図12〜図15を見る限り、期間1及び期間2ともに、CODCr、BOD、SSのいずれも処理水Pにおける濃度は低く維持されており、循環式硝化脱窒システム1A、1Bの間で有意差は認められず、CODCr、BOD、SSを指標とする限りでは、循環式硝化脱窒システム1A、1Bのいずれにおいても温度低下による悪影響は認められなかった。 FIGS. 12 to 15 show changes in COD Cr , BOD, SS, and pH with time, curve m is for treated water P discharged from cyclic nitrification denitrification system 1A, and curve n is circulation nitrification. The curve for the treated water P discharged from the denitrification system 1B and the curve o for the waste water W flowing into the circulating nitrification denitrification system 1A or 1B. As can be seen from FIG. 12 to FIG. 15, the concentrations of COD Cr , BOD, and SS are all kept low in the treated water P in both the period 1 and the period 2 and are significant between the circulating nitrification denitrification systems 1A and 1B. No difference was observed, and as long as COD Cr , BOD, and SS were used as indicators, no adverse effects due to temperature decrease were observed in any of the circulating nitrification denitrification systems 1A and 1B.

実験3は、調温した温水による内部加温実験である。実験2では散水ろ床22の内部の温度の測定を行わなかったが、実験3では散水ろ床22の内部の温度の測定を行った。実験3の循環式硝化脱窒システム1Aは、基本的には実験2のものと同様の構成であるが、散水ろ床22の内部に埋め込んだ加温通水管26と無酸素ろ床装置3の排水流入管34を切り離し、加温通水管26には温水タンク27の20℃に調温した温水を加温通水管26に循環通水し、排水Wは直接、無酸素ろ床装置3に流入させた。実験3の循環式硝化脱窒システム1Bは、実験2のものと同様に、加温通水管26を設置せず、直接、排水Wを無酸素ろ床装置3に流入させた。循環式硝化脱窒システム1A及び1Bでは、散水ろ床22の内部の3箇所(散水ろ床22の上部より250mm、500mm、750mm)の位置に温度センサーを組み込んだ。散水ろ床22の内部の温度は、この3箇所の温度の平均とした。通水量は、変動させており、期間E(2016年3月1日〜3月5日)が17.8L/d、期間F(3月6日〜3月13日)が15L/d、期間G(3月14日〜3月22日)が25L/d、期間H(3月23日〜4月1日)が8L/dである。   Experiment 3 is an internal warming experiment with warmed water. In Experiment 2, the temperature inside the trickling filter 22 was not measured, but in Experiment 3, the temperature inside the trickling filter 22 was measured. The circulation type nitrification / denitrification system 1A of Experiment 3 has basically the same configuration as that of Experiment 2, except that the heated water pipe 26 and the oxygen-free filter bed 3 embedded in the watering filter bed 22 are used. The drainage inflow pipe 34 is disconnected, and warm water adjusted to 20 ° C. in the warm water tank 27 is circulated through the warming water pipe 26 into the warming water pipe 26, and the waste water W flows directly into the oxygen-free filter bed 3. I let you. In the circulatory nitrification denitrification system 1B of Experiment 3, as in Experiment 2, the heated water pipe 26 was not installed, but the waste water W was directly flowed into the oxygen-free filter bed 3. In circulation type nitrification denitrification systems 1A and 1B, temperature sensors were incorporated at three positions (250 mm, 500 mm, and 750 mm from the top of the trickling filter bed 22) inside the trickling filter bed 22. The temperature inside the trickling filter 22 was the average of these three temperatures. The amount of water flow is fluctuating. Period E (March 1, 2016 to March 5, 2016) is 17.8 L / d, Period F (March 6 to March 13) is 15 L / d, Period G (March 14 to March 22) is 25 L / d, and period H (March 23 to April 1) is 8 L / d.

図16における曲線pは循環式硝化脱窒システム1Aの散水ろ床22の内部の温度、曲線qは循環式硝化脱窒システム1Bの散水ろ床22の内部の温度、曲線rは気温、の経時変化を示す測定結果である。曲線rより、実験時の気温は8〜13℃の範囲で変動していた。曲線qより、温水の通水を行わなかった循環式硝化脱窒システム1Bで散水ろ床22の内部の温度は気温+1〜2℃程度を示した。曲線pより、温水を通水した循環式硝化脱窒システム1Aでは、さらに+1〜2℃程度の散水ろ床22の内部の温度上昇を示した。   In FIG. 16, the curve p is the temperature inside the watering filter bed 22 of the circulating nitrification denitrification system 1A, the curve q is the temperature inside the watering filter bed 22 of the circulation nitrification denitrification system 1B, and the curve r is the temperature over time. It is a measurement result which shows a change. From the curve r, the temperature during the experiment fluctuated in the range of 8 to 13 ° C. From the curve q, the temperature inside the sprinkling filter bed 22 in the circulating nitrification denitrification system 1B in which warm water was not passed was about +1 to 2 ° C. From the curve p, in the circulating nitrification denitrification system 1A through which warm water was passed, the temperature inside the sprinkling filter bed 22 was further increased by about +1 to 2 ° C.

図17に、循環式硝化脱窒システム1Aの散水ろ床22の内部の温度と循環式硝化脱窒システム1Bの散水ろ床22の内部の温度の差の平均値と温水の流量の関係を示す。図17における誤差線は標本標準偏差を示している。図17より、温水の流量の増加とともに散水ろ床22の内部の温度が増大していることが分かる。   FIG. 17 shows the relationship between the average value of the difference between the temperature inside the trickling filter 22 of the circulating nitrification denitrification system 1A and the temperature inside the trickling filter 22 of the circulating nitrification denitrification system 1B and the flow rate of hot water. . The error line in FIG. 17 indicates the sample standard deviation. From FIG. 17, it can be seen that the temperature inside the sprinkling filter bed 22 increases as the flow rate of hot water increases.

また、図17から判断すると、実験2では20℃前後の水温を有する排水Wを8L/dの流量で加温通水管26に通水したので、循環式硝化脱窒システム1Aの散水ろ床22の内部の温度は循環式硝化脱窒システム1Bよりも1.3℃程度、気温と比較すれば2〜3℃程度高い状態が維持されていたものと推測される。従って、実験2において気温が8℃を下回る時期に認められた循環式硝化脱窒システム1Aの硝化率低下は、気温8℃以下の条件では、散水ろ床22の内部の温度は10〜11℃以下となっていたと推定される。   Further, judging from FIG. 17, in Experiment 2, the waste water W having a water temperature of about 20 ° C. was passed through the warming water pipe 26 at a flow rate of 8 L / d, so that the sprinkling filter bed 22 of the circulating nitrification denitrification system 1A. It is presumed that the temperature inside was maintained at about 1.3 ° C. higher than the circulating nitrification denitrification system 1B and about 2-3 ° C. higher than the temperature. Therefore, the decrease in the nitrification rate of the circulatory nitrification / denitrification system 1A observed at the time when the temperature falls below 8 ° C in Experiment 2 indicates that the temperature inside the sprinkling filter bed 22 is 10 to 11 ° C under the condition of the temperature of 8 ° C or less. It is estimated that

以上、本発明の実施形態に係る循環式硝化脱窒システムについて説明したが、本発明は、上述の実施形態に記載したものに限られることなく、特許請求の範囲に記載した事項の範囲内でのさまざまな設計変更が可能である。   As mentioned above, although the circulation type nitrification denitrification system which concerns on embodiment of this invention was demonstrated, this invention is not restricted to what was described in the above-mentioned embodiment, and within the range of the matter described in the claim. Various design changes are possible.

1 循環式硝化脱窒システム
2 散水ろ床装置
21 散水ろ床外筒
22 散水ろ床
22a ろ材
23 支持体
24 管取付具
25 下部排出管
26 加温通水管
3 無酸素ろ床装置
4 沈殿装置(前処理装置)
W 排水
P 処理水
DESCRIPTION OF SYMBOLS 1 Circulation type nitrification denitrification system 2 Sprinkling filter bed equipment 21 Sprinkling filter bed outer cylinder 22 Sprinkling filter bed 22a Filter medium 23 Support body 24 Pipe fitting 25 Lower discharge pipe 26 Heating water pipe 3 Anoxic filter bed equipment 4 Sedimentation equipment ( Pretreatment device)
W Wastewater P Treated water

Claims (5)

排水の硝化処理を行う散水ろ床装置と排水の脱窒処理を行う無酸素ろ床装置とを有する循環式硝化脱窒システムであって、
前記散水ろ床装置は、
筒状の散水ろ床外筒の内方に多数のろ材が充填されることによって形成される散水ろ床と、
気温より高い温度を有する温水が流れ前記散水ろ床を加温する加温通水管と、
を備えてなることを特徴とする循環式硝化脱窒システム。
A circulating nitrification and denitrification system having a sprinkling filter bed device for nitrifying wastewater and an oxygen-free filter bed device for denitrifying wastewater,
The sprinkling filter bed device
A sprinkling filter bed formed by filling a large number of filter media inside the cylindrical sprinkling filter bed outer cylinder,
A heated water pipe through which warm water having a temperature higher than the temperature flows and warms the sprinkling filter bed;
A circulatory nitrification denitrification system characterized by comprising:
請求項1に記載の循環式硝化脱窒システムにおいて、
前記散水ろ床装置は、
前記加温通水管が、前記散水ろ床外筒の側壁を通して前記散水ろ床を加温するよう該側壁の外周面に配置されることを特徴とする循環式硝化脱窒システム。
In the circulation type nitrification denitrification system according to claim 1,
The sprinkling filter bed device
The circulating nitrification denitrification system, wherein the warming water pipe is disposed on an outer peripheral surface of the side wall so as to heat the watering filter bed through a side wall of the watering filter bed outer cylinder.
請求項1に記載の循環式硝化脱窒システムにおいて、
前記加温通水管は、前記散水ろ床の内部より前記散水ろ床を加温するよう該散水ろ床の内部に配置されることを特徴とする循環式硝化脱窒システム。
In the circulation type nitrification denitrification system according to claim 1,
The circulating nitrification denitrification system, wherein the warming water pipe is disposed inside the water trickling filter so as to heat the water trickling filter from the inside of the trickling filter.
請求項1〜3のいずれか1項に記載の循環式硝化脱窒システムにおいて、
前記温水は、廃熱により調温した温水であることを特徴とする循環式硝化脱窒システム。
In the circulation type nitrification denitrification system according to any one of claims 1 to 3,
The circulating nitrification denitrification system, wherein the warm water is warm water adjusted by waste heat.
請求項1〜4のいずれか1項に記載の循環式硝化脱窒システムにおいて、
前記温水は、前記排水から生成した温水であることを特徴とする循環式硝化脱窒システム。
In the circulation type nitrification denitrification system according to any one of claims 1 to 4,
The circulating nitrification denitrification system, wherein the warm water is warm water generated from the waste water.
JP2016150242A 2016-07-29 2016-07-29 Circulating nitrification denitrification system Active JP6789538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016150242A JP6789538B2 (en) 2016-07-29 2016-07-29 Circulating nitrification denitrification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016150242A JP6789538B2 (en) 2016-07-29 2016-07-29 Circulating nitrification denitrification system

Publications (2)

Publication Number Publication Date
JP2018015744A true JP2018015744A (en) 2018-02-01
JP6789538B2 JP6789538B2 (en) 2020-11-25

Family

ID=61081090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016150242A Active JP6789538B2 (en) 2016-07-29 2016-07-29 Circulating nitrification denitrification system

Country Status (1)

Country Link
JP (1) JP6789538B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110845005A (en) * 2019-11-28 2020-02-28 江南大学 Method for synchronously desulfurizing and denitrifying wastewater based on biological trickling filter reactor
CN111137977A (en) * 2020-01-16 2020-05-12 南环(宁夏)环境科技有限公司 High-nitrogen wastewater treatment device and treatment method
CN111539160A (en) * 2020-04-14 2020-08-14 龙净科杰环保技术(上海)有限公司 Method for calculating flow velocity of ammonia injection pipeline of urea denitration system of coal-fired unit
JP2020175350A (en) * 2019-04-22 2020-10-29 三機工業株式会社 Apparatus, system, and method of water treatment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020175350A (en) * 2019-04-22 2020-10-29 三機工業株式会社 Apparatus, system, and method of water treatment
CN110845005A (en) * 2019-11-28 2020-02-28 江南大学 Method for synchronously desulfurizing and denitrifying wastewater based on biological trickling filter reactor
CN110845005B (en) * 2019-11-28 2020-12-01 江南大学 Method for synchronously desulfurizing and denitrifying wastewater based on biological trickling filter reactor
CN111137977A (en) * 2020-01-16 2020-05-12 南环(宁夏)环境科技有限公司 High-nitrogen wastewater treatment device and treatment method
CN111539160A (en) * 2020-04-14 2020-08-14 龙净科杰环保技术(上海)有限公司 Method for calculating flow velocity of ammonia injection pipeline of urea denitration system of coal-fired unit
CN111539160B (en) * 2020-04-14 2022-10-04 龙净科杰环保技术(上海)有限公司 Method for calculating flow velocity of ammonia injection pipeline of urea denitration system of coal-fired unit

Also Published As

Publication number Publication date
JP6789538B2 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
JP6789538B2 (en) Circulating nitrification denitrification system
US20180230033A1 (en) Rapid startup of facilities and removal of organics and nutrients from wastewater
US20120152832A1 (en) Submerged system and method for removal of undesirable substances from aqueous media
US6444126B1 (en) System and method for treating sanitary wastewater for on-site disposal
Sathe et al. Domestic wastewater treatment by modified bio-rack wetland system
JP4775944B2 (en) Wastewater treatment method and apparatus
CN203976477U (en) A kind of two-stage biofilter taking bamboo silk, haydite as filtrate respectively
Kouba et al. How biomass growth mode affects ammonium oxidation start-up and NOB inhibition in the partial nitritation of cold and diluted reject water
Singh et al. Environmental performance of an integrated fixed-film activated sludge (IFAS) reactor treating actual municipal wastewater during start-up phase
US20170283288A1 (en) Heat transfer wastewater treatment system
JPH08224076A (en) Bioreactor
CN106865790B (en) Sewage treatment equipment
Kanda et al. Effects of recirculation rate of nitrified liquor and temperature on biological nitrification–denitrification process using a trickling filter
JP2009261994A (en) Treatment method and treatment apparatus of drainage
JP6369245B2 (en) Sludge concentration method
KR100841403B1 (en) Organic, removal of ammonium nitrogen in the wastewater using the spiral fixed-film bioreactor
Plascencia-Jatomea et al. Operation and dynamic modeling of a novel integrated anaerobic–aerobic–anoxic reactor for sewage treatment
KR20040049493A (en) Wastewater treatment method using radial rotating biological contactors
KR100436960B1 (en) The Biological Nutrient Removal System Using The Porous Media
JP6384168B2 (en) Sludge treatment method
US20180354827A1 (en) Bioreactor for wastewater treatment
JP2017100088A (en) Sulfur denitrification technique for pig farming waste water by reactor provided with simple warming system
KR101969769B1 (en) Apparatus for winter season nitrification at low temperature
Choi et al. Dissolved organic matter and nitrogen removal by advanced aerated submerged bio-film reactor
CA3014390C (en) Apparatus comprising a bioreactor for wastewater treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201023

R150 Certificate of patent or registration of utility model

Ref document number: 6789538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250