JP2018014270A - Regenerator of nickel-metal hydride storage battery and regeneration method of nickel-metal hydride storage battery - Google Patents

Regenerator of nickel-metal hydride storage battery and regeneration method of nickel-metal hydride storage battery Download PDF

Info

Publication number
JP2018014270A
JP2018014270A JP2016143683A JP2016143683A JP2018014270A JP 2018014270 A JP2018014270 A JP 2018014270A JP 2016143683 A JP2016143683 A JP 2016143683A JP 2016143683 A JP2016143683 A JP 2016143683A JP 2018014270 A JP2018014270 A JP 2018014270A
Authority
JP
Japan
Prior art keywords
nickel
metal hydride
hydride storage
battery
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016143683A
Other languages
Japanese (ja)
Other versions
JP6632943B2 (en
Inventor
保 福間
Tamotsu Fukuma
保 福間
康司 中桐
Yasushi Nakagiri
康司 中桐
大輔 木庭
Daisuke Kiba
大輔 木庭
伊藤 慎一郎
Shinichiro Ito
慎一郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primearth EV Energy Co Ltd filed Critical Primearth EV Energy Co Ltd
Priority to JP2016143683A priority Critical patent/JP6632943B2/en
Publication of JP2018014270A publication Critical patent/JP2018014270A/en
Application granted granted Critical
Publication of JP6632943B2 publication Critical patent/JP6632943B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a regenerator of a nickel-metal hydride storage battery and a regeneration method of a nickel-metal hydride storage battery capable of regenerating multiple batteries at once, while keeping the temperature of the battery in suitable state.SOLUTION: A regenerator 40 of a nickel-metal hydride storage battery regenerates nickel-metal hydride storage batteries provided, above a battery case 10, with a safety valve opening when the internal pressure of the battery case 10 goes above the valve opening pressure, by overcharging. The regenerator 40 of a nickel-metal hydride storage battery includes heat slingers 41 sandwiched, respectively, between multiple nickel-metal hydride storage batteries arranged so that wide faces 41b of the battery cases 10 face each other, and a charger 42 performing overcharge for regenerating the multiple nickel-metal hydride storage batteries thus arranged simultaneously. The heat slingers 41 are provided while being displaced to positions on the upper side of the battery cases 10. Upper ends 41a of the heat slingers 41 are located above an upper end 10a of the battery cases 10.SELECTED DRAWING: Figure 2

Description

本発明は、ニッケル水素蓄電池の再生装置及びニッケル水素蓄電池の再生方法に関する。   The present invention relates to a nickel-metal hydride storage battery regeneration device and a nickel-metal hydride storage battery regeneration method.

ニッケル水素蓄電池は、経年に伴って負極に蓄えられた水素が減少し、電池容量が低下することが知られている。そこでこのような電池に対して負極の放電容量を回復させて、電池を再生する方法が提案されている(例えば、特許文献1参照)。   It is known that nickel-metal hydride storage batteries have a decrease in battery capacity due to a decrease in hydrogen stored in the negative electrode over time. Therefore, a method of regenerating the battery by recovering the discharge capacity of the negative electrode for such a battery has been proposed (for example, see Patent Document 1).

特許文献1のニッケル水素蓄電池の再生方法では、予め安全弁を開弁させておき、電池を過充電状態にすることで、正極から発生した酸素を、安全弁を介して電池の系外へ排出し、水素を負極に吸収させて負極の水素量を増やし電池容量を回復させる。   In the regeneration method of the nickel metal hydride storage battery of Patent Document 1, the safety valve is opened in advance, and the battery is overcharged, so that oxygen generated from the positive electrode is discharged out of the battery system through the safety valve, Hydrogen is absorbed by the negative electrode to increase the amount of hydrogen in the negative electrode and restore the battery capacity.

特開2008−235036号公報JP 2008-235036 A

ところで、上記のようにニッケル水素蓄電池を再生する際に、電池を1つずつ再生すると、時間当たりに再生できる電池の数が少ないために効率が悪く、コストがかかることとなる。このため、ニッケル水素蓄電池を再生する際には、複数の電池を一度に再生することが望ましい。また、電池の再生時には、発熱により電池内部の温度が高くなり、電池内部においては通常よりも大きな温度傾斜が発生している。さらに、複数の電池を並べて再生したときには、隣り合う電池の熱がこうした温度傾斜を助長することになる。   By the way, when reproducing | regenerating a nickel hydride storage battery as mentioned above, if a battery is reproduced | regenerated one by one, since there are few batteries which can be reproduce | regenerated per time, efficiency will be bad and cost will start. For this reason, when regenerating a nickel metal hydride storage battery, it is desirable to regenerate a plurality of batteries at once. Further, when the battery is regenerated, the temperature inside the battery increases due to heat generation, and a larger temperature gradient than usual occurs inside the battery. Further, when a plurality of batteries are reproduced side by side, the heat of adjacent batteries promotes such a temperature gradient.

本発明は、こうした実情に鑑みてなされたものであり、その目的は、電池内部の温度傾斜の発生を抑制しつつ、一度に複数の電池を再生することのできるニッケル水素蓄電池の再生装置及びニッケル水素蓄電池の再生方法を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a nickel-metal hydride storage battery regenerator and a nickel regenerator capable of regenerating a plurality of batteries at a time while suppressing the occurrence of temperature gradient inside the battery. It is in providing the regeneration method of a hydrogen storage battery.

上記課題を解決するニッケル水素蓄電池の再生装置は、電池ケースの内部圧力が所定の圧力以上となることにより開弁する安全弁を前記電池ケースの上部に備えたニッケル水素蓄電池を過充電することで再生を図るニッケル水素蓄電池の再生装置であって、前記電池ケースの広い面同士が対向するように並べられた複数のニッケル水素蓄電池の間にそれぞれ挟まれている放熱板と、前記並べられた複数のニッケル水素蓄電池に同時に再生用の過充電を行う充電装置と、を備え、前記放熱板は、前記電池ケースの上部側の位置に偏位して設けられるとともに、前記放熱板の上端部は、前記電池ケースの上端部よりも上方に位置している。   A regenerating apparatus for a nickel metal hydride storage battery that solves the above-described problems is regenerated by overcharging a nickel metal hydride storage battery that is provided with a safety valve that opens when the internal pressure of the battery case exceeds a predetermined pressure. A regenerating apparatus for a nickel metal hydride storage battery, wherein the battery case is sandwiched between a plurality of nickel metal hydride batteries arranged so that wide surfaces of the battery case face each other, and the plurality of arranged A rechargeable overcharger for the nickel metal hydride storage battery at the same time, and the radiator plate is provided at a position offset on the upper side of the battery case, and the upper end of the radiator plate is It is located above the upper end of the battery case.

上記課題を解決するニッケル水素蓄電池の再生方法は、電池ケースの内部圧力が所定の圧力以上であるときに開く安全弁を前記電池ケースの上部に備えたニッケル水素蓄電池の再生方法であって、前記電池ケースの広い面同士が対向するように並べられた複数のニッケル水素蓄電池の間に放熱板がそれぞれ挟まれた状態で、充電装置により前記並べられた複数のニッケル水素蓄電池に同時に再生用の過充電を行い、前記放熱板を前記電池ケースの上部側の位置に偏移した位置、且つ前記放熱板の上端部を前記電池ケースの上端部よりも上方に位置させる。   A method for regenerating a nickel-metal hydride storage battery that solves the above-described problem is a method for regenerating a nickel-metal hydride storage battery having a safety valve that opens when the internal pressure of the battery case is equal to or higher than a predetermined pressure. Overcharging for regeneration is simultaneously performed on the plurality of arranged nickel-metal hydride batteries by a charging device while a heat sink is sandwiched between the plurality of nickel-metal hydride batteries arranged so that the wide surfaces of the case face each other. The position where the heat sink is shifted to the position on the upper side of the battery case and the upper end of the heat sink are positioned above the upper end of the battery case.

ニッケル水素蓄電池の通常使用時には、電池ケースの中央部の温度が高くなるが、ニッケル水素蓄電池に対して過充電を行うと、電池ケース内でのガスの移動に伴って、電池ケースの上側ほど温度が高くなる温度傾斜が発生していることを発明者が発見した。そこで、上記構成又は方法によれば、放熱板の上端部が電池ケースの上端部よりも突出した状態となり、電池ケースの上部側の位置に偏移して放熱板が電池ケースに挟まれている。このため再生用の過充電中の電池内で比較的温度の高い上側から電池ケースの上端部よりも突出している放熱板の上端部によって熱を逃がすことができる。また、電池の上部側の過度な温度上昇を抑制して、電池内における温度差の拡大を抑制することができる。よって、電池の温度を好適な状態としつつ、一度に複数の電池を再生することができる。   During normal use of a nickel metal hydride storage battery, the temperature at the center of the battery case increases, but if the nickel metal hydride storage battery is overcharged, the temperature increases toward the upper side of the battery case as the gas moves in the battery case. The inventor has discovered that a temperature gradient is generated in which the temperature increases. Therefore, according to the above configuration or method, the upper end portion of the heat sink protrudes from the upper end portion of the battery case, shifts to the position on the upper side of the battery case, and the heat sink is sandwiched between the battery cases. . For this reason, heat can be released by the upper end portion of the heat radiating plate protruding from the upper end portion of the battery case from the upper side where the temperature is relatively high in the battery being overcharged for regeneration. Moreover, an excessive temperature rise on the upper side of the battery can be suppressed, and an increase in temperature difference in the battery can be suppressed. Therefore, it is possible to regenerate a plurality of batteries at a time while keeping the battery temperature in a suitable state.

上記ニッケル水素蓄電池の再生装置について、前記放熱板の下部に前記放熱板よりも熱伝導率の低い部材からなるスペーサを備えることが好ましい。
上記構成によれば、放熱板の下方且つ電池ケース同士の間の空間にスペーサを設けることで、電池ケースが過度に膨張することをスペーサによって抑制することができる。また、スペーサの材料によって空気と相違する放熱性を与えることができる。
About the reproducing | regenerating apparatus of the said nickel-metal hydride storage battery, it is preferable to provide the spacer which consists of a member whose heat conductivity is lower than the said heat sink at the lower part of the said heat sink.
According to the said structure, it can suppress with a spacer that a battery case expand | swells excessively by providing a spacer in the space under a heat sink and between battery cases. Moreover, the heat dissipation different from air can be given with the material of a spacer.

上記ニッケル水素蓄電池の再生装置について、前記電池ケースが並ぶ方向において前記放熱板の間隔を変更可能な支持部材を備えることが好ましい。
上記構成によれば、支持部材に支持された放熱板の間隔を変更することができるので、放熱板の間にニッケル水素蓄電池を設置した後に放熱板とニッケル水素蓄電池との間隔を容易に詰めることができるようになる。
About the reproducing | regenerating apparatus of the said nickel hydride storage battery, it is preferable to provide the supporting member which can change the space | interval of the said heat sink in the direction where the said battery case is located in a line.
According to the above configuration, since the distance between the heat sinks supported by the support member can be changed, the distance between the heat sink and the nickel metal hydride storage battery can be easily reduced after the nickel metal hydride storage battery is installed between the heat sinks. It becomes like this.

上記ニッケル水素蓄電池の再生装置について、前記支持部材に支持された前記放熱板を前記放熱板の配列方向に押圧することで前記放熱板同士の間隔を変更する押圧部材を備えることが好ましい。   About the reproducing | regenerating apparatus of the said nickel hydride storage battery, it is preferable to provide the press member which changes the space | interval of the said heat sinks by pressing the said heat sink supported by the said support member in the sequence direction of the said heat sink.

上記構成によれば、支持部材に支持された放熱板同士の間隔を押圧部材によって変更することができるので、放熱板の間にニッケル水素蓄電池を設置した後に放熱板とニッケル水素蓄電池との間隔を容易に詰めることができるようになる。   According to the said structure, since the space | interval of the heat sinks supported by the support member can be changed with a press member, after installing a nickel metal hydride storage battery between heat sinks, the space | interval of a heat sink and a nickel metal hydride storage battery is made easy. Can be stuffed.

上記ニッケル水素蓄電池の再生装置について、前記支持部材は前記放熱板の上下方向への偏移量を変更することが好ましい。
ニッケル水素蓄電池の再生のために流す電流値や時間等によってニッケル水素蓄電池の発熱の仕方が異なる。そこで、上記構成によれば、支持部材の上下方向の位置を変更することで電池ケースに対する放熱板の上下方向への偏移量を容易に変更して、電池の温度を好適な状態とすることができるようになる。
About the reproducing | regenerating apparatus of the said nickel metal hydride storage battery, it is preferable that the said supporting member changes the deviation | shift amount to the up-down direction of the said heat sink.
The method of heat generation of the nickel-metal hydride storage battery varies depending on the value of the current flowing for the regeneration of the nickel-metal hydride storage battery, the time, and the like. Therefore, according to the above configuration, by changing the vertical position of the support member, the amount of deviation of the heat sink in the vertical direction with respect to the battery case can be easily changed, so that the battery temperature is in a suitable state. Will be able to.

本発明によれば、電池内部の温度傾斜の発生を抑制しつつ、一度に複数の電池を再生することができる。   According to the present invention, it is possible to regenerate a plurality of batteries at a time while suppressing the occurrence of a temperature gradient inside the battery.

ニッケル水素蓄電池の概略構成を示す部分断面図。The fragmentary sectional view which shows schematic structure of a nickel hydride storage battery. (a)はニッケル水素蓄電池の再生方法の一実施形態における概略構成を示す図、(b)はニッケル水素蓄電池の温度傾斜を示すグラフ。(A) is a figure which shows schematic structure in one Embodiment of the regeneration method of a nickel hydride storage battery, (b) is a graph which shows the temperature gradient of a nickel hydride storage battery. 同実施形態のニッケル水素蓄電池の再生装置の構成を示す斜視図。The perspective view which shows the structure of the reproducing | regenerating apparatus of the nickel hydride storage battery of the embodiment. 同実施形態のニッケル水素蓄電池の再生装置にニッケル水素蓄電池を装着した状態を示す正面図。The front view which shows the state which mounted | wore the nickel hydride storage battery with the reproduction | regeneration apparatus of the nickel hydride storage battery of the embodiment.

以下、図1〜図4を参照して、ニッケル水素蓄電池の再生装置及びニッケル水素蓄電池の再生方法の一実施形態を説明する。本実施形態では、再生方法及び再生装置が適用される電池を、複数の単電池を電池ケース内に一体化してなる電池モジュールに例示して説明する。この電池モジュールは、複数組み合わされて組電池を構成する。組電池は、電気自動車やハイブリッド自動車の動力源として使用される。   Hereinafter, with reference to FIGS. 1-4, one Embodiment of the reproducing | regenerating apparatus of a nickel hydride storage battery and the reproduction | regenerating method of a nickel hydride storage battery is described. In the present embodiment, a battery to which a regeneration method and a regeneration apparatus are applied will be described as an example of a battery module in which a plurality of single cells are integrated in a battery case. A plurality of battery modules are combined to form an assembled battery. The assembled battery is used as a power source for electric vehicles and hybrid vehicles.

図1に示すように、ニッケル水素蓄電池である電池モジュール11は、一体電槽16と、一体電槽16の上部開口を封止する蓋体17とからなる電池ケース10を備えている。一体電槽16の内側は、隔壁18によって複数の空間に仕切られている。一体電槽16及び蓋体17により複数の電槽15が形成されている。   As shown in FIG. 1, a battery module 11 that is a nickel-metal hydride storage battery includes a battery case 10 including an integrated battery case 16 and a lid body 17 that seals an upper opening of the integrated battery case 16. The inside of the integrated battery case 16 is partitioned into a plurality of spaces by a partition wall 18. A plurality of battery cases 15 are formed by the integrated battery case 16 and the lid body 17.

電槽15の内側には、複数の正極板21と、複数の負極板22とがセパレータ23を介して積層された極板群20が、電解液(図示略)とともに収容されている。正極板21、負極板22、セパレータ23及び電解液は発電要素を構成する。また電槽15内には、正極板21、負極板22がそれぞれ接合される集電板24,25が収容されている。発電要素、集電板24,25は単電池30を構成する。単電池30は、隔壁18に沿って配置された集電板24,25が、隔壁18の貫通孔を介して接続されることにより、電気的に直列に接続されている。電池モジュール11の電力は、一体電槽16に設けられた正極側の接続端子29及び負極側の接続端子(図示略)によって取り出される。また、電槽15の各々は、隔壁18に設けられた連通孔32によって連通されており、電槽15内のガスが流動可能となっている。   Inside the battery case 15, an electrode plate group 20 in which a plurality of positive electrode plates 21 and a plurality of negative electrode plates 22 are laminated via separators 23 is accommodated together with an electrolytic solution (not shown). The positive electrode plate 21, the negative electrode plate 22, the separator 23, and the electrolyte constitute a power generation element. In the battery case 15, current collecting plates 24 and 25 to which the positive electrode plate 21 and the negative electrode plate 22 are respectively joined are accommodated. The power generation elements and current collecting plates 24 and 25 constitute a unit cell 30. The unit cells 30 are electrically connected in series by the current collector plates 24 and 25 arranged along the partition walls 18 being connected through the through holes of the partition walls 18. The electric power of the battery module 11 is taken out by a positive connection terminal 29 and a negative connection terminal (not shown) provided in the integrated battery case 16. Moreover, each of the battery case 15 is connected by the communication hole 32 provided in the partition 18, and the gas in the battery case 15 can flow.

また蓋体17には、電池ケース10の内部圧力が所定の圧力である開弁圧以上で開く安全弁33が設けられている。つまり安全弁33は電池ケース10の上部に設けられている。安全弁33は、電池モジュール11に対し1つ設けられている。この安全弁33は、電池ケース10の内部圧力が通常の圧力、すなわち開弁圧未満であるときには閉じている。例えば電槽15内での気体の発生等によって電池ケース10の内部圧力が開弁圧以上となると、安全弁33が開いて、気体を外部に排出する。   The lid body 17 is provided with a safety valve 33 that opens when the internal pressure of the battery case 10 is equal to or higher than a predetermined valve opening pressure. That is, the safety valve 33 is provided in the upper part of the battery case 10. One safety valve 33 is provided for the battery module 11. The safety valve 33 is closed when the internal pressure of the battery case 10 is less than the normal pressure, that is, the valve opening pressure. For example, when the internal pressure of the battery case 10 becomes equal to or higher than the valve opening pressure due to generation of gas in the battery case 15, the safety valve 33 is opened and the gas is discharged to the outside.

正極板21に設けられる正極合剤は、正極活物質として水酸化ニッケルを含む。また、負極板22に設けられる負極合剤は、負極活物質として水素吸蔵合金(M)を含む。水素吸蔵合金は、水素を吸蔵することにより金属水素化物(MH)となる。電解液は、例えば水酸化カリウム水溶液等のアルカリ水溶液である。   The positive electrode mixture provided on the positive electrode plate 21 contains nickel hydroxide as a positive electrode active material. Moreover, the negative electrode mixture provided in the negative electrode plate 22 contains a hydrogen storage alloy (M) as a negative electrode active material. The hydrogen storage alloy becomes a metal hydride (MH) by storing hydrogen. The electrolytic solution is an alkaline aqueous solution such as an aqueous potassium hydroxide solution.

次に、ニッケル水素蓄電池の電池容量について説明する。単電池30は、負極の容量が正極の容量よりも大きい正極規制とされている。また、単電池30が使用されていない初期状態では、負極の容量には、正極が満充電であるときの残りの充電容量である充電リザーブと、正極の充電状態(SOC:State Of Charge)が0%に到達したときの残りの放電容量である放電リザーブが確保されている。なお、ここでいう正極の「満充電」とは、各単電池30において正極の活物質の未充電部分がなくなった状態、即ちSOCが100%の状態をいう。また、正極のSOCが0%に到達した状態とは、正極の活物質の充電部分がなくなった状態をいう。また、正極規制において、正極のSOCが100%の状態を、ニッケル水素蓄電池の満充電状態という。   Next, the battery capacity of the nickel metal hydride storage battery will be described. The unit cell 30 has positive electrode regulation in which the capacity of the negative electrode is larger than the capacity of the positive electrode. In the initial state in which the unit cell 30 is not used, the negative electrode capacity includes a charge reserve that is the remaining charge capacity when the positive electrode is fully charged and a state of charge (SOC) state of charge. The discharge reserve, which is the remaining discharge capacity when reaching 0%, is secured. Here, the “full charge” of the positive electrode herein means a state in which the uncharged portion of the active material of the positive electrode is eliminated in each unit cell 30, that is, a state where the SOC is 100%. Further, the state where the SOC of the positive electrode reaches 0% means a state where there is no charged part of the active material of the positive electrode. In addition, in the positive electrode regulation, a state where the SOC of the positive electrode is 100% is referred to as a fully charged state of the nickel metal hydride storage battery.

ところで、一般にニッケル水素蓄電池には、微量の水素が電池ケース10の一体電槽16や蓋体17等を透過して、外部に漏れ続けるものがあることがわかっている。この現象は、樹脂製の電池ケース10の場合に特に起こりやすい。このように、水素が外部に漏出すると、電池ケース10内の水素分圧の平衡を保つべく、水素漏出量に応じて負極の金属水素化物(MH)から水素が放出される。このように水素が電池モジュール11の外部に排出されると、負極の放電リザーブが減少する。   By the way, it is generally known that some nickel-metal hydride storage batteries continue to leak to the outside through a small amount of hydrogen that passes through the integrated battery case 16 and the lid 17 of the battery case 10. This phenomenon is particularly likely to occur in the case of the battery case 10 made of resin. As described above, when hydrogen leaks to the outside, hydrogen is released from the metal hydride (MH) of the negative electrode in accordance with the amount of hydrogen leakage in order to maintain the equilibrium of the hydrogen partial pressure in the battery case 10. When hydrogen is discharged to the outside of the battery module 11 in this manner, the negative electrode reserve is reduced.

さらに放電リザーブが消滅した後も使用が継続され、負極のSOCが0%になったとき、すなわち負極の充電部分がなくなったときに、正極のSOCが0%ではない場合には、負極の容量が電池容量を規制する負極規制となる。その結果、電池容量は、負極規制により小さくなる。   Further, after the discharge reserve is extinguished, when the SOC of the negative electrode becomes 0%, that is, when there is no charged part of the negative electrode, and the SOC of the positive electrode is not 0%, the capacity of the negative electrode Becomes the negative electrode regulation that regulates the battery capacity. As a result, the battery capacity is reduced by the negative electrode regulation.

放電リザーブを増加させるためには、電池モジュール11の過充電を行う。過充電では、正極の未充電部分がなくなった後も充電が継続されるために、下記の半反応式(1)に示すように、電解液の水酸基が分解されて酸素が生じる。負極では、下記の半反応式(2)に示すように、負極活物質のうち未充電部分、すなわち水素吸蔵合金に水素が吸蔵される反応が進行する。また、下記の半反応式(3)に示すように、水素吸蔵合金に水素を吸蔵する反応と同時に、充電部分、すなわち水素を吸蔵した水素吸蔵合金(金属水素化物)と酸素とが反応して、水が生成される反応が生じる。この際、金属水素化物(MH)は、水素吸蔵合金(M)に戻る。つまり、過充電時であって安全弁33が開いていない場合には、負極において、未充電部分が充電される反応と、充電部分が未充電部分に戻る反応とが同時に生じることとなる。   In order to increase the discharge reserve, the battery module 11 is overcharged. In overcharging, since charging is continued even after the uncharged portion of the positive electrode disappears, as shown in the following half reaction formula (1), the hydroxyl group of the electrolytic solution is decomposed to generate oxygen. In the negative electrode, as shown in the following half-reaction formula (2), a reaction in which hydrogen is occluded proceeds in an uncharged portion of the negative electrode active material, that is, a hydrogen storage alloy. Further, as shown in the following half reaction formula (3), simultaneously with the reaction of storing hydrogen in the hydrogen storage alloy, the charged portion, that is, the hydrogen storage alloy (metal hydride) storing hydrogen reacts with oxygen. A reaction occurs in which water is produced. At this time, the metal hydride (MH) returns to the hydrogen storage alloy (M). That is, when the safety valve 33 is not open at the time of overcharge, a reaction in which the uncharged portion is charged and a reaction in which the charged portion returns to the uncharged portion occur simultaneously at the negative electrode.

(正極)OH → 1/4O+1/2HO+e …(1)
(負極)M+HO+e → MH+OH …(2)
MH+1/4O → M+1/2HO …(3)
一方、正極から酸素が発生して内部圧力が上昇し、内部圧力が開弁圧以上となると、安全弁33が開いて、外部に酸素ガスが排出される。酸素ガスが排出されると、半反応式(3)で示す反応、すなわち充電部分が未充電部分に戻る反応が抑制される。そのため、水素を吸蔵した水素吸蔵合金は、水素を吸蔵した状態が維持され、負極の未充電部分がある場合には、半反応式(2)で示す反応が進行して放電リザーブが確保される。
(Positive electrode) OH → 1/4 O 2 + 1 / 2H 2 O + e (1)
(Negative electrode) M + H 2 O + e → MH + OH (2)
MH + 1 / 4O 2 → M + 1 / 2H 2 O (3)
On the other hand, when oxygen is generated from the positive electrode and the internal pressure rises and the internal pressure becomes equal to or higher than the valve opening pressure, the safety valve 33 is opened and oxygen gas is discharged to the outside. When oxygen gas is discharged, the reaction shown in the semi-reaction equation (3), that is, the reaction in which the charged portion returns to the uncharged portion is suppressed. Therefore, the hydrogen occlusion alloy that occludes hydrogen is maintained in the occluded state of hydrogen, and when there is an uncharged portion of the negative electrode, the reaction shown in the semi-reaction equation (2) proceeds to ensure discharge reserve. .

次に図2を参照して、ニッケル水素蓄電池の負極の放電容量を回復させるニッケル水素蓄電池の再生装置について説明する。ニッケル水素蓄電池の再生は、ニッケル水素蓄電池を過充電することで行う。   Next, with reference to FIG. 2, a regenerating apparatus for a nickel metal hydride storage battery that recovers the discharge capacity of the negative electrode of the nickel metal hydride storage battery will be described. The regeneration of the nickel metal hydride storage battery is performed by overcharging the nickel metal hydride storage battery.

図2(a)に示すように、ニッケル水素蓄電池の再生装置40は、ニッケル水素蓄電池を冷却する複数の放熱板41と、複数のニッケル水素蓄電池に同時に再生用の過充電を行う充電装置42とを備えている。充電装置42は、一定の電流を供給して定電流(Constant Current)充電を行う。   As shown in FIG. 2 (a), a regenerating apparatus 40 for a nickel metal hydride storage battery includes a plurality of heat sinks 41 for cooling the nickel metal hydride storage battery, and a charging apparatus 42 for simultaneously overcharging the plurality of nickel hydride storage batteries for regeneration. It has. The charging device 42 performs a constant current charging by supplying a constant current.

放熱板41は、金属材料からなり、上下方向の上部に位置する上端部41aと、他の面よりも広い面積を有する広い面41bとを備える。なお、金属材料は、アルミニウムや銅等を採用してもよい。   The heat radiating plate 41 is made of a metal material, and includes an upper end portion 41a positioned at an upper portion in the vertical direction and a wide surface 41b having a larger area than other surfaces. In addition, you may employ | adopt aluminum, copper, etc. as a metal material.

ここで、ニッケル水素蓄電池は、通常、複数の電池モジュール11を積層して使用した場合、中央部がそれ以外の部分に比して冷却され難くなる(熱がこもる)。そのため、電池ケース10の中央部の温度が高くなる。図2(b)に示すように、ニッケル水素蓄電池に対して過充電を行うと、電池ケース10内でガスが発生する。過充電により発生したガスは高温であり、そのガスが上部に移動するため、電池ケース10の高さH方向の上側ほど温度Tが高くなる温度傾斜が発生している。なお、ニッケル水素蓄電池は、通常の使用(充放電)でもガスは発生するが、その量は少なく、化学反応で吸収されてしまうため、上部の温度が高くなるということはない。   Here, when a plurality of battery modules 11 are laminated and used, the nickel-metal hydride storage battery is less likely to be cooled (heat is accumulated) at the center portion than the other portions. Therefore, the temperature of the center part of the battery case 10 becomes high. As shown in FIG. 2B, when the nickel hydride storage battery is overcharged, gas is generated in the battery case 10. Since the gas generated by overcharging is high temperature and the gas moves upward, a temperature gradient is generated in which the temperature T increases toward the upper side in the height H direction of the battery case 10. In addition, although nickel hydride storage battery produces | generates gas also by normal use (charging / discharging), since the quantity is small and it will be absorbed by a chemical reaction, the temperature of an upper part does not become high.

そこで、再生装置40は、複数のニッケル水素蓄電池を並べた状態で、電池ケース10の下部よりも上部側を冷却しながら過充電を行うことで再生する。すなわち、放熱板41は、電池ケース10の広い面41b同士が対向するように並べられた複数のニッケル水素蓄電池の間にそれぞれ挟まれている。放熱板41は、電池ケース10の上部側の位置に偏位して設けられる。例えば、放熱板41は、電池ケース10の上部側の3分の2の位置と接触するように偏位し、熱がこもりやすい中央部付近にも設けられている。放熱板41の上端部41aは、電池ケース10の上端部10aよりも上方に位置している。つまり、放熱板41の上端部41aは、電池ケース10の上端部10aよりも突出している。   Therefore, the regeneration device 40 performs regeneration by performing overcharging while cooling the upper side of the lower part of the battery case 10 in a state where a plurality of nickel metal hydride storage batteries are arranged. That is, the heat sink 41 is sandwiched between a plurality of nickel metal hydride storage batteries arranged so that the wide surfaces 41b of the battery case 10 face each other. The heat radiating plate 41 is provided in a deviated position on the upper side of the battery case 10. For example, the heat radiating plate 41 is displaced so as to be in contact with two-thirds of the position on the upper side of the battery case 10 and is also provided in the vicinity of the central portion where heat is likely to be trapped. The upper end portion 41 a of the heat radiating plate 41 is located above the upper end portion 10 a of the battery case 10. That is, the upper end portion 41 a of the heat radiating plate 41 protrudes from the upper end portion 10 a of the battery case 10.

次に図3及び図4を参照して、図2に示した再生装置40の具体的な構成について説明する。ここでは、充電装置42の図示を省略している。図3は、再生装置40にニッケル水素蓄電池を設置していない状態を示している。また、図4は、再生装置40にニッケル水素蓄電池を設置した状態を示している。   Next, a specific configuration of the playback apparatus 40 shown in FIG. 2 will be described with reference to FIGS. Here, illustration of the charging device 42 is omitted. FIG. 3 shows a state in which no nickel metal hydride storage battery is installed in the regenerator 40. FIG. 4 shows a state in which a nickel hydride storage battery is installed in the regeneration device 40.

図3及び図4に示すように、再生装置40は、電池ケース10が並ぶ方向において放熱板41の間隔を変更可能な支持部材43を備えている。支持部材43は、放熱板41の並ぶ方向に延出し、放熱板41を挟むように一対設けられている。支持部材43には、放熱板41の並ぶ方向に延出し、放熱板41を放熱板41の配列方向に移動可能に支持する支持孔43aが設けられている。   As shown in FIGS. 3 and 4, the playback device 40 includes a support member 43 that can change the interval between the heat sinks 41 in the direction in which the battery cases 10 are arranged. A pair of support members 43 are provided so as to extend in the direction in which the heat sinks 41 are arranged and to sandwich the heat sink 41. The support member 43 is provided with a support hole 43 a that extends in the direction in which the heat radiating plates 41 are arranged and supports the heat radiating plates 41 so as to be movable in the arrangement direction of the heat radiating plates 41.

放熱板41には、各支持部材43の支持孔43aに嵌装される支持棒41cが放熱板41の長手方向に突出してそれぞれ設けられている。放熱板41は、支持棒41cが一対の支持部材43の支持孔43aに嵌装されることで支持される。   The heat radiating plate 41 is provided with support rods 41 c fitted in the support holes 43 a of the respective support members 43 so as to protrude in the longitudinal direction of the heat radiating plate 41. The heat radiating plate 41 is supported by the support rod 41 c being fitted into the support holes 43 a of the pair of support members 43.

放熱板41の下部には、放熱板41よりも熱伝導率の低い部材からなるスペーサ45が設けられている。スペーサ45は樹脂材料からなる。樹脂材料は、ポリプロピレン(PP)やポリエチレン(PE)等を採用してもよい。よって、電池ケース10の下部側はスペーサ45によって埋められ、スペーサ45による冷却が放熱板41による冷却よりも抑えられる。   A spacer 45 made of a member having a lower thermal conductivity than the heat radiating plate 41 is provided below the heat radiating plate 41. The spacer 45 is made of a resin material. Polypropylene (PP), polyethylene (PE), or the like may be employed as the resin material. Therefore, the lower side of the battery case 10 is filled with the spacer 45, and cooling by the spacer 45 is suppressed more than cooling by the heat radiating plate 41.

再生装置40は、放熱板41の配列方向の端部に支持部材43を保持する一対の保持部材44を備えている、保持部材44は、支持部材43に対して放熱板41の配列方向に移動可能である。このため、保持部材44を両側から押圧することで、一対の保持部材44に挟まれた電池ケース10と支持部材43に支持された放熱板41とを押圧して放熱板41同士の間隔を変更する。なお、保持部材44が押圧部材として機能する。   The reproducing device 40 includes a pair of holding members 44 that hold the support member 43 at the end of the heat sink 41 in the arrangement direction. The holding member 44 moves in the arrangement direction of the heat sink 41 with respect to the support member 43. Is possible. For this reason, by pressing the holding member 44 from both sides, the battery case 10 sandwiched between the pair of holding members 44 and the heat radiation plate 41 supported by the support member 43 are pressed to change the distance between the heat radiation plates 41. To do. The holding member 44 functions as a pressing member.

保持部材44は、図示しない駆動部材によって上下方向に移動可能である。このため、保持部材44とともに支持部材43も上下方向に移動し、支持部材43の上下方向の位置を変更することができる。よって、保持部材44は、上下方向に移動することで、放熱板41と電池ケース10との接触範囲を上下方向に変更する。例えば、再生装置40に装着されるニッケル水素蓄電池は、底板46に載せられることで下部の位置が規定される。よって、ニッケル水素蓄電池が底板46に載せられた状態において、ニッケル水素蓄電池に対する放熱板41の位置を保持部材44によって設定する。   The holding member 44 can be moved in the vertical direction by a driving member (not shown). For this reason, the support member 43 can be moved in the vertical direction together with the holding member 44, and the vertical position of the support member 43 can be changed. Therefore, the holding member 44 changes the contact range between the heat sink 41 and the battery case 10 in the vertical direction by moving in the vertical direction. For example, a nickel metal hydride storage battery mounted on the regeneration device 40 is placed on the bottom plate 46 so that the lower position is defined. Therefore, in the state where the nickel metal hydride storage battery is placed on the bottom plate 46, the position of the heat radiating plate 41 with respect to the nickel metal hydride storage battery is set by the holding member 44.

次に、図3及び図4を参照して、上記のように構成されたニッケル水素蓄電池の再生装置の作用について説明する。
図3に示すように、再生するニッケル水素蓄電池を再生装置40に装着する前には、放熱板41同士のそれぞれの間隔は電池ケース10の厚みよりも広くなっている。
Next, with reference to FIG.3 and FIG.4, the effect | action of the reproducing | regenerating apparatus of the nickel hydride storage battery comprised as mentioned above is demonstrated.
As shown in FIG. 3, the interval between the heat radiation plates 41 is wider than the thickness of the battery case 10 before the nickel hydride storage battery to be regenerated is attached to the regenerator 40.

まず、再生装置40の各放熱板41同士の間に、再生したいニッケル水素蓄電池をそれぞれ挿入する。ニッケル水素蓄電池は、底板46の上面に載置される。
そして、図4に示すように、保持部材44を両側から押圧することで、支持部材43に支持された放熱板41同士の間隔を狭く変更する。すると、各ニッケル水素蓄電池の両側に放熱板41が位置し、電池ケース10と放熱板41とが当接した状態、つまり挟まれた状態となる。このとき、放熱板41は、電池ケース10の上部側の位置に偏位して設けられ、例えば電池ケース10の上部側の3分の2の位置と接触するように位置し、熱がこもりやすい中央部付近にも設けられている。なお、ニッケル水素蓄電池は、通常の充放電においてもガスが発生するが、その量は少なく、化学反応で吸収されてしまうため、上部の温度が高くなるということはない。しかしながら、ニッケル水素蓄電池に対して過充電を行うと、電池ケース10内でガスが発生する。過充電により発生したガスは高温であり、そのガスが上部に移動するため、電池ケース10の高さH方向の上側ほど温度Tが高くなる温度傾斜が発生している。
First, the nickel metal hydride storage battery to be regenerated is inserted between the heat radiation plates 41 of the regenerator 40. The nickel metal hydride storage battery is placed on the upper surface of the bottom plate 46.
And as shown in FIG. 4, the space | interval of the heat sinks 41 supported by the support member 43 is narrowly changed by pressing the holding member 44 from both sides. Then, the heat sink 41 is located on both sides of each nickel metal hydride storage battery, and the battery case 10 and the heat sink 41 are in contact with each other, that is, sandwiched. At this time, the heat radiating plate 41 is deviated to a position on the upper side of the battery case 10, for example, is positioned so as to be in contact with two-thirds of the position on the upper side of the battery case 10, and heat tends to be trapped. It is also provided near the center. In addition, although nickel hydride storage battery produces | generates gas also in normal charging / discharging, since the quantity is small and will be absorbed by a chemical reaction, the temperature of an upper part does not become high. However, if the nickel hydride storage battery is overcharged, gas is generated in the battery case 10. Since the gas generated by overcharging is high temperature and the gas moves upward, a temperature gradient is generated in which the temperature T increases toward the upper side in the height H direction of the battery case 10.

そこで、上記のように、比較的温度の高い上側を放熱板41によって冷却することで、再生しているニッケル水素蓄電池の電池ケース10内の温度を均等化することができ、再生の効率の低下を抑制することができる。   Therefore, as described above, by cooling the upper side having a relatively high temperature by the heat radiating plate 41, the temperature in the battery case 10 of the nickel-metal hydride storage battery being regenerated can be equalized, and the regeneration efficiency is reduced. Can be suppressed.

また、放熱板41の上端部41aは、電池ケース10の上端部10aよりも上方に位置している。つまり、放熱板41の上端部41aは、電池ケース10の上端部10aよりも突出している。このため、放熱板41の突出した部位によって放熱を促進することができる。   Further, the upper end portion 41 a of the heat sink 41 is located above the upper end portion 10 a of the battery case 10. That is, the upper end portion 41 a of the heat radiating plate 41 protrudes from the upper end portion 10 a of the battery case 10. For this reason, heat radiation can be promoted by the protruding portion of the heat radiating plate 41.

このように、放熱板41が設けられた再生装置40において、充電装置42によって過充電を伴う再生処理が行われることで、ニッケル水素蓄電池の負極の放電リザーブが回復されてニッケル水素蓄電池が再生される。   Thus, in the regeneration device 40 provided with the heat radiating plate 41, the regeneration process accompanied by overcharging is performed by the charging device 42, whereby the discharge reserve of the negative electrode of the nickel hydride storage battery is recovered and the nickel hydride storage battery is regenerated. The

以上説明したように、本実施形態によれば、以下の効果を奏することができる。
(1)ニッケル水素蓄電池の通常使用時には、電池ケース10の中央部の温度が高くなるが、ニッケル水素蓄電池に対して過充電を行うと、電池ケース10内でのガスの移動に伴って、電池ケース10の上側ほど温度が高くなる。そこで、充電装置42は、放熱板41の上端部41aが電池ケース10の上端部10aよりも突出した状態となり、電池ケース10の上部側の位置に偏移して放熱板41が電池ケース10に挟まれている。このため、再生用の過充電中のニッケル水素蓄電池内で比較的温度の高い上側から電池ケース10の上端部10aよりも突出している放熱板41の上端部によって熱を逃がすことができる。また、ニッケル水素蓄電池の上部側の過度な温度上昇を抑制して、ニッケル水素蓄電池内における温度差の拡大を抑制することができる。よって、ニッケル水素蓄電池の温度を好適な状態としつつ、一度に複数のニッケル水素蓄電池を再生することができる。
As described above, according to this embodiment, the following effects can be obtained.
(1) At the time of normal use of the nickel metal hydride storage battery, the temperature of the central portion of the battery case 10 increases. However, when the nickel hydride storage battery is overcharged, the battery moves along with the movement of gas in the battery case 10. The temperature increases as the upper side of the case 10 increases. Therefore, the charging device 42 is in a state in which the upper end portion 41 a of the heat radiating plate 41 protrudes from the upper end portion 10 a of the battery case 10, and shifts to a position on the upper side of the battery case 10, so It is sandwiched. For this reason, heat can be released by the upper end portion of the heat radiating plate 41 protruding from the upper end portion 10a of the battery case 10 from the upper side where the temperature is relatively high in the rechargeable nickel-hydrogen storage battery. Moreover, the excessive temperature rise of the upper part side of a nickel hydride storage battery can be suppressed, and the expansion of the temperature difference in a nickel hydride storage battery can be suppressed. Therefore, it is possible to regenerate a plurality of nickel hydride storage batteries at a time while keeping the temperature of the nickel hydride storage battery in a suitable state.

(2)放熱板41の下方且つ電池ケース10同士の間の空間にスペーサ45を設けることで、電池ケース10が過度に膨張することをスペーサ45によって抑制することができる。また、スペーサ45の材料によって空気と相違する放熱性を与えることができる。   (2) By providing the spacer 45 below the heat radiating plate 41 and in the space between the battery cases 10, the spacer 45 can suppress the battery case 10 from being excessively expanded. Further, the material of the spacer 45 can provide heat dissipation different from air.

(3)支持部材43に支持された放熱板41の間隔を変更することができるので、放熱板41の間にニッケル水素蓄電池を設置した後に放熱板41とニッケル水素蓄電池との間隔を容易に詰めることができるようになる。   (3) Since the interval between the heat radiation plates 41 supported by the support member 43 can be changed, the interval between the heat radiation plate 41 and the nickel metal hydride storage battery can be easily reduced after the nickel hydride storage battery is installed between the heat radiation plates 41. Will be able to.

(4)支持部材43に支持された放熱板41同士の間隔を保持部材44によって変更することができるので、放熱板41の間にニッケル水素蓄電池を設置した後に放熱板41とニッケル水素蓄電池との間隔を容易に詰めることができるようになる。   (4) Since the interval between the heat sinks 41 supported by the support member 43 can be changed by the holding member 44, after installing the nickel metal hydride storage battery between the heat sinks 41, the heat sink 41 and the nickel metal hydride storage battery The interval can be easily packed.

(5)支持部材43の上下方向の位置を変更することで電池ケース10に対する放熱板41の上下方向への偏位量を容易に変更して、電池の温度を好適な状態とすることができるようになる。   (5) By changing the position of the support member 43 in the vertical direction, the amount of deviation of the heat sink 41 in the vertical direction with respect to the battery case 10 can be easily changed, so that the battery temperature can be in a suitable state. It becomes like this.

なお、上記実施形態は、これを適宜変更した以下の形態にて実施することもできる。
・上記実施形態において、放熱板41の上部を放熱板41の配列方向及び放熱板41の長手方向の少なくとも一方に広げた形状としてもよい。
In addition, the said embodiment can also be implemented with the following forms which changed this suitably.
In the above-described embodiment, the upper portion of the heat sink 41 may have a shape in which it is widened in at least one of the arrangement direction of the heat sink 41 and the longitudinal direction of the heat sink 41.

・上記実施形態において、放熱板41の広い面41bの形状は、電池ケース10同士の間に挟み込める形状であれば、他の形状を採用してもよい。例えば、放熱板41の広い面41bに凹凸を設けたり、穴を設けたりしてもよい。   -In the said embodiment, as long as the shape of the wide surface 41b of the heat sink 41 is a shape which can be pinched | interposed between battery cases 10, you may employ | adopt another shape. For example, the wide surface 41b of the heat radiating plate 41 may be provided with irregularities or holes.

・上記実施形態では、保持部材44を上下方向に移動可能な構成とした。しかしながら、電池ケース10に対する上下方向の接触範囲(偏位)の変更が不要であれば、保持部材44を上下方向に移動可能な構成を省略してもよい。   In the above embodiment, the holding member 44 is configured to be movable in the vertical direction. However, if it is not necessary to change the contact range (deviation) in the vertical direction with respect to the battery case 10, a configuration in which the holding member 44 can be moved in the vertical direction may be omitted.

・上記実施形態では、保持部材44によって支持部材43に支持された放熱板41を押圧する構成とした。しかしながら、保持部材44が押圧力を生じさせて支持部材43に支持された放熱板41を押圧する構成を省略してもよい。この場合、保持部材44と放熱板41とを手や別の部材等で押圧して、放熱板41をニッケル水素蓄電池の電池ケース10に当接させる。   In the above embodiment, the heat radiation plate 41 supported by the support member 43 by the holding member 44 is pressed. However, the configuration in which the holding member 44 generates a pressing force to press the heat radiating plate 41 supported by the support member 43 may be omitted. In this case, the holding member 44 and the heat radiating plate 41 are pressed with a hand or another member to bring the heat radiating plate 41 into contact with the battery case 10 of the nickel metal hydride storage battery.

・上記実施形態では、電池ケース10が並ぶ方向において放熱板41の間隔を変更する支持部材43を設けた。しかしながら、放熱板41の間隔が電池ケース10の厚みとほぼ同一であって当接することが可能であれば、支持部材43の支持孔43aを省略して、放熱板41を支持部材43に固定してもよい。   In the above embodiment, the support member 43 that changes the interval between the heat sinks 41 in the direction in which the battery cases 10 are arranged is provided. However, if the distance between the heat radiating plates 41 is substantially the same as the thickness of the battery case 10 and can contact, the support holes 43a of the support member 43 are omitted, and the heat radiating plate 41 is fixed to the support member 43. May be.

・上記実施形態では、放熱板41の下部に樹脂材料からなるスペーサ45を備えた。しかしながら、放熱板41よりも熱伝導率が低ければ、金属材料からなるスペーサ45を採用してもよい。   In the above embodiment, the spacer 45 made of a resin material is provided below the heat radiating plate 41. However, if the thermal conductivity is lower than that of the heat radiating plate 41, a spacer 45 made of a metal material may be employed.

・上記実施形態では、放熱板41の下部にスペーサ45を備えた。しかしながら、電池ケース10の下部に空間があってもよい。電池ケース10の下部におけるニッケル水素蓄電池の膨張が少なければ、スペーサ45の構成を省略してもよい。   In the above embodiment, the spacer 45 is provided below the heat radiating plate 41. However, there may be a space below the battery case 10. The configuration of the spacer 45 may be omitted if the nickel-metal hydride storage battery is less expanded at the lower part of the battery case 10.

・上記実施形態では、ニッケル水素蓄電池の電池ケース10の上部側の3分の2に放熱板41を接触させた。しかしながら、再生時における電池ケース10の温度傾斜に応じて電池ケース10の上側の2分の1や3分の1等に変更可能である。要するに、放熱板41が電池ケース10の上部側の位置に偏位して設けられていれば、電池ケース10内の温度差を抑制して電池の温度を好適な状態とすることができる。   -In the said embodiment, the heat sink 41 was made to contact 2/3 of the upper part side of the battery case 10 of a nickel metal hydride storage battery. However, it can be changed to one half or one third on the upper side of the battery case 10 in accordance with the temperature gradient of the battery case 10 at the time of reproduction. In short, if the heat radiating plate 41 is deviated to a position on the upper side of the battery case 10, the temperature difference in the battery case 10 can be suppressed and the battery temperature can be set to a suitable state.

・上記実施形態では、隔壁18に連通孔32を設けた構成により、同一の電池モジュール11の電槽15間において、ガスを流動可能として、電池モジュール11に対し安全弁33を1つ設けた。この態様以外に、電池モジュール11に収容された単電池のそれぞれが、独立した電槽15として、各電槽15に安全弁33を備え、それらの単電池が直列接続された構成であってもよい。   In the above embodiment, the configuration in which the communication hole 32 is provided in the partition wall 18 enables gas to flow between the battery cases 15 of the same battery module 11, and one safety valve 33 is provided for the battery module 11. In addition to this aspect, each of the single cells housed in the battery module 11 may have a configuration in which each battery case 15 includes a safety valve 33 as an independent battery case 15, and these single cells are connected in series. .

・上記実施形態では、並列に接続した電池モジュール11に対し定電流充電を行うようにしたが、定電流充電以外の充電を行う態様であってもよい。例えば、定電圧充電であってもよく、電流値等を変更する充電であってもよい。また、定電流充電で所定電圧に到達した後に定電圧充電する等、定電流充電及び定電圧充電を組み合わせた定電流定電圧充電や、周期的に充電装置を電池端子から電気的に切り離し、電池モジュール11の開放電圧を監視しながら、直流のパルス電流で充電を行うパルス充電を行ってもよい。   -In above-mentioned embodiment, although constant current charge was performed with respect to the battery module 11 connected in parallel, the aspect which performs charge other than constant current charge may be sufficient. For example, it may be constant voltage charging or charging that changes a current value or the like. In addition, constant current charge and constant voltage charge that combine constant current charge and constant voltage charge, such as constant current charge after reaching a predetermined voltage by constant current charge, or by periodically disconnecting the charging device from the battery terminal, While monitoring the open circuit voltage of the module 11, pulse charging may be performed in which charging is performed with a DC pulse current.

・上記実施形態では、電池モジュール11に対し安全弁33を1つ設けたが、電池モジュール11に対し安全弁33を複数設けてもよい。
・上記各実施形態では、ニッケル水素蓄電池の再生方法及び再生装置を、電気自動車やハイブリッド自動車の動力源として用いられる電池モジュール11に適用したが、他の装置の電源として用いられる電池モジュール11に適用してもよい。
In the above embodiment, one safety valve 33 is provided for the battery module 11, but a plurality of safety valves 33 may be provided for the battery module 11.
In each of the above embodiments, the nickel hydrogen storage battery regeneration method and regeneration device are applied to the battery module 11 used as a power source of an electric vehicle or a hybrid vehicle. However, the method is applied to the battery module 11 used as a power source for other devices. May be.

10…電池ケース、10a…上端部、11…電池モジュール、15…電槽、16…一体電槽、17…蓋体、18…隔壁、20…極板群、21…正極板、22…負極板、23…セパレータ、24…集電板、25…集電板、29…接続端子、30…単電池、32…連通孔、33…安全弁、40…再生装置、41…放熱板、41a…上端部、41b…面、41c…支持棒、42…充電装置、43…支持部材、43a…支持孔、44…保持部材、45…スペーサ、46…底板。   DESCRIPTION OF SYMBOLS 10 ... Battery case, 10a ... Upper end part, 11 ... Battery module, 15 ... Battery case, 16 ... Integrated battery case, 17 ... Lid body, 18 ... Partition, 20 ... Electrode plate group, 21 ... Positive electrode plate, 22 ... Negative electrode plate , 23 ... separator, 24 ... current collector plate, 25 ... current collector plate, 29 ... connection terminal, 30 ... single cell, 32 ... communication hole, 33 ... safety valve, 40 ... regenerator, 41 ... heat sink, 41a ... upper end , 41b ... surface, 41c ... support rod, 42 ... charging device, 43 ... support member, 43a ... support hole, 44 ... holding member, 45 ... spacer, 46 ... bottom plate.

Claims (6)

電池ケースの内部圧力が所定の圧力以上となることにより開弁する安全弁を前記電池ケースの上部に備えたニッケル水素蓄電池を過充電することで再生を図るニッケル水素蓄電池の再生装置であって、
前記電池ケースの広い面同士が対向するように並べられた複数のニッケル水素蓄電池の間にそれぞれ挟まれている放熱板と、
前記並べられた複数のニッケル水素蓄電池に同時に再生用の過充電を行う充電装置と、を備え、
前記放熱板は、前記電池ケースの上部側の位置に偏位して設けられるとともに、
前記放熱板の上端部は、前記電池ケースの上端部よりも上方に位置している
ニッケル水素蓄電池の再生装置。
A regeneration device for a nickel metal hydride storage battery that regenerates by overcharging a nickel metal hydride storage battery that has a safety valve that opens when the internal pressure of the battery case is equal to or greater than a predetermined pressure,
A heat sink sandwiched between a plurality of nickel metal hydride storage batteries arranged so that the wide surfaces of the battery case face each other;
A charging device that simultaneously performs overcharging for regeneration on the plurality of arranged nickel-metal hydride batteries,
The heat sink is provided in a deviated position on the upper side of the battery case,
The regenerator of a nickel metal hydride storage battery, wherein an upper end portion of the heat radiating plate is positioned above an upper end portion of the battery case.
前記放熱板の下部に前記放熱板よりも熱伝導率の低い部材からなるスペーサを備える
請求項1に記載のニッケル水素蓄電池の再生装置。
The regeneration device for a nickel-metal hydride storage battery according to claim 1, further comprising a spacer made of a member having a lower thermal conductivity than the heat radiating plate at a lower portion of the heat radiating plate.
前記電池ケースが並ぶ方向において前記放熱板の間隔を変更可能な支持部材を備える
請求項1又は2に記載のニッケル水素蓄電池の再生装置。
The regeneration device for a nickel-metal hydride storage battery according to claim 1 or 2, further comprising a support member capable of changing an interval between the heat sinks in a direction in which the battery cases are arranged.
前記支持部材に支持された前記放熱板を前記放熱板の配列方向に押圧することで前記放熱板同士の間隔を変更する押圧部材を備える
請求項3に記載のニッケル水素蓄電池の再生装置。
The regeneration device for a nickel-metal hydride storage battery according to claim 3, further comprising a pressing member that changes an interval between the heat radiating plates by pressing the heat radiating plates supported by the support member in an arrangement direction of the heat radiating plates.
前記支持部材は前記放熱板の上下方向への偏移量を変更する
請求項3又は4に記載のニッケル水素蓄電池の再生装置。
The regeneration device for a nickel-metal hydride storage battery according to claim 3 or 4, wherein the support member changes an amount of vertical displacement of the heat radiating plate.
電池ケースの内部圧力が所定の圧力以上であるときに開く安全弁を前記電池ケースの上部に備えたニッケル水素蓄電池の再生方法であって、
前記電池ケースの広い面同士が対向するように並べられた複数のニッケル水素蓄電池の間に放熱板がそれぞれ挟まれた状態で、充電装置により前記並べられた複数のニッケル水素蓄電池に同時に再生用の過充電を行い、
前記放熱板を前記電池ケースの上部側の位置に偏移した位置、且つ前記放熱板の上端部を前記電池ケースの上端部よりも上方に位置させる
ニッケル水素蓄電池の再生方法。
A method for regenerating a nickel-metal hydride storage battery comprising a safety valve at the top of the battery case that opens when the internal pressure of the battery case is equal to or higher than a predetermined pressure,
In a state where a heat dissipation plate is sandwiched between a plurality of nickel metal hydride storage batteries arranged so that the wide surfaces of the battery case face each other, a recharging device simultaneously reproduces the plurality of nickel hydride storage batteries arranged by the charging device. Overcharge,
A method for regenerating a nickel metal hydride storage battery, wherein the heat radiating plate is shifted to a position on the upper side of the battery case, and an upper end portion of the heat radiating plate is positioned higher than an upper end portion of the battery case.
JP2016143683A 2016-07-21 2016-07-21 Nickel-metal hydride storage battery regeneration apparatus and nickel-metal hydride storage battery regeneration method Active JP6632943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016143683A JP6632943B2 (en) 2016-07-21 2016-07-21 Nickel-metal hydride storage battery regeneration apparatus and nickel-metal hydride storage battery regeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016143683A JP6632943B2 (en) 2016-07-21 2016-07-21 Nickel-metal hydride storage battery regeneration apparatus and nickel-metal hydride storage battery regeneration method

Publications (2)

Publication Number Publication Date
JP2018014270A true JP2018014270A (en) 2018-01-25
JP6632943B2 JP6632943B2 (en) 2020-01-22

Family

ID=61019571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016143683A Active JP6632943B2 (en) 2016-07-21 2016-07-21 Nickel-metal hydride storage battery regeneration apparatus and nickel-metal hydride storage battery regeneration method

Country Status (1)

Country Link
JP (1) JP6632943B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020136198A (en) * 2019-02-25 2020-08-31 プライムアースEvエナジー株式会社 Regeneration process of nickel hydrogen secondary battery and regenerator of nickel hydrogen secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084347A (en) * 2010-10-08 2012-04-26 Nitto Denko Corp Battery pack device
US8465864B1 (en) * 2012-02-07 2013-06-18 Hyundai Motor Company Heat dissipation plate for battery cell module and battery cell module having the same
JP2014186817A (en) * 2013-03-22 2014-10-02 Primearth Ev Energy Co Ltd Adjustment method of nickel-metal-hydride storage battery
JP2014207151A (en) * 2013-04-12 2014-10-30 プライムアースEvエナジー株式会社 Method for recovering battery capacity, method for recovering battery pack capacity, battery capacity recovery device, and battery pack capacity recovery device
JP2014222593A (en) * 2013-05-13 2014-11-27 プライムアースEvエナジー株式会社 Battery pack
JP2015118897A (en) * 2013-12-20 2015-06-25 プライムアースEvエナジー株式会社 Method for adjusting battery module, and device for adjusting battery module
JP2015204267A (en) * 2014-04-16 2015-11-16 三菱電機株式会社 battery pack

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084347A (en) * 2010-10-08 2012-04-26 Nitto Denko Corp Battery pack device
US8465864B1 (en) * 2012-02-07 2013-06-18 Hyundai Motor Company Heat dissipation plate for battery cell module and battery cell module having the same
JP2014186817A (en) * 2013-03-22 2014-10-02 Primearth Ev Energy Co Ltd Adjustment method of nickel-metal-hydride storage battery
JP2014207151A (en) * 2013-04-12 2014-10-30 プライムアースEvエナジー株式会社 Method for recovering battery capacity, method for recovering battery pack capacity, battery capacity recovery device, and battery pack capacity recovery device
JP2014222593A (en) * 2013-05-13 2014-11-27 プライムアースEvエナジー株式会社 Battery pack
JP2015118897A (en) * 2013-12-20 2015-06-25 プライムアースEvエナジー株式会社 Method for adjusting battery module, and device for adjusting battery module
JP2015204267A (en) * 2014-04-16 2015-11-16 三菱電機株式会社 battery pack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020136198A (en) * 2019-02-25 2020-08-31 プライムアースEvエナジー株式会社 Regeneration process of nickel hydrogen secondary battery and regenerator of nickel hydrogen secondary battery
JP7036757B2 (en) 2019-02-25 2022-03-15 プライムアースEvエナジー株式会社 Nickel-metal hydride secondary battery regeneration method and nickel-metal hydride secondary battery regeneration device

Also Published As

Publication number Publication date
JP6632943B2 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
JP7366236B2 (en) Battery modules, battery packs and automobiles
JP6762383B2 (en) Battery module, battery pack containing it and car containing this battery pack
US8835035B2 (en) Battery pack
JP3365577B2 (en) Single-cell and unit cells of sealed nickel-hydrogen storage batteries
JP4102957B2 (en) Battery module case
JP2018538662A (en) Battery pack and automobile including the battery pack
JP6797301B2 (en) Battery module
JPH0785847A (en) Unit cell and battery system of sealed type alkaline storage battery
JP3293287B2 (en) Square sealed alkaline storage battery and its unit battery
US9566853B2 (en) Vehicle
KR102026386B1 (en) Battery module
US6669742B2 (en) Method for producing a nickel metal-hydride storage battery
JP5937341B2 (en) Secondary battery, secondary battery system, secondary battery and method for reducing discharge reserve of secondary battery system
JP2010061988A (en) Storage battery device
JP6632943B2 (en) Nickel-metal hydride storage battery regeneration apparatus and nickel-metal hydride storage battery regeneration method
JP7036757B2 (en) Nickel-metal hydride secondary battery regeneration method and nickel-metal hydride secondary battery regeneration device
JP2017073337A (en) Assembled battery
JPH0831390A (en) Sealed storage battery and its manufacture
JP2008235036A (en) Adjustment method for nickel hydrogen storage battery
JP2013041781A (en) Storage element and storage element system
EP0907216B1 (en) Open and maintenance free accumulator of industrial type
US20120077061A1 (en) Nickel-Metal Hydride Accumulator
KR20150033266A (en) Secondary battery with cooling structure
JP6672095B2 (en) Nickel-metal hydride storage battery regeneration method and nickel-metal hydride storage battery regeneration device
BRPI0618626A2 (en) rechargeable battery cell, electromagnetic relay, circuit element arrangement, and battery management method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191211

R150 Certificate of patent or registration of utility model

Ref document number: 6632943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250