JP2018013257A - Heat Pump Water Heater - Google Patents

Heat Pump Water Heater Download PDF

Info

Publication number
JP2018013257A
JP2018013257A JP2016141433A JP2016141433A JP2018013257A JP 2018013257 A JP2018013257 A JP 2018013257A JP 2016141433 A JP2016141433 A JP 2016141433A JP 2016141433 A JP2016141433 A JP 2016141433A JP 2018013257 A JP2018013257 A JP 2018013257A
Authority
JP
Japan
Prior art keywords
hot water
temperature
storage tank
water storage
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016141433A
Other languages
Japanese (ja)
Inventor
真佐行 濱田
Masayuki Hamada
真佐行 濱田
洋平 大野
Yohei Ono
洋平 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016141433A priority Critical patent/JP2018013257A/en
Priority to EP17176005.1A priority patent/EP3273176B1/en
Priority to CN201710565975.2A priority patent/CN107631482A/en
Publication of JP2018013257A publication Critical patent/JP2018013257A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/345Control of fans, e.g. on-off control
    • F24H15/35Control of the speed of fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
    • F24H9/2021Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/07Exceeding a certain pressure value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump water heater capable of preventing high pressure side pressure of a refrigerant circuit from becoming overpressure.SOLUTION: A heat pump water heater 100 includes: a refrigerant circuit 80 formed by annularly interconnecting a compressor 1, a radiator 4, a decompression device 3 and an evaporator 2 by using refrigerant piping 81; a fan 7 for sending air to the evaporator 2; a hot water storage tank 6 for storing hot water; and a control device 13 for controlling at least the fan 7. The radiator 4 is constituted by winding the refrigerant piping 81 around the outer periphery of the hot water storage tank 6. When a temperature of the hot water in the hot water storage tank 6 is high, rotational frequency of the fan 7 is lower compared to when the temperature is low.SELECTED DRAWING: Figure 1

Description

本発明はヒートポンプ給湯機に関するものである。   The present invention relates to a heat pump water heater.

従来、この種のヒートポンプ給湯機として、圧縮機、放熱器、減圧装置、蒸発器を冷媒配管で環状に接続した冷媒回路を有するヒートポンプ装置と、湯水を貯留する貯湯タンクと、貯湯タンクの下部と上部とを環状に水配管で接続して構成され、途中に放熱器とポンプが設けられた加熱回路と、を備えたものがある。このヒートポンプ給湯機は、貯湯タンク下部の湯水をポンプによって放熱器に送り、湯水を加熱して貯湯タンクの上部へと戻すことで、貯湯タンクに湯水を貯留する(例えば、特許文献1参照)。   Conventionally, as this type of heat pump water heater, a heat pump device having a refrigerant circuit in which a compressor, a radiator, a decompression device, and an evaporator are connected in a ring shape with a refrigerant pipe, a hot water storage tank for storing hot water, and a lower portion of the hot water storage tank, Some have a heating circuit that is formed by connecting an upper part with a water pipe in a ring shape and is provided with a radiator and a pump in the middle. This heat pump water heater stores hot water in a hot water storage tank by sending hot water from the lower part of the hot water storage tank to a radiator, heating the hot water and returning it to the upper part of the hot water storage tank (see, for example, Patent Document 1).

また、このヒートポンプ給湯機は、放熱器の入水温度が所定温度よりも高くなった場合には、ポンプ回転数を増加させる。これにより、放熱器での熱交換量を増大させて、ヒートポンプ装置の高圧上昇を抑制するようにしている。   Further, this heat pump water heater increases the pump rotation speed when the incoming water temperature of the radiator becomes higher than a predetermined temperature. As a result, the amount of heat exchange in the radiator is increased to suppress an increase in the high pressure of the heat pump device.

また、この種のヒートポンプ給湯機として、圧縮機、放熱器、減圧装置、蒸発器を冷媒配管で環状に接続した冷媒回路と、湯水を貯留する貯湯タンクとを備え、放熱器を、冷媒配管を螺旋状に巻き回して構成したものがある(例えば、特許文献2参照)。   In addition, this type of heat pump water heater includes a refrigerant circuit in which a compressor, a radiator, a decompressor, and an evaporator are connected in a ring shape with a refrigerant pipe, and a hot water storage tank for storing hot water. There exists what was comprised by spirally winding (for example, refer patent document 2).

特開2001−263802号公報JP 2001-263802 A 中国実用新案公告第201463270号明細書China Utility Model Notice No. 2014463270

前記特許文献1の構成では、放熱器への入水温度が上昇し、冷媒回路の高圧側圧力が上昇しやすい運転条件において、ポンプで放熱器を流れる被加熱体(水)の流量を増大させて熱交換量を増大させれば、冷媒回路の高圧側圧力の上昇を抑制することが可能である。   In the configuration of Patent Document 1, the flow rate of the heated body (water) flowing through the radiator with the pump is increased under operating conditions in which the temperature of water entering the radiator increases and the high-pressure side pressure of the refrigerant circuit tends to increase. If the amount of heat exchange is increased, it is possible to suppress an increase in the high-pressure side pressure of the refrigerant circuit.

一方、冷媒配管をタンクの外周に巻き回して放熱器を構成した特許文献2の構成では、被加熱体を流動させて熱交換量を増大させることができない。よって、貯湯タンク内部の被加熱体の温度が上昇すると、図5に示すように、冷媒回路の高圧側圧力が上昇し、過大圧力が発生する場合があった。   On the other hand, in the configuration of Patent Document 2 in which the radiator pipe is configured by winding the refrigerant pipe around the outer periphery of the tank, it is not possible to increase the heat exchange amount by causing the heated body to flow. Therefore, when the temperature of the heated object inside the hot water storage tank rises, as shown in FIG. 5, the high-pressure side pressure of the refrigerant circuit rises, and an excessive pressure may be generated.

本発明は、前記従来の課題を解決するもので、冷媒回路の高圧側圧力が過大圧力となることを防止したヒートポンプ給湯機を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the heat pump water heater which prevented that the high voltage | pressure side pressure of a refrigerant circuit became an excessive pressure.

前記従来の課題を解決するために、本発明のヒートポンプ給湯機は、圧縮機、放熱器、減圧装置、蒸発器が冷媒配管で環状に接続された冷媒回路と、前記蒸発器に空気を送風するファンと、湯水を貯留する貯湯タンクと、前記貯湯タンクに設けられたタンク温度センサと、少なくとも前記ファンの動作を制御する制御装置と、を備え、前記放熱器は、前記冷媒配管を前記貯湯タンクの外周に巻き付けて構成されており、かつ、前記貯湯タンク内の湯水の温度が低いときよりも高いときの方が、前記ファンの回転数は低いことを特徴とするものである。   In order to solve the above-described conventional problems, a heat pump water heater of the present invention includes a compressor, a radiator, a decompression device, a refrigerant circuit in which an evaporator is annularly connected by a refrigerant pipe, and air is blown to the evaporator. A fan, a hot water storage tank for storing hot water, a tank temperature sensor provided in the hot water storage tank, and a control device for controlling at least the operation of the fan, wherein the radiator connects the refrigerant pipe to the hot water storage tank. The number of rotations of the fan is lower when the temperature of the hot water in the hot water storage tank is higher than when the temperature of the hot water is low.

これにより、貯湯タンク内の水温が高く、冷媒回路の高圧側圧力が上昇しやすい条件でファンの回転数を低下させるので、蒸発能力が低下し、その結果、冷媒回路の高圧側圧力が過大となることを防止できる。   This reduces the rotational speed of the fan under conditions where the water temperature in the hot water storage tank is high and the high pressure side pressure of the refrigerant circuit is likely to increase, resulting in a decrease in evaporation capacity, and as a result, the high pressure side pressure of the refrigerant circuit is excessive. Can be prevented.

本発明によれば、冷媒回路の高圧側圧力が過大圧力となることを防止したヒートポンプ給湯機を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the heat pump water heater which prevented the high pressure side pressure of a refrigerant circuit from becoming excessive pressure can be provided.

本発明の実施の形態1におけるヒートポンプ給湯機の概略構成図1 is a schematic configuration diagram of a heat pump water heater in Embodiment 1 of the present invention. 同ヒートポンプ給湯機の加熱運転におけるタンク内水温、ファン回転数、冷媒圧力の推移を示す図The figure which shows transition of tank water temperature, fan rotation speed, refrigerant pressure in heating operation of the heat pump water heater (a)同ヒートポンプ給湯機の加熱運転における低外気温度時のタンク内水温、ファン回転数、冷媒圧力の推移を示す図(b)同ヒートポンプ給湯機の加熱運転における高外気温度時のタンク内水温、ファン回転数、冷媒圧力の推移を示す図(A) The figure which shows transition of the water temperature in a tank at the time of the low outside air temperature in the heating operation of the heat pump water heater, the fan rotation speed, and the refrigerant pressure. Showing changes in fan speed and refrigerant pressure (a)同ヒートポンプ給湯機の加熱運転おけるタンク内水温と高圧側圧力及びファン回転数との関係を示す図(b)同ヒートポンプ給湯機の加熱運転におけるモリエル線図(A) The figure which shows the relationship between the water temperature in a tank in the heating operation of the heat pump water heater, the high pressure side pressure, and the fan rotation speed. (B) Mollier diagram in the heating operation of the heat pump water heater. 従来のヒートポンプ給湯機の加熱運転におけるタンク内水温と高圧側圧力及びファン回転数との関係を示す図The figure which shows the relationship between the water temperature in a tank in the heating operation of the conventional heat pump water heater, the high-pressure side pressure, and the fan rotation speed

第1の発明は、圧縮機、放熱器、減圧装置、蒸発器が冷媒配管で環状に接続された冷媒回路と、前記蒸発器に空気を送風するファンと、湯水を貯留する貯湯タンクと、前記貯湯タンクに設けられたタンク温度センサと、少なくとも前記ファンの動作を制御する制御装置と、を備え、前記放熱器は、前記冷媒配管を前記貯湯タンクの外周に巻き付けて構成されており、かつ、前記貯湯タンク内の湯水の温度が低いときよりも高いときの方が、前記ファンの回転数は低いことを特徴とするヒートポンプ給湯機である。   A first invention includes a compressor, a radiator, a decompression device, a refrigerant circuit in which an evaporator is annularly connected by a refrigerant pipe, a fan for blowing air to the evaporator, a hot water storage tank for storing hot water, A tank temperature sensor provided in the hot water storage tank, and a control device that controls at least the operation of the fan, the radiator is configured by winding the refrigerant pipe around the outer periphery of the hot water storage tank, and The heat pump water heater is characterized in that the rotational speed of the fan is lower when the temperature of the hot water in the hot water storage tank is higher than when the temperature is low.

これにより、貯湯タンク内の水温が高く、冷媒回路の高圧側圧力が上昇しやすい条件でファンの回転数を低下させるので、蒸発能力が低下し、その結果、冷媒回路の高圧側圧力が過大となることを防止できる。   This reduces the rotational speed of the fan under conditions where the water temperature in the hot water storage tank is high and the high pressure side pressure of the refrigerant circuit is likely to increase, resulting in a decrease in evaporation capacity, and as a result, the high pressure side pressure of the refrigerant circuit is excessive. Can be prevented.

第2の発明は、特に、第1の発明において、外気温度を検出する外気温度センサを備え、前記外気温度が低いときよりも高いときの方が、前記ファンの回転数を低下させるときの低下量は大きいことを特徴とするものである。   In particular, the second invention includes an outside temperature sensor for detecting the outside temperature in the first invention, and the lowering of the fan speed is lower when the outside temperature is higher than when the outside temperature is low. The quantity is characterized by being large.

これにより、蒸発器での吸熱量は、外気温度が高いほど多くなるから、外気温度が相対的に高いときに、ファンの回転数の低下量を大きくすることで、蒸発器での吸熱量を低下させ、蒸発能力を減ずることで、冷媒回路の高圧側圧力の過度な上昇をより確実に抑制することができる。   As a result, the amount of heat absorbed by the evaporator increases as the outside air temperature increases, so when the outside air temperature is relatively high, the amount of heat absorbed by the evaporator can be reduced by increasing the amount of decrease in the rotational speed of the fan. By reducing and reducing the evaporation capability, an excessive increase in the high-pressure side pressure of the refrigerant circuit can be more reliably suppressed.

第3の発明は、特に、第1または第2の発明において、前記圧縮機からの冷媒の吐出温度を検出する吐出温度センサと、外気温度を検出する外気温度センサと、を備え、前記減圧装置は電子膨張弁であり、前記圧縮機からの冷媒の吐出温度が、前記貯湯タンク内の湯水の温度と前記外気温度とから決定される目標吐出温度となるように、前記電子膨張弁の開度を制御することを特徴とするものである。   In particular, the third invention is the first or second invention, further comprising: a discharge temperature sensor that detects a discharge temperature of the refrigerant from the compressor; and an outside air temperature sensor that detects an outside air temperature; Is an electronic expansion valve, and the degree of opening of the electronic expansion valve is such that the refrigerant discharge temperature from the compressor becomes a target discharge temperature determined from the temperature of the hot water in the hot water storage tank and the outside air temperature. It is characterized by controlling.

これにより、圧縮機に蒸発器から吸入される冷媒状態を、最適(乾き度1)とすることができ、冷媒回路の高効率化することができるとともに、圧縮機からの吐出温度、ひいて
は、冷媒回路の高圧側圧力の過度な上昇をより確実に抑制することができる。
As a result, the refrigerant state sucked into the compressor from the evaporator can be optimized (dryness of 1), the efficiency of the refrigerant circuit can be improved, the discharge temperature from the compressor, and the refrigerant An excessive increase in the high-pressure side pressure of the circuit can be suppressed more reliably.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本実施の形態におけるヒートポンプ給湯機の概略構成を示すものである。図1に示すように、このヒートポンプ給湯機100は、圧縮機1、放熱器4、減圧装置3、蒸発器2が冷媒配管81で順に環状に接続された冷媒回路80と、湯水を貯留する貯湯タンク6とを備えている。冷媒回路80を循環する冷媒としては、R410A、R407C、R134a、R32等のフロン系冷媒や、二酸化炭素等の自然冷媒を用いることができる。なお、本実施の形態では、フロン系冷媒を用い、冷媒回路80の高圧側圧力が亜臨界状態で運転する仕様としている。
(Embodiment 1)
FIG. 1 shows a schematic configuration of a heat pump water heater in the present embodiment. As shown in FIG. 1, this heat pump water heater 100 includes a refrigerant circuit 80 in which a compressor 1, a radiator 4, a decompressor 3, and an evaporator 2 are sequentially connected in an annular manner through a refrigerant pipe 81, and hot water storage for storing hot water. And a tank 6. As the refrigerant circulating in the refrigerant circuit 80, a fluorocarbon refrigerant such as R410A, R407C, R134a, and R32, or a natural refrigerant such as carbon dioxide can be used. In the present embodiment, a specification is made such that a fluorocarbon refrigerant is used and the high pressure side pressure of the refrigerant circuit 80 is operated in a subcritical state.

減圧装置3としては、開度調整が自在な電子膨張弁や、キャピラリーチューブを用いることができる。本実施の形態では、電子膨張弁を用いている。   As the decompression device 3, an electronic expansion valve or a capillary tube whose opening degree can be freely adjusted can be used. In this embodiment, an electronic expansion valve is used.

放熱器4は、冷媒配管81が貯湯タンク6の外周に螺旋状に巻き付け固定されている。圧縮機1から吐出された高温高圧の冷媒が、放熱器4を構成する冷媒配管を流れ、貯湯タンク6内の湯水に放熱することで、貯湯タンク6の内部の湯水が加熱される。   In the radiator 4, a refrigerant pipe 81 is spirally wound around the outer periphery of the hot water storage tank 6 and fixed. The high-temperature and high-pressure refrigerant discharged from the compressor 1 flows through the refrigerant piping constituting the radiator 4 and dissipates heat to the hot water in the hot water storage tank 6, so that the hot water in the hot water storage tank 6 is heated.

蒸発器2の近傍には、蒸発器2に空気を送風するためのファン7が設けられている。ファン7の回転数は自在に調整することができる。また、蒸発器2の近傍には外気温度を検出する外気温度センサ11が設けられている。また、圧縮機1からの吐出冷媒の温度を検出する吐出温度センサ12が設けられている。   A fan 7 for blowing air to the evaporator 2 is provided in the vicinity of the evaporator 2. The rotational speed of the fan 7 can be freely adjusted. An outside air temperature sensor 11 that detects the outside air temperature is provided in the vicinity of the evaporator 2. A discharge temperature sensor 12 that detects the temperature of the refrigerant discharged from the compressor 1 is also provided.

貯湯タンク6には、貯湯タンク6に水を供給する給水管8と、貯湯タンク6内部の湯水を出湯させる出湯管9とが接続されている。給水管8は貯湯タンク6の下部に接続され、出湯管9は貯湯タンク6の上部に接続されている。   Connected to the hot water storage tank 6 are a water supply pipe 8 for supplying water to the hot water storage tank 6 and a hot water discharge pipe 9 for discharging hot water in the hot water storage tank 6. The water supply pipe 8 is connected to the lower part of the hot water storage tank 6, and the hot water discharge pipe 9 is connected to the upper part of the hot water storage tank 6.

また、貯湯タンク6の高さ方向略中央部に、貯湯タンク6内の湯水の温度(貯湯タンク6の外表面の温度でも良い)を検出するタンク温度センサ10が配置されている。なお、タンク温度センサ10は、貯湯タンク6の高さ方向に所定の間隔をおいて複数設けられていてもよい。   In addition, a tank temperature sensor 10 that detects the temperature of hot water in the hot water storage tank 6 (or the temperature of the outer surface of the hot water storage tank 6) is disposed at a substantially central portion in the height direction of the hot water storage tank 6. A plurality of tank temperature sensors 10 may be provided at predetermined intervals in the height direction of the hot water storage tank 6.

制御装置13は、貯湯タンク6内の湯水を加熱する加熱運転を行う。制御装置13は、タンク温度センサ10、外気温度センサ11の検出温度に基づいて、圧縮機1の回転数、減圧装置3である電子膨張弁の開度、ファン7の回転数の少なくともいずれかを制御する。なお、ヒートポンプ給湯機100には、その他のセンサが設けられていてもよい。   The control device 13 performs a heating operation for heating the hot water in the hot water storage tank 6. Based on the temperature detected by the tank temperature sensor 10 and the outside air temperature sensor 11, the control device 13 determines at least one of the rotational speed of the compressor 1, the opening of the electronic expansion valve that is the decompression device 3, and the rotational speed of the fan 7. Control. The heat pump water heater 100 may be provided with other sensors.

加熱運転において、圧縮機1から吐出された高温高圧の冷媒は、放熱器4に流入し、貯湯タンク6内の湯水に放熱して、全部または一部が凝縮する。放熱器4から流出した冷媒は、減圧装置3である電子膨張弁によって減圧され、蒸発器2に流入する。   In the heating operation, the high-temperature and high-pressure refrigerant discharged from the compressor 1 flows into the radiator 4, dissipates heat to the hot water in the hot water storage tank 6, and is wholly or partially condensed. The refrigerant flowing out of the radiator 4 is depressurized by the electronic expansion valve that is the decompression device 3 and flows into the evaporator 2.

蒸発器2において、冷媒は、ファン7によって送風された空気と熱交換を行い、蒸発する。その後、圧縮機1に再度吸入される。この動作が繰り返されることにより、貯湯タンク6内の湯水が加熱される
ここで、放熱器4を構成する冷媒配管は、冷媒が、貯湯タンク6の外表面の上部から下部に向けて流れるように構成されていることが好ましい。すなわち、放熱器4において、相対的に高温な冷媒が、貯湯タンク6の外表面の上部に存在していることが好ましい。貯
湯タンク6の内部には、給水管8を介して下部から低温の水が流入し、貯湯タンク6内の湯は、出湯管9から流出する。
In the evaporator 2, the refrigerant exchanges heat with the air blown by the fan 7 and evaporates. Thereafter, it is sucked into the compressor 1 again. By repeating this operation, the hot water in the hot water storage tank 6 is heated. Here, the refrigerant pipe constituting the radiator 4 allows the refrigerant to flow from the upper part to the lower part of the outer surface of the hot water storage tank 6. It is preferable to be configured. That is, in the radiator 4, it is preferable that a relatively high-temperature refrigerant exists above the outer surface of the hot water storage tank 6. Low temperature water flows into the hot water storage tank 6 from below through the water supply pipe 8, and the hot water in the hot water storage tank 6 flows out from the hot water discharge pipe 9.

したがって、貯湯タンク6の下部の温度は相対的に低温となる。冷媒が貯湯タンク6の外表面の上部から下部に向けて流れるように構成されていると、冷媒が、放熱器4のうち貯湯タンク6の下方の部分で貯湯タンク6内の低温の水に放熱するので、放熱器4におけるエンタルピー差が増大する。その結果、蒸発器2での冷媒の吸熱量を増大させることができるので、ヒートポンプ装置としての加熱効率を向上させることができる。   Therefore, the temperature at the lower part of the hot water storage tank 6 is relatively low. When the refrigerant is configured to flow from the upper part to the lower part of the outer surface of the hot water storage tank 6, the refrigerant dissipates heat to the low-temperature water in the hot water storage tank 6 in the portion of the radiator 4 below the hot water storage tank 6. As a result, the enthalpy difference in the radiator 4 increases. As a result, since the heat absorption amount of the refrigerant in the evaporator 2 can be increased, the heating efficiency as the heat pump device can be improved.

貯湯タンク6内の湯水の温度(タンク温度)は、加熱運転の開始とともに、図2に示すように、次第に上昇する。また、タンク温度の上昇に伴って、冷媒回路80内の高圧側圧力も次第に上昇する。   The temperature of the hot water in the hot water storage tank 6 (tank temperature) gradually increases with the start of the heating operation, as shown in FIG. Further, as the tank temperature rises, the high-pressure side pressure in the refrigerant circuit 80 gradually increases.

タンク温度が上昇すると、放熱器4における冷媒と被加熱体(貯湯タンク6内の湯水)との温度差が減少して熱交換量が低下する。これにより、冷媒が十分に放熱することなく放熱器4から流出し、蒸発圧力が増大するとともに凝縮圧力(高圧側圧力)が増大して、高圧側圧力が、冷媒回路80の運転範囲として定められる上限圧力を超えてしまう場合がある。   When the tank temperature rises, the temperature difference between the refrigerant in the radiator 4 and the heated object (hot water in the hot water storage tank 6) decreases, and the heat exchange amount decreases. As a result, the refrigerant flows out of the radiator 4 without sufficiently radiating heat, the evaporation pressure increases, the condensation pressure (high pressure side pressure) increases, and the high pressure side pressure is determined as the operating range of the refrigerant circuit 80. The maximum pressure may be exceeded.

特に、冷媒配管81を貯湯タンク6の外周に巻き回して放熱器4を構成する場合には、放熱器4における被加熱体(貯湯タンク6内の湯水)を流動させることができないため、タンク温度の上昇が、高圧側圧力の上昇に直接的に影響し、高圧側圧力の上昇が著しい。したがって、タンク温度の上昇に起因した高圧側圧力の過度な上昇を防止することが必要となる。   In particular, when the radiator 4 is formed by winding the refrigerant pipe 81 around the outer periphery of the hot water storage tank 6, the heated body (hot water in the hot water storage tank 6) in the heat radiator 4 cannot flow. The increase in the pressure directly affects the increase in the high-pressure side pressure, and the increase in the high-pressure side pressure is remarkable. Therefore, it is necessary to prevent an excessive increase in the high-pressure side pressure due to an increase in the tank temperature.

本発明では、図2に示すように、制御装置13が、加熱運転において、貯湯タンク6内の湯水の温度に応じて、ファン7の回転数を低下させる。すなわち、制御装置が、タンク温度センサ10の検出温度が低いときよりも高いときに、ファンの回転数を低下させる。これにより、蒸発器2での冷媒の吸熱量が低減し、それに伴って冷媒回路80の高圧側圧力を低下させることができる。   In the present invention, as shown in FIG. 2, the controller 13 reduces the rotational speed of the fan 7 in accordance with the temperature of the hot water in the hot water storage tank 6 in the heating operation. That is, the control device reduces the rotational speed of the fan when the temperature detected by the tank temperature sensor 10 is higher than when the temperature is low. Thereby, the heat absorption amount of the refrigerant in the evaporator 2 can be reduced, and accordingly, the high-pressure side pressure of the refrigerant circuit 80 can be lowered.

制御装置13は、タンク温度センサ10の検出温度が所定温度(例えば、50度)となったときにファンの回転数を低下させ、その後、タンク温度センサ10の検出温度が所定温度上昇する毎に、ファン7の回転数を段階的に低下させる。これにより、図4(a)(b)に示すように、冷媒回路80の高圧側圧力を上限圧力未満に保ちつつ、加熱運転を実行して、湯水を設定温度まで加熱することができる。   The control device 13 decreases the rotational speed of the fan when the detected temperature of the tank temperature sensor 10 reaches a predetermined temperature (for example, 50 degrees), and thereafter, every time the detected temperature of the tank temperature sensor 10 increases by the predetermined temperature. Then, the rotational speed of the fan 7 is decreased stepwise. As a result, as shown in FIGS. 4A and 4B, the hot water can be heated to the set temperature by performing the heating operation while keeping the high-pressure side pressure of the refrigerant circuit 80 below the upper limit pressure.

なお、タンク温度センサ10を複数設けた場合には、下方に設けられたタンク温度センサ10の検出温度に応じて、ファン7の回転数を低下させることが好ましい。   When a plurality of tank temperature sensors 10 are provided, it is preferable to reduce the rotational speed of the fan 7 according to the temperature detected by the tank temperature sensor 10 provided below.

また、制御装置13は、タンク温度センサ10の検出温度が所定温度となったときにファン7の回転数を低下させるが、そのときの低下量を、外気温度センサ11で検出された外気温度によって変更する。   The control device 13 reduces the rotational speed of the fan 7 when the detected temperature of the tank temperature sensor 10 reaches a predetermined temperature. The amount of decrease at that time is determined by the outside air temperature detected by the outside air temperature sensor 11. change.

すなわち、図3(a)(b)に示すように、外気温度が低いときよりも高いときのほうが、ファン7の回転数の低下量を大きくする。蒸発器2での吸熱量は、外気温度が高いほど多くなるから、外気温度が相対的に高いときに、ファン7の回転数の低下量を大きくすることで、蒸発器2での吸熱量を低下させ、蒸発能力を減ずることで、冷媒回路80の高圧側圧力の過度な上昇をより確実に抑制することができる。   That is, as shown in FIGS. 3A and 3B, the amount of decrease in the rotational speed of the fan 7 is increased when the outside air temperature is higher than when the outside air temperature is low. Since the amount of heat absorbed by the evaporator 2 increases as the outside air temperature increases, the amount of heat absorbed by the evaporator 2 can be increased by increasing the amount of decrease in the rotational speed of the fan 7 when the outside air temperature is relatively high. By lowering and reducing the evaporation capacity, an excessive increase in the high-pressure side pressure of the refrigerant circuit 80 can be more reliably suppressed.

次に、圧縮機1からの冷媒の吐出温度の目標吐出温度の決定方法について説明する。タンク温度センサ10で検出された貯湯タンク6内の湯水の温度と、外気温度センサ11で検出された外気温度から、制御装置13に予め設定してある目標吐出温度を決定し、吐出温度センサ12で検出される温度が、目標吐出温度となるように、制御装置13は、減圧装置3である電子膨張弁の開度を制御する。   Next, a method for determining the target discharge temperature of the refrigerant discharge temperature from the compressor 1 will be described. A target discharge temperature preset in the control device 13 is determined from the temperature of hot water in the hot water storage tank 6 detected by the tank temperature sensor 10 and the outside air temperature detected by the outside air temperature sensor 11, and the discharge temperature sensor 12. The control device 13 controls the opening degree of the electronic expansion valve that is the decompression device 3 so that the temperature detected in step S1 becomes the target discharge temperature.

なお、制御装置13に予め設定してある目標吐出温度は、貯湯タンク6内の湯水の温度と外気温度とが高いほど、目標吐出温度も高くなり、かつ、圧縮機1に蒸発器2から吸入される冷媒の状態が最適(乾き度1)となるように設定してある。   The target discharge temperature set in advance in the control device 13 is higher as the temperature of the hot water in the hot water storage tank 6 and the outside air temperature are higher, and the target discharge temperature is sucked into the compressor 1 from the evaporator 2. The state of the refrigerant to be set is set to be optimum (dryness 1).

これは、高圧側圧力が亜臨界状態で運転する仕様の冷媒回路80においては、高圧側圧力と貯湯タンク6内の湯水の温度とは相関関係にあるため、貯湯タンク6内の湯水の温度タンクから、冷媒回路80の高圧側圧力を推定し、圧縮機1に蒸発器2から吸入される冷媒の最適状態(乾き度1)から最適目標吐出温度を算出し、予め設定しているのである。   This is because the high pressure side pressure and the temperature of the hot water in the hot water storage tank 6 are correlated with each other in the refrigerant circuit 80 having a specification in which the high pressure side pressure is operated in a subcritical state. From this, the high-pressure side pressure of the refrigerant circuit 80 is estimated, and the optimum target discharge temperature is calculated from the optimum state (dryness 1) of the refrigerant sucked into the compressor 1 from the evaporator 2 and set in advance.

これにより、圧縮機1に蒸発器2から吸入される冷媒状態を最適(乾き度1)とすることができ、冷媒回路80の高効率化することができるとともに、圧縮機1からの冷媒の吐出温度、ひいては、冷媒回路80の高圧側圧力の過度な上昇をより確実に抑制することができる。   As a result, the state of the refrigerant sucked into the compressor 1 from the evaporator 2 can be optimized (dryness 1), the efficiency of the refrigerant circuit 80 can be improved, and the refrigerant discharged from the compressor 1 can be increased. An excessive increase in the temperature, and thus the high-pressure side pressure of the refrigerant circuit 80, can be more reliably suppressed.

また、過大圧力抑制のため開度調整可能な電子式の減圧装置3を搭載した冷媒回路においては、電子膨張弁の開度を大きくするのみでも、冷媒回路80の高圧側圧力の抑制は可能であるが、ファン7の回転数低減による冷媒回路80の高圧側圧力の調整と比較すると、冷媒回路80の高圧側圧力の調整範囲が狭いため、高圧抑制効果は少ない。また、キャピラリーチューブや感温式、感圧式膨張弁などの減圧装置3を搭載した場合には、高圧抑制効果を実現することは不可能である。   Further, in the refrigerant circuit equipped with the electronic pressure reducing device 3 whose opening degree can be adjusted to suppress excessive pressure, the high pressure side pressure of the refrigerant circuit 80 can be suppressed only by increasing the opening degree of the electronic expansion valve. However, compared with the adjustment of the high-pressure side pressure of the refrigerant circuit 80 by reducing the rotation speed of the fan 7, the adjustment range of the high-pressure side pressure of the refrigerant circuit 80 is narrow, so that the high-pressure suppression effect is small. In addition, when the pressure reducing device 3 such as a capillary tube, a temperature sensitive type, or a pressure sensitive type expansion valve is mounted, it is impossible to realize a high pressure suppressing effect.

したがって、本実施の形態においては、制御装置13が、圧縮機1、減圧装置3である電子膨張弁、ファン7の動作を制御することで、圧縮機1からの冷媒の吐出温度が目標吐出温度となるようにし、かつ、冷媒回路80の高圧側圧力の調整を行うことで、冷媒回路80の高効率化を行っているとともに、圧縮機1からの冷媒の吐出温度、ひいては、冷媒回路80の高圧側圧力の過度な上昇をより確実に抑制しているのである。   Therefore, in the present embodiment, the control device 13 controls the operation of the compressor 1, the electronic expansion valve that is the decompression device 3, and the fan 7, so that the refrigerant discharge temperature from the compressor 1 becomes the target discharge temperature. In addition, the efficiency of the refrigerant circuit 80 is improved by adjusting the high-pressure side pressure of the refrigerant circuit 80, and the refrigerant discharge temperature from the compressor 1, and consequently the refrigerant circuit 80, An excessive increase in the high-pressure side pressure is more reliably suppressed.

本発明によれば、加熱運転時の冷媒回路の高圧側圧力の増大を防止することができるので、家庭用、業務用のヒートポンプ給湯機として適用することができる。   According to the present invention, an increase in the high-pressure side pressure of the refrigerant circuit during the heating operation can be prevented, so that the present invention can be applied as a household or commercial heat pump water heater.

1 圧縮機
2 蒸発器
3 減圧装置
4 放熱器
6 貯湯タンク
7 ファン
8 給水管
9 出湯管
10 タンク温度センサ
11 外気温度センサ
12 吐出温度センサ
13 制御装置
80 冷媒回路
81 冷媒配管
100 ヒートポンプ給湯機
DESCRIPTION OF SYMBOLS 1 Compressor 2 Evaporator 3 Pressure reducing device 4 Radiator 6 Hot water storage tank 7 Fan 8 Water supply pipe 9 Hot water discharge pipe 10 Tank temperature sensor 11 Outside air temperature sensor 12 Discharge temperature sensor 13 Control device 80 Refrigerant circuit 81 Refrigerant piping 100 Heat pump water heater

Claims (3)

圧縮機、放熱器、減圧装置、蒸発器が冷媒配管で環状に接続された冷媒回路と、
前記蒸発器に空気を送風するファンと、
湯水を貯留する貯湯タンクと、
前記貯湯タンクに設けられたタンク温度センサと、
少なくとも前記ファンの動作を制御する制御装置と、を備え、
前記放熱器は、前記冷媒配管を前記貯湯タンクの外周に巻き付けて構成されており、
かつ、前記貯湯タンク内の湯水の温度が低いときよりも高いときの方が、前記ファンの回転数は低いことを特徴とするヒートポンプ給湯機。
A refrigerant circuit in which a compressor, a radiator, a decompressor, and an evaporator are annularly connected by a refrigerant pipe;
A fan for blowing air to the evaporator;
A hot water storage tank for storing hot water,
A tank temperature sensor provided in the hot water storage tank;
A control device that controls at least the operation of the fan,
The radiator is configured by winding the refrigerant pipe around the hot water storage tank,
The heat pump water heater is characterized in that the rotational speed of the fan is lower when the temperature of the hot water in the hot water storage tank is higher than when the temperature is low.
外気温度を検出する外気温度センサを備え、前記外気温度が低いときよりも高いときの方が、前記ファンの回転数を低下させるときの低下量は大きいことを特徴とする前記請求項1に記載のヒートポンプ給湯機。 2. The apparatus according to claim 1, further comprising an outside air temperature sensor that detects an outside air temperature, wherein the amount of decrease when the rotation speed of the fan is reduced is larger when the outside air temperature is higher than when the outside air temperature is low. Heat pump water heater. 前記圧縮機からの冷媒の吐出温度を検出する吐出温度センサと、外気温度を検出する外気温度センサと、を備え、前記減圧装置は電子膨張弁であり、前記圧縮機からの冷媒の吐出温度が、前記貯湯タンク内の湯水の温度と前記外気温度とから決定される目標吐出温度となるように、前記電子膨張弁の開度を制御することを特徴とする前記請求項1または2に記載のヒートポンプ給湯機。
A discharge temperature sensor for detecting a discharge temperature of the refrigerant from the compressor, and an outside air temperature sensor for detecting an outside air temperature, the pressure reducing device is an electronic expansion valve, and a discharge temperature of the refrigerant from the compressor is The opening degree of the electronic expansion valve is controlled so that the target discharge temperature determined from the temperature of the hot water in the hot water storage tank and the outside air temperature is reached. Heat pump water heater.
JP2016141433A 2016-07-19 2016-07-19 Heat Pump Water Heater Pending JP2018013257A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016141433A JP2018013257A (en) 2016-07-19 2016-07-19 Heat Pump Water Heater
EP17176005.1A EP3273176B1 (en) 2016-07-19 2017-06-14 Heat pump water heater
CN201710565975.2A CN107631482A (en) 2016-07-19 2017-07-12 Teat pump boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016141433A JP2018013257A (en) 2016-07-19 2016-07-19 Heat Pump Water Heater

Publications (1)

Publication Number Publication Date
JP2018013257A true JP2018013257A (en) 2018-01-25

Family

ID=59091337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016141433A Pending JP2018013257A (en) 2016-07-19 2016-07-19 Heat Pump Water Heater

Country Status (3)

Country Link
EP (1) EP3273176B1 (en)
JP (1) JP2018013257A (en)
CN (1) CN107631482A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113237257A (en) * 2021-04-11 2021-08-10 浙江中广电器股份有限公司 Defrosting frequency control method, processor and variable frequency water machine
KR20220073416A (en) * 2020-11-26 2022-06-03 엘지전자 주식회사 Hybrid multi-air conditioning system and the control method thereof
KR20220073415A (en) * 2020-11-26 2022-06-03 엘지전자 주식회사 Hybrid multi-air conditioning system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109341172B (en) * 2018-09-27 2021-10-01 上海浩爽实业有限公司 Dual circuit transport refrigeration unit
CN111964270B (en) * 2020-08-07 2022-04-05 巢湖宜安云海科技有限公司 Energy-saving quick heater for heat pump water heater
CN115671464A (en) * 2022-10-17 2023-02-03 达足初呷 Temperature and humidity adjustable oxygen generator and use method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263802A (en) 2000-03-24 2001-09-26 Daikin Ind Ltd Heat pump water hearer
KR100567488B1 (en) * 2002-02-12 2006-04-03 마츠시타 덴끼 산교 가부시키가이샤 Heat pump water heater
JP4867925B2 (en) * 2008-02-04 2012-02-01 株式会社デンソー Heat pump type water heater
CN201463270U (en) 2009-06-09 2010-05-12 豪特容积热水器(成都)有限责任公司 Split-type air source heat pump water heater
US9050360B1 (en) * 2010-12-27 2015-06-09 Robert P. Scaringe Apparatus for crankcase pressure regulation using only ambient air or coolant temperature
CN103574835B (en) * 2012-07-31 2016-03-16 美的集团股份有限公司 The control method of outdoor fan of air conditioner and device
CN203719121U (en) * 2013-01-30 2014-07-16 松下电器产业株式会社 Heat-pump water heater
CN103968553A (en) * 2013-02-04 2014-08-06 广东美的暖通设备有限公司 Control method and control system of heat pump water heater
US20160069574A1 (en) * 2014-09-04 2016-03-10 General Electric Company Heat pump water heater appliance and a method for operating a heat pump water heater appliance

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220073416A (en) * 2020-11-26 2022-06-03 엘지전자 주식회사 Hybrid multi-air conditioning system and the control method thereof
KR20220073415A (en) * 2020-11-26 2022-06-03 엘지전자 주식회사 Hybrid multi-air conditioning system
KR102422008B1 (en) * 2020-11-26 2022-07-15 엘지전자 주식회사 Hybrid multi-air conditioning system and the control method thereof
KR102462769B1 (en) * 2020-11-26 2022-11-02 엘지전자 주식회사 Hybrid multi-air conditioning system
US11906208B2 (en) 2020-11-26 2024-02-20 Lg Electronics Inc. Hybrid multi-air conditioning system
CN113237257A (en) * 2021-04-11 2021-08-10 浙江中广电器股份有限公司 Defrosting frequency control method, processor and variable frequency water machine
CN113237257B (en) * 2021-04-11 2022-07-19 浙江中广电器集团股份有限公司 Defrosting frequency control method, processor and variable frequency water machine

Also Published As

Publication number Publication date
EP3273176A1 (en) 2018-01-24
EP3273176B1 (en) 2019-03-06
CN107631482A (en) 2018-01-26

Similar Documents

Publication Publication Date Title
JP2018013257A (en) Heat Pump Water Heater
CN107940703A (en) Air-conditioning and its control method
JP2011069570A (en) Heat pump cycle device
JP4678518B2 (en) Hot water storage water heater
JP2013096670A (en) Refrigeration cycle device and hot water generator
JP3659197B2 (en) Heat pump water heater
JP3904013B2 (en) Heat pump type water heater
JP2011252639A (en) Air conditioner
JP4552836B2 (en) Heat pump type water heater
JP6836421B2 (en) Air conditioner
JP5863988B2 (en) Air conditioning apparatus, controller, air conditioning control method, and program
JP3900186B2 (en) Heat pump water heater
JP2017166761A (en) Heat Pump Water Heater
JP2015224845A (en) Refrigeration cycle device
JP2018013258A (en) Heat Pump Water Heater
JP5401913B2 (en) Heat pump water heater
JP2010133598A (en) Heat pump type water heater
JP3856025B2 (en) Heat pump water heater
JP5338758B2 (en) Hot water supply apparatus and hot water control method thereof
JP2018179346A (en) Refrigeration cycle device and hot water generation device including the same
JP2011069502A (en) Heat pump device
JP2002089958A (en) Heat pump type hot water supply system
JP4910559B2 (en) Heat pump water heater
JP2007155157A (en) Heat pump water heater
JP5772665B2 (en) Heat pump type water heater

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190118