JP2018009308A - Reinforcement structure of embankment - Google Patents

Reinforcement structure of embankment Download PDF

Info

Publication number
JP2018009308A
JP2018009308A JP2016137304A JP2016137304A JP2018009308A JP 2018009308 A JP2018009308 A JP 2018009308A JP 2016137304 A JP2016137304 A JP 2016137304A JP 2016137304 A JP2016137304 A JP 2016137304A JP 2018009308 A JP2018009308 A JP 2018009308A
Authority
JP
Japan
Prior art keywords
embankment
steel
steel wall
wall
reinforcement structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016137304A
Other languages
Japanese (ja)
Other versions
JP6763221B2 (en
Inventor
覚太 藤原
Kakuta Fujiwara
覚太 藤原
和孝 乙志
Kazutaka Otoshi
和孝 乙志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016137304A priority Critical patent/JP6763221B2/en
Publication of JP2018009308A publication Critical patent/JP2018009308A/en
Application granted granted Critical
Publication of JP6763221B2 publication Critical patent/JP6763221B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reinforcement structure of embankment capable of preventing deformation of an embankment at earthquake by reinforcing a steel wall made of a steel sheet pile, etc., which is embedded in the vicinity of a slope end of the embankment without using accouplement such as a tie rod.SOLUTION: Plural right-angle steel walls 3, each of which extends in a right angle direction away from an embankment 1 relative to a steel wall 2 disposed in the vicinity of a slope of the embankment 1, are disposed discretely in a direction the embankment 1 extends. Thus, not only the flexural rigidity of the steel wall 2 but also the bending resistance of the right-angle steel wall 3 is expected. Therefore, the steel wall 2 embedded in the vicinity of a slope end of the embankment 1 can be reinforced without using accouplement such as a tie rod, and the embankment can be prevented from being deformed at an earthquake.SELECTED DRAWING: Figure 1

Description

本発明は、海岸や河川等の堤防、道路・鉄道盛土等の海岸、河川、道路、鉄道等に沿って長く延在する盛土の補強構造に関する。   The present invention relates to a reinforcing structure for embankments extending long along coasts such as coasts and rivers, coasts such as roads and railway embankments, rivers, roads, railways, and the like.

盛土の補強構造の一例として、特許文献1に記載のものが知られている。この盛土の補強構造は、盛土左右の法尻付近もしくは法面中央付近の範囲内に鋼矢板または鋼管矢板を配置し、その頭部付近をタイロッド等の連結材で結合し補強するものである。   The thing of patent document 1 is known as an example of the reinforcement structure of a banking. This embankment reinforcement structure is a structure in which a steel sheet pile or a steel pipe sheet pile is arranged in the vicinity of the right and left slopes of the embankment or near the center of the slope, and the vicinity of the head is connected and reinforced with a connecting material such as a tie rod.

また、複数の鋼矢板を用いて構築される土留壁の補強方法の一例として、特許文献2に記載のものが知られている。この土留壁の補強方法は、土留壁本体と、この土留壁本体の背面側に突設される控え壁と、この控え壁から前記土留壁本体と略平行に突設される支圧壁とを含んでなる土留壁の補強方法であり、前記土留壁本体を構成する複数の鋼矢板を互いに連結するようにして、土圧対抗材が敷設されている。このように土留壁本体を構成する鋼矢板どうしが土圧対抗材を介して一体化することとなり、地盤の土圧を受けた際に生じる鋼矢板の回転を抑止することができる。   Moreover, the thing of patent document 2 is known as an example of the reinforcement method of the retaining wall constructed | assembled using a some steel sheet pile. The retaining wall reinforcing method includes a retaining wall main body, a retaining wall projecting on the back side of the retaining wall body, and a bearing wall projecting substantially parallel to the retaining wall body from the retaining wall. The earth retaining wall reinforcing method includes the earth pressure resisting material such that a plurality of steel sheet piles constituting the earth retaining wall main body are connected to each other. Thus, the steel sheet piles constituting the earth retaining wall main body are integrated with each other through the earth pressure resistance material, and the rotation of the steel sheet pile generated when receiving the earth pressure of the ground can be suppressed.

特開2003−13451号公報JP 2003-13451 A 特開2010−126991号公報JP 2010-126991 A

しかしながら、特許文献1に記載されている盛土の補強構造では、タイロッド等の連結材を盛土内部を貫通させて施工する必要があるため、堤体幅(盛土幅)が大きい場合には多大な施工コストを要することが懸念される。また、鉄道盛土で盛土天端に軌道がある場合には、軌道への影響が懸念されることから、軌道営業中の施工が困難となり、工事時間が限定され工期が長くなることで建設コストが増加することも懸念される。   However, in the embankment reinforcement structure described in Patent Document 1, it is necessary to construct a connecting material such as a tie rod through the interior of the embankment. There is concern about the cost. In addition, when there is a track at the top of the embankment in a railway embankment, there is concern about the impact on the track, so it becomes difficult to perform the operation during track operation, the construction time is limited and the construction period becomes longer, resulting in a lower construction cost. There is also concern about the increase.

一方、特許文献2に記載されている土留壁の補強方法は、土留壁本体に作用する土圧を、控え壁を介して支圧壁により抵抗するものであるため、支圧壁の施工は必ず必要である。また、控え壁はあくまで土留壁本体を支圧壁に連結する連結材という位置づけであり、控え壁によって、土留壁本体の変形を抑えるというものではない。   On the other hand, the method of reinforcing the retaining wall described in Patent Document 2 is to resist the earth pressure acting on the retaining wall body by the bearing wall through the retaining wall. is necessary. Further, the retaining wall is merely a connecting material for connecting the retaining wall body to the bearing wall, and does not suppress deformation of the retaining wall body by the retaining wall.

そこで、本発明者は、盛土の補強構造において、盛土の法尻部(法尻またはその付近のことを言う)に埋設した鋼矢板等からなる鋼製壁をタイロッド等の連結材を使用せずに補強することについて鋭意研究をした結果、以下のような知見を得るに至った。
すなわち、地震時には、法尻部に埋設した鋼矢板等からなる鋼製壁は、下端を不動点とし、堤防(盛土)の変形に追随して上端が外側方向に開くような挙動を示す。鋼製壁の上端が外側に開くと、それに応じて堤防(盛土)が沈下して変形するため、この「開き」を極力抑えることが、堤防(盛土)の被災抑制に直結する。
Therefore, the present inventor does not use a connecting material such as a tie rod for a steel wall made of a steel sheet pile or the like embedded in the embankment of the embankment in the embankment reinforcement structure. As a result of diligent research on reinforcement, the following findings were obtained.
That is, at the time of an earthquake, a steel wall made of a steel sheet pile or the like embedded in the buttock has a lower end as a fixed point, and behaves such that the upper end opens outwardly following the deformation of the embankment (banking). When the upper end of the steel wall opens to the outside, the embankment (banking) sinks and deforms accordingly. Therefore, suppressing this "opening" as much as possible directly leads to the suppression of damage to the bank (banking).

このような「開き」を抑制するため、鋼製壁に対して直角方向に鋼矢板等からなる直角方向鋼製壁を設置することで性能(曲げ剛性)が飛躍的に上昇することが分かった(表1〜表3参照)。   In order to suppress such “opening”, it was found that the performance (bending rigidity) was dramatically increased by installing a perpendicular steel wall made of steel sheet piles, etc. in a direction perpendicular to the steel wall. (See Tables 1 to 3).

Figure 2018009308
表1に示すハット形鋼矢板は直角方向鋼製壁を構成するものである。
なお、ハット形鋼矢板10H〜50Hは、Hの係数が大きくなるほど、ハット形鋼矢板の有効高さおよび厚さが大きくなっている。
また、x周りとは、ハット形鋼矢板の断面において、重心がある高さ位置にて、ハット形鋼矢板の幅方向に延びるx軸周りのことであり、y周りとは、ハット形鋼矢板の断面重心にてx軸と直角方向、つまり、ハット形鋼矢板の高さ方向に延びるy軸周りのことである。
Figure 2018009308
The hat-shaped steel sheet pile shown in Table 1 constitutes a perpendicular steel wall.
In addition, as for the hat-shaped steel sheet piles 10H to 50H, the effective height and thickness of the hat-shaped steel sheet pile increase as the coefficient of H increases.
Further, the x circumference means the circumference of the x axis extending in the width direction of the hat type steel sheet pile at the height position where the center of gravity is located in the cross section of the hat type steel sheet pile, and the y circumference means the hat type steel sheet pile. This is around the y axis extending in the direction perpendicular to the x axis at the center of gravity of the cross section, that is, in the height direction of the hat-shaped steel sheet pile.

Figure 2018009308
Figure 2018009308

Figure 2018009308
Figure 2018009308

表2および表3において、「奥行き9mあたり」とは盛土の連続方向における長さ9mの区間のことを意味する。したがって、例えば奥行き9mあたり1枚(2枚)とは、盛土の連続方向における長さ9mの区間に1枚(2枚)、直角方向鋼製壁を構成する鋼矢板を設置するという意味である。
また、表3中の数値は、盛土の法尻部に設けられた鋼製壁の断面2次モーメントを「1」とした場合に対する、直角方向鋼製壁を構成する鋼矢板によって補強された鋼製壁の断面2次モーメントを鋼矢板の型式および枚数ごとに示している。
In Tables 2 and 3, “per depth of 9 m” means a section having a length of 9 m in the continuous direction of the embankment. Therefore, for example, 1 sheet (2 sheets) per 9 m depth means that one sheet (2 sheets) and a steel sheet pile constituting a perpendicular steel wall are installed in a section having a length of 9 m in the continuous direction of the embankment. .
In addition, the numerical values in Table 3 indicate the steel reinforced by the steel sheet piles constituting the perpendicular steel wall with respect to the case where the secondary moment of section of the steel wall provided at the slope of the embankment is “1”. The sectional moment of inertia of the wall making is shown for each type and number of sheet piles.

そして、盛土の沈下量と鋼矢板の(奥行き方向で平均化した)断面2次モーメントが線形関係と仮定すると、盛土延長直角方向に設置する鋼矢板の枚数について、盛土の沈下量が半分となるには、
ハット形鋼矢板10H:奥行き9m間隔に1枚、
ハット形鋼矢板25H:奥行き9m間隔に2枚、
ハット形鋼矢板45H:奥行き9m間隔に3枚、
ハット形鋼矢板50H:奥行き9m間隔に3枚、
必要であることが分かる。
以上のことから、鋼製壁に対して直角方向に鋼矢板等からなる直角方向鋼製壁を設置することで性能(曲げ剛性)が飛躍的に上昇するので、地震時の盛土の変形(沈下)を抑制できることが分かる。
And assuming that the amount of settlement of the embankment and the section moment of the steel sheet pile (averaged in the depth direction) are linear, the amount of settlement of the embankment is halved for the number of steel sheet piles installed in the direction perpendicular to the embankment extension. ,
Hat-shaped steel sheet pile 10H: 1 sheet at a depth of 9m,
Hat-shaped steel sheet pile 25H: 2 sheets at a depth of 9m,
Hat-shaped steel sheet pile 45H: 3 pieces at a depth of 9m,
Hat-shaped steel sheet pile 50H: 3 sheets at a depth of 9m,
It turns out that it is necessary.
From the above, since the performance (bending rigidity) is dramatically increased by installing a steel wall made of steel sheet piles in the direction perpendicular to the steel wall, the deformation of the embankment (subsidence) ) Can be suppressed.

本発明は、上述した知見に基づいてなされたもので、盛土の法尻部に埋設した鋼矢板等からなる鋼製壁をタイロッド等の連結材を使用せずに補強して、地震時の盛土の変形を抑制できる盛土の補強構造を提供することを目的としている。   The present invention was made on the basis of the above-described knowledge, and reinforces a steel wall made of a steel sheet pile or the like embedded in the embankment of the embankment without using a connecting material such as a tie rod, It aims at providing the reinforcement structure of the embankment which can control deformation of.

前記目的を達成するために、本発明の盛土の補強構造は、連続する盛土の法尻部に、鋼製壁が前記盛土の連続方向に沿って設けられ、
前記鋼製壁に対して直角方向でかつ前記盛土から離れる方向に延在する直角方向鋼製壁が前記盛土の連続方向に離散的に配置されていることを特徴とする。
In order to achieve the above object, the embankment reinforcement structure of the present invention is provided with a steel wall along the continuous direction of the embankment in the continuous bottom of the embankment,
A perpendicular steel wall extending in a direction perpendicular to the steel wall and away from the embankment is discretely arranged in a continuous direction of the embankment.

ここで、法尻部とは、法尻またはその付近のことを意味し、鋼製壁は法尻より法面側に設けてもよいし、法尻の外側に設けてもよい。   Here, the butt portion means the butt or the vicinity thereof, and the steel wall may be provided on the slope side of the butt or on the outer side of the butt.

本発明においては、盛土の法尻部に設けられた鋼製壁に対して直角方向でかつ前記盛土から離れる方向に延在する直角方向鋼製壁が前記盛土の連続方向に離散的に配置されているので、鋼製壁は曲げ剛性だけでなく、直角方向鋼製壁の曲げ抵抗も期待できる。したがって、盛土の法尻部に埋設した鋼製壁をタイロッド等の連結材を使用せずに補強して、地震時の盛土の変形を抑制できる。   In the present invention, perpendicular steel walls extending in a direction perpendicular to and away from the steel wall provided at the bottom of the embankment are discretely arranged in the continuous direction of the embankment. Therefore, the steel wall can be expected not only in bending rigidity but also in bending resistance of the perpendicular steel wall. Therefore, it is possible to reinforce the steel wall buried in the embankment of the embankment without using a connecting material such as a tie rod, thereby suppressing deformation of the embankment during an earthquake.

本発明の前記構成において、前記鋼製壁と前記直角方向鋼製壁とがこれらの頭部で結合されていてもよい。   The said structure of this invention WHEREIN: The said steel wall and the said orthogonal direction steel wall may be couple | bonded by these heads.

このような構成によれば、盛土に沿って連続する鋼製壁と、直角方向に配置される直角方向鋼製壁が一体化されることから、曲げ変形に対する抵抗力が著しく増加し、盛土の変形をさらに抑制できる。   According to such a configuration, the steel wall continuous along the embankment and the right-angle steel wall arranged in the perpendicular direction are integrated, so that the resistance to bending deformation is remarkably increased, Deformation can be further suppressed.

また、本発明の前記構成において、前記鋼製壁と前記直角方向鋼製壁とが継手によって結合されていてもよい。   Moreover, the said structure of this invention WHEREIN: The said steel wall and the said orthogonal direction steel wall may be couple | bonded by the coupling.

このような構成によれば、鋼製壁および直角方向鋼製壁の継手のせん断抵抗も発揮され、曲げ変形に対する抵抗力がさらに増加し、盛土の変形を効果的に抑制できる。   According to such a configuration, the shear resistance of the joint of the steel wall and the perpendicular steel wall is also exhibited, the resistance to bending deformation is further increased, and the deformation of the embankment can be effectively suppressed.

また、本発明の前記構成において、前記鋼製壁の天端が前記盛土の高さの1/2の高さ位置より下方に位置する法面に位置していてもよい。   Moreover, the said structure of this invention WHEREIN: The top end of the said steel wall may be located in the slope located below the height position of 1/2 of the height of the said embankment.

このような構成によれば、鉄道盛土等で天端部に軌道がある場合に施工による影響を抑制できる。また、軌道営業中にも施工が可能で工事時間が十分に確保できることから建設コスト低減にも繋がる利点がある。   According to such a configuration, it is possible to suppress the influence of construction when there is a track at the top end portion of a railway embankment or the like. In addition, there is an advantage that construction costs can be reduced because construction is possible during track business and construction time can be sufficiently secured.

また、本発明の前記構成において、前記直角方向鋼製壁の天端が、地表面以下に位置していてもよい。   Moreover, the said structure of this invention WHEREIN: The top end of the said perpendicular direction steel wall may be located below the ground surface.

このような構成によれば、盛土およびその近傍の地表面から直角方向鋼製壁が突出することがないので、周辺環境への配慮に繋がる。また、直角方向鋼製壁を被覆するために盛土法面を拡幅することが不要となり、周辺構造物や敷地境界と比較的近接していても補強構造を容易に構築できる。   According to such a configuration, the steel wall at right angles does not protrude from the embankment and the ground surface in the vicinity thereof, which leads to consideration for the surrounding environment. In addition, it is not necessary to widen the embankment slope to cover the perpendicular steel wall, and a reinforcing structure can be easily constructed even if it is relatively close to the surrounding structure or site boundary.

また、本発明の前記構成において、前記直角方向鋼製壁が、地中において液状化地盤と非液状化地盤とを跨ぐ形で設置されていてもよい。   Moreover, the said structure of this invention WHEREIN: The said perpendicular steel wall may be installed in the form which straddles a liquefied ground and a non-liquefied ground in the ground.

このような構成によれば、盛土の連続方向に沿って設けられる鋼製壁について、地震時の最大応力発生位置は、液状化層と非液状化層の層境界であることが、模型実験等から分かっているので、当該位置を直角方向鋼製壁によって補強することで、応力低減を図ることができる。   According to such a configuration, with respect to the steel wall provided along the continuous direction of the embankment, the maximum stress generation position at the time of the earthquake is the layer boundary between the liquefied layer and the non-liquefied layer, such as a model experiment. Therefore, the stress can be reduced by reinforcing the position with a perpendicular steel wall.

本発明によれば、盛土の法尻部に設けられた鋼製壁の曲げ剛性だけでなく、直角方向鋼製壁の曲げ抵抗も期待できる。したがって、盛土の法尻部に埋設した鋼製壁をタイロッド等の連結材を使用せずに補強して、地震時の盛土の変形を抑制できる。   According to the present invention, not only the bending rigidity of the steel wall provided at the bottom of the embankment but also the bending resistance of the perpendicular steel wall can be expected. Therefore, it is possible to reinforce the steel wall buried in the embankment of the embankment without using a connecting material such as a tie rod, thereby suppressing deformation of the embankment during an earthquake.

本発明の第1の実施の形態に係る盛土の補強構造を模式的に示す斜視図である。It is a perspective view which shows typically the reinforcement structure of the embankment which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る盛土の補強構造を模式的に示す正断面図である。It is a front sectional view showing typically the reinforcement structure of embankment concerning a 2nd embodiment of the present invention. 本発明の第3の実施の形態に係る盛土の補強構造を模式的に示す正断面図である。It is a front sectional view which shows typically the embankment reinforcement structure concerning a 3rd embodiment of the present invention. 本発明の第3の実施の形態に係る盛土の補強構造の要部を示す平断面図である。It is a plane sectional view showing the important section of the embankment reinforcement structure concerning a 3rd embodiment of the present invention. 本発明の第4の実施の形態に係る盛土の補強構造を模式的に示す正断面図である。It is a front sectional view showing typically the embankment reinforcement structure concerning the 4th embodiment of the present invention. 本発明の第5の実施の形態に係る盛土の補強構造を模式的に示す正断面図である。It is a front sectional view showing typically the reinforcement structure of embankment concerning the 5th embodiment of the present invention. 本発明の第6の実施の形態に係る盛土の補強構造を模式的に示す正断面図である。It is a front sectional view showing typically the embankment reinforcement structure concerning the 6th embodiment of the present invention. 本発明に係る模型実験を説明するためのもので、模型盛土の概略構成を示す正断面図である。It is for demonstrating the model experiment which concerns on this invention, and is a front sectional view which shows schematic structure of model embankment. 同、加振実験における法尻の鋼矢板の曲げひずみの深度分布を示すグラフである。It is a graph which shows the depth distribution of the bending distortion of the steel sheet pile of a method bottom in a vibration experiment. 本発明の実施の形態に係る盛土の補強構造の要部を示すもので、鋼製壁に直角方向鋼製壁としての鋼製連続壁を結合した状態を示す平断面図である。The principal part of the reinforcement structure of the embankment which concerns on embodiment of this invention is shown, and it is a plane sectional view which shows the state which couple | bonded the steel continuous wall as a perpendicular steel wall with the steel wall.

以下、図面を参照して本発明に係る盛土の補強構造の実施の形態について説明する。
なお、以下の第1〜第6の各実施の形態において、直角方向鋼製壁3は、盛土1の一方の法尻部1cに設けられた鋼製壁2に対して直角方向に延在して配置されているが、実際は直角方向鋼製壁3は盛土1の両方の法尻部1cに設けるのが好ましい。また、直角方向鋼製壁3は、盛土1の一方の法尻部1cに設けてもよい。
Hereinafter, embodiments of the embankment reinforcement structure according to the present invention will be described with reference to the drawings.
In each of the following first to sixth embodiments, the perpendicular steel wall 3 extends in a perpendicular direction with respect to the steel wall 2 provided on one of the butt portions 1c of the embankment 1. However, in reality, the right-angle steel wall 3 is preferably provided on both of the bottom edges 1c of the embankment 1. Further, the right-angle steel wall 3 may be provided on one method bottom 1 c of the embankment 1.

(第1の実施の形態)
図1は、第1の実施の形態に係る盛土の補強構造を模式的に示す斜視図である。
本実施の形態では、連続する盛土1の法尻部1cに、鋼製壁2が盛土1の連続方向に沿って設けられている。鋼製壁2は、鋼矢板または鋼管矢板を複数連結していくことによって形成されたものである。この鋼製壁2の天端2cは盛土1の法尻部1cの近傍の地表面に位置している。
(First embodiment)
FIG. 1 is a perspective view schematically showing the embankment reinforcement structure according to the first embodiment.
In the present embodiment, the steel wall 2 is provided along the continuous direction of the embankment 1 on the continuous bottom 1 c of the embankment 1. The steel wall 2 is formed by connecting a plurality of steel sheet piles or steel pipe sheet piles. The top end 2 c of the steel wall 2 is located on the ground surface in the vicinity of the slope 1 c of the embankment 1.

また、鋼製壁2に対して直角方向でかつ盛土1から離れる方向に延在する直角方向鋼製壁3が盛土1の連続方向に離散的に配置されている。図1では、2つの直角方向鋼製壁3が盛土1の連続方向に離間して配置されているが、3つ以上の複数の直角方向鋼製壁3が盛土1の連続方向に所定間隔で離散的に配置されていてもよい。盛土1の連続方向に隣り合う直角方向鋼製壁3,3の間隔は、全て等しくてもよいし、盛土1の連続方向における位置に応じて、適宜変更してもよい。
また、直角方向鋼製壁3,3の上下方向に沿う先端縁部は鋼製壁2の背面に当接されているが、継手等によって結合してもよいし、直角方向鋼製壁3,3の先端縁部と鋼製壁2の背面との間に所定の隙間があってもよい。
Further, perpendicular steel walls 3 extending in a direction perpendicular to the steel wall 2 and away from the embankment 1 are discretely arranged in the continuous direction of the embankment 1. In FIG. 1, two perpendicular steel walls 3 are spaced apart in the continuous direction of the embankment 1, but three or more plural perpendicular steel walls 3 are arranged at predetermined intervals in the continuous direction of the embankment 1. You may arrange | position discretely. The intervals between the perpendicular steel walls 3 and 3 adjacent to each other in the continuous direction of the embankment 1 may be equal or may be changed as appropriate according to the position of the embankment 1 in the continuous direction.
Moreover, although the front-end | tip edge part along the up-down direction of the perpendicular direction steel walls 3 and 3 is contact | abutted to the back surface of the steel wall 2, you may couple | bond together by a coupling etc. There may be a predetermined gap between the front end edge 3 and the back surface of the steel wall 2.

本実施の形態によれば、盛土1の法尻部1cに設けられた鋼製壁2に対して直角方向でかつ盛土1から離れる方向に延在する直角方向鋼製壁3が盛土1の連続方向に離散的に配置されているので、鋼製壁2の曲げ剛性だけでなく、直角方向鋼製壁3の曲げ抵抗も期待できる。したがって、盛土1の法尻部1cに埋設した鋼製壁2をタイロッド等の連結材を使用せずに補強して、地震時の盛土の変形を抑制できる。   According to the present embodiment, a perpendicular steel wall 3 extending in a direction perpendicular to the steel wall 2 provided in the slope 1 c of the embankment 1 and away from the embankment 1 is a continuous wall of the embankment 1. Since it is discretely arranged in the direction, not only the bending rigidity of the steel wall 2 but also the bending resistance of the perpendicular steel wall 3 can be expected. Therefore, it is possible to reinforce the steel wall 2 embedded in the butt portion 1c of the embankment 1 without using a connecting material such as a tie rod, thereby suppressing deformation of the embankment during an earthquake.

(第2の実施の形態)
図2は、第2の実施の形態に係る盛土の補強構造を模式的に示す断面図である。
本実施の形態に係る盛土の補強構造が、第1の実施の形態に係る盛土の補強構造と異なる点は、鋼製壁2と直角方向鋼製壁3とがこれらの頭部で結合されている点あるので、以下ではこの点について説明し、第1の実施の形態と同一構成には同一符号を付してその説明を省略ないし簡略化する。
(Second Embodiment)
FIG. 2 is a cross-sectional view schematically showing the embankment reinforcement structure according to the second embodiment.
The reinforcement structure of the embankment according to the present embodiment is different from the reinforcement structure of the embankment according to the first embodiment in that the steel wall 2 and the perpendicular steel wall 3 are joined by these heads. This point will be described below, and the same components as those in the first embodiment will be denoted by the same reference numerals, and the description thereof will be omitted or simplified.

本実施の形態では、直角方向鋼製壁3が3枚の鋼矢板3aによって形成されており、3枚の鋼矢板3aは互いに当接されている。
また、3枚の鋼矢板3aの頭部と鋼製壁2の頭部とが結合部5によって結合されている。結合部5は、3枚の鋼矢板3aの全ての頭部を結合するとともに、当該頭部を鋼製壁2の頭部に結合しているが、直角方向鋼製壁3を構成する鋼矢板3aの枚数が多い場合、鋼製壁2に近い所定枚数の鋼矢板3aの頭部と鋼製壁2の頭部を結合するものであってもよい。
結合部5としては、笠コンクリートや形鋼を使用すればよい。笠コンクリートの場合、現場打ちの笠コンクリートであってもよいし、プレキャスト製の笠コンクリートであってもよい。形鋼の場合、H形鋼が好適に使用されるが、他の形鋼であってもよい。形鋼で形成された結合部5は鋼矢板3aの頭部と鋼製壁2の頭部とに溶接等によって結合されている。
In the present embodiment, the perpendicular steel wall 3 is formed by three steel sheet piles 3a, and the three steel sheet piles 3a are in contact with each other.
Further, the heads of the three steel sheet piles 3 a and the heads of the steel wall 2 are connected by the connecting part 5. The connecting portion 5 connects all the heads of the three steel sheet piles 3 a and connects the heads to the heads of the steel wall 2, but the steel sheet piles constituting the perpendicular steel wall 3. When the number of 3a is large, the head of the steel sheet pile 3a of a predetermined number close to the steel wall 2 and the head of the steel wall 2 may be combined.
As the coupling portion 5, cap concrete or shape steel may be used. In the case of the cap concrete, it may be a cast-in-place cap concrete or a precast cap concrete. In the case of a shape steel, an H-shape steel is preferably used, but other shape steels may be used. The connecting portion 5 formed of a shape steel is connected to the head of the steel sheet pile 3a and the head of the steel wall 2 by welding or the like.

本実施の形態によれば、第1の実施の形態と同様の効果を得ることができる他、盛土1に沿って連続する鋼製壁2の頭部と、直角方向に配置される直角方向鋼製壁3の頭部とが結合部5によって一体化されることから、曲げ変形に対する抵抗力が著しく増加し、盛土1の変形をさらに抑制できる。   According to the present embodiment, the same effects as those of the first embodiment can be obtained, and the head of the steel wall 2 continuous along the embankment 1 and the perpendicular steel arranged in the perpendicular direction. Since the head portion of the wall-making wall 3 is integrated by the coupling portion 5, the resistance to bending deformation is remarkably increased, and deformation of the embankment 1 can be further suppressed.

(第3の実施の形態)
図3は、第3の実施の形態に係る盛土の補強構造を模式的に示す断面図である。
本実施の形態に係る盛土の補強構造が、第1の実施の形態に係る盛土の補強構造と異なる点は、鋼製壁2と直角方向鋼製壁3とが継手によって結合されている点であるので、以下ではこの点について説明し、第1の実施の形態と同一構成には同一符号を付してその説明を省略ないし簡略化する。
(Third embodiment)
FIG. 3 is a cross-sectional view schematically showing the embankment reinforcement structure according to the third embodiment.
The embankment reinforcement structure according to the present embodiment is different from the embankment reinforcement structure according to the first embodiment in that the steel wall 2 and the perpendicular steel wall 3 are joined by a joint. Therefore, this point will be described below, and the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted or simplified.

本実施の形態では、第2の実施の形態と同様に、直角方向鋼製壁3は3枚の鋼矢板3aによって形成されており、これら3枚の鋼矢板3aのうち、鋼製壁2に最も近い側の鋼矢板3aが継手3b,2bによって鋼製壁2に結合されている。
具体的には、図3Aに示すように、鋼製壁2を構成し、かつ直角方向鋼製壁3が結合されるべき鋼矢板2aのウエブには、鋼矢板3a側に向けて突出する継手2bが溶接等によって固定されており、この継手2bに鋼矢板3aの一端部に設けられた継手3bが係合されている。継手2b,3bの係合によって鋼製壁2と直角方向鋼製壁3とが結合されている。また、隣接する鋼矢板3aどうしが継手3bと同様の継手で結合していてもよい。
In the present embodiment, as in the second embodiment, the perpendicular steel wall 3 is formed by three steel sheet piles 3a. Of these three steel sheet piles 3a, The closest steel sheet pile 3a is connected to the steel wall 2 by joints 3b and 2b.
Specifically, as shown in FIG. 3A, a joint that constitutes the steel wall 2 and protrudes toward the steel sheet pile 3a side on the web of the steel sheet pile 2a to which the perpendicular steel wall 3 is to be coupled. 2b is fixed by welding or the like, and a joint 3b provided at one end of the steel sheet pile 3a is engaged with the joint 2b. The steel wall 2 and the perpendicular steel wall 3 are joined by the engagement of the joints 2b and 3b. Moreover, the adjacent steel sheet piles 3a may be couple | bonded by the joint similar to the joint 3b.

本実施の形態では、継手2b,3bは、鋼矢板2a,3aの深度方向全長に亘って形成されているが、必ずしも深度方向全長に亘って形成される必要はない。
また、鋼製壁2が複数の鋼管矢板によって構成されている場合、この鋼管矢板のC形の継手に、鋼矢板3aの継手3bを挿入するとともに、C形の継手内にモルタルを充填することによって、鋼製壁2と直角方向鋼製壁3とを結合してもよい。
In the present embodiment, the joints 2b and 3b are formed over the entire length in the depth direction of the steel sheet piles 2a and 3a, but are not necessarily formed over the entire length in the depth direction.
When the steel wall 2 is composed of a plurality of steel pipe sheet piles, the joint 3b of the steel sheet pile 3a is inserted into the C-shaped joint of the steel pipe sheet pile, and mortar is filled in the C-shaped joint. The steel wall 2 and the perpendicular steel wall 3 may be joined together.

本実施の形態によれば、第1の実施の形態と同様の効果を得ることができる他、鋼製壁2および直角方向鋼製壁3の継手2b,3bのせん断抵抗も発揮され、曲げ変形に対する抵抗力がさらに増加し、盛土1の変形を効果的に抑制できる。   According to the present embodiment, the same effects as those of the first embodiment can be obtained, and the shear resistance of the joints 2b and 3b of the steel wall 2 and the perpendicular steel wall 3 is also exhibited, and bending deformation is achieved. The resistance force against the further increases, and the deformation of the embankment 1 can be effectively suppressed.

(第4の実施の形態)
図4は、第4の実施の形態に係る盛土の補強構造を模式的に示す断面図である。
本実施の形態に係る盛土の補強構造が、第1の実施の形態に係る盛土の補強構造と異なる点は、直角方向鋼製壁3の天端3cが盛土1の高さHの1/2の高さH/2位置より下方に位置する法面1bに位置している点であるので、以下ではこの点について説明し、第1の実施の形態と同一構成には同一符号を付してその説明を省略ないし簡略化する。
(Fourth embodiment)
FIG. 4 is a cross-sectional view schematically showing the embankment reinforcement structure according to the fourth embodiment.
The embankment reinforcement structure according to the present embodiment is different from the embankment reinforcement structure according to the first embodiment in that the top end 3c of the steel wall 3 at a right angle is 1/2 of the height H of the embankment 1. Since this point is located on the slope 1b located below the height H / 2 position, this point will be described below, and the same components as those in the first embodiment are denoted by the same reference numerals. The description is omitted or simplified.

本実施の形態では、盛土1の連続方向に沿って設けられた鋼製壁2は、盛土1の法尻付近において、盛土1の法尻より天端側に寄った位置で法面1bに交差するようにして鉛直に埋設されており、当該鋼製壁2の天端2cは盛土1の高さHの1/2の高さH/2位置より下方に位置する法面1bに位置している。また、鋼製壁2より外側の盛土1の部分は除去されている。
そして、この鋼製壁2に対して直角方向でかつ盛土1から離れる方向に延在する直角方向鋼製壁3が盛土1の連続方向(図4において紙面と直交する方向)に離散的に配置されている。
直角方向鋼製壁3は、第2および第3の実施の形態と同様に、3枚の鋼矢板3aによって形成されており、これら鋼矢板3aからなる直角方向鋼製壁3の天端3cは鋼製壁2の天端2cに揃えられている。したがって、直角方向鋼製壁3は地表面から突出しているので、この突出した部分は地表面と同じ位置で切断してもよいし、盛土1を拡幅して埋めてもよい。
In the present embodiment, the steel wall 2 provided along the continuous direction of the embankment 1 crosses the slope 1b near the top edge of the embankment 1 at a position closer to the top end than the top edge of the embankment 1. The top end 2c of the steel wall 2 is located on the slope 1b located below the height H / 2 of ½ of the height H of the embankment 1. Yes. Further, the portion of the embankment 1 outside the steel wall 2 is removed.
And the perpendicular direction steel wall 3 extended in the direction orthogonal to this steel wall 2 and the direction away from the embankment 1 is discretely arrange | positioned in the continuous direction (direction orthogonal to a paper surface in FIG. 4) of the embankment 1. Has been.
Similar to the second and third embodiments, the perpendicular steel wall 3 is formed by three steel sheet piles 3a, and the top end 3c of the perpendicular steel wall 3 made of these steel sheet piles 3a is The top 2c of the steel wall 2 is aligned. Therefore, since the perpendicular steel wall 3 protrudes from the ground surface, the protruding portion may be cut at the same position as the ground surface, or the embankment 1 may be widened and filled.

本実施の形態によれば、第1の実施の形態と同様の効果を得ることができる他、鉄道盛土等で天端部に軌道がある場合に施工による影響を抑制できる。また、軌道営業中にも施工が可能で工事時間が十分に確保できることから建設コスト低減にも繋がる利点がある。   According to the present embodiment, the same effects as those of the first embodiment can be obtained, and the influence of construction can be suppressed when there is a track on the top end of a railway embankment or the like. In addition, there is an advantage that construction costs can be reduced because construction is possible during track business and construction time can be sufficiently secured.

(第5の実施の形態)
図5は、第5の実施の形態に係る盛土の補強構造を模式的に示す断面図である。
本実施の形態に係る盛土の補強構造が、第4の実施の形態に係る盛土の補強構造と異なる点は、直角方向鋼製壁3の天端3cが、地表面以下に位置している点であるので、以下ではこの点について説明し、第4の実施の形態と同一構成には同一符号を付してその説明を省略ないし簡略化する。
(Fifth embodiment)
FIG. 5 is a cross-sectional view schematically showing the embankment reinforcement structure according to the fifth embodiment.
The embankment reinforcement structure according to the present embodiment differs from the embankment reinforcement structure according to the fourth embodiment in that the top end 3c of the perpendicular steel wall 3 is located below the ground surface. Therefore, this point will be described below, and the same components as those in the fourth embodiment are denoted by the same reference numerals, and the description thereof will be omitted or simplified.

本実施の形態では、第4の実施の形態と同様に、盛土1の連続方向に沿って設けられた鋼製壁2は、盛土1の法尻付近において、盛土1の法面1bに交差するようにして鉛直に埋設されており、当該鋼製壁2の天端2cは盛土1の高さHの1/2の高さH/2位置より下方に位置する法面1bに位置している。
一方、この鋼製壁2に対して直角方向でかつ盛土1から離れる方向に延在する直角方向鋼製壁3の天端3cは、地表面より下方に位置している。したがって、直角方向鋼製壁3は地表面から突出しないので、第4の実施の形態と異なり、この突出した部分の切断や盛土1の拡幅を行う必要がない。
In the present embodiment, as in the fourth embodiment, the steel wall 2 provided along the continuous direction of the embankment 1 intersects the slope 1b of the embankment 1 in the vicinity of the slope of the embankment 1. In this way, the top end 2c of the steel wall 2 is located on the slope 1b located below the height H / 2 of 1/2 the height H of the embankment 1. .
On the other hand, the top end 3c of the perpendicular steel wall 3 extending in a direction perpendicular to the steel wall 2 and away from the embankment 1 is located below the ground surface. Therefore, since the perpendicular steel wall 3 does not protrude from the ground surface, unlike the fourth embodiment, it is not necessary to cut the protruding portion or widen the embankment 1.

本実施の形態によれば、第4の実施の形態と同様の効果を得ることができる他、盛土1およびその近傍の地表面から直角方向鋼製壁3が突出することがないので、周辺環境への配慮に繋がる。また、直角方向鋼製壁3を被覆するために盛土1の法面1bを拡幅することが不要となり、周辺構造物や敷地境界と比較的近接していても補強構造を容易に構築できる。   According to the present embodiment, the same effect as that of the fourth embodiment can be obtained, and the steel wall 3 at right angles does not protrude from the embankment 1 and the ground surface in the vicinity thereof. It leads to consideration for. Further, it is not necessary to widen the slope 1b of the embankment 1 in order to cover the perpendicular steel wall 3, and a reinforcing structure can be easily constructed even if it is relatively close to the surrounding structure or site boundary.

(第6の実施の形態)
図6は、第6の実施の形態に係る盛土の補強構造を模式的に示す断面図である。
本実施の形態に係る盛土の補強構造が、第5の実施の形態に係る盛土の補強構造と異なる点は、直角方向鋼製壁3が、地中において液状化地盤(液状化層)10と非液状化地盤(非液状化層)11とを跨ぐ形で設置されている点であるので、以下ではこの点について説明し、第5の実施の形態と同一構成には同一符号を付してその説明を省略ないし簡略化する。
(Sixth embodiment)
FIG. 6 is a cross-sectional view schematically showing the embankment reinforcement structure according to the sixth embodiment.
The embankment reinforcing structure according to the present embodiment differs from the embankment reinforcing structure according to the fifth embodiment in that the perpendicular steel wall 3 is liquefied ground (liquefied layer) 10 in the ground. Since this is a point installed across the non-liquefied ground (non-liquefied layer) 11, this point will be described below, and the same components as those in the fifth embodiment are denoted by the same reference numerals. The description is omitted or simplified.

本実施の形態では、第5の実施の形態と同様に、盛土1の連続方向に沿って設けられた鋼製壁2は、盛土1の法尻付近において、盛土1の法面1bに交差するようにして鉛直に埋設されており、当該鋼製壁2の天端2cは盛土1の高さHの1/2の高さH/2位置より下方に位置する法面1bに位置している。また、この鋼製壁2の下端部は、地中において液状化地盤(液状化層)10と非液状化地盤11(非液状化層)とを跨ぐ形で設置されている。また、当該鋼製壁2の天端2cは盛土1の法尻部1c付近に位置してもよい。   In the present embodiment, as in the fifth embodiment, the steel wall 2 provided along the continuous direction of the embankment 1 intersects the slope 1b of the embankment 1 in the vicinity of the slope of the embankment 1. In this way, the top end 2c of the steel wall 2 is located on the slope 1b located below the height H / 2 of 1/2 the height H of the embankment 1. . Moreover, the lower end part of this steel wall 2 is installed in the underground so that the liquefied ground (liquefied layer) 10 and the non-liquefied ground 11 (non-liquefied layer) may be straddled. Further, the top end 2 c of the steel wall 2 may be located in the vicinity of the method bottom 1 c of the embankment 1.

一方、この鋼製壁2に対して直角方向でかつ盛土1から離れる方向に延在する直角方向鋼製壁3の天端3cは、地表面より下方に位置しているとともに、直角方向鋼製壁3の下端部は、地中において液状化地盤(液状化層)10と非液状化地盤(非液状化層)11とを跨ぐ形で設置されている。
また、直角方向鋼製壁3を構成する3枚の鋼矢板3aのうち、鋼製壁2に最も近い側の鋼矢板3aは残り2枚の鋼矢板3aより上下方向の長さが長くなっている。さらに、この鋼矢板3aは残り2枚の鋼矢板3aと下端が揃えられているので、残り2枚の鋼矢板3aより上方に突出している。
On the other hand, the top end 3c of the perpendicular steel wall 3 extending in a direction perpendicular to the steel wall 2 and away from the embankment 1 is located below the ground surface and is made of perpendicular steel. The lower end portion of the wall 3 is installed so as to straddle the liquefied ground (liquefied layer) 10 and the non-liquefied ground (non-liquefied layer) 11 in the ground.
Of the three steel sheet piles 3a constituting the perpendicular steel wall 3, the steel sheet pile 3a closest to the steel wall 2 is longer in the vertical direction than the remaining two steel sheet piles 3a. Yes. Furthermore, since this steel sheet pile 3a has the remaining two steel sheet piles 3a and the lower end aligned, it protrudes above the remaining two steel sheet piles 3a.

本実施の形態によれば、盛土1の連続方向に沿って設けられる鋼製壁2について、地震時の最大応力発生位置は、液状化地盤(液状化層)10と非液状化地盤(非液状化層)11の層境界であることが、模型実験等から分かっているので、当該位置を直角方向鋼製壁3によって補強することで、応力低減を図ることができる。   According to the present embodiment, with respect to the steel wall 2 provided along the continuous direction of the embankment 1, the maximum stress generation position at the time of the earthquake is liquefied ground (liquefied layer) 10 and non-liquefied ground (non-liquid). Since it is known from a model experiment or the like that it is a layer boundary of the (chemical layer) 11, the stress can be reduced by reinforcing the position with the perpendicular steel wall 3.

次に、前記模型実験について図7および図8を参照して説明する。
盛土の法尻部に鋼矢板を設置した模型盛土について、加振実験を実施した。
図7にも示しているが、堤防(盛土)サイズは以下の通りである。
天端幅:300(mm)、堤防高さ:250(mm)、法面勾配1:1.8、
法尻矢板長さ:400(mm)、矢板厚:2.3mm
なお、この模型盛土は、実大スケールの1/20〜1/25を想定しているため、実大スケールでは、天端幅:7.5m、堤防高さ:6.25m、矢板形式10H、矢板長さ:10m程度である。
加振波形は、1995年兵庫県南部地震時の神戸海洋気象台観測波の時間スケールを調節した波形を使用した。
また、地盤物性は以下の通りである。
盛土層(γ):16.0(kN/m
液状化層(γ):18.5(kN/m
(D):32.4(%)
締固め層(γ):19.7(kN/m
Next, the model experiment will be described with reference to FIGS.
An excitation experiment was conducted on a model embankment in which steel sheet piles were installed at the bottom of the embankment.
As shown in FIG. 7, the dike (fill) size is as follows.
Top edge width: 300 (mm), dike height: 250 (mm), slope slope 1: 1.8,
Hoshiri sheet pile length: 400 (mm), sheet pile thickness: 2.3 mm
In addition, since this model embankment assumes 1 / 20-1 / 25 of a full scale, in a full scale, top width: 7.5m, dike height: 6.25m, sheet pile form 10H, Sheet pile length: about 10 m.
As the excitation waveform, a waveform obtained by adjusting the time scale of the Kobe Ocean Meteorological Observatory wave during the 1995 Hyogoken-Nanbu Earthquake was used.
The ground properties are as follows.
Embankment layer (γ t ): 16.0 (kN / m 3 )
Liquefaction layer (γ t ): 18.5 (kN / m 3 )
(D r ): 32.4 (%)
Compaction layer (γ t ): 19.7 (kN / m 3 )

この加振実験による法尻矢板の曲げひずみの深度分布を図8に示す。この図に示すように、加振中最大値および残留値はともに液状化層と締固め層の境界部で発生したことが分かった。
また、堤防天端での沈下量は67mmであった。これは実大換算すると5m程度となる。実大換算では大きな値となっているが、盛土の大規模な崩壊を想定した実験条件を選定したことによるものである。
これに対し、前記第6の実施の形態では、堤防の沈下量は以下のようになると推測される。
直角方向鋼製壁を構成する鋼矢板が、ハット形鋼矢板10Hであるとすると、このハット形鋼矢板10Hを、
盛土の連続方向9mに1枚設置すると、沈下量2.6m、
盛土の連続方向9mに2枚設置すると、沈下量1.8m、
盛土の連続方向9mに3枚設置すると、沈下量1.3mとなり、直角方向鋼製壁を設置しない場合の沈下量5mに対し、かなり沈下量が少なくなるのが分かる。
FIG. 8 shows the depth distribution of the bending strain of the method tail sheet pile by this vibration experiment. As shown in this figure, it was found that both the maximum value and the residual value during vibration occurred at the boundary between the liquefied layer and the compacted layer.
Moreover, the amount of settlement at the top of the dike was 67 mm. This is about 5 m in terms of actual size. Although it is a large value in actual size conversion, it is due to the selection of experimental conditions that assumed a large-scale collapse of the embankment.
On the other hand, in the said 6th Embodiment, it is estimated that the amount of subsidence of a bank is as follows.
If the steel sheet pile constituting the perpendicular steel wall is a hat-shaped steel sheet pile 10H, this hat-shaped steel sheet pile 10H is
If one piece is installed in the continuous direction 9m of embankment, the sinking amount 2.6m,
If two pieces are installed in the continuous direction 9m of embankment, the sinking amount is 1.8m.
It can be seen that when three pieces are installed in the continuous direction of 9 m of the embankment, the amount of settlement is 1.3 m, and the amount of settlement is considerably smaller than the amount of settlement when the right-angle direction steel wall is not installed.

なお、第1〜第6の実施の形態では、直角方向鋼製壁3を複数の鋼矢板または鋼管矢板によって形成したが、これに代えて、鋼製連続壁によって形成してもよい。鋼製連続壁としては、例えば図9に示す鋼製連続壁30が挙げられるが、これに限ることなく、他の鋼製連続壁であってもよい。また、鋼製壁2も鋼製連続壁によって形成してよい。   In addition, in the 1st-6th embodiment, although the orthogonal direction steel wall 3 was formed with the some steel sheet pile or the steel pipe sheet pile, it may replace with this and may form with a steel continuous wall. Examples of the steel continuous wall include a steel continuous wall 30 shown in FIG. 9, but the present invention is not limited to this, and other steel continuous walls may be used. The steel wall 2 may also be formed by a steel continuous wall.

鋼製連続壁30は、断面略H形の鋼製矢板31を接合していくことで形成されるものであり、鋼製矢板31の両フランジのそれぞれの両縁部には、継手32がそれぞれ形成されている。
鋼製矢板31は、図9において紙面と直交する方向に長尺に形成されており、この長尺方向を鉛直方向に向けて、地中に埋設するとともに、継手32,32を係合することで、直角方向鋼製壁3となる鋼製連続壁30が構築される。
そして、この鋼製連続壁30を構成する複数の鋼製矢板31のうち、鋼製壁2に最も近い鋼製矢板31の継手32,32を鋼製壁2に形成されている継手2b,2bに係合することによって、鋼製壁2と直角方向鋼製壁3とを結合する。
The steel continuous wall 30 is formed by joining steel sheet piles 31 having a substantially H-shaped cross section, and joints 32 are respectively provided at both edges of both flanges of the steel sheet pile 31. Is formed.
The steel sheet pile 31 is formed long in the direction orthogonal to the paper surface in FIG. 9 and is embedded in the ground with the long direction facing the vertical direction and engaging the joints 32 and 32. Thus, the continuous steel wall 30 that is the perpendicular steel wall 3 is constructed.
And among the several steel sheet piles 31 which comprise this steel continuous wall 30, the joints 2b and 2b currently formed in the steel wall 2 are the joints 32 and 32 of the steel sheet pile 31 nearest to the steel wall 2 The steel wall 2 and the perpendicular steel wall 3 are joined together.

1 盛土
1b 法面
1c 法尻部
2 鋼製壁
2c 天端
2b 継手
3,30 直角方向鋼製壁
3b 継手
3c 天端
5 結合部
10 液状化地盤
11 非液状化地盤
DESCRIPTION OF SYMBOLS 1 Filling 1b Slope 1c Method bottom part 2 Steel wall 2c Top end 2b Joint 3,30 Right angle steel wall 3b Joint 3c Top end 5 Joint part 10 Liquefaction ground 11 Non-liquefaction ground

Claims (6)

連続する盛土の法尻部に、鋼製壁が前記盛土の連続方向に沿って設けられ、
前記鋼製壁に対して直角方向でかつ前記盛土から離れる方向に延在する直角方向鋼製壁が前記盛土の連続方向に離散的に配置されていることを特徴とする盛土の補強構造。
A steel wall is provided along the continuous direction of the embankment on the continuous bottom of the embankment,
A reinforcement structure for embankments, wherein perpendicular steel walls extending in a direction perpendicular to the steel wall and away from the embankment are discretely arranged in a continuous direction of the embankment.
前記鋼製壁と前記直角方向鋼製壁とがこれらの頭部で結合されていることを特徴とする請求項1に記載の盛土の補強構造。   2. The embankment reinforcing structure according to claim 1, wherein the steel wall and the right-angle steel wall are joined at their heads. 前記鋼製壁と前記直角方向鋼製壁とが継手によって結合されていることを特徴とする請求項1または2に記載の盛土の補強構造。   The embankment reinforcing structure according to claim 1 or 2, wherein the steel wall and the right-angle steel wall are coupled by a joint. 前記鋼製壁の天端が前記盛土の高さの1/2の高さ位置より下方に位置する法面に位置していることを特徴とする請求項1〜3のいずれか1項に記載の盛土の補強構造。   The top end of the steel wall is located on a slope located below a height position that is ½ of the height of the embankment. Reinforcement structure of embankment. 前記直角方向鋼製壁の天端が、地表面以下に位置していることを特徴とする請求項1〜4のいずれかに記載の盛土の補強構造。   The embankment reinforcement structure according to any one of claims 1 to 4, wherein the top end of the perpendicular steel wall is located below the ground surface. 前記直角方向鋼製壁が、地中において液状化地盤と非液状化地盤とを跨ぐ形で設置されていることを特徴とする請求項1〜5のいずれか1項に記載の盛土の補強構造。   The embankment reinforcement structure according to any one of claims 1 to 5, wherein the right-angle steel wall is installed in a form straddling the liquefied ground and the non-liquefied ground in the ground. .
JP2016137304A 2016-07-12 2016-07-12 Reinforcement structure of embankment Active JP6763221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016137304A JP6763221B2 (en) 2016-07-12 2016-07-12 Reinforcement structure of embankment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016137304A JP6763221B2 (en) 2016-07-12 2016-07-12 Reinforcement structure of embankment

Publications (2)

Publication Number Publication Date
JP2018009308A true JP2018009308A (en) 2018-01-18
JP6763221B2 JP6763221B2 (en) 2020-09-30

Family

ID=60994244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016137304A Active JP6763221B2 (en) 2016-07-12 2016-07-12 Reinforcement structure of embankment

Country Status (1)

Country Link
JP (1) JP6763221B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020117959A (en) * 2019-01-25 2020-08-06 日本製鉄株式会社 Levee body reinforcement structure

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225712A (en) * 1988-11-11 1990-09-07 Sumitomo Metal Ind Ltd Loading method of sheet pile with draining function and filter for sheet pile, and draining member
JPH111926A (en) * 1997-06-12 1999-01-06 Nkk Corp Countermeasure against liquefaction of embankment structure
JP2005016231A (en) * 2003-06-27 2005-01-20 Nishimatsu Constr Co Ltd Liquefaction countermeasure construction method
JP2005299202A (en) * 2004-04-12 2005-10-27 Nippon Steel Corp Steel sheet pile, earth retaining structure using the same, and construction method of earth retaining structure
JP2008267069A (en) * 2007-04-24 2008-11-06 Nippon Steel Corp Steel for underground continuous wall, underground continuous wall, and construction method of underground continuous wall
JP2009249885A (en) * 2008-04-04 2009-10-29 Nippon Steel Corp Method, structure and member for reinforcing existing steel sheet pile
JP2011012503A (en) * 2009-07-06 2011-01-20 Hirose & Co Ltd Construction method for free-standing soil-retaining wall and soil-retaining structure in cutting ground
JP2011157782A (en) * 2010-02-03 2011-08-18 Nippon Steel Corp Steel sheet pile retaining wall and method for designing the same
JP2011190586A (en) * 2010-03-12 2011-09-29 Sumitomo Metal Ind Ltd Construction method of continuous steel wall, and continuous steel wall
JP2011214249A (en) * 2010-03-31 2011-10-27 Sumitomo Metal Ind Ltd Structure for reinforcing embankment
JP2012132169A (en) * 2010-12-20 2012-07-12 Sumitomo Metal Ind Ltd Reinforcing structure of banking
JP2012202042A (en) * 2011-03-24 2012-10-22 Sumitomo Metal Ind Ltd Combination steel sheet pile having drainage function and wall body structure using the steel sheet pile
JP2015168953A (en) * 2014-03-06 2015-09-28 新日鐵住金株式会社 Banking reinforcement structure
JP2016094732A (en) * 2014-11-13 2016-05-26 中村物産有限会社 Ground reinforcement structure, building structure, and construction method for ground reinforcement structure

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225712A (en) * 1988-11-11 1990-09-07 Sumitomo Metal Ind Ltd Loading method of sheet pile with draining function and filter for sheet pile, and draining member
JPH111926A (en) * 1997-06-12 1999-01-06 Nkk Corp Countermeasure against liquefaction of embankment structure
JP2005016231A (en) * 2003-06-27 2005-01-20 Nishimatsu Constr Co Ltd Liquefaction countermeasure construction method
JP2005299202A (en) * 2004-04-12 2005-10-27 Nippon Steel Corp Steel sheet pile, earth retaining structure using the same, and construction method of earth retaining structure
JP2008267069A (en) * 2007-04-24 2008-11-06 Nippon Steel Corp Steel for underground continuous wall, underground continuous wall, and construction method of underground continuous wall
JP2009249885A (en) * 2008-04-04 2009-10-29 Nippon Steel Corp Method, structure and member for reinforcing existing steel sheet pile
JP2011012503A (en) * 2009-07-06 2011-01-20 Hirose & Co Ltd Construction method for free-standing soil-retaining wall and soil-retaining structure in cutting ground
JP2011157782A (en) * 2010-02-03 2011-08-18 Nippon Steel Corp Steel sheet pile retaining wall and method for designing the same
JP2011190586A (en) * 2010-03-12 2011-09-29 Sumitomo Metal Ind Ltd Construction method of continuous steel wall, and continuous steel wall
JP2011214249A (en) * 2010-03-31 2011-10-27 Sumitomo Metal Ind Ltd Structure for reinforcing embankment
JP2012132169A (en) * 2010-12-20 2012-07-12 Sumitomo Metal Ind Ltd Reinforcing structure of banking
JP2012202042A (en) * 2011-03-24 2012-10-22 Sumitomo Metal Ind Ltd Combination steel sheet pile having drainage function and wall body structure using the steel sheet pile
JP2015168953A (en) * 2014-03-06 2015-09-28 新日鐵住金株式会社 Banking reinforcement structure
JP2016094732A (en) * 2014-11-13 2016-05-26 中村物産有限会社 Ground reinforcement structure, building structure, and construction method for ground reinforcement structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020117959A (en) * 2019-01-25 2020-08-06 日本製鉄株式会社 Levee body reinforcement structure

Also Published As

Publication number Publication date
JP6763221B2 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
JP4998646B2 (en) Connection structure of steel pipe sheet pile and steel sheet pile and its construction method
JP5347898B2 (en) Strengthening structure and method of existing sheet pile quay
JP4903744B2 (en) Existing steel sheet pile reinforcement structure, existing steel sheet pile reinforcement member
JP7017541B2 (en) Improvement structure and improvement method of existing sheet pile type quay
JP4851881B2 (en) Embankment structure and method for reinforcing embankment structure
JP5208904B2 (en) Wall construction method using bags
JP2018009308A (en) Reinforcement structure of embankment
JP2008303581A (en) Reinforcing structure of banking support ground
JP6060855B2 (en) Embankment
JP2009079415A (en) Banking reinforcing structure, reinforcing method and linear banking
KR101253410B1 (en) Connecting structure of steel pipe sheet pile
JP5471381B2 (en) Filling reinforcement method
EP2848739A1 (en) Steel wall
JP5421191B2 (en) Design method for embankment reinforcement structure
JP2019056231A (en) Quay wall structure
JP6287358B2 (en) Embankment reinforcement structure
JP6971874B2 (en) Connection structure between steel structure and precast concrete member, structural wall having the connection structure, and connection method between steel structure and precast concrete member
JP6515290B2 (en) Seismic quay structure
JP2019173312A (en) Earth retaining wall reinforcement structure
JP5835110B2 (en) Quay-quake-proof structure and quake-quake-proof reinforcement method
JP5582104B2 (en) Underground wall structure
JP6196901B2 (en) Construction methods and structures that reinforce existing structures
JP2015221994A (en) Embankment reinforcing structure
JP2014224355A (en) Embankment reinforcement structure
JP6347120B2 (en) Embankment reinforcement structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200824

R151 Written notification of patent or utility model registration

Ref document number: 6763221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151