JP2018009707A - Refrigerant flow passage switching unit and air conditioner with the same - Google Patents

Refrigerant flow passage switching unit and air conditioner with the same Download PDF

Info

Publication number
JP2018009707A
JP2018009707A JP2016136492A JP2016136492A JP2018009707A JP 2018009707 A JP2018009707 A JP 2018009707A JP 2016136492 A JP2016136492 A JP 2016136492A JP 2016136492 A JP2016136492 A JP 2016136492A JP 2018009707 A JP2018009707 A JP 2018009707A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerant pipe
pipe
switching unit
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016136492A
Other languages
Japanese (ja)
Inventor
一紀 福田
Kazunori Fukuda
一紀 福田
内藤 宏治
Koji Naito
宏治 内藤
一浩 土橋
Kazuhiro Dobashi
一浩 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2016136492A priority Critical patent/JP2018009707A/en
Priority to PCT/JP2017/010941 priority patent/WO2018012036A1/en
Publication of JP2018009707A publication Critical patent/JP2018009707A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/32Refrigerant piping for connecting the separate outdoor units to indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerant flow passage switching unit that enables a stable operation by preventing a refrigerant from stagnating and also prevents water from leaking by attaining secure heat insulation.SOLUTION: A refrigerant flow passage switching unit comprises: a high-pressure header 15 and a gas pipe 11a connecting with a discharge side of a compressor installed in an outdoor unit 2; a high-pressure valve 9 opened and closed to control circulation of a refrigerant circulating in the high-pressure header 15 and gas pipe 11a; a low-pressure header 6 and a gas pipe 11b branching off from the gas pipe 11a and connecting with a suction side of the compressor installed in the outdoor unit 3; a low-pressure valve 10 opened and closed to control circulation of the refrigerant circulating in the low-pressure header 6 and gas pipe 11b, and provided at the same position with the high-pressure value 9 in a height direction; and a gas pipe 11c further branching off from said branch to connect with a heat exchanger installed in an indoor unit 3, and having a part extending downward toward the heat exchanger.SELECTED DRAWING: Figure 3

Description

本発明は、冷媒流路切換ユニット及びそれを備える空気調和機に関し、特には、高さ寸法を抑え、内部に冷媒が溜まり込むことを抑制可能な冷媒流路切換ユニット及びそれを備える空気調和機に関する。   The present invention relates to a refrigerant flow switching unit and an air conditioner including the refrigerant flow switching unit, and in particular, a refrigerant flow switching unit capable of suppressing a height dimension and suppressing refrigerant from being accumulated therein and an air conditioner including the refrigerant flow switching unit. About.

部屋ごとに室内ユニットが備えられ、それぞれの室内ユニットにおいて冷房と暖房とを独立して同時に運転可能な所謂マルチ型の空気調和機が知られている。このような空気調和機は、例えばビルや商業施設等において使用されている。マルチ型の空気調和機では、室内ユニットごとに冷媒の通流方向が制御されることで、それぞれの室内ユニットでの冷房と暖房とが変更可能になっている。   There is known a so-called multi-type air conditioner in which an indoor unit is provided for each room, and cooling and heating can be independently and simultaneously operated in each indoor unit. Such an air conditioner is used in, for example, buildings and commercial facilities. In the multi-type air conditioner, cooling and heating in each indoor unit can be changed by controlling the flow direction of the refrigerant for each indoor unit.

マルチ型の空気調和機において、室外ユニットと、複数の室内ユニットとの間には、それぞれの室内ユニットへの冷媒の通流方向を切り替えるための冷媒流路切換ユニットが備えられている。この冷媒流路切換ユニットには、一台の冷媒流路切換ユニットに複数の室内ユニットが接続された集合型と、それぞれの室内ユニットに対して一台ずつ(合計で複数)の冷媒流路切換ユニットが備えられる個別型との二種類が知られている。これらのうち、特に前者の集合型の冷媒流路切換ユニットには、室外ユニットに接続される高圧ガス管及び低圧ガス管と、それぞれの室内ユニットに接続されるガス管と、が接続される。そして、高圧ガス管の途中には高圧弁が、また、低圧ガス管の途中には低圧弁が備えられ、これらの弁の開閉が制御されることで、それぞれの室内ユニットでの冷媒の通流方向が制御可能になっている。   In the multi-type air conditioner, a refrigerant flow path switching unit for switching the flow direction of the refrigerant to each indoor unit is provided between the outdoor unit and the plurality of indoor units. The refrigerant flow switching unit includes a collective type in which a plurality of indoor units are connected to one refrigerant flow switching unit, and one (total plural) refrigerant flow switching for each indoor unit. Two types are known, the individual type with which the unit is provided. Among these, in particular, the former collective refrigerant flow switching unit is connected to a high-pressure gas pipe and a low-pressure gas pipe connected to the outdoor unit, and a gas pipe connected to each indoor unit. A high-pressure valve is provided in the middle of the high-pressure gas pipe, and a low-pressure valve is provided in the middle of the low-pressure gas pipe. By controlling the opening and closing of these valves, the refrigerant flow in each indoor unit is controlled. The direction is controllable.

空気調和機では、室内ユニットのサーモオフ時や運転停止時等において、冷媒の溜まり込み現象である所謂「冷媒寝込み」が発生しないように、冷媒が滞留しにくい構造が採用される。これにより、冷媒寝込みが防止され、安定的な運転が可能になる。そのため、冷媒流路切換ユニットにおいても、冷媒が滞留しにくい構造とすることが好ましい。   The air conditioner employs a structure in which the refrigerant is less likely to stay so that the so-called “refrigerant stagnation”, which is a phenomenon of refrigerant accumulation, does not occur when the indoor unit is thermo-off or stopped. Thereby, the stagnation of the refrigerant is prevented and a stable operation is possible. Therefore, it is preferable that the refrigerant flow switching unit has a structure in which the refrigerant does not easily stay.

流路切換ユニットにおける冷媒の滞留を防止する技術に関連して、特許文献1に記載の技術がある。特許文献1には、冷媒回路を形成する熱源ユニットと利用ユニットとの間に配設されて冷媒の流れを切り換える冷媒流路切換ユニットであって、前記熱源ユニットから延びる吸入ガス連絡管に接続される第1冷媒配管と、前記熱源ユニットから延びる高低圧ガス連絡管に接続される第2冷媒配管と、前記利用ユニットへ延びるガス管に接続される第3冷媒配管と、前記第1冷媒配管、前記第2冷媒配管及び前記第3冷媒配管に接続され、前記第1冷媒配管と、前記第2冷媒配管と、前記第3冷媒配管と、を連結する連結部と、前記第1冷媒配管に配設される第1切換弁と、前記第2冷媒配管に配設される第2切換弁と、を備え、前記第2切換弁は、前記第1切換弁よりも高い位置に配設され、前記第3冷媒配管は、最も高さが低い位置において最下部を有し、前記最下部において前記連結部と接続される、冷媒流路切換ユニットが記載されている。   There is a technique described in Patent Document 1 related to a technique for preventing the refrigerant from staying in the flow path switching unit. Patent Document 1 discloses a refrigerant flow path switching unit that is arranged between a heat source unit that forms a refrigerant circuit and a utilization unit and switches the flow of refrigerant, and is connected to an intake gas communication pipe extending from the heat source unit. A first refrigerant pipe, a second refrigerant pipe connected to a high / low pressure gas communication pipe extending from the heat source unit, a third refrigerant pipe connected to a gas pipe extending to the utilization unit, and the first refrigerant pipe; A connection part connected to the second refrigerant pipe and the third refrigerant pipe, connecting the first refrigerant pipe, the second refrigerant pipe, and the third refrigerant pipe, and arranged in the first refrigerant pipe. A first switching valve provided, and a second switching valve disposed in the second refrigerant pipe, wherein the second switching valve is disposed at a position higher than the first switching valve, The third refrigerant pipe is at the lowest height. It has a bottom, wherein connected to said connecting portion at the bottom, the refrigerant flow path switching unit is described.

特開2015−114049号公報Japanese Patent Laid-Open No. 2015-114049

冷媒流路切換ユニットを構成する配管等には冷たい冷媒が通流する。そのため、当該配管等の表面での結露を防止するため、当該配管等の周囲には断熱材が配置されることが多い。ただ、配管等の接続構造は複雑である。そこで、例えば、冷媒流路切換ユニットを構成する配管等を筐体に収容し、当該筐体の内部に断熱材としての発泡剤を充填して固化させることで、配管等の全体が断熱されることになる。   A cold refrigerant flows through piping and the like constituting the refrigerant flow switching unit. Therefore, in order to prevent dew condensation on the surface of the pipe or the like, a heat insulating material is often disposed around the pipe or the like. However, the connection structure such as piping is complicated. Therefore, for example, the pipes and the like constituting the refrigerant flow path switching unit are accommodated in a casing, and the casing is filled with a foaming agent as a heat insulating material to be solidified, whereby the entire pipes and the like are insulated. It will be.

ここで、特許文献1に記載の冷媒流路切換ユニットでは、高圧側の第1ヘッダ55の側に備えられた第2電動弁Ev2(高圧弁)の位置が、低圧側の第2ヘッダ56や第3ヘッダ57の側に備えられた第1電動弁Ev1(低圧弁)の位置よりも高くなっている(特に図6参照)。そして、特許文献1に記載の技術のように、第2電動弁Ev2の位置が第1電動弁Ev1の位置よりも高くなっていると、冷媒流路切換ユニットの高さ方向の寸法が大きくなる。これに伴い、冷媒流路切換ユニットを構成する配管等を収容するための筐体の高さ方向の寸法も大きくなる。   Here, in the refrigerant flow switching unit described in Patent Document 1, the position of the second motor operated valve Ev2 (high pressure valve) provided on the first header 55 side on the high pressure side is the second header 56 on the low pressure side or It is higher than the position of the first electric valve Ev1 (low pressure valve) provided on the third header 57 side (see particularly FIG. 6). And if the position of the 2nd motor operated valve Ev2 is higher than the position of the 1st motor operated valve Ev1 like the art of patent documents 1, the size of the height direction of a refrigerant channel change unit will become large. . In connection with this, the dimension of the height direction of the housing | casing for accommodating the piping etc. which comprise a refrigerant flow path switching unit also becomes large.

そして、筐体の高さ方向の寸法が大きくなれば、発泡剤を充填する空間の体積が大きくなることになる。そうすると、筐体の内部に充填される発泡剤の量が多くなり、発泡剤の充填の際、筐体の内部に空気が混入しやすくなる。そして、空気が混入すると、固化後の断熱材に気泡が生じることになり、この気泡の部分が配管等に面していれば、この部分で結露水が生じてしまう可能性がある。そして、この結露水は、水漏れの原因となる。   And if the dimension of the height direction of a housing | casing becomes large, the volume of the space filled with a foaming agent will become large. If it does so, the quantity of the foaming agent with which the inside of a housing | casing is filled will increase, and it will become easy to mix air in the inside of a housing | casing at the time of filling with a foaming agent. And if air mixes, a bubble will arise in the heat insulating material after solidification, and if this bubble part faces piping etc., dew condensation water may arise in this part. And this dew condensation water causes a water leak.

本発明はこのような課題に鑑みて為されたものであり、本発明が解決しようとする課題は、冷媒の滞留を防止して安定的な運転を可能にするともに、確実な断熱を行って水漏れを防止可能な冷媒流路切換ユニット及びそれを備える空気調和機を提供することである。   The present invention has been made in view of the above problems, and the problem to be solved by the present invention is to prevent the stagnation of the refrigerant and enable stable operation, and to perform reliable heat insulation. A refrigerant flow path switching unit capable of preventing water leakage and an air conditioner including the same.

本発明者らは前記課題を解決するための鋭意検討を行った結果、以下のようにすることで前記課題を解決できること見出した。即ち、本発明の要旨は、それぞれ独立して冷暖運転可能な複数の利用側ユニットと、熱源側ユニットとを備え、前記複数の利用側ユニットと前記熱源側ユニットとの間で冷凍サイクルが形成されている空気調和機に備えられ、前記複数の利用側ユニットと前記熱源側ユニットとの間に配置されることで、前記複数の利用側ユニットへの冷媒の通流方向を制御する冷媒流路切換ユニットであって、前記熱源側ユニットに備えられる圧縮機の吐出側に繋がる第一冷媒配管と、当該第一冷媒配管に設けられ、開閉することで前記第一冷媒配管を通流する冷媒の通流を制御する第一開閉弁と、前記第一冷媒配管から分岐するとともに、前記熱源側ユニットに備えられる前記圧縮機の吸入側に繋がる第二冷媒配管と、当該第二冷媒配管に設けられ、開閉することで前記第二冷媒配管を通流する冷媒の通流を制御するとともに、前記第一開閉弁と高さ方向で同じ位置に設けられた第二開閉弁と、前記第一冷媒配管と前記第二冷媒配管との前記分岐からさらに分岐して前記利用側ユニットに備えられる熱交換器に繋がり、当該熱交換器に向かう方向に下方に延びる部分を有する第三冷媒配管と、を備えることを特徴とする、冷媒流路切換ユニットに関する。そのほかの解決手段は発明を実施するための形態において後記する。   As a result of intensive studies for solving the above problems, the present inventors have found that the above problems can be solved as follows. That is, the gist of the present invention includes a plurality of usage-side units and heat source-side units that can be independently cooled and heated, and a refrigeration cycle is formed between the plurality of usage-side units and the heat source-side unit. Refrigerant flow path switching that is provided in the air conditioner that is disposed between the plurality of use side units and the heat source side unit to control the flow direction of the refrigerant to the plurality of use side units. A first refrigerant pipe connected to a discharge side of a compressor provided in the heat source side unit, and a refrigerant passage provided in the first refrigerant pipe and flowing through the first refrigerant pipe by opening and closing. A first on-off valve for controlling the flow, a second refrigerant pipe branched from the first refrigerant pipe and connected to the suction side of the compressor provided in the heat source side unit, and provided in the second refrigerant pipe, Open and close And controlling the flow of the refrigerant flowing through the second refrigerant pipe, the second on-off valve provided at the same position in the height direction as the first on-off valve, the first refrigerant pipe, and the A third refrigerant pipe further branched from the branch with the second refrigerant pipe, connected to a heat exchanger provided in the use side unit, and having a portion extending downward in a direction toward the heat exchanger. The present invention relates to a refrigerant flow path switching unit. The other means for solving will be described later in the mode for carrying out the invention.

本発明によれば、冷媒の滞留を防止して安定的な運転を可能にするともに、確実な断熱を行って水漏れを防止可能な冷媒流路切換ユニット及びそれを備える空気調和機を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while preventing the stay of a refrigerant | coolant and enabling stable driving | operation, a refrigerant | coolant flow path switching unit which can perform reliable heat insulation and can prevent water leakage, and an air conditioner provided with the same are provided. be able to.

本実施形態の冷媒流路切換ユニットを備える空気調和機の系統図である。It is a systematic diagram of an air conditioner provided with the refrigerant flow path switching unit of this embodiment. 本実施形態の冷媒流路切換ユニットを構成する各配管の接続形態を示す上面図である。It is a top view which shows the connection form of each piping which comprises the refrigerant | coolant flow path switching unit of this embodiment. 本実施形態の冷媒流路切換ユニットを構成する各配管の接続形態を示す側面図である。It is a side view which shows the connection form of each piping which comprises the refrigerant | coolant flow path switching unit of this embodiment.

以下、図面を参照しながら、本発明を実施するための形態(本実施形態)を説明する。なお、各図は模式的なものであり、本発明を把握しやすくするため、本発明の要旨を損なわない範囲で、適宜、部材の一部を省略又は簡略化して示したり、内部構造を示すために可視化して示したりすることがある。   Hereinafter, a form (this embodiment) for carrying out the present invention will be described with reference to the drawings. In addition, each figure is typical, and in order to make it easy to grasp the present invention, a part of the members is omitted or simplified as appropriate, or the internal structure is shown as long as the gist of the present invention is not impaired. It may be visualized for this purpose.

図1は、本実施形態の冷媒流路切換ユニット1を備える空気調和機100の系統図である。空気調和機100は、室内ユニット3ごとに、冷房と暖房とを同時に運転できる冷暖同時タイプのマルチ型の空気調和機である。空気調和機100は、冷媒流路切換ユニット1と、室外ユニット2と、複数の室内ユニット3(3a,3b,3c,3d)と、冷媒流路切換ユニット1と室外ユニット2とを接続する高圧ガス管4、低圧ガス管5及び液管6と、冷媒流路切換ユニット1と複数の室内ユニット3とを接続するガス管7(7a,7b,7c,7d)とを備える。これらのうち、高圧ガス管4は吐出ガス管ともいわれ、また、低圧ガス管5は吸入ガス管ともいわれるものである。そして、冷媒流路切換ユニット1と室外ユニット2とは、高圧ガス管4、低圧ガス管5及び液管6の三本の配管により接続されていることから、空調調和機100は所謂三管方式の空気調和機である。   FIG. 1 is a system diagram of an air conditioner 100 including a refrigerant flow path switching unit 1 of the present embodiment. The air conditioner 100 is a cooling / heating simultaneous type multi-type air conditioner capable of simultaneously operating cooling and heating for each indoor unit 3. The air conditioner 100 includes a refrigerant flow switching unit 1, an outdoor unit 2, a plurality of indoor units 3 (3 a, 3 b, 3 c, 3 d), a high pressure that connects the refrigerant flow switching unit 1 and the outdoor unit 2. The gas pipe 4, the low-pressure gas pipe 5 and the liquid pipe 6, and gas pipes 7 (7 a, 7 b, 7 c, 7 d) connecting the refrigerant flow switching unit 1 and the plurality of indoor units 3 are provided. Among these, the high pressure gas pipe 4 is also called a discharge gas pipe, and the low pressure gas pipe 5 is also called an intake gas pipe. And since the refrigerant | coolant flow path switching unit 1 and the outdoor unit 2 are connected by three piping of the high pressure gas pipe 4, the low pressure gas pipe 5, and the liquid pipe 6, the air-conditioning conditioner 100 is what is called a three-pipe system. Is an air conditioner.

また、図示はしないが、室外ユニット2には、冷媒流路切換ユニット1に供給する冷媒を圧縮する圧縮機と、室外の空気と冷媒との間で熱交換を行う室外熱交換器と、当該室外熱交換器において熱交換される前又はされた後(冷房主体又は暖房主体の別により異なる)の冷媒を膨張させる室外膨張弁と、冷房主体又は暖房主体の別に応じて冷媒の流路を切換える四方弁とが備えられている。なお、室外ユニット2に備えられる圧縮機の吐出側には、前記の高圧ガス管4が接続されている。一方で、圧縮機の吸入側には、前記の低圧ガス管5及び液管6が接続されている。   Although not shown, the outdoor unit 2 includes a compressor that compresses the refrigerant supplied to the refrigerant flow switching unit 1, an outdoor heat exchanger that performs heat exchange between the outdoor air and the refrigerant, The outdoor expansion valve for expanding the refrigerant before or after the heat exchange in the outdoor heat exchanger (depending on whether the cooling main body or the heating main body is expanded) and the refrigerant flow path are switched depending on whether the cooling main body or the heating main body is different. A four-way valve is provided. The high-pressure gas pipe 4 is connected to the discharge side of the compressor provided in the outdoor unit 2. On the other hand, the low-pressure gas pipe 5 and the liquid pipe 6 are connected to the suction side of the compressor.

さらに、同じく図示はしないが、室内ユニット3には、室内の空気と冷媒との間で熱交換を行う室内熱交換器と、当該室内熱交換器において熱交換される前又はされた後(室内ユニットの運転モードにより異なる)の冷媒を膨張させる室内膨張弁とが備えられている。ちなみに、この室内熱交換器には、ガス管7が接続されている。   Further, although not shown in the figure, the indoor unit 3 includes an indoor heat exchanger that performs heat exchange between indoor air and a refrigerant, and before or after heat exchange in the indoor heat exchanger (indoor And an indoor expansion valve that expands the refrigerant (depending on the operation mode of the unit). Incidentally, a gas pipe 7 is connected to the indoor heat exchanger.

そして、これらが相互に配管で接続され、当該配管の内部を冷媒が通流することで、室外ユニット2と室内ユニット3との間で冷凍サイクルが形成されている。特に、室外ユニット2と室内ユニット3との間に配置された冷媒流路切換ユニット1において、室外ユニット2から室内ユニット3に供給される冷媒の通流方向が制御されることで、室内ユニット3ごとに独立して、冷房と暖房とが同時に運転可能になっている。   And these are mutually connected by piping and the refrigerating cycle is formed between the outdoor unit 2 and the indoor unit 3 because a refrigerant | coolant flows through the inside of the said piping. In particular, in the refrigerant flow path switching unit 1 disposed between the outdoor unit 2 and the indoor unit 3, the flow direction of the refrigerant supplied from the outdoor unit 2 to the indoor unit 3 is controlled, so that the indoor unit 3 Independently, cooling and heating can be operated simultaneously.

具体的には、冷房運転を行う室内ユニット3では、液管6の液冷媒が室内ユニット3に通流するように流路が制御される。そして、室内ユニット3に通流した液冷媒は、室内膨張弁によって膨張(減圧)して低温のガス冷媒になった後、室内熱交換器において室内の空気と熱交換することで、室内が冷房される。室内熱交換器において熱交換したガス冷媒は、低圧ガス管5に戻されることになる。また、暖房運転を行う室内ユニット3では、高圧ガス管4のガス冷媒が室内ユニット3に通流するように流路が制御される。そして、室内ユニット3に通流した高温のガス冷媒は、前記の室内熱交換器において室内の空気と熱交換することで、室内が暖房される。室内熱交換器において熱交換して凝縮した液冷媒は、液管6に戻されることになる。   Specifically, in the indoor unit 3 that performs the cooling operation, the flow path is controlled so that the liquid refrigerant in the liquid pipe 6 flows through the indoor unit 3. Then, the liquid refrigerant flowing through the indoor unit 3 is expanded (depressurized) by the indoor expansion valve to become a low-temperature gas refrigerant, and then heat is exchanged with indoor air in the indoor heat exchanger, thereby cooling the room. Is done. The gas refrigerant that has exchanged heat in the indoor heat exchanger is returned to the low-pressure gas pipe 5. In the indoor unit 3 that performs the heating operation, the flow path is controlled so that the gas refrigerant in the high-pressure gas pipe 4 flows to the indoor unit 3. The high-temperature gas refrigerant flowing through the indoor unit 3 heats the room by exchanging heat with the indoor air in the indoor heat exchanger. The liquid refrigerant condensed by heat exchange in the indoor heat exchanger is returned to the liquid pipe 6.

図2は、本実施形態の冷媒流路切換ユニット1を構成する各配管の接続形態を示す上面図である。冷媒流路切換ユニット1では、高圧ガス管4及び低圧ガス管5のそれぞれは、高圧ヘッダ15及び低圧ヘッダ16を介して、ガス管7a〜7dに対して並列になるように接続されている。また、高圧ガス管4と高圧ヘッダ15とは、接続部13を介して接続されている。さらに、低圧ガス管5と低圧ヘッダ16とは、接続部14を介して接続されている。高圧ヘッダ15及び低圧ヘッダ16のそれぞれには、ストレーナ20が備えられている。このストレーナ20は、通流する冷媒中の異物を除去するものである。そして、これらは、いずれも、冷媒流路切換ユニット1を構成する筐体1aに収容されている。また、筐体1aの側方には、高圧弁電磁コイル17及び低圧弁電磁コイル18(いずれも図3を参照しながら詳細を後記する)の駆動を制御する回路基板(図示しない)を収容した電気箱1bが備えられている。   FIG. 2 is a top view showing a connection form of each pipe constituting the refrigerant flow path switching unit 1 of the present embodiment. In the refrigerant flow switching unit 1, the high-pressure gas pipe 4 and the low-pressure gas pipe 5 are connected in parallel to the gas pipes 7 a to 7 d via the high-pressure header 15 and the low-pressure header 16. Further, the high-pressure gas pipe 4 and the high-pressure header 15 are connected via a connection portion 13. Further, the low-pressure gas pipe 5 and the low-pressure header 16 are connected via a connection portion 14. A strainer 20 is provided in each of the high-pressure header 15 and the low-pressure header 16. The strainer 20 removes foreign matters in the flowing refrigerant. And these are all accommodated in the housing | casing 1a which comprises the refrigerant | coolant flow path switching unit 1. FIG. Further, a circuit board (not shown) for controlling the driving of the high-pressure valve electromagnetic coil 17 and the low-pressure valve electromagnetic coil 18 (both will be described later in detail with reference to FIG. 3) is housed on the side of the housing 1a. An electric box 1b is provided.

冷媒流路切換ユニット1を構成する各配管の接続形態と、冷媒流路切換ユニット1を構成する各装置の構成とについて、図3も併せて参照しながら説明する。   A connection configuration of each pipe constituting the refrigerant flow path switching unit 1 and a configuration of each apparatus constituting the refrigerant flow path switching unit 1 will be described with reference to FIG.

図3は、本実施形態の冷媒流路切換ユニット1を構成する各配管の接続形態を示す側面図である。前記の図2を参照しながら説明した、高圧ガス管4に接続された高圧ヘッダ15には、高圧ガス管4及びその接続部13からみて略右隣に、高圧弁9が備えられている。ちなみに、高圧弁9の下方には、後記するガス管11aが接続されている。高圧ヘッダ15と高圧弁9とは、接続部9aにおいて接続されている。高圧弁9は電磁弁であり、高圧弁9の開閉は、高圧弁9の上方に配置された高圧弁電磁コイル17によって制御される。具体的には、高圧弁電磁コイル17への通電が制御されることで、高圧弁9の開閉が制御される。そして、高圧弁9の開閉が制御されることで、高圧ガス管4からの高圧ガス冷媒の通流が制御される。   FIG. 3 is a side view showing a connection form of each pipe constituting the refrigerant flow path switching unit 1 of the present embodiment. The high-pressure header 15 connected to the high-pressure gas pipe 4 described with reference to FIG. 2 is provided with a high-pressure valve 9 on the substantially right side when viewed from the high-pressure gas pipe 4 and its connecting portion 13. Incidentally, a gas pipe 11a described later is connected to the lower side of the high-pressure valve 9. The high-pressure header 15 and the high-pressure valve 9 are connected at the connection portion 9a. The high pressure valve 9 is an electromagnetic valve, and the opening and closing of the high pressure valve 9 is controlled by a high pressure valve electromagnetic coil 17 disposed above the high pressure valve 9. Specifically, the opening and closing of the high-pressure valve 9 is controlled by controlling the energization of the high-pressure valve electromagnetic coil 17. Then, by controlling the opening and closing of the high-pressure valve 9, the flow of the high-pressure gas refrigerant from the high-pressure gas pipe 4 is controlled.

また、前記の図2を参照しながら説明した、低圧ガス管5に接続された低圧ヘッダ15には、低圧ガス管5及びその接続部14からみて右上に、低圧弁10が備えられている。ちなみに、この低圧弁10は、接続部10aにおいて、後記するガス管11bに接続されている。低圧弁10は電磁弁であり、低圧弁10の開閉は、低圧弁10の上方に配置された低圧弁電磁コイル18によって制御される。具体的には、低圧弁電磁コイル18への通電が制御されることで、低圧弁10の開閉が制御される。そして、低圧弁10の開閉が制御されることで、低圧ガス管5からの低圧ガス冷媒の通流が制御される。   Further, the low-pressure header 15 connected to the low-pressure gas pipe 5 described with reference to FIG. 2 is provided with a low-pressure valve 10 on the upper right side when viewed from the low-pressure gas pipe 5 and its connecting portion 14. Incidentally, the low-pressure valve 10 is connected to a gas pipe 11b described later at the connecting portion 10a. The low pressure valve 10 is an electromagnetic valve, and the opening and closing of the low pressure valve 10 is controlled by a low pressure valve electromagnetic coil 18 disposed above the low pressure valve 10. Specifically, opening / closing of the low-pressure valve 10 is controlled by controlling energization of the low-pressure valve electromagnetic coil 18. The flow of the low-pressure gas refrigerant from the low-pressure gas pipe 5 is controlled by controlling the opening and closing of the low-pressure valve 10.

本実施形態の冷媒流路制御ユニット1では、高圧弁9と低圧弁10とは、同じ仕様で同じ大きさ(形状)のものである。また、高圧弁電磁コイル17と低圧弁電磁コイル18とも、同じ仕様で同じ大きさ(形状)である。ここでいう同じ仕様とは、例えば開度と通流量との関係等の性能が同じことをいう。また、ここでいう同じ形状とは、外形が同じということであり、側面視で高さ寸法や幅寸法が同じものをいう。従って、同じ仕様で同じ大きさ(形状)のものとは、例えば同一メーカの同一型番のもの等をいう。そして、高圧弁9及び高圧弁電磁コイル17の一体物と、低圧弁10及び低圧弁電磁コイル18の一体物とは、高さ方向で同じ位置に配置されている。従って、図3において、高圧弁電磁コイル17の上端と低圧弁電磁コイル18の上端とを結ぶ破線と、高圧弁9の下端と低圧弁10の下端とを結ぶ破線とが、平行になっている(なお、詳細は後記するが、ここでいう「平行」とは、「略平行」を含む概念である)。   In the refrigerant flow path control unit 1 of the present embodiment, the high pressure valve 9 and the low pressure valve 10 have the same specifications and the same size (shape). The high-pressure valve electromagnetic coil 17 and the low-pressure valve electromagnetic coil 18 have the same specifications and the same size (shape). Here, the same specification means that the performance such as the relationship between the opening degree and the flow rate is the same. The same shape here means that the outer shape is the same, and the same height and width are the same in a side view. Therefore, the same specification and the same size (shape) means, for example, those of the same manufacturer and the same model number. The integrated body of the high-pressure valve 9 and the high-pressure valve electromagnetic coil 17 and the integrated body of the low-pressure valve 10 and the low-pressure valve electromagnetic coil 18 are arranged at the same position in the height direction. Therefore, in FIG. 3, a broken line connecting the upper end of the high pressure valve electromagnetic coil 17 and the upper end of the low pressure valve electromagnetic coil 18 and a broken line connecting the lower end of the high pressure valve 9 and the lower end of the low pressure valve 10 are parallel. (Although details will be described later, “parallel” here is a concept including “substantially parallel”).

高圧弁9及び低圧弁10がこのような位置関係にあることで、いずれか一方の弁が上方に突出しないため、筐体1aの上面(天井)を低くすることができる。そのため、筐体1aの内部に無駄空間を生じることが防止され、内部に充填する、断熱材19(後記する)としての発泡剤の量を減らすことができる。そのため、発泡剤の充填時に空気が混入することが十分に防止され、より確実な断熱を図って結露水の生成を防止することができる。   Since the high-pressure valve 9 and the low-pressure valve 10 are in such a positional relationship, since either one of the valves does not protrude upward, the upper surface (ceiling) of the housing 1a can be lowered. Therefore, it is possible to prevent a useless space from being generated inside the housing 1a, and to reduce the amount of the foaming agent as the heat insulating material 19 (described later) to be filled therein. Therefore, air can be sufficiently prevented from being mixed when the foaming agent is filled, and more reliable heat insulation can be achieved to prevent the formation of condensed water.

また、高圧弁9の下方にはガス管11aが延びており、その配管の下端に存在する分岐部分22において、左右方向に配管が分岐している。分岐部分22で分岐する配管のうち、右側に延びる配管はガス管11b、左側に延びる配管はガス管11cである。これらのうち、ガス管11bの側は、低圧弁10に向かう側である。そして、低圧ガス管5と室内ユニット3とは、主に、低圧ヘッダ16、ガス管11b,11cを介して接続されている。一方で、ガス管11cの側は、室内ユニット3に向かう側である。そして、高圧ガス管4と室内ユニット3とは、主に、高圧ヘッダ15及びガス管11a,11cを介して接続されている。   A gas pipe 11a extends below the high-pressure valve 9, and a pipe branches in the left-right direction at a branching portion 22 existing at the lower end of the pipe. Of the pipes that branch off at the branch portion 22, the pipe that extends to the right is the gas pipe 11b, and the pipe that extends to the left is the gas pipe 11c. Among these, the side of the gas pipe 11b is a side toward the low-pressure valve 10. The low-pressure gas pipe 5 and the indoor unit 3 are connected mainly via the low-pressure header 16 and the gas pipes 11b and 11c. On the other hand, the side of the gas pipe 11 c is the side toward the indoor unit 3. The high-pressure gas pipe 4 and the indoor unit 3 are connected mainly via the high-pressure header 15 and the gas pipes 11a and 11c.

分岐部分22から右側に延びるガス管11bは、水平部分に延びる部分のほか、鉛直方向上向きに延びる部分を有している。具体的には、ガス管11bは、分岐部分22から右方向にいったん水平方向に延びた後、鉛直方向上向きに延び、その上端でさらに右方向に向かうように構成されている。従って、全体でみれば、分岐部分22から低圧弁10までを構成するガス管11bは上方に延びていることになる。これにより、室外ユニット2での室外膨張弁への冷媒の通流方向が一方向にのみとなるように流路が制御される。   The gas pipe 11b extending to the right side from the branch portion 22 has a portion extending upward in the vertical direction in addition to a portion extending to the horizontal portion. Specifically, the gas pipe 11b is configured to extend from the branch portion 22 to the right in the horizontal direction, then upward in the vertical direction, and further toward the right at the upper end thereof. Therefore, as a whole, the gas pipe 11b that constitutes from the branch portion 22 to the low pressure valve 10 extends upward. Thereby, a flow path is controlled so that the flow direction of the refrigerant | coolant to the outdoor expansion valve in the outdoor unit 2 may be only one direction.

また、分岐部分22から左側に延びているガス管11cは、分岐部分22の近傍では水平方向に形成されている。しかし、ガス管11cには、当該水平方向に形成された部分のほかに、左方向(室内ユニット3の室内熱交換器の方向)に下る傾斜を有する部分が含まれている。そして、その下る傾斜を有する部分の左側に配置された水平部分の端部において、室内ユニット3につながるガス管7が接続部22を介して接続されている。このようにすることで、空気調和機100のサーモオフや運転停止の際に、冷媒流路切換ユニット1の配管内部に存在する冷媒は、ガス管11cの下る傾斜の部分によって、自然に、室内ユニット3の方に流れていくことになる。そのため、冷媒流路切換ユニット1の内部に冷媒が滞留することが防止される。   Further, the gas pipe 11 c extending to the left from the branch portion 22 is formed in the horizontal direction in the vicinity of the branch portion 22. However, in addition to the portion formed in the horizontal direction, the gas pipe 11c includes a portion having an inclination that goes down to the left (in the direction of the indoor heat exchanger of the indoor unit 3). And the gas pipe 7 connected to the indoor unit 3 is connected via the connection part 22 in the edge part of the horizontal part arrange | positioned on the left side of the part which has the downward inclination. By doing in this way, when the air conditioner 100 is thermo-off or stopped, the refrigerant present in the pipe of the refrigerant flow switching unit 1 is naturally in the indoor unit by the inclined part that goes down the gas pipe 11c. It will flow toward 3. Therefore, the refrigerant is prevented from staying inside the refrigerant flow path switching unit 1.

そして、ガス管11cにおいて下る傾斜を有する部分には、ストレーナ20が備えられている。このストレーナ20は、前記のように、通流する冷媒中の異物を除去するものである。ストレーナ20が傾斜を有して配置されていることにより、ストレーナ20の内部にも、冷媒が滞留することが防止される。   And the strainer 20 is provided in the part which has the inclination which falls in the gas pipe 11c. As described above, the strainer 20 removes foreign matters in the flowing refrigerant. By arranging the strainer 20 with an inclination, the refrigerant is prevented from staying in the strainer 20.

また、筐体1aの内部には、高圧弁電磁コイル17及び低圧弁電磁コイル18の下方において、これら以外の部材が全て覆われるように断熱材19が配置されている。この断熱材19は例えば発泡ウレタンである。断熱材19は、筐体1aの内部に配管等を収容した後に筐体1aの表面に形成された開口(図示しない)等を通じて発泡ウレタン(発泡剤)を充填して固化させることで、形成される。   In addition, a heat insulating material 19 is disposed inside the housing 1a so as to cover all other members below the high-pressure valve electromagnetic coil 17 and the low-pressure valve electromagnetic coil 18. The heat insulating material 19 is, for example, urethane foam. The heat insulating material 19 is formed by filling urethane foam (foaming agent) through an opening (not shown) or the like formed on the surface of the housing 1a and solidifying it after housing piping or the like inside the housing 1a. The

接続部21の高さ方向の位置(図3において最も下の一点鎖線の位置)と、分岐部分22の高さ方向の位置(図3において中段の一点鎖線の位置)と、接続部10aの高さ方向の位置(図3において最も上の一点鎖線の位置)とは、この順で高くなるように各部材が配置されている。即ち、図3に示すように、ガス管11b,11cの分岐部分22の高さ方向の位置は、ガス管11cとガス管7との接続部21の高さ方向の位置よりも、長さAだけ高い位置になっている。また、高圧弁9における接続部9a及び低圧弁10における接続部10aの高さ方向の位置は、ガス管11b,11cの分岐部分22の高さ方向の位置よりも、長さBだけ高い位置になっている。なお、前記のように高圧弁9と低圧弁10とは、同じ仕様で同じ大きさ(形状)のものであるため、接続部9aと接続部10aとの高さ方向の位置は同じである。   The position in the height direction of the connecting portion 21 (the position of the lowest one-dot chain line in FIG. 3), the position in the height direction of the branch portion 22 (the position of the middle one-dot chain line in FIG. 3), and the height of the connecting portion 10a. Each member is arranged so as to be higher in this order from the position in the vertical direction (the position of the uppermost one-dot chain line in FIG. 3). That is, as shown in FIG. 3, the position in the height direction of the branch portion 22 of the gas pipes 11b and 11c is longer than the position in the height direction of the connecting portion 21 between the gas pipe 11c and the gas pipe 7. It is only high. Further, the height direction positions of the connection portion 9a in the high pressure valve 9 and the connection portion 10a in the low pressure valve 10 are higher than the position in the height direction of the branch portion 22 of the gas pipes 11b and 11c by a length B. It has become. Since the high-pressure valve 9 and the low-pressure valve 10 have the same specifications and the same size (shape) as described above, the heights of the connecting portion 9a and the connecting portion 10a are the same.

このようにすることで空気調和機100のサーモオフや運転停止の際に、冷媒流路切換ユニット1の内部の冷媒は、最も下方に配置された接続部21及びガス管7を通じて、室内ユニット3に向かうことになる。そのため、冷媒の滞留が生じにくく、空気調和機100を再度運転する際にも、安定的な運転が可能となる。また、冷媒のほかにも、冷凍機油も滞留しにくくなるため、配管等の腐食を抑制することができる。   In this way, when the air conditioner 100 is thermo-off or stopped, the refrigerant in the refrigerant flow path switching unit 1 is transferred to the indoor unit 3 through the connection portion 21 and the gas pipe 7 arranged at the lowermost position. Will head. Therefore, stagnation of the refrigerant hardly occurs, and stable operation is possible even when the air conditioner 100 is operated again. In addition to refrigerant, refrigerating machine oil is less likely to stay, so that corrosion of piping and the like can be suppressed.

さらには、接続部9aと接続部10aとの高さ方向の位置が同じとなっており、高圧弁9と低圧弁10との高さ方向の位置が同じとなっていることで、冷媒流路切換ユニット1の高さ方向の寸法を小さくすることができる。そのため、断熱材19を構成する発泡剤を充填する際に発泡剤の充填量を減らすことができる。これにより、充填の際に空気の混入が防止され、確実な断熱を行うことができることから、結露水の生成を抑制して、水漏れを防止することができる。   Furthermore, the height direction positions of the connection portion 9a and the connection portion 10a are the same, and the height direction positions of the high pressure valve 9 and the low pressure valve 10 are the same. The dimension of the switching unit 1 in the height direction can be reduced. Therefore, the filling amount of the foaming agent can be reduced when the foaming agent constituting the heat insulating material 19 is filled. Thereby, mixing of air is prevented at the time of filling, and reliable heat insulation can be performed. Therefore, generation of condensed water can be suppressed and water leakage can be prevented.

以上、本実施形態について図面を適宜参照しながら説明したが、本実施形態は前記の例に何ら限定されるものではない。   Although the present embodiment has been described with reference to the drawings as appropriate, the present embodiment is not limited to the above example.

例えば、ガス管11cは、室内ユニット3の室内熱交換器に向かって下方に延びる形態として、左方向(室内熱交換器)に向かう方向に下る傾斜を有するようにしたが、下方に延びる形態であれば、どのようにしてもよい。例えば、ガス管11cは、水平方向に延びる第一配管と、鉛直方向に延びる第二配管と、水平方向に延びる第三配管とをこの順で接続することで、形成してもよい。この場合、第一配管の左側端部に接続部21が接続され、第一配管の右側端部に第二配管が接続され、第二配管の上側端部に第三配管の左側端部が接続され、第三配管の右側端部に分岐部分22が接続されることになる。   For example, the gas pipe 11c has an inclination that goes down in the direction toward the left direction (indoor heat exchanger) as a form that extends downward toward the indoor heat exchanger of the indoor unit 3, but the form that extends downward. If there is, you can do anything. For example, the gas pipe 11c may be formed by connecting a first pipe extending in the horizontal direction, a second pipe extending in the vertical direction, and a third pipe extending in the horizontal direction in this order. In this case, the connection part 21 is connected to the left end of the first pipe, the second pipe is connected to the right end of the first pipe, and the left end of the third pipe is connected to the upper end of the second pipe. The branch portion 22 is connected to the right end of the third pipe.

また、例えば、ガス管11cに備えられるストレーナ20は、左方向に向かって下る傾斜を有する部分に設けられていたが、この部分に設けられることに加えて、又は、この部分に設けられることに代えて、当該部分以外の水平に延びる部分にストレーナ20が設けられるようにしてもよい。水平な部分にストレーナ20が設けられることで、加工が容易になる。   In addition, for example, the strainer 20 provided in the gas pipe 11c is provided in a portion having an inclination descending in the left direction, but in addition to or provided in this portion. Instead, the strainer 20 may be provided in a horizontally extending portion other than the portion. By providing the strainer 20 in the horizontal portion, the processing becomes easy.

さらに、例えば、前記の高圧弁9と低圧弁10とは、いずれも同じ仕様でかつ同じ大きさ(形状)としたが、必ずしもこのようにしなくてもよい。即ち、異なる仕様や大きさであっても、二つの弁(電磁コイルの上端でもよい)の上端が同じ高さ(ほぼ同じ高さでもよい)にあれば、筐体1aの高さ方向の寸法を抑制して、本発明の効果が奏される。   Further, for example, the high-pressure valve 9 and the low-pressure valve 10 have the same specifications and the same size (shape), but this need not be the case. That is, even if the specifications and sizes are different, if the upper ends of the two valves (which may be the upper ends of the electromagnetic coils) are at the same height (may be substantially the same height), the dimensions in the height direction of the housing 1a. The effects of the present invention are exhibited.

また、高圧弁9と低圧弁10とは、高さ方向で同じ位置になるように配置したが、これらは全く同じ高さ方向の位置にする必要はなく(即ち、図3に示す破線が厳密な平行になる必要はなく)、例えば数mm程度、本発明の効果を著しく損なわない範囲で、多少のずれ(即ち、図3に示す破線が例えばほぼ平行)は許容されるものとする。   Further, although the high pressure valve 9 and the low pressure valve 10 are arranged so as to be at the same position in the height direction, they do not need to be located at the same height direction (that is, the broken line shown in FIG. For example, a slight deviation (that is, the broken lines shown in FIG. 3 are substantially parallel, for example) is allowed within a range that does not significantly impair the effects of the present invention.

1 冷媒流路切換ユニット
1a 筐体
1b 電気箱
2 室外ユニット(熱源側ユニット)
3,3a,3b,3c,3d 室内ユニット(利用側ユニット)
4 高圧ガス管(第一冷媒配管)
5 低圧ガス管(第二冷媒配管)
6 液管
7,7a,7b,7c,7d ガス管(第三冷媒配管)
9 高圧弁(第一開閉弁)
10 低圧弁(第一開閉弁)
11a ガス管(第一冷媒配管)
11b ガス管(第二冷媒配管)
11c ガス管(第三冷媒配管)
12 高圧弁と低圧弁を接続するガス管
13 接続部
14 接続部
15 高圧ヘッダ(第一冷媒配管)
16 低圧ヘッダ(第二冷媒配管)
17 高圧弁電磁コイル
18低圧弁電磁コイル
19 断熱材
20 ストレーナ
22 分岐部分(分岐)
100 空気調和機
DESCRIPTION OF SYMBOLS 1 Refrigerant flow path switching unit 1a Case 1b Electric box 2 Outdoor unit (heat source side unit)
3, 3a, 3b, 3c, 3d Indoor unit (use side unit)
4 High-pressure gas pipe (first refrigerant pipe)
5 Low pressure gas pipe (second refrigerant pipe)
6 Liquid pipes 7, 7a, 7b, 7c, 7d Gas pipe (third refrigerant pipe)
9 High pressure valve (first on-off valve)
10 Low pressure valve (first on-off valve)
11a Gas pipe (first refrigerant pipe)
11b Gas pipe (second refrigerant pipe)
11c Gas pipe (third refrigerant pipe)
12 Gas pipe 13 connecting high pressure valve and low pressure valve 13 Connection section 14 Connection section 15 High pressure header (first refrigerant pipe)
16 Low pressure header (second refrigerant piping)
17 High-pressure valve electromagnetic coil 18 Low-pressure valve electromagnetic coil 19 Heat insulating material 20 Strainer 22 Branch part (branch)
100 air conditioner

Claims (6)

それぞれ独立して冷暖運転可能な複数の利用側ユニットと、熱源側ユニットとを備え、前記複数の利用側ユニットと前記熱源側ユニットとの間で冷凍サイクルが形成されている空気調和機に備えられ、前記複数の利用側ユニットと前記熱源側ユニットとの間に配置されることで、前記複数の利用側ユニットへの冷媒の通流方向を制御する冷媒流路切換ユニットであって、
前記熱源側ユニットに備えられる圧縮機の吐出側に繋がる第一冷媒配管と、
当該第一冷媒配管に設けられ、開閉することで前記第一冷媒配管を通流する冷媒の通流を制御する第一開閉弁と、
前記第一冷媒配管から分岐するとともに、前記熱源側ユニットに備えられる前記圧縮機の吸入側に繋がる第二冷媒配管と、
当該第二冷媒配管に設けられ、開閉することで前記第二冷媒配管を通流する冷媒の通流を制御するとともに、前記第一開閉弁と高さ方向で同じ位置に設けられた第二開閉弁と、
前記第一冷媒配管と前記第二冷媒配管との前記分岐からさらに分岐して前記利用側ユニットに備えられる熱交換器に繋がり、当該熱交換器に向かう方向に下方に延びる部分を有する第三冷媒配管と、を備えることを特徴とする、冷媒流路切換ユニット。
Provided in an air conditioner that includes a plurality of use side units that can be cooled and heated independently and a heat source side unit, and in which a refrigeration cycle is formed between the plurality of use side units and the heat source side unit. A refrigerant flow switching unit for controlling a flow direction of the refrigerant to the plurality of usage-side units by being arranged between the plurality of usage-side units and the heat source-side unit,
A first refrigerant pipe connected to a discharge side of a compressor provided in the heat source side unit;
A first on-off valve that is provided in the first refrigerant pipe and controls the flow of the refrigerant flowing through the first refrigerant pipe by opening and closing;
A second refrigerant pipe branched from the first refrigerant pipe and connected to the suction side of the compressor provided in the heat source side unit;
The second refrigerant pipe provided in the second refrigerant pipe controls the flow of the refrigerant flowing through the second refrigerant pipe by opening and closing, and is provided at the same position in the height direction as the first on-off valve. A valve,
A third refrigerant having a portion further branched from the branch of the first refrigerant pipe and the second refrigerant pipe and connected to a heat exchanger provided in the use side unit and extending downward in a direction toward the heat exchanger. And a refrigerant flow path switching unit.
前記第三冷媒配管に形成された前記下方に延びる部分は、前記熱交換器に向かって下る傾斜を有する部分であることを特徴とする、請求項1に記載の冷媒流路切換ユニット。   2. The refrigerant flow switching unit according to claim 1, wherein the downwardly extending portion formed in the third refrigerant pipe is a portion having an inclination downward toward the heat exchanger. 前記第三冷媒配管には、前記下方に延びる部分に、通流する冷媒中の異物を除去するストレーナが設けられていることを特徴とする、請求項1又は2に記載の冷媒流路切換ユニット。   The refrigerant flow path switching unit according to claim 1 or 2, wherein the third refrigerant pipe is provided with a strainer for removing foreign matters in the flowing refrigerant at a portion extending downward. . 前記第三冷媒配管は、前記下方に延びる部分のほかに、水平に延びる部分を備え、
当該水平に延びる部分に、通流する冷媒中の異物を除去するストレーナが設けられていることを特徴とする、請求項1又は2に記載の冷媒流路切換ユニット。
The third refrigerant pipe includes a portion extending horizontally in addition to the portion extending downward,
The refrigerant flow path switching unit according to claim 1 or 2, wherein a strainer that removes foreign matters in the flowing refrigerant is provided in the horizontally extending portion.
前記第一開閉弁と前記第二開閉弁とは、同じ仕様で、かつ、同じ大きさであることを特徴とする、請求項1又は2に記載の冷媒流路切換ユニット。   The refrigerant channel switching unit according to claim 1 or 2, wherein the first on-off valve and the second on-off valve have the same specifications and the same size. それぞれ独立して冷暖運転可能な複数の利用側ユニットと、
当該複数の利用側ユニットとの間で冷凍サイクルが形成されている熱源側ユニットと、
前記熱源側ユニットに備えられる圧縮機の吐出側に繋がる第一冷媒配管と、当該第一冷媒配管に設けられ、開閉することで前記第一冷媒配管を通流する冷媒の通流を制御する第一開閉弁と、前記第一冷媒配管から分岐するとともに、前記熱源側ユニットに備えられる前記圧縮機の吸入側に繋がる第二冷媒配管と、当該第二冷媒配管に設けられ、開閉することで前記第二冷媒配管を通流する冷媒の通流を制御するとともに、前記第一開閉弁と高さ方向で同じ位置に設けられた第二開閉弁と、前記第一冷媒配管と前記第二冷媒配管との前記分岐からさらに分岐して前記利用側ユニットに備えられる熱交換器に繋がり、当該熱交換器に向かう方向に下方に延びる部分を有する第三冷媒配管と、を備え、前記複数の利用側ユニットと前記熱源側ユニットとの間に配置されることで、前記複数の利用側ユニットへの冷媒の通流方向を制御する冷媒流路切換ユニットと、を備えることを特徴とする、空気調和機。
A plurality of user-side units capable of cooling and heating independently,
A heat source side unit in which a refrigeration cycle is formed with the plurality of usage side units;
A first refrigerant pipe connected to a discharge side of a compressor provided in the heat source side unit, and a first refrigerant pipe provided in the first refrigerant pipe for controlling the flow of the refrigerant flowing through the first refrigerant pipe by opening and closing. One open / close valve, a second refrigerant pipe branched from the first refrigerant pipe and connected to the suction side of the compressor provided in the heat source side unit, and provided in the second refrigerant pipe, opening and closing the above Controlling the flow of the refrigerant flowing through the second refrigerant pipe, the second on-off valve provided at the same position in the height direction as the first on-off valve, the first refrigerant pipe and the second refrigerant pipe And a third refrigerant pipe having a portion extending downward in a direction toward the heat exchanger, further branched from the branch and connected to a heat exchanger provided in the use side unit, and the plurality of use sides Unit and the heat source side unit By being disposed between, characterized in that and a refrigerant flow path switching unit for controlling the flow direction of the refrigerant to the plurality of utilization side units, the air conditioner.
JP2016136492A 2016-07-11 2016-07-11 Refrigerant flow passage switching unit and air conditioner with the same Pending JP2018009707A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016136492A JP2018009707A (en) 2016-07-11 2016-07-11 Refrigerant flow passage switching unit and air conditioner with the same
PCT/JP2017/010941 WO2018012036A1 (en) 2016-07-11 2017-03-17 Refrigerant flow passage switching unit and air conditioner provided with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016136492A JP2018009707A (en) 2016-07-11 2016-07-11 Refrigerant flow passage switching unit and air conditioner with the same

Publications (1)

Publication Number Publication Date
JP2018009707A true JP2018009707A (en) 2018-01-18

Family

ID=60952937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016136492A Pending JP2018009707A (en) 2016-07-11 2016-07-11 Refrigerant flow passage switching unit and air conditioner with the same

Country Status (2)

Country Link
JP (1) JP2018009707A (en)
WO (1) WO2018012036A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6456880B2 (en) * 2016-07-11 2019-01-23 日立ジョンソンコントロールズ空調株式会社 Refrigerant switching unit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2725849B2 (en) * 1989-07-27 1998-03-11 三洋電機株式会社 Valve unit
JP2008039276A (en) * 2006-08-04 2008-02-21 Daikin Ind Ltd Refrigerant flow passage switching unit and air conditioner using this unit
KR101727034B1 (en) * 2010-03-11 2017-04-14 엘지전자 주식회사 Air conditioner
JP6083148B2 (en) * 2011-11-02 2017-02-22 株式会社富士通ゼネラル Refrigerant circuit unit
JP5812084B2 (en) * 2013-12-11 2015-11-11 ダイキン工業株式会社 Channel switching collective unit and method for manufacturing channel switching collective unit
JP6167887B2 (en) * 2013-12-11 2017-07-26 ダイキン工業株式会社 Refrigeration equipment
JP5783235B2 (en) * 2013-12-11 2015-09-24 ダイキン工業株式会社 Refrigerant flow path switching unit and flow path switching collective unit
JP5884855B2 (en) * 2014-05-30 2016-03-15 ダイキン工業株式会社 Refrigerant flow path switching unit

Also Published As

Publication number Publication date
WO2018012036A1 (en) 2018-01-18

Similar Documents

Publication Publication Date Title
KR101995581B1 (en) An oil seperator and an air conditioner using it
JP2009257709A (en) Air conditioner
CN105180497A (en) Air conditioning device
JP5817775B2 (en) Chiller device
JP5916488B2 (en) Control apparatus and method, program, and multi-type air conditioning system including the same
JPWO2010119555A1 (en) Heat medium converter and air conditioner
JP6591682B2 (en) Refrigerant flow path switching unit and air conditioner
CN105650810B (en) Control method, single cold type air conditioner and the heating and air conditioner of air conditioner
WO2013118381A1 (en) Heat exchange unit and heat exchange device
JP2013200103A (en) Heat exchanger of air conditioner and air conditioner
JP5282666B2 (en) Refrigerant flow path switching device
KR20140107821A (en) An accumulator and an air conditioner using thereof
KR20130116360A (en) Binary refrigeration cycle device
JP2017172868A (en) Air conditioner
KR101988034B1 (en) Air conditioner
JP2021050836A (en) Refrigerant flow passage switching device and air conditioning system
JP2006017374A (en) Switching unit for multiple air conditioner
JP2018009707A (en) Refrigerant flow passage switching unit and air conditioner with the same
JP6789205B2 (en) Air conditioning unit and air conditioning system
JP2017172869A (en) Air conditioner
JPWO2018073894A1 (en) Refrigeration cycle device
JP6292469B2 (en) Air conditioner outdoor unit
JP6808059B2 (en) Outdoor unit of air conditioner
JP5992735B2 (en) Air conditioner
JP2010151413A (en) Indoor unit of air conditioner

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20161130