JP2018005267A - Derivation method for cushioning material characteristic, cushioning material characteristic derivation program, and cushioning material characteristic derivation device - Google Patents

Derivation method for cushioning material characteristic, cushioning material characteristic derivation program, and cushioning material characteristic derivation device Download PDF

Info

Publication number
JP2018005267A
JP2018005267A JP2016126454A JP2016126454A JP2018005267A JP 2018005267 A JP2018005267 A JP 2018005267A JP 2016126454 A JP2016126454 A JP 2016126454A JP 2016126454 A JP2016126454 A JP 2016126454A JP 2018005267 A JP2018005267 A JP 2018005267A
Authority
JP
Japan
Prior art keywords
deriving
strain
derived
relationship
buffer material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016126454A
Other languages
Japanese (ja)
Inventor
明成 高橋
Akinari Takahashi
明成 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Document Solutions Inc
Original Assignee
Kyocera Document Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Document Solutions Inc filed Critical Kyocera Document Solutions Inc
Priority to JP2016126454A priority Critical patent/JP2018005267A/en
Publication of JP2018005267A publication Critical patent/JP2018005267A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a derivation method for cushioning material characteristics that can obtain relation between maximum acceleration and static stress while greatly reducing the trouble to conduct an impact load test.SOLUTION: A derivation method for cushioning material characteristics comprises: a step S1 of deriving relation between first energy E needed to deform a cushioning material and strain based upon relation between dynamic stress σ and the strain of the cushioning material; a step S2 of deriving strain such that second energy ε absorbed per unit volume of the cushioning material and the first energy E become equal to each other; a step S3 of deriving dynamic stress σ of the cushioning material corresponding to the value of the strain derived in the step S2; a step S4 of deriving maximum acceleration X applied to a packaged object based upon the value of the dynamic stress σ derived in the step S3; a step S5 of deriving static stress σ; and a step S6 of deriving relation between maximum acceleration X and static stress σ.SELECTED DRAWING: Figure 2

Description

本発明は、被梱包物に対する緩衝材の設計に用いる緩衝材特性の導出方法、緩衝材特性導出プログラムおよび緩衝材特性導出装置に関するものである。   The present invention relates to a buffer material characteristic deriving method, a buffer material characteristic deriving program, and a buffer material characteristic deriving device used for designing a buffer material for an object to be packed.

従来、製品(被梱包物)を梱包する際には、輸送中に製品が破損しないように製品を保護するための緩衝材が用いられている。緩衝材の適切な厚みや使用量は、例えば非特許文献1に開示されているように、最大加速度−静的応力線図を用いて設定される場合があり、ひずみ−静的応力線図も必要に応じて用いられる。   Conventionally, when packing a product (a product to be packed), a cushioning material is used to protect the product so that the product is not damaged during transportation. For example, as disclosed in Non-Patent Document 1, the appropriate thickness and amount of use of the cushioning material may be set using a maximum acceleration-static stress diagram, and a strain-static stress diagram may also be used. Used as needed.

なお、緩衝材特性を用いて緩衝材の設計を行う装置は、例えば特許文献1に開示されている。   An apparatus for designing a shock absorbing material using the shock absorbing material characteristics is disclosed in Patent Document 1, for example.

特開2004−240580号公報JP 2004-240580 A

輸送包装の基礎と実務,株式会社幸書房,2008年9月25日,120頁−123頁Transport packaging basics and practice, Koshobo, Inc., September 25, 2008, pages 120-123

しかしながら、緩衝材メーカーから最大加速度−静的応力線図、及びひずみ−静的応力線図が公表されていない場合は、設計者が最大加速度−静的応力線図、及び必要に応じてひずみ−静的応力線図を求めることになるが、そのためには非常に多くの衝撃荷重試験が必要になってしまうという問題点がある。   However, if the maximum acceleration-static stress diagram and strain-static stress diagram have not been published by the shock absorber manufacturer, the designer should use the maximum acceleration-static stress diagram and, if necessary, strain- Although a static stress diagram is to be obtained, there is a problem that a very large number of impact load tests are required for this purpose.

例えば最大加速度−静的応力線図をJIS Z 0235:2002(包装用緩衝材料−評価試験方法)に従って作成する場合、試験片を3個、試験条件を5条件以上、同一試験条件に対して1回(または5回)を1セットとして、錘の落下高さを例えば8通り、緩衝材の厚みを例えば10通り行うとすれば、3×5×1(または5)×8×10=1200(または6000)となり、少なくとも1200回の衝撃荷重試験を行う必要がある。   For example, when a maximum acceleration-static stress diagram is prepared according to JIS Z 0235: 2002 (packaging buffer material-evaluation test method), three test pieces, five test conditions or more, and one test condition for the same test condition If the number of times (or 5 times) is set as one set, the falling height of the weight is 8 ways, and the thickness of the buffer material is 10 ways, for example, 3 × 5 × 1 (or 5) × 8 × 10 = 1200 ( Or 6000), and it is necessary to perform at least 1200 impact load tests.

本発明は、上記のような課題を解決するためになされたものであり、本発明の目的は、衝撃荷重試験を行う労力を大幅に軽減しながら、最大加速度と静的応力との関係を得ることが可能な緩衝材特性の導出方法、緩衝材特性導出プログラムおよび緩衝材特性導出装置を提供することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain the relationship between the maximum acceleration and the static stress while greatly reducing the labor for performing the impact load test. A buffer material characteristic deriving method, a buffer material characteristic deriving program, and a buffer material characteristic deriving device are provided.

上記目的を達成するために、本発明の第1の構成の緩衝材特性の導出方法は、緩衝材の動的応力とひずみとの関係に基づいて、緩衝材を変形させるのに必要な第1エネルギーとひずみとの関係を導出する第1ステップと、被梱包物を所定高さから落下させた際に緩衝材の単位体積あたりに吸収される第2エネルギーと第1エネルギーとが等しくなるひずみを、第1エネルギーとひずみとの関係から導出する第2ステップと、第2ステップで導出したひずみの値に対応する緩衝材の動的応力を、動的応力とひずみとの関係から導出する第3ステップと、第3ステップで導出した動的応力の値に基づいて、被梱包物を所定高さから落下させた際に被梱包物に加わる最大加速度を導出する第4ステップと、被梱包物を緩衝材上に載置した際に緩衝材に生じる静的応力を導出する第5ステップと、第4ステップで導出した最大加速度の値と第5ステップで導出した静的応力の値とに基づいて、最大加速度と静的応力との関係を導出する第6ステップと、を備える。   In order to achieve the above object, the buffer material characteristic derivation method according to the first configuration of the present invention is based on the relationship between the dynamic stress and strain of the buffer material and is required to deform the buffer material. A first step for deriving a relationship between energy and strain, and a strain in which the second energy and the first energy absorbed per unit volume of the cushioning material are equal when the packaged item is dropped from a predetermined height. The second step derived from the relationship between the first energy and the strain, and the third step derived from the relationship between the dynamic stress and the strain, the dynamic stress of the buffer material corresponding to the strain value derived in the second step. A step, a fourth step for deriving a maximum acceleration applied to the package when the package is dropped from a predetermined height based on the value of the dynamic stress derived in the third step, and a package Cushioning material when placed on cushioning material The relationship between the maximum acceleration and the static stress is derived based on the fifth step for deriving the generated static stress, the value of the maximum acceleration derived in the fourth step and the value of the static stress derived in the fifth step. And a sixth step.

本発明の第1の構成によれば、第1ステップ〜第6ステップを行うことによって、緩衝材の動的応力とひずみとの関係に基づいて、最大加速度と静的応力との関係を導出することができる。緩衝材の動的応力とひずみとの関係は、数回(例えば1〜3回)の衝撃荷重試験を行うことにより得られるので、衝撃荷重試験を行う労力を大幅に軽減しながら、最大加速度と静的応力との関係を得ることができる。   According to the first configuration of the present invention, by performing the first to sixth steps, the relationship between the maximum acceleration and the static stress is derived based on the relationship between the dynamic stress and the strain of the buffer material. be able to. The relationship between the dynamic stress and strain of the cushioning material can be obtained by performing impact load tests several times (for example, 1 to 3 times), so that the maximum acceleration and A relationship with static stress can be obtained.

本発明の一実施形態の緩衝材特性導出装置の構成を示したブロック図である。It is the block diagram which showed the structure of the buffer material characteristic derivation | leading-out apparatus of one Embodiment of this invention. 本発明の一実施形態の緩衝材特性導出装置を用いた緩衝材特性導出の処理手順を説明するためのフローチャートである。It is a flowchart for demonstrating the process sequence of buffer material characteristic derivation | leading-out using the buffer material characteristic derivation apparatus of one Embodiment of this invention. 衝撃荷重試験から得られる動的応力−ひずみ線図を示した図である。It is the figure which showed the dynamic stress-strain diagram obtained from an impact load test. 緩衝材を変形させるのに必要な第1エネルギーと動的応力とひずみとの関係を示した図である。It is the figure which showed the relationship of the 1st energy required in order to deform | transform a buffer material, dynamic stress, and distortion. 本発明の一実施形態の緩衝材特性導出装置の第1導出部が導出した第1エネルギー−ひずみ線図を示した図である。It is the figure which showed the 1st energy-strain diagram which the 1st derivation | leading-out part of the buffer material characteristic derivation | leading-out apparatus of one Embodiment of this invention derived | led-out. 第2エネルギーと第1エネルギーとが等しくなるひずみを示した図である。It is the figure which showed the distortion from which 2nd energy and 1st energy become equal. 本発明の一実施形態の緩衝材特性導出装置の第6導出部が導出した最大加速度−静的応力線図を示した図である。It is the figure which showed the maximum acceleration-static stress diagram derived | led-out by the 6th derivation | leading-out part of the buffer material characteristic derivation | leading-out apparatus of one Embodiment of this invention. 本発明の一実施形態の緩衝材特性導出装置の第7導出部が導出したひずみ−静的応力線図を示した図である。It is the figure which showed the strain-static stress diagram derived | led-out by the 7th derivation | leading-out part of the buffer material characteristic derivation | leading-out apparatus of one Embodiment of this invention.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に示すように、本発明の一実施形態による緩衝材特性導出装置(コンピューター)100は、ドライブ部1、記憶部2、制御部3、インターフェース部4、表示部5および操作部6を備え、それぞれが互いに電気的に接続されている。   As shown in FIG. 1, a buffer material characteristic deriving device (computer) 100 according to an embodiment of the present invention includes a drive unit 1, a storage unit 2, a control unit 3, an interface unit 4, a display unit 5, and an operation unit 6. , Each is electrically connected to each other.

緩衝材特性導出装置100での処理を実現するプログラム(緩衝材特性導出プログラム等)は、CD−ROM等の記録媒体10によって提供される。プログラムを記録した記録媒体10がドライブ部1にセットされると、プログラムが記録媒体10からドライブ部1を介して記憶部2にインストールされる。なお、プログラムのインストールは、必ずしも記録媒体10により提供される必要はなく、ネットワークを介して他のコンピューターからダウンロードしてもよい。記憶部2は、インストールされたプログラムを格納するとともに、必要なファイルやデータ等を格納する。   A program (such as a buffer material characteristic deriving program) that realizes processing in the buffer material characteristic deriving device 100 is provided by a recording medium 10 such as a CD-ROM. When the recording medium 10 on which the program is recorded is set in the drive unit 1, the program is installed from the recording medium 10 into the storage unit 2 via the drive unit 1. The program installation does not necessarily have to be provided by the recording medium 10, and may be downloaded from another computer via a network. The storage unit 2 stores the installed program and also stores necessary files and data.

制御部3は、CPUからなり緩衝材特性導出装置100全体を制御するとともに、記憶部2に格納されたプログラムに従って所定の処理を実行する。また、制御部3は、処理実行に必要なデータ等を記憶部2から読み込むとともに、演算(導出)した結果を記憶部2に格納する。インターフェース部4は、ネットワークに接続するために用いられる。表示部5は、液晶表示パネル等からなり、入力画面や制御部3によって実行された処理結果等を表示する。操作部6は、キーボードやマウス等で構成され、様々な操作指示がユーザーによって入力される。   The control unit 3 includes a CPU and controls the entire cushioning material characteristic deriving device 100 and executes predetermined processing according to a program stored in the storage unit 2. Further, the control unit 3 reads data necessary for execution of processing from the storage unit 2 and stores the calculation (derivation) result in the storage unit 2. The interface unit 4 is used for connecting to a network. The display unit 5 includes a liquid crystal display panel or the like, and displays an input screen and a processing result executed by the control unit 3. The operation unit 6 includes a keyboard, a mouse, and the like, and various operation instructions are input by the user.

ここで、本実施形態では、制御部3は、第1導出部3a、第2導出部3b、第3導出部3c、第4導出部3d、第5導出部3e、第6導出部3fおよび第7導出部3gを含んでいる。   Here, in the present embodiment, the control unit 3 includes the first derivation unit 3a, the second derivation unit 3b, the third derivation unit 3c, the fourth derivation unit 3d, the fifth derivation unit 3e, the sixth derivation unit 3f, and the 7 derivation unit 3g is included.

第1導出部3aは、緩衝材の動的応力とひずみとの関係に基づいて、緩衝材を変形させるのに必要な第1エネルギーとひずみとの関係を導出する。   The first deriving unit 3a derives the relationship between the first energy and strain necessary for deforming the buffer material based on the relationship between the dynamic stress and strain of the buffer material.

第2導出部3bは、製品(被梱包物)を所定高さから落下させた際に緩衝材の単位体積あたりに吸収される第2エネルギーと第1エネルギーとが等しくなるひずみを、第1導出部3aが導出した第1エネルギーとひずみとの関係から導出する。   The second deriving unit 3b first derives a strain in which the second energy and the first energy absorbed per unit volume of the cushioning material are equal when the product (packaged object) is dropped from a predetermined height. Derived from the relationship between the first energy and strain derived by the part 3a.

第3導出部3cは、第2導出部3bが導出したひずみの値に対応する緩衝材の動的応力を、緩衝材の動的応力とひずみとの関係から導出する。   The third deriving unit 3c derives the dynamic stress of the buffer material corresponding to the strain value derived by the second deriving unit 3b from the relationship between the dynamic stress and the strain of the buffer material.

第4導出部3dは、第3導出部3cが導出した動的応力の値に基づいて、製品を所定高さから落下させた際に製品に加わる最大加速度を導出する。   The fourth deriving unit 3d derives the maximum acceleration applied to the product when the product is dropped from a predetermined height based on the value of the dynamic stress derived by the third deriving unit 3c.

第5導出部3eは、製品を緩衝材上に載置した際に緩衝材に生じる静的応力を導出する。   The fifth derivation unit 3e derives a static stress generated in the cushioning material when the product is placed on the cushioning material.

第6導出部3fは、第4導出部3dが導出した最大加速度の値と第5導出部3eが導出した静的応力の値とに基づいて、最大加速度と静的応力との関係を導出する。   The sixth deriving unit 3f derives the relationship between the maximum acceleration and the static stress based on the value of the maximum acceleration derived by the fourth deriving unit 3d and the value of the static stress derived by the fifth deriving unit 3e. .

第7導出部3gは、第2導出部3bが導出したひずみの値と第5導出部3eが導出した静的応力の値とに基づいて、ひずみと静的応力との関係を導出する。   The seventh deriving unit 3g derives the relationship between the strain and the static stress based on the strain value derived by the second deriving unit 3b and the static stress value derived by the fifth deriving unit 3e.

次に、図2を参照して緩衝材特性導出装置100を用いた緩衝材特性導出の処理フローについて説明する。   Next, a processing flow for deducing buffer material characteristics using the buffer material characteristic deriving device 100 will be described with reference to FIG.

まず、事前準備として、設計者(又は作業者)が衝撃荷重試験を行って緩衝材の動的応力とひずみとの関係を得る。具体的には、例えばJIS Z 0235:2002に従って、試験片を3個、試験条件を1条件、同一試験条件に対して1回だけ衝撃荷重試験を行うことによって、図3に示す緩衝材の動的応力σ−ひずみ線図(緩衝材の動的応力とひずみとの関係)が得られる。このとき、緩衝材の動的応力σ−ひずみ線図に対応する数値データ表(緩衝材の動的応力σとひずみとの関係)も得られる。なお、図3に示すように、衝撃荷重試験によって得られる動的応力σ−ひずみ線図は数値のばらつきが小さいため、試験片を1個にして衝撃荷重試験を1回のみ行うようにしてもよい。   First, as a preliminary preparation, a designer (or an operator) performs an impact load test to obtain a relationship between dynamic stress and strain of the buffer material. Specifically, for example, according to JIS Z 0235: 2002, the impact load test shown in FIG. 3 is performed by performing an impact load test only once for three test pieces, one test condition, and the same test condition. Stress σ-strain diagram (relation between dynamic stress and strain of buffer material) is obtained. At this time, a numerical data table (relation between dynamic stress σ and strain of the buffer material) corresponding to the dynamic stress σ-strain diagram of the buffer material is also obtained. As shown in FIG. 3, the dynamic stress σ-strain diagram obtained by the impact load test has a small variation in numerical values. Therefore, only one impact load test may be performed with one test piece. Good.

そして、得られた試験結果が設計者(ユーザー)により操作部6を用いて緩衝材特性導出装置100に入力され、試験結果が記憶部2に格納される。なお、緩衝材特性導出装置100には、動的応力σ−ひずみ線図から読み取られた数値が入力されてもよいし、動的応力σ−ひずみ線図に対応する数値データ表に記載された数値が入力されてもよい。また、衝撃荷重試験装置と緩衝材特性導出装置100とをケーブルで接続し、試験結果が自動的に緩衝材特性導出装置100に送信されてもよい。   Then, the obtained test result is input to the shock absorbing material characteristic deriving device 100 by the designer (user) using the operation unit 6, and the test result is stored in the storage unit 2. The buffer material property deriving device 100 may be input with a numerical value read from the dynamic stress σ-strain diagram or described in a numerical data table corresponding to the dynamic stress σ-strain diagram. A numerical value may be input. Further, the impact load testing device and the buffer material property deriving device 100 may be connected by a cable, and the test result may be automatically transmitted to the buffer material property deriving device 100.

次に、設計者により操作部6を介して緩衝材特性導出装置100に緩衝材特性導出処理が指示されると、図2のステップS1(第1ステップ)において、第1導出部3aは、緩衝材の動的応力σとひずみとの関係に基づいて、緩衝材を変形させるのに必要な第1エネルギーEとひずみとの関係を導出する。具体的には、第1導出部3aは、ユーザーにより入力された試験結果に基づいて、図3に示した動的応力σ−ひずみ線図を作成する。そして、第1導出部3aは、図4に示すように動的応力σ−ひずみ曲線を定積分することによって、図5に示す第1エネルギーE−ひずみ線図(第1エネルギーEとひずみとの関係)を導出する。このとき、第1エネルギーE−ひずみ線図に対応する数値データ表(第1エネルギーEとひずみとの関係)も得られる。   Next, when the buffer material characteristic deriving device 100 is instructed to the buffer material characteristic deriving device 100 via the operation unit 6 by the designer, in step S1 (first step) in FIG. Based on the relationship between the dynamic stress σ and the strain of the material, the relationship between the first energy E and the strain necessary to deform the buffer material is derived. Specifically, the first deriving unit 3a creates the dynamic stress σ-strain diagram shown in FIG. 3 based on the test result input by the user. And the 1st derivation | leading-out part 3a carries out the definite integration of the dynamic stress (sigma) -strain curve, as shown in FIG. Derived). At this time, a numerical data table (a relationship between the first energy E and the strain) corresponding to the first energy E-strain diagram is also obtained.

ステップS2(第2ステップ)において、第2導出部3bは、製品を所定高さから落下させた際に緩衝材の単位体積あたりに吸収される第2エネルギーε[MPa]と第1エネルギーE[MPa]とが等しくなるひずみを、第1エネルギーEとひずみとの関係から導出する。具体的には、製品の質量をm[kg]、重力加速度を9.8[m/s2]、製品の落下高さをh[m]、緩衝材と製品との接触面積をA[mm2]、製品の落下方向における緩衝材の厚みをt[mm]、とすると、第2エネルギーはε[MPa]=m[kg]×9.8[m/s2]×h[m]/(A[mm2]×t[mm])となる。このε[MPa]に対応するひずみを、第2導出部3bは図6に示すように読み取る。 In step S2 (second step), the second deriving unit 3b is configured to absorb the second energy ε [MPa] and the first energy E [[] that are absorbed per unit volume of the cushioning material when the product is dropped from a predetermined height. [MPa] is equalized from the relationship between the first energy E and the strain. Specifically, the mass of the product is m [kg], the gravitational acceleration is 9.8 [m / s 2 ], the drop height of the product is h [m], and the contact area between the cushioning material and the product is A [mm] 2 ], where the thickness of the cushioning material in the product drop direction is t [mm], the second energy is ε [MPa] = m [kg] × 9.8 [m / s 2 ] × h [m] / (A [mm 2 ] × t [mm]). The second derivation unit 3b reads the strain corresponding to ε [MPa] as shown in FIG.

ステップS3(第3ステップ)において、第3導出部3cは、第2導出部3bが導出したひずみの値に対応する緩衝材の動的応力σ[MPa]を、図3に示した動的応力σ−ひずみ線図、又は動的応力σ−ひずみ線図に対応する数値データ表から導出する。   In step S3 (third step), the third derivation unit 3c uses the dynamic stress σ [MPa] of the buffer material corresponding to the strain value derived by the second derivation unit 3b as shown in FIG. It is derived from a numerical data table corresponding to a σ-strain diagram or a dynamic stress σ-strain diagram.

ステップS4(第4ステップ)において、第4導出部3dは、第3導出部3cが導出した動的応力σ[MPa]の値に基づいて、製品を所定高さから落下させた際に製品に加わる最大加速度X[m/s2](ただし、1G=9.8[m/s2]である。)を導出する。具体的には、σ[MPa]=m[kg]×X[m/s2]/A[mm2]であるから、最大加速度はX[m/s2]=σ[MPa]×A[mm2]/m[kg]となる。 In step S4 (fourth step), the fourth deriving unit 3d applies the product when the product is dropped from a predetermined height based on the value of the dynamic stress σ [MPa] derived by the third deriving unit 3c. The applied maximum acceleration X [m / s 2 ] (where 1G = 9.8 [m / s 2 ]) is derived. Specifically, since σ [MPa] = m [kg] × X [m / s 2 ] / A [mm 2 ], the maximum acceleration is X [m / s 2 ] = σ [MPa] × A [ mm 2 ] / m [kg].

ステップS5(第5ステップ)において、第5導出部3eは、製品を緩衝材上に載置した際に緩衝材に生じる静的応力σs[MPa]を導出する。具体的には、JIS Z 0235:2002に記載の通り、静的応力はσs[MPa]=m[kg]×9.8[m/s2]/A[mm2]で求められる。 In step S5 (fifth step), the fifth deriving unit 3e derives the static stress σ s [MPa] generated in the buffer material when the product is placed on the buffer material. Specifically, as described in JIS Z 0235: 2002, the static stress is obtained by σ s [MPa] = m [kg] × 9.8 [m / s 2 ] / A [mm 2 ].

ステップS6(第6ステップ)において、第6導出部3fは、第4導出部3dが導出した最大加速度X[m/s2]の値と第5導出部3eが導出した静的応力σs[MPa]の値とに基づいて、最大加速度Xと静的応力σsとの関係を導出する。具体的には、第6導出部3fは、上記の各式において、製品の質量m[kg]、製品の落下高さh[m]、緩衝材と製品との接触面積A[mm2]、緩衝材の厚みt[mm]のそれぞれに具体的な数値を当てはめるとともに、製品の質量m[kg]、製品の落下高さh[m]、緩衝材と製品との接触面積A[mm2]、緩衝材の厚みt[mm]の1つ以上を順次変化させることによって、図7に示す最大加速度X−静的応力σs線図(最大加速度Xと静的応力σsとの関係)を導出する。このとき、最大加速度X−静的応力σs線図に対応する数値データ表(最大加速度Xと静的応力σsとの関係)も得られる。なお、図7に示した最大加速度X−静的応力σs線図は、製品の落下高さh[m]を変化させた数だけ作成される。 In step S6 (sixth step), the sixth deriving unit 3f determines the value of the maximum acceleration X [m / s 2 ] derived by the fourth deriving unit 3d and the static stress σ s [derived by the fifth deriving unit 3e. Based on the value of [MPa], the relationship between the maximum acceleration X and the static stress σ s is derived. Specifically, the sixth deriving unit 3f is configured so that, in each of the above formulas, the product mass m [kg], the product drop height h [m], the contact area A [mm 2 ] between the cushioning material and the product, A specific numerical value is applied to each of the thickness t [mm] of the cushioning material, the product mass m [kg], the drop height h [m] of the product, and the contact area A [mm 2 ] between the cushioning material and the product. By sequentially changing one or more of the buffer material thickness t [mm], the maximum acceleration X-static stress σ s diagram (the relationship between the maximum acceleration X and the static stress σ s ) shown in FIG. To derive. At this time, a numerical data table (relationship between the maximum acceleration X and the static stress σ s ) corresponding to the maximum acceleration X-static stress σ s diagram is also obtained. Note that the maximum acceleration X-static stress σ s diagram shown in FIG. 7 is created by the number in which the drop height h [m] of the product is changed.

ステップS7(第7ステップ)において、第7導出部3gは、第2導出部3bが導出したひずみの値と第5導出部3eが導出した静的応力σs[MPa]の値とに基づいて、ひずみと静的応力σsとの関係を導出する。具体的には、第7導出部3gは、製品の質量m[kg]、製品の落下高さh[m]、緩衝材と製品との接触面積A[mm2]、緩衝材の厚みt[mm]の1つ以上を順次変化させることによって得られる、具体的なひずみの値と静的応力σs[MPa]の値とに基づいて、図8に示すひずみ−静的応力σs線図(ひずみと静的応力σsとの関係)を導出する。このとき、ひずみ−静的応力σs線図に対応する数値データ表(ひずみと静的応力σsとの関係)も得られる。なお、図8に示したひずみ−静的応力σs線図は、製品の落下高さh[m]を変化させた数だけ作成される。 In step S7 (seventh step), the seventh deriving unit 3g is based on the value of the strain derived by the second deriving unit 3b and the value of the static stress σ s [MPa] derived by the fifth deriving unit 3e. The relationship between strain and static stress σ s is derived. Specifically, the seventh lead-out part 3g includes the mass m [kg] of the product, the drop height h [m] of the product, the contact area A [mm 2 ] between the cushioning material and the product, and the thickness t [of the cushioning material. mm], a strain-static stress σ s diagram shown in FIG. 8 based on a specific strain value and a static stress σ s [MPa] value obtained by sequentially changing one or more of [mm]. (Relationship between strain and static stress σ s ) is derived. At this time, a numerical data table (relationship between strain and static stress σ s ) corresponding to the strain-static stress σ s diagram is also obtained. Note that the strain-static stress σ s diagram shown in FIG. 8 is created by the number in which the drop height h [m] of the product is changed.

以上のようにして作成された最大加速度X−静的応力σs線図、及びひずみ−静的応力σs線図は、表示部5に表示されたり、ユーザーによる操作部6の操作によって記録媒体10に書き込まれたりインターフェース部4を介して他のコンピューターに出力されたりする。そして、設計者により、例えば非特許文献1に開示された方法に従って、上記得られたデータを用いて緩衝材の適切な厚みや使用量が設定される。 Above manner, the maximum acceleration X- static stress sigma s diagram was created, and strain - static stress sigma s diagram is or are displayed on the display unit 5, a recording medium by operating the operation unit 6 by the user 10 or output to another computer via the interface unit 4. And according to the method disclosed by the nonpatent literature 1, for example, the designer sets the suitable thickness and usage-amount of a shock absorbing material using the obtained data.

本実施形態では、上記のように、ステップS1〜S6を実行することによって、緩衝材の動的応力σとひずみとの関係に基づいて、最大加速度Xと静的応力σsとの関係を導出することができる。緩衝材の動的応力σとひずみとの関係は、数回(例えば1〜3回)の衝撃荷重試験を行うことにより得られるので、衝撃荷重試験を行う労力を大幅に軽減しながら、最大加速度Xと静的応力σsとの関係を得ることができる。 In the present embodiment, as described above, the relationship between the maximum acceleration X and the static stress σ s is derived based on the relationship between the dynamic stress σ and the strain of the buffer material by executing steps S1 to S6. can do. Since the relationship between the dynamic stress σ and the strain of the buffer material is obtained by performing the impact load test several times (for example, 1 to 3 times), the maximum acceleration is achieved while greatly reducing the labor for the impact load test. The relationship between X and static stress σ s can be obtained.

また、上記のように、ステップS2で導出したひずみの値とステップS5で導出した静的応力σsの値とに基づいて、ひずみと静的応力σsとの関係を導出するステップS7を備える。これにより、ひずみと静的応力σsとの関係も導出することができる。 Further, as described above, the method includes step S7 for deriving the relationship between the strain and the static stress σ s based on the value of the strain derived in step S2 and the value of the static stress σ s derived in step S5. . Thereby, the relationship between the strain and the static stress σ s can also be derived.

また、上記のように、ステップS1において、動的応力σ−ひずみ曲線を定積分することによって第1エネルギーEとひずみとの関係を導出する。これにより、動的応力σとひずみとの関係に基づいて、容易に、第1エネルギーEとひずみとの関係を導出することができる。   Further, as described above, in step S1, the relationship between the first energy E and the strain is derived by integrating the dynamic stress σ-strain curve. Thereby, the relationship between the first energy E and the strain can be easily derived based on the relationship between the dynamic stress σ and the strain.

また、上記のように、ステップS6において、製品の質量m、製品の落下高さh、緩衝材と製品との接触面積A、緩衝材の厚みt、の1つ以上を変化させることによって最大加速度Xと静的応力σsとの関係を導出する。これにより、容易に、最大加速度Xと静的応力σsとの関係を導出することができる。 Further, as described above, in step S6, the maximum acceleration is obtained by changing one or more of the mass m of the product, the drop height h of the product, the contact area A between the cushioning material and the product, and the thickness t of the cushioning material. The relationship between X and static stress σ s is derived. Thereby, the relationship between the maximum acceleration X and the static stress σ s can be easily derived.

なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.

例えば、上記実施形態では、制御部3がCPUからなり、制御部3とは別に記憶部2を設けた例について示したが、制御部3がCPUおよび記憶部を含んでいてもよい。   For example, in the above embodiment, the control unit 3 includes a CPU and the storage unit 2 is provided separately from the control unit 3. However, the control unit 3 may include a CPU and a storage unit.

3a 第1導出部
3b 第2導出部
3c 第3導出部
3d 第4導出部
3e 第5導出部
3f 第6導出部
3g 第7導出部
100 緩衝材特性導出装置(コンピューター)
3a 1st derivation part 3b 2nd derivation part 3c 3rd derivation part 3d 4th derivation part 3e 5th derivation part 3f 6th derivation part 3g 7th derivation part 100 shock absorbing material characteristic derivation device (computer)

Claims (6)

緩衝材の動的応力とひずみとの関係に基づいて、前記緩衝材を変形させるのに必要な第1エネルギーとひずみとの関係を導出する第1ステップと、
被梱包物を所定高さから落下させた際に前記緩衝材の単位体積あたりに吸収される第2エネルギーと前記第1エネルギーとが等しくなるひずみを、前記第1エネルギーとひずみとの関係から導出する第2ステップと、
前記第2ステップで導出したひずみの値に対応する前記緩衝材の動的応力を、前記動的応力とひずみとの関係から導出する第3ステップと、
前記第3ステップで導出した動的応力の値に基づいて、前記被梱包物を前記所定高さから落下させた際に前記被梱包物に加わる最大加速度を導出する第4ステップと、
前記被梱包物を前記緩衝材上に載置した際に前記緩衝材に生じる静的応力を導出する第5ステップと、
前記第4ステップで導出した最大加速度の値と前記第5ステップで導出した静的応力の値とに基づいて、最大加速度と静的応力との関係を導出する第6ステップと、
を備えることを特徴とする緩衝材特性の導出方法。
A first step of deriving a relationship between first energy and strain necessary for deforming the buffer material based on a relationship between dynamic stress and strain of the buffer material;
A strain in which the second energy absorbed per unit volume of the cushioning material and the first energy are equal when the packed object is dropped from a predetermined height is derived from the relationship between the first energy and the strain. A second step to
A third step of deriving the dynamic stress of the buffer material corresponding to the strain value derived in the second step from the relationship between the dynamic stress and strain;
Based on the value of the dynamic stress derived in the third step, a fourth step of deriving a maximum acceleration applied to the packaged object when the packaged item is dropped from the predetermined height;
A fifth step of deriving a static stress generated in the buffer material when the object to be packed is placed on the buffer material;
A sixth step of deriving a relationship between the maximum acceleration and the static stress based on the value of the maximum acceleration derived in the fourth step and the value of the static stress derived in the fifth step;
A method for deriving shock-absorbing material characteristics, comprising:
前記第2ステップで導出したひずみの値と前記第5ステップで導出した静的応力の値とに基づいて、ひずみと静的応力との関係を導出する第7ステップを備えることを特徴とする請求項1に記載の緩衝材特性の導出方法。   7. A seventh step of deriving a relationship between strain and static stress based on the strain value derived in the second step and the static stress value derived in the fifth step. Item 2. A method for deriving the shock absorbing material characteristics according to Item 1. 前記第1ステップにおいて、動的応力−ひずみ曲線を定積分することによって前記第1エネルギーとひずみとの関係を導出することを特徴とする請求項1または2に記載の緩衝材特性の導出方法。   3. The buffer material property derivation method according to claim 1, wherein, in the first step, the relationship between the first energy and the strain is derived by definite integration of a dynamic stress-strain curve. 前記第6ステップにおいて、前記被梱包物の質量、前記被梱包物の落下高さ、前記緩衝材と前記被梱包物との接触面積、前記被梱包物の落下方向における前記緩衝材の厚み、の1つ以上を変化させることによって前記最大加速度と静的応力との関係を導出することを特徴とする請求項1〜3のいずれか1項に記載の緩衝材特性の導出方法。   In the sixth step, the mass of the packaged object, the fall height of the packaged object, the contact area between the cushioning material and the packaged object, the thickness of the cushioning material in the falling direction of the packaged object, The buffer material property deriving method according to claim 1, wherein the relationship between the maximum acceleration and the static stress is derived by changing one or more. 請求項1〜4のいずれか1項に記載の緩衝材特性の導出方法をコンピューターに実行させることを特徴とする緩衝材特性導出プログラム。   A buffer material characteristic deriving program that causes a computer to execute the buffer material characteristic deriving method according to any one of claims 1 to 4. 緩衝材の動的応力とひずみとの関係に基づいて、前記緩衝材を変形させるのに必要な第1エネルギーとひずみとの関係を導出する第1導出部と、
被梱包物を所定高さから落下させた際に前記緩衝材の単位体積あたりに吸収される第2エネルギーと前記第1エネルギーとが等しくなるひずみを、前記第1エネルギーとひずみとの関係から導出する第2導出部と、
前記第2導出部が導出したひずみの値に対応する前記緩衝材の動的応力を、前記動的応力とひずみとの関係から導出する第3導出部と、
前記第3導出部が導出した動的応力の値に基づいて、前記被梱包物を前記所定高さから落下させた際に前記被梱包物に加わる最大加速度を導出する第4導出部と、
前記被梱包物を前記緩衝材上に載置した際に前記緩衝材に生じる静的応力を導出する第5導出部と、
前記第4導出部が導出した最大加速度の値と前記第5導出部が導出した静的応力の値とに基づいて、最大加速度と静的応力との関係を導出する第6導出部と、
を備えることを特徴とする緩衝材特性導出装置。
A first deriving unit for deriving a relationship between first energy and strain necessary for deforming the buffer material based on a relationship between dynamic stress and strain of the buffer material;
A strain in which the second energy absorbed per unit volume of the cushioning material and the first energy are equal when the packed object is dropped from a predetermined height is derived from the relationship between the first energy and the strain. A second derivation unit,
A third deriving unit for deriving the dynamic stress of the buffer material corresponding to the strain value derived by the second deriving unit from the relationship between the dynamic stress and strain;
A fourth deriving unit for deriving a maximum acceleration applied to the packed object when the packed object is dropped from the predetermined height based on the value of the dynamic stress derived by the third deriving unit;
A fifth deriving portion for deriving a static stress generated in the buffer material when the packaged object is placed on the buffer material;
A sixth deriving unit for deriving a relationship between the maximum acceleration and the static stress based on the value of the maximum acceleration derived by the fourth deriving unit and the value of the static stress derived by the fifth deriving unit;
A buffer material characteristic deriving device comprising:
JP2016126454A 2016-06-27 2016-06-27 Derivation method for cushioning material characteristic, cushioning material characteristic derivation program, and cushioning material characteristic derivation device Pending JP2018005267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016126454A JP2018005267A (en) 2016-06-27 2016-06-27 Derivation method for cushioning material characteristic, cushioning material characteristic derivation program, and cushioning material characteristic derivation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016126454A JP2018005267A (en) 2016-06-27 2016-06-27 Derivation method for cushioning material characteristic, cushioning material characteristic derivation program, and cushioning material characteristic derivation device

Publications (1)

Publication Number Publication Date
JP2018005267A true JP2018005267A (en) 2018-01-11

Family

ID=60946405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016126454A Pending JP2018005267A (en) 2016-06-27 2016-06-27 Derivation method for cushioning material characteristic, cushioning material characteristic derivation program, and cushioning material characteristic derivation device

Country Status (1)

Country Link
JP (1) JP2018005267A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108444807A (en) * 2018-01-23 2018-08-24 兰州大学 A kind of unsteady flow test method of test Rock And Soil physico mechanical characteristic
CN117634080A (en) * 2023-11-30 2024-03-01 株洲市红三角包装印刷有限责任公司 Buffer package information fusion design method based on acceleration-static stress curve
CN117634081A (en) * 2023-11-30 2024-03-01 株洲市红三角包装印刷有限责任公司 Information-visualized buffer package drop impact design method and system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108444807A (en) * 2018-01-23 2018-08-24 兰州大学 A kind of unsteady flow test method of test Rock And Soil physico mechanical characteristic
CN117634080A (en) * 2023-11-30 2024-03-01 株洲市红三角包装印刷有限责任公司 Buffer package information fusion design method based on acceleration-static stress curve
CN117634081A (en) * 2023-11-30 2024-03-01 株洲市红三角包装印刷有限责任公司 Information-visualized buffer package drop impact design method and system
CN117634081B (en) * 2023-11-30 2024-05-24 株洲市红三角包装印刷有限责任公司 Information-visualized buffer package drop impact design method and system

Similar Documents

Publication Publication Date Title
Daie et al. A new finite element investigation on pre-bent steel strips as damper for vibration control
JP2018005267A (en) Derivation method for cushioning material characteristic, cushioning material characteristic derivation program, and cushioning material characteristic derivation device
Giagopoulos et al. Dynamic response and identification of critical points in the superstructure of a vehicle using a combination of numerical and experimental methods
JP2016081297A (en) Simulation method for polymeric material
Gibert et al. Impact oscillator model for the prediction of dynamic cushion curves of open cell foams
Zhou et al. Mechanical model of a hybrid non-linear viscoelastic material damping device with its verifications
JP6477411B2 (en) Analysis program
Zhong et al. The hybrid drop test
Broderick et al. Observations on the effect of numerical dissipation on the nonlinear dynamic response of structural systems
Maheo et al. On the use of some numerical damping methods of spurious oscillations in the case of elastic wave propagation
Sokół et al. Instability and vibration of multi-member columns subjected to Euler’s load
JP2007309704A (en) Numerical analytical method, analyzer, and program for lead material
JP6209985B2 (en) Product design support program, product design support method, and product design support apparatus
JP7038176B1 (en) Structure analysis method, equipment and computer program products based on equivalent node secant mass approximation
Zhou et al. Seismic Soil‐Structure Interaction Analysis of Isolated Nuclear Power Plants in Frequency Domain
Zhang et al. Proposal of hybrid damping package design
Low et al. Initial global-local analysis for drop-impact effect study of TV products
Wang et al. Finite element analysis and experimental investigation of beer bottle‐turnover boxes transport unit under random vibration excitation
Cai et al. A preliminary study on seismic behavior of the graphite reflector in molten salt reactor
Wang et al. Structural simulations of conical ribbon parachute deployment with a new detailed fabric contact algorithm, reefing line interactions and suspension line dynamics
JP6346526B2 (en) Deformation simulation method for tire and spring assembly
Ovidiu Experimental evaluation of the hysteretic damping of elastomeric systems at low-cyclic harmonic kinematic displacements
So et al. Automated Design of Packaging Cushions for Withstanding Drop Tests
Manolis et al. Analytical and Numerical Solutions for the Nonlinear Response of High Damping Rubber Bearing Isolators
Dundulis et al. Dynamic analytical and experimental research of shock absorber to safeguard the nuclear fuel assemblies