JP2018005136A - Antireflection film and optical element, optical system and optical device having the same - Google Patents

Antireflection film and optical element, optical system and optical device having the same Download PDF

Info

Publication number
JP2018005136A
JP2018005136A JP2016135534A JP2016135534A JP2018005136A JP 2018005136 A JP2018005136 A JP 2018005136A JP 2016135534 A JP2016135534 A JP 2016135534A JP 2016135534 A JP2016135534 A JP 2016135534A JP 2018005136 A JP2018005136 A JP 2018005136A
Authority
JP
Japan
Prior art keywords
refractive index
antireflection film
film
optical
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016135534A
Other languages
Japanese (ja)
Inventor
理絵 石松
Rie Ishimatsu
理絵 石松
奥野 丈晴
Takeharu Okuno
丈晴 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016135534A priority Critical patent/JP2018005136A/en
Publication of JP2018005136A publication Critical patent/JP2018005136A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an antireflection film having excellent antireflection characteristics to wavelengths from 400 to 700 nm even when a film thickness of a residual film varies, and an optical element, an optical system, and an optical instrument having the antireflection film.SOLUTION: The antireflection film is to be formed on an optical substrate for reducing surface reflection of incident or outgoing rays, and comprises a structural layer having recesses and projections regularly arranged at a pitch of 400 nm or less and an intermediate layer formed between the structural layer and the optical substrate. The intermediate layer has a layered structure of at least one thin film layer. The structural layer comprises a graded part where the refractive index varies in the thickness direction, and a residual film part integrally formed under the graded part, where the refractive index does not vary in the thickness direction. The graded part is configured in such a manner that: a space fill factor on a side closest to the incident of light is 0.05 or more and 0.20 or less; at least one point except for the light incident part is present where the space fill factor discontinuously varies in the thickness direction; and the difference in the space fill factor at the point where the factor discontinuously varies in the thickness direction is 0.05 or more and 0.20 or less.SELECTED DRAWING: Figure 1

Description

本発明は、光学素子の入出射面に設けられる反射防止膜に関し、特に深さ方向に屈折率が連続的に変化する構造を有する反射防止膜およびそれを有する光学素子、光学系、光学装置に関する。   The present invention relates to an antireflection film provided on an incident / exit surface of an optical element, and particularly relates to an antireflection film having a structure in which a refractive index continuously changes in a depth direction, and an optical element, an optical system, and an optical apparatus having the same. .

従来、光学素子の表面には、入射光の光量損失を低減させるために、反射防止構造が形成されており、近年では使用波長より小さなピッチで配列した微細構造を利用した反射防止膜が知られている。このような反射防止膜のうち、蛾の目の構造を模したモスアイ構造のように、空間に対する構造の充填率が膜厚方向に変化する反射防止膜は、光入射側から膜厚方向に対して実質的に屈折率が連続的に変化するため、屈折率の異なる多層膜から構成される従来の反射防止膜より入射角度特性が少ない。   Conventionally, an antireflection structure has been formed on the surface of an optical element in order to reduce the loss of light quantity of incident light. In recent years, an antireflection film using a fine structure arranged at a pitch smaller than the wavelength used is known. ing. Among such antireflection films, like the moth-eye structure that mimics the structure of the eyelet, an antireflection film in which the filling ratio of the structure with respect to the space changes in the film thickness direction is different from the light incident side in the film thickness direction. Therefore, since the refractive index changes substantially continuously, the incident angle characteristic is smaller than that of a conventional antireflection film composed of multilayer films having different refractive indexes.

このような微細凹凸構造を利用した反射防止膜の形成法として、特許文献1には、微細凹凸構造を持つ原盤を作製し、この原盤を型として微細構造を転写する方式が開示されている。特許文献1では、作成した型を用いて光学素子を成型する際に表面に直接微細凹凸構造を転写する方法や、基板表面に樹脂等の材料でコーティングし、そこに構造を転写(ナノインプリント)することで微細構造を形成する方法が開示されている。   As a method of forming an antireflection film using such a fine concavo-convex structure, Patent Document 1 discloses a method of producing a master having a fine concavo-convex structure and transferring the fine structure using the master as a mold. In Patent Document 1, when an optical element is molded using the created mold, a method of directly transferring a fine concavo-convex structure to the surface, or coating the substrate surface with a material such as a resin, and transferring the structure there (nanoimprint) Thus, a method for forming a fine structure is disclosed.

しかしながら、上記の方法で直接微細凹凸構造を光学素子表面に作成するためには、光学素子の材料が転写に必要な条件(ガラス転移温度や粘度、離型性)を満たす、ごく一部に限定されてしまう。また、ナノインプリントを用いて構造を転写する場合、微細凹凸構造と基板の界面における反射を抑制するために、基板と微細凹凸構造の界面の屈折率差をできるだけ小さくすることが必要となる。   However, in order to directly create a fine concavo-convex structure on the surface of the optical element by the above method, the material of the optical element is limited to only a part satisfying the conditions required for transfer (glass transition temperature, viscosity, releasability). Will be. In addition, when a structure is transferred using nanoimprint, it is necessary to reduce the difference in refractive index between the substrate and the fine concavo-convex structure as much as possible in order to suppress reflection at the interface between the fine concavo-convex structure and the substrate.

しかし、直接転写する場合と同様、ナノインプリントで利用可能な材料は現実的には限定されており、選択可能な屈折率範囲は制限されてしまう。特に、高い屈折率を実現することは難しく、例えば屈折率が2.0の光学材料に上記の方法を適用することは難しい。   However, as in the case of direct transfer, the materials that can be used for nanoimprint are practically limited, and the selectable refractive index range is limited. In particular, it is difficult to realize a high refractive index. For example, it is difficult to apply the above method to an optical material having a refractive index of 2.0.

そこで、特許文献2では、微細構造と基板との間に基板よりも低い屈折率を持つ層(中間層)を1層設ける方法を提案している。中間層を1層追加することで、基板と微細構造との屈折率差を小さくし、かつ中間層の膜厚を最適化することにより、基板の屈折率が1.80に対して平均反射率0.1%以下の反射防止性能を得ることができる、としている。   Therefore, Patent Document 2 proposes a method of providing one layer (intermediate layer) having a refractive index lower than that of the substrate between the microstructure and the substrate. By adding one intermediate layer, the refractive index difference between the substrate and the microstructure is reduced, and by optimizing the thickness of the intermediate layer, the refractive index of the substrate is an average reflectance relative to 1.80. An antireflection performance of 0.1% or less can be obtained.

特開2006−130841号公報JP 2006-130841 A 国際公開第2008/102882号International Publication No. 2008/102882

しかしながら、ナノインプリントで微細凹凸構造を形成する際には、構造転写層全体にかつ素子表面全体に構造を転写することは実質的には困難で、構造が転写されない部分(残膜部)が構造層の下部に残存してしまう。   However, when forming a fine concavo-convex structure by nanoimprinting, it is practically difficult to transfer the structure to the entire structure transfer layer and to the entire element surface, and the part where the structure is not transferred (residual film part) is the structure layer. It will remain at the bottom of.

そのため、特許文献2のように中間層を使用する場合、残存部を中間層として利用するか、残存部をドライエッチング等の処理で取り除く処理が必要なる。   Therefore, when using an intermediate layer as in Patent Document 2, it is necessary to use the remaining portion as the intermediate layer or to remove the remaining portion by a process such as dry etching.

しかし、残存部を中間層として利用する場合、残存部の膜厚を素子全体で均一に制御することが難しく、残存部の膜厚がばらつくことにより反射率特性が低下してしまう。また、残存部を取り除く場合には、製造のスループットが低下し、コストが上がるという問題点がある。   However, when the remaining portion is used as an intermediate layer, it is difficult to uniformly control the film thickness of the remaining portion over the entire device, and the reflectance characteristics are deteriorated due to variations in the film thickness of the remaining portion. Further, when the remaining portion is removed, there is a problem that the manufacturing throughput is lowered and the cost is increased.

そこで、本発明の目的は、残膜部の膜厚変動による反射率特性の低下を低減し、400〜700nmの波長に対して、優れた反射防止特性を有する反射防止膜およびそれを有する光学素子、光学系、光学機器を提供することにある。   Accordingly, an object of the present invention is to reduce a decrease in reflectance characteristics due to film thickness fluctuations in the remaining film portion, and to provide an antireflection film having excellent antireflection characteristics for wavelengths of 400 to 700 nm, and an optical element having the same It is to provide an optical system and an optical apparatus.

上記の目的を達成するために、本発明に係る反射防止膜は、
入射乃至射出する光線の表面反射を低減するための光学基板上に形成反射防止膜であって
400nm以下のピッチで規則的に配列された凹凸を持つ構造層と
該構造層と該光学基板との間に形成された中間層からなり、
該中間層は1層以上の薄膜層を積層した構造からなり、
該構造層は屈折率が膜厚方向に変化するグレーデッド部と
該グレーデッド部の下部に一体で形成され、屈折率が膜厚方向に変化しない残膜部からなり、
該グレーデッド部は、最も光入射側の空間充填率が0.05以上かつ0.20以下を満たし、かつ空間充填率が膜厚方向に不連続に変化する点を光入射部以外に1つ以上持ち
該膜厚方向に不連続に変化する点での空間充填率の差が0.05以上0.20以下であること特徴とする。
In order to achieve the above object, the antireflection film according to the present invention comprises:
An antireflection film formed on an optical substrate for reducing surface reflection of incident or emitted light,
A structure layer having irregularities regularly arranged at a pitch of 400 nm or less and an intermediate layer formed between the structure layer and the optical substrate;
The intermediate layer has a structure in which one or more thin film layers are laminated,
The structural layer is formed integrally with a graded portion where the refractive index changes in the film thickness direction and a lower film portion where the refractive index does not change in the film thickness direction.
The graded portion has one point other than the light incident portion in which the space filling rate on the most light incident side satisfies 0.05 or more and 0.20 or less and the space filling rate changes discontinuously in the film thickness direction. The difference in the space filling rate at the point where it has the above and changes discontinuously in the film thickness direction is from 0.05 to 0.20.

本発明によれば、残膜部の膜厚がばらついても、400〜700nmの波長に対して、優れた反射防止特性を有する反射防止膜およびそれを有する光学素子、光学系、光学機器を提供することができる。   According to the present invention, even if the film thickness of the remaining film portion varies, an antireflection film having excellent antireflection characteristics for wavelengths of 400 to 700 nm, and an optical element, an optical system, and an optical device having the antireflection film are provided. can do.

本発明の反射防止膜概略Outline of antireflection film of the present invention グレーデッド部2の先端形状概略Outline of tip shape of graded part 2 本発明のグレーデッド部2の形状概略Outline shape of graded portion 2 of the present invention 実施例1の反射防止膜の膜厚に対する屈折率Refractive index with respect to the film thickness of the antireflection film of Example 1 実施例1の反射防止膜の反射率Reflectivity of antireflection film of Example 1 実施例1の反射防止膜の残膜部の膜厚ばらつきによる反射率特性ばらつきVariation in reflectance characteristics due to variation in film thickness of remaining film portion of antireflection film of Example 1 実施例1の反射防止膜の残膜部の膜厚を変えたときの反射率Reflectivity when changing the film thickness of the remaining film portion of the antireflection film of Example 1 実施例2の反射防止膜の膜厚に対する屈折率Refractive index with respect to the film thickness of the antireflection film of Example 2 実施例2の反射防止膜の反射率Reflectivity of antireflection film of Example 2 実施例2の反射防止膜の残膜部の膜厚ばらつきによる反射率特性ばらつきVariation in reflectance characteristics due to variation in film thickness of remaining film portion of antireflection film of Example 2 実施例3の反射防止膜の膜厚に対する屈折率Refractive index with respect to the film thickness of the antireflection film of Example 3 実施例3の反射防止膜の反射率Reflectivity of antireflection film of Example 3 実施例3の反射防止膜の残膜部の膜厚ばらつきによる反射率特性ばらつきVariation in reflectance characteristics due to variation in film thickness of remaining film portion of antireflection film of Example 3 実施例4の反射防止膜の膜厚に対する屈折率Refractive index with respect to the film thickness of the antireflection film of Example 4 実施例4の反射防止膜の反射率Reflectivity of antireflection film of Example 4 実施例4の反射防止膜の残膜部の膜厚ばらつきによる反射率特性ばらつきVariation in reflectance characteristics due to variation in film thickness of remaining film portion of antireflection film of Example 4 実施例5の反射防止膜の膜厚に対する屈折率Refractive index with respect to the film thickness of the antireflection film of Example 5 実施例5の反射防止膜の反射率Reflectivity of antireflection film of Example 5 実施例5の反射防止膜の残膜部の膜厚ばらつきによる反射率特性ばらつきVariation in reflectance characteristics due to variation in film thickness of remaining film portion of antireflection film of Example 5 実施例6の反射防止膜の膜厚に対する屈折率Refractive index with respect to the film thickness of the antireflection film of Example 6 実施例6の反射防止膜の反射率Reflectance of antireflection film of Example 6 実施例6の反射防止膜の残膜部の膜厚ばらつきによる反射率特性ばらつきVariation in reflectance characteristics due to variation in film thickness of remaining film portion of antireflection film of Example 6 本発明の光学機器Optical apparatus of the present invention 比較例1の反射防止膜の膜厚に対する屈折率Refractive index with respect to the film thickness of the antireflection film of Comparative Example 1 比較例1の反射防止膜の反射率Reflectivity of antireflection film of Comparative Example 1 比較例1の反射防止膜の残膜部の膜厚ばらつきによる反射率特性ばらつきVariation in reflectance characteristics due to variation in film thickness of remaining film portion of antireflection film of Comparative Example 1

以下に、本発明の実施の形態を、添付の図面に基づいて詳細に説明する。なお、説明中の屈折率の値はすべて波長550nmでの値である。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. The refractive index values in the description are all values at a wavelength of 550 nm.

図1は本発明の反射防止膜の概略図(断面図)であり、光学基板10の表面付近を拡大して示している。   FIG. 1 is a schematic view (cross-sectional view) of the antireflection film of the present invention, and shows an enlarged vicinity of the surface of the optical substrate 10.

光学基板10は屈折率が1.68〜2.30の光学ガラスもしくは光学プラスチックからなり、その表面に本発明の反射防止膜100が形成されている。反射防止膜100は、ナノインプリント法によって形成され、微細凹凸構造を持つ構造層30と、光学基板10と微細凹凸構造30との間に設けられた中間層20と、を有する。   The optical substrate 10 is made of optical glass or optical plastic having a refractive index of 1.68 to 2.30, and the antireflection film 100 of the present invention is formed on the surface thereof. The antireflection film 100 is formed by a nanoimprint method, and includes a structural layer 30 having a fine concavo-convex structure and an intermediate layer 20 provided between the optical substrate 10 and the fine concavo-convex structure 30.

さらに構造層30は、空間充填率が膜厚方向に変化する(すなわち、実質的な屈折率が膜厚方向に変化する)微細凹凸構造から形成されたグレーデッド部2と、グレーデッド部2と一体で形成された、膜厚方向に屈折率の変化しない残膜部1からなる。なお、残存部1は、ナノインプリント法によって微細凹凸構造を転写した際に、構造層30の下部の残存した構造が転写されない部分である。また、中間層20は1層ないし2層以上の屈折率の異なる薄膜を積層させた構成を持つ。   Furthermore, the structural layer 30 includes a graded portion 2 formed of a fine concavo-convex structure in which the space filling rate changes in the film thickness direction (that is, the substantial refractive index changes in the film thickness direction), the graded portion 2, It consists of a remaining film portion 1 that is integrally formed and whose refractive index does not change in the film thickness direction. The remaining portion 1 is a portion where the remaining structure under the structural layer 30 is not transferred when the fine uneven structure is transferred by the nanoimprint method. Further, the intermediate layer 20 has a configuration in which one or two or more thin films having different refractive indexes are laminated.

構造層30は、ナノインプリント法によって形成される。ナノインプリント法は、製造方法により熱ナノインプリント、光ナノインプリント、室温ナノインプリントに大別されるが、本発明ではどの方法を用いてもよい。ただし、膜厚方向に均一に成型するために熱ナノインプリントを用いることがより好ましい。構造層30に用いる材料は特に限定しないが、例えば、熱硬化性樹脂や熱可塑性樹脂、光硬化性樹脂、低融点ガラス等を用いることができる。また、室温ナノインプリントではスピンオングラス(SOG)や水素シルセスキオキサンポリマー(HSQ)等のゾル・ゲル系の材料を用いてもよい。   The structural layer 30 is formed by a nanoimprint method. The nanoimprint method is roughly classified into thermal nanoimprint, optical nanoimprint, and room temperature nanoimprint depending on the production method, and any method may be used in the present invention. However, it is more preferable to use thermal nanoimprinting in order to form the film uniformly in the film thickness direction. Although the material used for the structural layer 30 is not specifically limited, For example, a thermosetting resin, a thermoplastic resin, a photocurable resin, low melting glass, etc. can be used. In room temperature nanoimprint, a sol-gel material such as spin-on-glass (SOG) or hydrogen silsesquioxane polymer (HSQ) may be used.

さらに、波長400〜700nmの光に対する透過率や成型性を考慮すると、構造層30の材料の屈折率naは1.38以上1.60以下が好ましい。さらに、波長が400nm以上700nm以下の入射光に対して、回折を防ぐためには、グレーデッド部の微細凹凸構造のピッチは400nm以下であることが好ましく、広い入射角度に対してその効果を得るためには、ピッチが200nm以下であることがさらに好ましい。   Furthermore, considering the transmittance and moldability for light with a wavelength of 400 to 700 nm, the refractive index na of the material of the structural layer 30 is preferably 1.38 or more and 1.60 or less. Furthermore, in order to prevent diffraction with respect to incident light having a wavelength of 400 nm or more and 700 nm or less, the pitch of the fine concavo-convex structure in the graded portion is preferably 400 nm or less, and in order to obtain the effect over a wide incident angle. More preferably, the pitch is 200 nm or less.

また、グレーデッド部2の微細凹凸構造は光入射側から基板側に向かって空間充填率が連続的に増加する構造を持つ。グレーデッド部2の実質的な屈折率neは、空間充填率(FF)を用いて下記の式(1)で求められる。   The fine uneven structure of the graded portion 2 has a structure in which the space filling rate continuously increases from the light incident side to the substrate side. The substantial refractive index ne of the graded portion 2 is obtained by the following equation (1) using the space filling factor (FF).

グレーデッド部2は、膜厚方向に空間充填率が連続的に増加するため、実質的な屈折率neも光入射側から連続的に増加する。そのため、通常屈折率差を有する界面で発生する反射波が発生しずらく、空気から残存部に入射する光に対して高い反射防止効果を得ることができる。 In the graded portion 2, the space filling factor continuously increases in the film thickness direction, so that the substantial refractive index ne also continuously increases from the light incident side. For this reason, it is difficult to generate a reflected wave that normally occurs at an interface having a refractive index difference, and a high antireflection effect can be obtained with respect to light incident on the remaining portion from the air.

ここで、成型性や構造の強度を考慮すると、グレーデッド部2の先端は尖った形状(図2(a))でないほうが好ましく、平面を持つ形状(図2(b))や角がなく丸みを帯びた形状(図2(c)、2(d))であることが好ましい。成型性や強度を考慮すると、先端の空間充填率(FF)は5%以上であることが好ましく、10%以上であることがさらに好ましい。なお、ここでの先端の充填率は、丸みを帯びた場合にであっても、近似的に丸みがない構造(図2−3の破線の構造)とみなして算出するものとする。   Here, considering the moldability and the strength of the structure, it is preferable that the tip of the graded portion 2 is not a sharp shape (FIG. 2 (a)), and has a flat shape (FIG. 2 (b)) or rounded without corners. It is preferable that the shape has a shape (FIGS. 2 (c) and 2 (d)). In consideration of moldability and strength, the space filling factor (FF) at the tip is preferably 5% or more, and more preferably 10% or more. Note that the filling rate of the tip here is calculated by assuming that the structure is not round (approximate round structure in FIG. 2-3) even when it is rounded.

なお、グレーデッド部2の形状が円錐台や多角錐台のとき、構造の下端(すなわちグレーデッド部2と残膜部との境界)から高さ距離d(nm)における充填率は下記の式2から求められる。   In addition, when the shape of the graded part 2 is a truncated cone or a polygonal truncated cone, the filling rate at the height distance d (nm) from the lower end of the structure (that is, the boundary between the graded part 2 and the remaining film part) is 2 is required.

ここで、D(nm)はグレーデッド部2の物理膜厚、FF(MAX)とFF(min)はそれぞれ充填率の最大値および最小値である。 Here, D (nm) is the physical film thickness of the graded portion 2, and FF (MAX) and FF (min) are the maximum value and the minimum value of the filling rate, respectively.

一方、上記のように先端が尖っていない構造の場合、光入射部分の空気から構造に入射する部分で屈折率差が生じ、反射波が発生してしまう。そのため、この反射波を打ち消す構造が必要となる。これは例えば、グレーデッド部2の構造中に充填率が不連続な部分を形成する(図3)ことによって実現できる。つまり、グレーデッド部の構造中に、屈折率差を持つ部分を設けることで、空気と光入射部の界面で発生した反射波と逆位相かつ同振幅の反射波を発生させて、光入射部分から発生する反射波を相殺することができる。この効果をより発揮するためには、下記の式(3)、式(4)を満たすことが好ましい。   On the other hand, in the case of the structure where the tip is not sharp as described above, a difference in refractive index occurs at the portion where the light is incident on the structure from the air, and a reflected wave is generated. Therefore, a structure that cancels this reflected wave is required. This can be realized, for example, by forming a discontinuous portion in the structure of the graded portion 2 (FIG. 3). In other words, by providing a portion having a refractive index difference in the structure of the graded portion, a reflected wave having an opposite phase and the same amplitude as that of the reflected wave generated at the interface between the air and the light incident portion is generated. The reflected wave generated from the can be canceled out. In order to exhibit this effect more, it is preferable to satisfy the following formulas (3) and (4).

ここで、ne1、ne2およびne3は、図3に示す部分の実質的な屈折率である。なお、上記の充填率が不連続な部分は、グレーデッド部2のどの部分に構成してもよく、例えば最も基板側、つまりグレーデッド部2と残存部1との界面に設けてもよい。ただし、より高性能な反射防止性能を持つためには、物理膜厚の比D2/D1が0.5以上を満たすのが好ましく、1.0以上がより好ましい。ここで、D1およびD2はそれぞれ前記不連続部から光入射部までの物理膜厚および残膜部1との界面から不連続部までの物理膜厚である。 Here, ne1, ne2, and ne3 are substantial refractive indexes of the portion shown in FIG. The portion where the filling rate is discontinuous may be formed in any portion of the graded portion 2, and may be provided, for example, at the most substrate side, that is, at the interface between the graded portion 2 and the remaining portion 1. However, in order to have higher performance antireflection performance, the physical film thickness ratio D2 / D1 preferably satisfies 0.5 or more, and more preferably 1.0 or more. Here, D1 and D2 are the physical film thickness from the discontinuous part to the light incident part and the physical film thickness from the interface with the remaining film part 1 to the discontinuous part, respectively.

また、グレーデッド部2全体の物理膜厚(D1+D2)は150nm以上500nm以下であることが好ましく、250nm以上350nm以下であることがさらに好ましい。物理膜厚が150nm未満になると、高い反射防止効果が得られる波長帯域が狭くなり、特に30度以上の入射角に対する性能が低下する。一方、光学膜厚が厚くなると構造のアスペクト比が増大し、製造が困難になるとともに、構造不良に起因した散乱により不要光が発生する。   Further, the physical film thickness (D1 + D2) of the entire graded portion 2 is preferably 150 nm or more and 500 nm or less, and more preferably 250 nm or more and 350 nm or less. When the physical film thickness is less than 150 nm, the wavelength band in which a high antireflection effect is obtained becomes narrow, and the performance for an incident angle of 30 degrees or more is particularly deteriorated. On the other hand, when the optical film thickness is increased, the aspect ratio of the structure is increased, making it difficult to manufacture, and unnecessary light is generated due to scattering due to the defective structure.

一方、中間層20は、光学基板1上に形成された単層構造もしくは2層以上の異なる薄膜層を積層した構造を持ち、残膜部1と基板の界面で発生する反射波を抑制する役割を担う。そのため、残膜部1の屈折率naと基板の屈折率nsに応じて、層数や膜構成をを選択すればよい。例えば、30が1.48以上1.70以下の材料からなり、光学基板1の屈折率が1.68以上2.30以下の場合には、光学基板側からM層、H層、M層の3層構成やH層、M層、H層、M層の4層構成が選択できる。   On the other hand, the intermediate layer 20 has a single layer structure formed on the optical substrate 1 or a structure in which two or more different thin film layers are stacked, and serves to suppress reflected waves generated at the interface between the remaining film portion 1 and the substrate. Take on. Therefore, the number of layers and the film configuration may be selected according to the refractive index na of the remaining film portion 1 and the refractive index ns of the substrate. For example, when 30 is made of a material of 1.48 or more and 1.70 or less and the refractive index of the optical substrate 1 is 1.68 or more and 2.30 or less, the M layer, the H layer, and the M layer are formed from the optical substrate side. A three-layer configuration or a four-layer configuration of H layer, M layer, H layer, and M layer can be selected.

また、構造層30を形成する材料と基板の屈折率差が0.1程度の場合には、M層やL層を単層で用いることができる。ここで、L層は屈折率が1.35以上1.50以下を満たす薄膜層、M層は屈折率が1.60以上1.72以下を満たす薄膜層、H層は屈折率が1.95以上2.20以下を満たす薄膜層である。   Further, when the refractive index difference between the material forming the structural layer 30 and the substrate is about 0.1, the M layer or the L layer can be used as a single layer. Here, the L layer is a thin film layer satisfying a refractive index of 1.35 to 1.50, the M layer is a thin film layer satisfying a refractive index of 1.60 to 1.72, and the H layer has a refractive index of 1.95. It is a thin film layer that satisfies 2.20 or less.

中間層20の製法は特に限定されず、液相法や真空蒸着法、スパッタ法などの任意のプロセスを選定することができる。ただし、より緻密な膜を形成するためには、ドライプロセスのほうが好ましく、スパッタ法がより好ましい。   The manufacturing method of the intermediate layer 20 is not particularly limited, and any process such as a liquid phase method, a vacuum deposition method, or a sputtering method can be selected. However, in order to form a denser film, a dry process is preferable, and a sputtering method is more preferable.

中間層20の各層の材料は、例えば、SiOやMgO、Al、SiON、ZrO、HfO,Ta、TiOなどの金属酸化物、LaF,CeF,MgF,NdF,CaFなどの金属フッ化物の単体やそれらの化合物を用いることができる。ただし、光学基板10の材質によっては、大気に晒されることで表面に成分が溶出して曇りや着色(「ヤケ」と呼ばれる)が生じる場合があるため、これを防止するため、基板上に形成される層は、AlやSiONを用いることが好ましい。 The material of each layer of the intermediate layer 20 is, for example, a metal oxide such as SiO 2 , MgO, Al 2 O 3 , SiON, ZrO 2 , HfO 2 , Ta 2 O 5 , TiO 2 , LaF 3 , CeF 3 , MgF 2. , NdF 3 , CaF 2 or other metal fluorides or their compounds can be used. However, depending on the material of the optical substrate 10, components may elute on the surface when exposed to the atmosphere, resulting in fogging or coloring (called “burning”). The layer to be used is preferably Al 2 O 3 or SiON.

以上より、反射防止膜100は、グレーデッド部2が空気と残膜部1の界面で発生する反射波を抑制し、中間層20が残膜部1と基板の界面で発生する反射波を抑制する構成となる。そのため、残膜部1の反射率特性に対する膜厚敏感度を低減することができる。なお、残膜部1の膜厚は特に限定されない。ただし、厚くなりすぎると、成形性が低下したり、散乱が増加して素子の透過率が低下するため、残膜部1の膜厚は10μm以下であることが好ましい。   As described above, in the antireflection film 100, the graded portion 2 suppresses the reflected wave generated at the interface between the air and the remaining film portion 1, and the intermediate layer 20 suppresses the reflected wave generated at the interface between the remaining film portion 1 and the substrate. It becomes the composition to do. Therefore, the film thickness sensitivity to the reflectance characteristics of the remaining film portion 1 can be reduced. In addition, the film thickness of the remaining film part 1 is not specifically limited. However, if the thickness is too large, the moldability deteriorates or the scattering increases and the transmittance of the element decreases, so the film thickness of the remaining film portion 1 is preferably 10 μm or less.

なお、光学基板10の屈折率は特に限定されない。ただし、光学基板10と構造層30の屈折率差が十分小さい場合には、構造層30と光学基板10との界面で発生する反射波が小さくなり、中間層20なしで性能を得ることができる。そのため、中間層20の効果をより発揮するためには、構造層30と光学基板10との屈折率差が0.1以上であることが好ましく、0.2以上であることがさらに好ましい。   The refractive index of the optical substrate 10 is not particularly limited. However, when the refractive index difference between the optical substrate 10 and the structural layer 30 is sufficiently small, the reflected wave generated at the interface between the structural layer 30 and the optical substrate 10 becomes small, and performance can be obtained without the intermediate layer 20. . Therefore, in order to exhibit the effect of the intermediate layer 20 more, the refractive index difference between the structural layer 30 and the optical substrate 10 is preferably 0.1 or more, and more preferably 0.2 or more.

反射防止膜100を形成する光学素子は、例えば、レンズ、プリズム、フライアイインテグレータ等を含む。また、この光学素子を有する光学系は、例えば、撮像光学系、走査光学系、投射光学系を含み、カメラ、ビデオカメラ、双眼鏡、複写機、プリンター、プロジェクター、ヘッドマウントディスプレイ、天体望遠鏡、顕微鏡等の光学機器に使用することができる。このような光学機器において、本発明の反射防止膜を形成された光学系が十分な透過率、およびゴースト・フレア抑制効果を得るためには、残膜部1の膜厚が変動した場合にも、0度入射の反射率が0.3%以下、45度入射の反射率が1.0%以下であることが好ましい。   The optical element forming the antireflection film 100 includes, for example, a lens, a prism, a fly eye integrator, and the like. The optical system having this optical element includes, for example, an imaging optical system, a scanning optical system, and a projection optical system, such as a camera, a video camera, a binocular, a copying machine, a printer, a projector, a head-mounted display, an astronomical telescope, a microscope, and the like. It can be used for optical instruments. In such an optical apparatus, in order for the optical system on which the antireflection film of the present invention is formed to obtain sufficient transmittance and a ghost / flare suppression effect, even when the film thickness of the remaining film portion 1 varies. The reflectance at 0 degree incidence is preferably 0.3% or less, and the reflectance at 45 degree incidence is preferably 1.0% or less.

以下、具体的な計算例をもとに、本発明の反射防止膜について説明する。なお、以下の計算例では、構造部の屈折率は上記(1)から得られる屈折率を持つ膜として扱うものとする。   The antireflection film of the present invention will be described below based on specific calculation examples. In the following calculation example, the refractive index of the structure portion is treated as a film having the refractive index obtained from the above (1).

[実施例1]
実施例1の反射防止膜は屈折率が1.808の光学基板10上に、3層の多層膜から形成された中間層20、その上に円錐台形状が規則的に配列した構造層30を持つ。構造層30はPMMAをもちいてグレーデッド部2と残膜部1が一体で形成されており、残膜部1の屈折率は1.493である。充填率が不連続に変化する部分があり、その部分より光入射側をグレーデッド部2a、基板側をグレーデッド部2bとする。グレーデッド部2bの屈折率は、基板側の1.493から1.164まで充填率の変化に従って連続的に変化している。
[Example 1]
In the antireflection film of Example 1, an intermediate layer 20 formed of a multilayer film of three layers is formed on an optical substrate 10 having a refractive index of 1.808, and a structural layer 30 in which frustoconical shapes are regularly arranged thereon. Have. In the structural layer 30, the graded portion 2 and the remaining film portion 1 are integrally formed using PMMA, and the refractive index of the remaining film portion 1 is 1.493. There is a portion where the filling rate changes discontinuously, and the light incident side from that portion is defined as a graded portion 2a and the substrate side is defined as a graded portion 2b. The refractive index of the graded portion 2b continuously changes from 1.493 to 1.164 on the substrate side according to the change in the filling rate.

また、グレーデッド部2aは、同様に1.097から1.045まで連続的に変化している。なお、このとき空間充填率FFは、最も基板側の1.00から、光入射部で0.10まで変化しており、不連続部分での充填率はそれぞれ0.35、0.21である。グレーデッド部の物理膜厚D1およびD2はそれぞれ124nm、165nmである。また中間層20は、基板側から屈折率が1.621、光学膜厚が41nmの第1層、屈折率が2.127、光学膜厚が20nmの第2層、屈折率が1.621、光学膜厚が157nmの第3層から形成されている。表1に実施例1の反射防止膜の構成を示す。   Similarly, the graded portion 2a continuously changes from 1.097 to 1.045. At this time, the space filling factor FF changes from 1.00 on the most substrate side to 0.10 at the light incident part, and the filling factors at the discontinuous part are 0.35 and 0.21, respectively. . The physical film thicknesses D1 and D2 of the graded portion are 124 nm and 165 nm, respectively. The intermediate layer 20 has a refractive index of 1.621 from the substrate side, a first layer having an optical film thickness of 41 nm, a refractive index of 2.127, a second layer having an optical film thickness of 20 nm, a refractive index of 1.621, It is formed from a third layer having an optical film thickness of 157 nm. Table 1 shows the configuration of the antireflection film of Example 1.

また、図4に実施例1の反射防止膜の膜厚方向(物理膜厚/nm)に対する屈折率を示す。さらに、図5に波長400〜700nmの波長に対する反射率特性を示す。なお、図5中の0deg、30deg・・・は、入射角度を表す。 FIG. 4 shows the refractive index with respect to the film thickness direction (physical film thickness / nm) of the antireflection film of Example 1. Further, FIG. 5 shows reflectance characteristics with respect to wavelengths of 400 to 700 nm. Note that 0 deg, 30 deg,... In FIG.

図5より、本実施例の反射防止膜は、入射角度が0度のとき、400〜700nm全域で反射率0.1%以下、入射角が45度のとき、0.3%以下の優れた特性を示すことが分かる。なお、400〜700nmでの平均反射率は、0度のとき0.01%、45度のとき0.06%、60度のとき0.72%であった。   From FIG. 5, the antireflection film of this example has an excellent reflectivity of 0.1% or less over the entire range of 400 to 700 nm when the incident angle is 0 degree, and 0.3% or less when the incident angle is 45 degrees. It can be seen that it exhibits characteristics. The average reflectance at 400 to 700 nm was 0.01% at 0 °, 0.06% at 45 °, and 0.72% at 60 °.

次に、図6に残膜部1の膜厚がばらついた時の反射率特性の変動幅(計算値)を示す。なお、図6では、設計値に対して±200nmの範囲内で膜厚をランダムに変化させる計算を100回繰り返した場合の結果を示しており、図6(a)が入射角度0度の場合、図6(b)が入射角度45度の場合である。   Next, FIG. 6 shows the fluctuation range (calculated value) of the reflectance characteristic when the film thickness of the remaining film portion 1 varies. FIG. 6 shows the result when the calculation for changing the film thickness randomly within the range of ± 200 nm with respect to the design value is repeated 100 times, and FIG. 6A shows the case where the incident angle is 0 degree. FIG. 6B shows a case where the incident angle is 45 degrees.

図6より、このように残膜部1の膜厚が数百nmオーダーでばらついても、0度入射では、450〜700nmで0.2%以下、45度入射では0.8%以下と反射率への影響がきわめて小さいことが分かる。   From FIG. 6, even if the film thickness of the remaining film part 1 varies in the order of several hundreds of nm, the reflection is as follows: 0.2% or less at 450 to 700 nm at 0 degree incidence and 0.8% or less at 45 degree incidence. It can be seen that the impact on the rate is very small.

また、図7に、残膜部1の膜厚を変えた場合の反射率特性を示す。なお、図7(a)に入射角が0度の場合を、図7(b)に45度の場合を示す。   FIG. 7 shows reflectance characteristics when the film thickness of the remaining film portion 1 is changed. FIG. 7A shows a case where the incident angle is 0 degree, and FIG. 7B shows a case where the incident angle is 45 degrees.

図7より残膜部1の膜厚が0〜10000nmまで変化しても、反射率特性の変動は図6で示す範囲に収まっていることが分かる。   From FIG. 7, it can be seen that even if the film thickness of the remaining film portion 1 is changed from 0 to 10000 nm, the variation of the reflectance characteristic is within the range shown in FIG.

[比較例1]
比較例1として、特許文献2の数値実施例2に記載の反射防止膜について述べる。なお、本比較例では、特許文献2の数値実施例2で開示されている膜構成のうち、最も高い反射防止性能が得られる構成についてのみ示す。
[Comparative Example 1]
As Comparative Example 1, an antireflection film described in Numerical Example 2 of Patent Document 2 will be described. In this comparative example, only the configuration that provides the highest antireflection performance among the film configurations disclosed in Numerical Example 2 of Patent Document 2 is shown.

本比較例は、屈折率が1.800の光学基板上に、本発明で言うところの構造層30が形成されている。構造層30は屈折率が1.620の材料から形成されており、残膜部1の屈折率は1.620、グレーデッド部2の屈折率は最も基板側の1.620から最も光入射側の1.113まで充填率に従って連続的に変化している。なお、数値実施例2では、グレーデッド部2に関する具体的な屈折率の開示はないが、充填率が最も基板側で1.0、最も光入射側では0.22から0.50の間の値を持つ円錐台との記載があるため、これに基づいて式(1)に基づいて算出した。   In this comparative example, the structural layer 30 referred to in the present invention is formed on an optical substrate having a refractive index of 1.800. The structural layer 30 is made of a material having a refractive index of 1.620, the refractive index of the remaining film portion 1 is 1.620, and the refractive index of the graded portion 2 is the most light incident side from 1.620 on the most substrate side. Continuously changing according to the filling rate up to 1.113. In Numerical Example 2, there is no disclosure of a specific refractive index regarding the graded portion 2, but the filling rate is 1.0 on the most substrate side and between 0.22 and 0.50 on the most light incident side. Since there is a description of a truncated cone having a value, it was calculated based on the formula (1) based on this.

なお、最も光入射側については、この計算において最も反射率特性が良好となる値を使用した。表2に比較例1の反射防止膜の構成を示す。   For the most light incident side, the value with the best reflectance characteristics was used in this calculation. Table 2 shows the configuration of the antireflection film of Comparative Example 1.

また、図24に比較例1の反射防止膜の膜厚方向に対する屈折率を示す。さらに、図25に波長400〜700nmの波長に対する反射率特性を示す。 FIG. 24 shows the refractive index in the film thickness direction of the antireflection film of Comparative Example 1. Further, FIG. 25 shows reflectance characteristics with respect to wavelengths of 400 to 700 nm.

図25より、本比較例の反射防止膜では、0度反射においても反射率が450nm付近で1.0%を超えてしまう。また、400〜700nmでの平均反射率は、0度のとき0.47%、45度のとき0.74、60度のとき2.4%であった。   From FIG. 25, in the antireflection film of this comparative example, the reflectance exceeds 1.0% in the vicinity of 450 nm even at 0 degree reflection. Further, the average reflectance at 400 to 700 nm was 0.47% at 0 degree, 0.74 at 45 degree, and 2.4% at 60 degree.

次に、図26に残膜部の膜厚を最大±20nmばらつかせたときの反射率変動を示す。   Next, FIG. 26 shows the reflectance fluctuation when the film thickness of the remaining film portion is varied by a maximum of ± 20 nm.

図6と図26を比較すると、比較例では膜厚ばらつきが実施例1の1/10程度になっているが、反射率の変動は最大1.0%程度と実施例1の2倍以上になることが分かる。これより、本発明の反射防止膜が残膜の膜厚がばらついても優れた反射防止効果を得られることが分かる。   Comparing FIG. 6 and FIG. 26, in the comparative example, the film thickness variation is about 1/10 of that of Example 1, but the reflectance variation is about 1.0% at the maximum, which is more than twice that of Example 1. I understand that This shows that the antireflection film of the present invention can provide an excellent antireflection effect even if the film thickness of the remaining film varies.

[実施例2]
実施例2の反射防止膜は、構造層30を形成する材料や中間層20は実施例1と同等で、グレーデッド部2の構造が異なる。実施例1では、充填率が不連続な部分(屈折率差がある部分)をグレーデッド部2の途中に配置していたが、実施例2では、残膜部1との界面に屈折率差を設けている。グレーデッド部2の空間充填率FFは、最も基板側の0.89から、光入射部の0.10まで変化している。グレーデッド部の物理膜厚Dは、464nmである。表3に実施例2の反射防止膜の構成を示す。
[Example 2]
In the antireflection film of Example 2, the material forming the structural layer 30 and the intermediate layer 20 are the same as those of Example 1, and the structure of the graded portion 2 is different. In Example 1, the portion where the filling rate is discontinuous (the portion where there is a difference in refractive index) is arranged in the middle of the graded portion 2, but in Example 2, the refractive index difference is present at the interface with the remaining film portion 1. Is provided. The space filling factor FF of the graded portion 2 changes from 0.89 on the most substrate side to 0.10 of the light incident portion. The physical film thickness D of the graded portion is 464 nm. Table 3 shows the configuration of the antireflection film of Example 2.

また、図8に実施例2の反射防止膜の膜厚方向に対する屈折率を示す。さらに、図9に波長400〜700nmの波長に対する反射率特性を示す。 FIG. 8 shows the refractive index in the film thickness direction of the antireflection film of Example 2. Further, FIG. 9 shows reflectance characteristics with respect to wavelengths of 400 to 700 nm.

図9より、本実施例の反射防止膜は、入射角度が0度のとき、400〜700nm全域で反射率0.2%以下、入射角が45度のとき、0.4%以下の優れた特性を示すことが分かる。なお、400〜700nmでの平均反射率は、0度のとき0.07%、45度のとき0.13%、60度のとき0.67%であった。   As shown in FIG. 9, the antireflection film of this example has an excellent reflectivity of 0.2% or less over the entire range of 400 to 700 nm when the incident angle is 0 degree, and 0.4% or less when the incident angle is 45 degrees. It can be seen that it exhibits characteristics. The average reflectance at 400 to 700 nm was 0.07% at 0 degree, 0.13% at 45 degree, and 0.67% at 60 degree.

次に、図10に実施例1と同様、残膜部をばらつかせたときの反射率変動を示す。   Next, FIG. 10 shows the reflectance variation when the remaining film portion is dispersed as in the first embodiment.

図10より、このように残膜部の膜厚がばらついても、0度入射では、400〜700nmで0.4%以下、45度入射では0.7%以下と反射率への影響が小さいことが分かる。実施例1、2に示すように、充填率が不連続になる部分はグレーデッド部2の途中や残膜部との界面等、任意の位置に設定して膜厚敏感度低減の効果を得ることができる。実施例2のように残膜部1との界面に設置する場合には、構造が単純になるという利点がある。一方、グレーデッド部2の途中に設ける場合には、グレーデッド部2の膜厚D1とD2をそれそれパラメータとして使用することができ、反射率をより低減することができる。   From FIG. 10, even if the film thickness of the remaining film portion varies as described above, the influence on the reflectance is small, that is, 0.4% or less at 400 to 700 nm at 0 degree incidence and 0.7% or less at 45 degree incidence. I understand that. As shown in Examples 1 and 2, the portion where the filling rate becomes discontinuous is set at an arbitrary position such as in the middle of the graded portion 2 or the interface with the remaining film portion, and the effect of reducing the film thickness sensitivity is obtained. be able to. When installed at the interface with the remaining film portion 1 as in the second embodiment, there is an advantage that the structure becomes simple. On the other hand, when provided in the middle of the graded portion 2, the film thicknesses D1 and D2 of the graded portion 2 can be used as parameters, respectively, and the reflectance can be further reduced.

[実施例3]
実施例3の反射防止膜は、実施例1と構造層30を形成する材料は同等で、基板が異なる。光学基板の屈折率は1.888、中間層20は3層の多層膜から形成されている。表4に実施例3の反射防止膜の構成を示す。
[Example 3]
The antireflection film of Example 3 is the same as that of Example 1 in the material forming the structural layer 30, and the substrate is different. The refractive index of the optical substrate is 1.888, and the intermediate layer 20 is formed of a multilayer film of three layers. Table 4 shows the configuration of the antireflection film of Example 3.

また、図11に実施例3の反射防止膜の膜厚方向に対する屈折率を示す。さらに、図12に波長400〜700nmの波長に対する反射率特性を示す。 Moreover, the refractive index with respect to the film thickness direction of the antireflection film of Example 3 is shown in FIG. Further, FIG. 12 shows reflectance characteristics with respect to wavelengths of 400 to 700 nm.

図12より、本実施例の反射防止膜は、入射角度が0度のとき、400〜700nm全域で反射率0.1%以下、入射角が45度のとき、0.2%以下の優れた特性を示すことが分かる。なお、400〜700nmでの平均反射率は、0度のとき0.01%、45度のとき0.04%、60度のとき0.58%であった。   As shown in FIG. 12, the antireflection film of this example has an excellent reflectivity of 0.1% or less over the entire range of 400 to 700 nm when the incident angle is 0 degree, and 0.2% or less when the incident angle is 45 degrees. It can be seen that it exhibits characteristics. The average reflectance at 400 to 700 nm was 0.01% at 0 °, 0.04% at 45 °, and 0.58% at 60 °.

次に、図13に実施例1と同様、残膜部をばらつかせたときの反射率変動を示す。図13より、このように残膜部の膜厚がばらついても、0度入射では、450〜700nmで0.2%以下、45度入射では0.6%以下と反射率への影響がきわめて小さいことが分かる。   Next, FIG. 13 shows the reflectance variation when the remaining film portion is dispersed as in the first embodiment. From FIG. 13, even if the film thickness of the remaining film portion varies in this way, the influence on the reflectance is extremely low at 0 to incidence of 0.2% or less at 450 to 700 nm, and at 45 ° incidence of 0.6% or less. I understand that it is small.

[実施例4]
実施例4の反射防止膜は、実施例1と構造層30を形成する材料は同等で、基板が異なる。光学基板の屈折率は2.116、中間層20は3層の多層膜から形成されている。表5に実施例4の反射防止膜の構成を示す。
[Example 4]
The antireflection film of Example 4 is the same as that of Example 1 in the material forming the structural layer 30, and the substrate is different. The refractive index of the optical substrate is 2.116, and the intermediate layer 20 is formed of a multilayer film of three layers. Table 5 shows the configuration of the antireflection film of Example 4.

また、図14に実施例4の反射防止膜の膜厚方向に対する屈折率を示す。さらに、図15に波長400〜700nmの波長に対する反射率特性を示す。 FIG. 14 shows the refractive index in the film thickness direction of the antireflection film of Example 4. Further, FIG. 15 shows reflectance characteristics with respect to wavelengths of 400 to 700 nm.

図15より、本実施例の反射防止膜は、入射角度が0度のとき、450〜700nm全域で反射率0.2%以下、入射角が45度のとき、0.3%以下の優れた特性を示すことが分かる。なお、400〜700nmでの平均反射率は、0度のとき0.07%、45度のとき0.08%、60度のとき0.66%であった。   From FIG. 15, the antireflection film of this example has an excellent reflectivity of 0.2% or less in the entire region of 450 to 700 nm when the incident angle is 0 degree, and 0.3% or less when the incident angle is 45 degrees. It can be seen that it exhibits characteristics. The average reflectance at 400 to 700 nm was 0.07% at 0 degree, 0.08% at 45 degree, and 0.66% at 60 degree.

次に、図16に実施例1と同様、残膜部をばらつかせたときの反射率変動を示す。   Next, FIG. 16 shows the reflectance variation when the remaining film portion is dispersed as in the first embodiment.

図16より、残膜部の膜厚がばらついても、0度入射では、450〜700nmで0.2%以下、45度入射では0.5%以下と反射率への影響がきわめて小さいことが分かる。このように、本発明の構成を用いると、光学基板と構造層30(残膜部1)の屈折率差が大きい場合にも、残膜部1の膜厚敏感度を低くすることができる。   FIG. 16 shows that even if the film thickness of the remaining film portion varies, the influence on the reflectance is extremely small, with 0.2% or less at 450 to 700 nm at 0 degree incidence and 0.5% or less at 45 degree incidence. I understand. Thus, when the configuration of the present invention is used, the film thickness sensitivity of the remaining film portion 1 can be lowered even when the refractive index difference between the optical substrate and the structural layer 30 (residual film portion 1) is large.

[実施例5]
実施例5の反射防止膜は、光学基板は実施例4と同等で、構造層30を構成する材料や中間層20の構成が異なる。本実施例の中間層20は、4層の多層膜から形成されており、構造層30はPCから形成されている。表6に実施例5の反射防止膜の構成を示す。
[Example 5]
In the antireflection film of Example 5, the optical substrate is the same as that of Example 4, and the material constituting the structural layer 30 and the structure of the intermediate layer 20 are different. The intermediate layer 20 of the present embodiment is formed of four multilayer films, and the structural layer 30 is formed of PC. Table 6 shows the configuration of the antireflection film of Example 5.

また、図17に実施例5の反射防止膜の膜厚方向に対する屈折率を示す。さらに、図18に波長400〜700nmの波長に対する反射率特性を示す。   FIG. 17 shows the refractive index in the film thickness direction of the antireflection film of Example 5. Further, FIG. 18 shows reflectance characteristics with respect to wavelengths of 400 to 700 nm.

図18より、本実施例の反射防止膜は、入射角度が0度のとき、400〜700nm全域で反射率0.2%以下、入射角が45度のとき、0.3%以下の優れた特性を示すことが分かる。なお、400〜700nmでの平均反射率は、0度のとき0.03%、45度のとき0.07%、60度のとき0.74%であった。   As shown in FIG. 18, the antireflection film of this example has an excellent reflectance of 0.2% or less over the entire range of 400 to 700 nm when the incident angle is 0 degree, and 0.3% or less when the incident angle is 45 degrees. It can be seen that it exhibits characteristics. The average reflectance at 400 to 700 nm was 0.03% at 0 °, 0.07% at 45 °, and 0.74% at 60 °.

次に、図19に実施例1と同様、残膜部をばらつかせたときの反射率変動を示す。図19より、このように残膜部の膜厚がばらついても、0度入射では、450〜700nmで0.2%以下、45度入射では0.6%以下と反射率への影響がきわめて小さいことが分かる。   Next, FIG. 19 shows the reflectance variation when the remaining film portion is dispersed as in the first embodiment. From FIG. 19, even if the film thickness of the remaining film portion varies in this way, the influence on the reflectivity is extremely high at 0.2 to less than 450% at 700 to 700 nm at 0 degree incidence and less than 0.6% at 45 degree incidence. I understand that it is small.

[実施例6]
実施例6の反射防止膜は、屈折率が1.699の光学基板10上に、1層の薄膜層から形成された中間層20を持ち。構造層30はPSから形成されている。表7に実施例6の反射防止膜の構成を示す。
[Example 6]
The antireflection film of Example 6 has the intermediate layer 20 formed of one thin film layer on the optical substrate 10 having a refractive index of 1.699. The structural layer 30 is made of PS. Table 7 shows the configuration of the antireflection film of Example 6.

また、図20に実施例6の反射防止膜の膜厚方向に対する屈折率を示す。さらに、図21に波長400〜700nmの波長に対する反射率特性を示す。   FIG. 20 shows the refractive index in the film thickness direction of the antireflection film of Example 6. Further, FIG. 21 shows reflectance characteristics with respect to wavelengths of 400 to 700 nm.

図21より、本実施例の反射防止膜は、入射角度が0度のとき、400〜700nm全域で反射率0.2%以下、入射角が45度のとき、0.3%以下の優れた特性を示すことが分かる。なお、400〜700nmでの平均反射率は、0度のとき0.06%、45度のとき0.13%、60度のとき0.94%であった。次に、図22に実施例1と同様、残膜部をばらつかせたときの反射率変動を示す。   From FIG. 21, the antireflection film of this example has an excellent reflectivity of 0.2% or less over the entire range of 400 to 700 nm when the incident angle is 0 degree, and 0.3% or less when the incident angle is 45 degrees. It can be seen that it exhibits characteristics. The average reflectance at 400 to 700 nm was 0.06% at 0 degree, 0.13% at 45 degree, and 0.94% at 60 degree. Next, FIG. 22 shows the reflectance variation when the remaining film portion is dispersed, as in the first embodiment.

図22より、このように残膜部の膜厚がばらついても、0度入射では、450〜700nmで0.3%以下、45度入射では0.6%以下と反射率への影響がきわめて小さいことが分かる。   From FIG. 22, even if the film thickness of the remaining film portion varies as described above, the influence on the reflectivity is extremely high at 0.3 to less than 0.3% at 450 to 700 nm at 0 degree incidence and less than 0.6% at 45 degree incidence. I understand that it is small.

[実施例7]
図23は実施例7の光学機器の概略図である。
[Example 7]
FIG. 23 is a schematic diagram of an optical apparatus according to the seventh embodiment.

図23において、101はデジタルカメラ、102は本発明の反射防止膜が形成された光学素子を用いて構成された撮像光学系である。撮像光学系102は、複数のレンズから構成されており、これらのレンズ面のうち少なくとも1面に本発明の反射防止膜が形成されている。本実施例では、光学機器の1例としてデジタルカメラを取り上げたが、本発明はこれに限定されるものではなく、双眼鏡や画像投射装置等その他の光学機器に用いてもよい。   In FIG. 23, reference numeral 101 denotes a digital camera, and 102 denotes an imaging optical system configured using an optical element on which an antireflection film of the present invention is formed. The imaging optical system 102 includes a plurality of lenses, and the antireflection film of the present invention is formed on at least one of these lens surfaces. In this embodiment, a digital camera is taken as an example of an optical apparatus, but the present invention is not limited to this, and may be used for other optical apparatuses such as binoculars and an image projection apparatus.

以上、本発明の好ましい実施携帯について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。   Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the gist.

1 残膜部、2 グレーデッド部、10 光学基板、20 中間層、30 構造層、
100 本発明の反射防止膜、101 本発明の光学機器(デジタルカメラ)、
102 本発明の光学系
1 remaining film part, 2 graded part, 10 optical substrate, 20 intermediate layer, 30 structure layer,
100 Antireflection film of the present invention, 101 Optical apparatus (digital camera) of the present invention,
102 Optical system of the present invention

Claims (9)

入射乃至射出する光線の表面反射を低減するための光学基板上に形成反射防止膜であって
400nm以下のピッチで規則的に配列された凹凸を持つ構造層と
該構造層と該光学基板との間に形成された中間層からなり、
該中間層は1層以上の薄膜層を積層した構造からなり、
該構造層は屈折率が膜厚方向に変化するグレーデッド部と
該グレーデッド部の下部に一体で形成され、屈折率が膜厚方向に変化しない残膜部からなり
該グレーデッド部は、最も光入射側の空間充填率が0.05以上かつ0.20以下を満たし、かつ空間充填率が膜厚方向に不連続に変化する点を光入射部以外に1つ以上持ち
該膜厚方向に不連続に変化する点での空間充填率の差が0.05以上0.20以下であること特徴とする反射防止膜。
An antireflection film formed on an optical substrate for reducing surface reflection of incident or emitted light,
A structure layer having irregularities regularly arranged at a pitch of 400 nm or less and an intermediate layer formed between the structure layer and the optical substrate;
The intermediate layer has a structure in which one or more thin film layers are laminated,
The structural layer is formed integrally with a graded portion in which the refractive index changes in the film thickness direction and a remaining film portion in which the refractive index does not change in the film thickness direction. A space filling factor on the light incident side satisfies 0.05 or more and 0.20 or less, and the space filling factor has one or more points other than the light incident part in the film thickness direction. An antireflection film characterized in that a difference in space filling rate at a point of discontinuous change is 0.05 or more and 0.20 or less.
前記グレーデッド部の最も光入射側の有効屈折率をne1、
前記不連続に変化する点の有効屈折率をne2、ne3(ne2<ne3)とすると、
ne1、ne2、ne3が下記の関係式を満たすことを特徴とする請求項1に記載の反射防止膜。
ただし、上記の関係式中の有効屈折率neは、空間充填率FFとグレーデッド部を構成する材料の屈折率naを用いて、下記の関係式から求められるものとする。
The effective refractive index on the most light incident side of the graded portion is ne1,
If the effective refractive index of the discontinuously changing points is ne2, ne3 (ne2 <ne3),
2. The antireflection film according to claim 1, wherein ne1, ne2, and ne3 satisfy the following relational expression.
However, the effective refractive index ne in the above relational expression is obtained from the following relational expression using the space filling factor FF and the refractive index na of the material constituting the graded portion.
前記有効屈折率ne2およびne3の差が、0.03以上0.1以下であることを特徴とする請求項1又は請求項2に記載の反射防止膜。 The antireflection film according to claim 1 or 2, wherein a difference between the effective refractive indexes ne2 and ne3 is 0.03 or more and 0.1 or less. 前記グレーデッド部は円錐台はたは多角錐台からなることを特徴とする請求項1乃至請求項3の何れか一項に記載の反射防止膜。 4. The antireflection film according to claim 1, wherein the graded portion is formed of a truncated cone or a polygonal truncated cone. 5. 前記中間層を構成する薄膜層のうち、最も基板側の層はAlまたはSiONからなることを特徴とする請求項1乃至請求項4の何れか一項に記載の反射防止膜。 5. The antireflection film according to claim 1, wherein, of the thin film layers constituting the intermediate layer, the most substrate side layer is made of Al 2 O 3 or SiON. 6. 前記グレーデッド部および残存部は、エネルギー硬化樹脂からなることを特徴とする請求項1乃至請求項5の何れか一項に記載の反射防止膜。 The antireflection film according to any one of claims 1 to 5, wherein the graded portion and the remaining portion are made of an energy curable resin. 請求項1乃至請求項6の何れか一項に記載の反射防止膜を有することを特徴とする光学素子。 An optical element comprising the antireflection film according to any one of claims 1 to 6. 請求項7に記載の光学素子を少なくとも1つ以上用いたことを特徴とする光学系。 An optical system comprising at least one optical element according to claim 7. 請求項8に記載の光学系を用いたことを特徴とする光学装置。 An optical apparatus using the optical system according to claim 8.
JP2016135534A 2016-07-08 2016-07-08 Antireflection film and optical element, optical system and optical device having the same Pending JP2018005136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016135534A JP2018005136A (en) 2016-07-08 2016-07-08 Antireflection film and optical element, optical system and optical device having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016135534A JP2018005136A (en) 2016-07-08 2016-07-08 Antireflection film and optical element, optical system and optical device having the same

Publications (1)

Publication Number Publication Date
JP2018005136A true JP2018005136A (en) 2018-01-11

Family

ID=60944934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016135534A Pending JP2018005136A (en) 2016-07-08 2016-07-08 Antireflection film and optical element, optical system and optical device having the same

Country Status (1)

Country Link
JP (1) JP2018005136A (en)

Similar Documents

Publication Publication Date Title
JP6362105B2 (en) Optical element, optical system, and optical device having antireflection film
JP5885649B2 (en) Optical element having antireflection film, optical system and optical apparatus
JP5777353B2 (en) Diffractive optical element, optical system, and optical instrument
JP2002182003A (en) Antireflection functional element, optical element, optical system and optical appliance
US9405044B2 (en) Antireflection coating film, and optical element, optical system, and optical apparatus having the same
JP2010078803A (en) Optical element and optical system having it
WO2014196148A1 (en) Optical member provided with anti-reflection film
JP2016218436A (en) Diffraction optical element, optical system, and optical instrument
WO2019230758A1 (en) Fine pattern film and head-up display device
JP5294584B2 (en) Optical element and optical apparatus
JP2010066704A (en) Optical element, optical system, and optical apparatus
JP5213424B2 (en) Optical system and optical apparatus having the same
JP5780973B2 (en) Anti-reflection coating
JP7106279B2 (en) Diffractive optical element and optical equipment
JP2015084024A (en) Antireflection film, optical element, and optical equipment
JP2018005136A (en) Antireflection film and optical element, optical system and optical device having the same
JP2010237419A (en) Anti-reflection body
JP2017219651A (en) Antireflection film, and optical element, optical system and optical device having the same
JP2018185391A (en) Anti-reflection film and optical element having the same, optical system, and optical device
JP2017219653A (en) Antireflection film and optical element, optical system and optical apparatus having the same
JP2018005139A (en) Antireflection film and optical element, optical system and optical instrument having the same
JP2018185394A (en) Anti-reflection film and optical element having the same, optical system, and optical device
JP2002062419A (en) Diffractive optical device and optical appliance having the diffractive optical device
JP2017134362A (en) Optical element and optical system having the same
US20240036234A1 (en) Lens and lens device