JP2018004605A - Transparency type optical coupling device and electric apparatus with the same - Google Patents

Transparency type optical coupling device and electric apparatus with the same Download PDF

Info

Publication number
JP2018004605A
JP2018004605A JP2016136199A JP2016136199A JP2018004605A JP 2018004605 A JP2018004605 A JP 2018004605A JP 2016136199 A JP2016136199 A JP 2016136199A JP 2016136199 A JP2016136199 A JP 2016136199A JP 2018004605 A JP2018004605 A JP 2018004605A
Authority
JP
Japan
Prior art keywords
light
light receiving
container
light emitting
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016136199A
Other languages
Japanese (ja)
Other versions
JP6778034B2 (en
Inventor
英敏 西川
Hidetoshi Nishikawa
英敏 西川
寛征 豊田
Hiroyuki Toyoda
寛征 豊田
伸孝 西垣
Nobutaka Nishigaki
伸孝 西垣
藤山 利也
Toshiya Fujiyama
利也 藤山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2016136199A priority Critical patent/JP6778034B2/en
Publication of JP2018004605A publication Critical patent/JP2018004605A/en
Application granted granted Critical
Publication of JP6778034B2 publication Critical patent/JP6778034B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transparency type optical coupling device that accurately detect a storage level by preventing reflected light reflected by a boundary surface from being received by a light reception section, and an electric apparatus with the transparency type optical coupling device.SOLUTION: The present invention relates to a transparency type optical coupling device (50) capable of detecting a storage level of a light-transmissive liquid (70) stored in a light-transmissive container (4), the transparency type optical coupling device comprising: a light emission section (30) which emits light toward a side wall portion of the container; a light reception section (40) which receives light emitted from the light emission section and transmitted through the container; a level detection section (60b) which detects the storage level of the liquid reserved in the container on the basis of a light reception quantity of the light reception section; and an emission light restriction section (35a) which allows straight-traveling light, traveling straight to be emitted, of the light emitted from the light emission section to pass, but cuts off non-straight-traveling light transmitted in the liquid possibly to be reflected light reflected by a boundary surface 71 between the liquid and a gas contacting the liquid.SELECTED DRAWING: Figure 4

Description

この発明は、透過型光結合装置及び該装置を備える電気機器に関し、詳細には、光透過性を有する容器に貯留された光透過性を有する液体の貯留レベルを検出する透過型光結合装置及び該装置を備える電気機器に関する。   The present invention relates to a transmission type optical coupling device and an electric apparatus including the device, and more particularly, to a transmission type optical coupling device that detects a storage level of a light-transmitting liquid stored in a light-transmitting container, and The present invention relates to an electric apparatus including the device.

特許文献1は、点滴筒の内壁の中心を避ける位置に配設される発光器と、点滴筒の薬液が発光線上にない場合に受光可能となる位置に配設される受光器とから構成されて、点滴筒に固定される検出器を備える液面検出装置を開示する。   Patent Document 1 is composed of a light emitter that is disposed at a position that avoids the center of the inner wall of the drip tube, and a light receiver that is disposed at a position where light can be received when the drug solution in the drip tube is not on the emission line. Thus, a liquid level detection device including a detector fixed to the drip tube is disclosed.

特許文献2は、発光素子と受光素子とが対向して配設され、発光素子と受光素子とを結ぶ光軸が、被測定容器の光入射側の内壁面に対して傾斜して横切るように位置決めされた液体検出器を開示する。   In Patent Document 2, the light emitting element and the light receiving element are arranged to face each other, and the optical axis connecting the light emitting element and the light receiving element is inclined with respect to the inner wall surface on the light incident side of the container to be measured. A positioned liquid detector is disclosed.

特許文献3は、容器又は容器に連通する液室の一部を挟んで発光手段と受光手段とを配置し、透過光量の変化により液面検出手段において、容器又は液室の内面の透過光軸が横断する部分を濡れ性の高い部材で形成する液面検出手段を開示する。   In Patent Document 3, a light emitting means and a light receiving means are arranged with a part of a container or a liquid chamber communicating with the container interposed therebetween, and the transmitted light axis of the inner surface of the container or the liquid chamber is changed in the liquid level detecting means by changing the amount of transmitted light. Disclosed is a liquid level detecting means for forming a crossing portion with a highly wettable member.

特開平02−295567号公報Japanese Patent Laid-Open No. 02-295567 特開昭61−270881号公報JP-A-61-270881 特開平05−340791号公報Japanese Patent Laid-Open No. 05-340791

特許文献1の液面検出装置では、点滴筒及び薬液の屈折作用を利用して液面の検出が行われており、薬液の有無によって、受光器が受光不可の位置又は受光可能な位置になるように、点滴筒及び薬液の屈折作用を調整する必要がある。   In the liquid level detection device of Patent Document 1, the liquid level is detected by using the refracting action of the drip tube and the chemical solution, and the light receiver becomes a position where light cannot be received or a position where light can be received depending on the presence or absence of the chemical solution. Thus, it is necessary to adjust the refractive action of the drip tube and the chemical solution.

特許文献2の液体検出器においても、被測定容器及び液体の屈折作用を利用して液面の検出が行われており、液体の有無によって、受光素子が受光不可の位置又は受光可能な位置になるように、被測定容器及び液体の屈折作用を調整する必要がある。   Also in the liquid detector of Patent Document 2, the liquid level is detected by using the refraction action of the container to be measured and the liquid, and the light receiving element is placed at a position where light cannot be received or a position where light can be received depending on the presence or absence of liquid. Thus, it is necessary to adjust the refractive action of the container to be measured and the liquid.

特許文献3の液面検出手段では、光透過性の低いインクによって、発光手段からの光線が遮られるか否かによって透過光量が変化し、透過光量の変化によってインク液面の高さが検出されており、光透過性が非常に低いインクの遮光性を利用している。したがって、特許文献3の液面検出手段で対象とされる液体として、光透過性を有する液体を使用することは不適切である。   In the liquid level detection means of Patent Document 3, the amount of transmitted light changes depending on whether or not the light from the light emitting means is blocked by ink with low light transmittance, and the height of the ink liquid level is detected by the change in the amount of transmitted light. In other words, the light shielding property of ink having very low light transmittance is utilized. Therefore, it is inappropriate to use a light-transmitting liquid as the liquid targeted by the liquid level detection means of Patent Document 3.

このように、特許文献1及び特許文献2は、被測定容器及び液体の屈折作用を利用し、特許文献3は、透過光量の変化を利用している。しかしながら、特許文献3では、インクの遮光性が利用されており、インクが光透過性を有すると誤検出する可能性がある。   As described above, Patent Literature 1 and Patent Literature 2 utilize the refraction action of the container to be measured and the liquid, and Patent Literature 3 utilizes a change in the amount of transmitted light. However, in Patent Document 3, the light shielding property of the ink is used, and there is a possibility that the ink is erroneously detected as having the light transmitting property.

ところで、光透過性を有する液体の液面を透過光量の変化によって検出する場合、発光部から出射された光が受光部でダイレクトに受光されることすなわち直接光が受光部で受光されることが、正確な貯留レベルの検出の面で好ましい。しかしながら、現実には、容器と液体との間で屈折率が異なるために、液体を貯留した容器には界面が存在する。例えば、空気と液体との間及び容器の底面部と液体との間には、それぞれ、液面及び底界面が存在する。そして、界面に対する入射角度によっては、界面に入射した光が透過するのではなく界面で反射する。このため、液面や底界面で反射した反射光すなわち間接光が、受光部で受光される。当該反射光が受光部で受光されることによって、受光部での受光量が液体の貯留レベルに対応したものにならず、誤検出するおそれがある。   By the way, when the liquid level of a light-transmitting liquid is detected by a change in the amount of transmitted light, the light emitted from the light emitting unit may be directly received by the light receiving unit, that is, the direct light may be received by the light receiving unit. This is preferable in terms of accurate storage level detection. However, in reality, since the refractive index differs between the container and the liquid, an interface exists in the container storing the liquid. For example, there are a liquid surface and a bottom interface between the air and the liquid and between the bottom of the container and the liquid, respectively. Depending on the incident angle with respect to the interface, light incident on the interface is not transmitted but reflected by the interface. For this reason, the reflected light reflected from the liquid surface or bottom interface, that is, indirect light is received by the light receiving unit. When the reflected light is received by the light receiving unit, the amount of light received by the light receiving unit does not correspond to the liquid storage level and may be erroneously detected.

したがって、この発明の解決すべき技術的課題は、液体内を透過し当該液体と当該液体に接する気体との界面で反射した反射光が受光部で受光されることを防止して貯留レベルを正確に検出する透過型光結合装置及び該装置を備える電気機器を提供することにある。   Therefore, the technical problem to be solved by the present invention is to prevent the reflected light that is transmitted through the liquid and reflected at the interface between the liquid and the gas in contact with the liquid from being received by the light receiving unit, thereby accurately adjusting the storage level. It is another object of the present invention to provide a transmission type optical coupling device that detects the above and an electric device including the device.

前記技術的課題を解決するために、この発明によれば、以下の透過型光結合装置が提供される。   In order to solve the technical problem, according to the present invention, the following transmission type optical coupling device is provided.

光透過性を有する容器に貯留された光透過性を有する液体の貯留レベルを検出可能な透過型光結合装置であって、
前記容器の側壁部に向けて光を出射する発光部と、
前記発光部から出射されて前記容器を透過した光を受光する受光部と、
前記受光部の受光量に基づいて、前記容器に貯留された前記液体の貯留レベルを検出するレベル検出部と、
前記発光部から出射する光のうち、前記受光部の方向に直進して出射される直進光を通過可能とする一方、前記液体内を透過し当該液体と当該液体に接する気体との界面で反射する反射光となりうる非直進光を遮光する出射光規制部とを備えることを特徴とする。
A transmission type optical coupling device capable of detecting a storage level of a liquid having optical transparency stored in a container having optical transparency,
A light emitting part for emitting light toward the side wall part of the container;
A light receiving unit that receives light emitted from the light emitting unit and transmitted through the container;
Based on the amount of light received by the light receiving unit, a level detection unit that detects a storage level of the liquid stored in the container;
Among the light emitted from the light emitting part, the straight light emitted straightly in the direction of the light receiving part is allowed to pass, while being reflected at the interface between the liquid and the gas in contact with the liquid. And an outgoing light restricting portion that shields non-straight light that can be reflected light.

好ましくは、前記出射光規制部は、前記発光部の上側に設けられた上遮光部である。   Preferably, the emitted light restricting portion is an upper light shielding portion provided on the upper side of the light emitting portion.

好ましくは、他の出射光規制部として、前記発光部の下側に設けられた下遮光部を有する。   Preferably, as another outgoing light restricting portion, a lower light shielding portion provided below the light emitting portion is provided.

好ましくは、前記容器が所定場所に対して装着又は脱離されていることを検出する容器検出部をさらに備え、
前記容器検出部は、前記受光部の受光量が、前記液体の貯留レベルを検出する場合の受光量よりも大きい場合に、前記容器の脱離を検出する。
Preferably, the apparatus further comprises a container detection unit that detects that the container is attached to or detached from the predetermined location.
The container detection unit detects detachment of the container when the amount of light received by the light receiving unit is larger than the amount of light received when the liquid storage level is detected.

好ましくは、前記レベル検出部は、ヒステリシスを有する。   Preferably, the level detection unit has hysteresis.

好ましくは、前記受光部は、受光量に応じたアナログ出力を行い、該アナログ出力に対してフィルタ処理又はアベレージング処理を行う。   Preferably, the light receiving unit performs an analog output corresponding to the amount of received light, and performs a filtering process or an averaging process on the analog output.

また、この発明の電気機器は、請求項1から請求項5のいずれか1項に記載の透過型光結合装置を備える。   Moreover, the electric equipment of this invention is equipped with the transmissive | pervious optical coupling device of any one of Claim 1-5.

好ましくは、前記発光部及び前記受光部が、前記容器における隣り合った側壁部にそれぞれ配置されて、前記発光部から出射された光が前記電気機器に装着された前記容器のコーナー部を横切るように前記透過型光結合装置が構成され、
前記発光部と前記受光部とを対向配置して光学的に結合する。
Preferably, the light emitting part and the light receiving part are respectively disposed on adjacent side wall parts of the container so that light emitted from the light emitting part traverses a corner part of the container mounted on the electric device. The transmission type optical coupling device is configured,
The light emitting unit and the light receiving unit are disposed opposite to each other and optically coupled.

この発明によれば、光透過性を有する容器に貯留された光透過性を有する液体の貯留レベルを検出可能な透過型光結合装置を備える電気機器であって、
前記容器の側壁部に向けて光を出射する発光部と、
前記発光部から出射されて前記容器を透過した光を受光する受光部と、
前記受光部の受光量に基づいて、前記容器に貯留された前記液体の貯留レベルを検出するレベル検出部とを備え、
前記発光部及び前記受光部が、前記容器における隣り合った側壁部にそれぞれ配置されて、前記発光部から出射された光が前記電気機器に装着された前記容器のコーナー部を横切るように前記透過型光結合装置が構成され、
前記発光部から出射される光のうちの発光指向角の発光エッジ光と前記受光部で受光される光の受光指向角の受光エッジ部とが、光学的に結合する電気機器が提供される。
According to the present invention, an electric device including a transmission type optical coupling device capable of detecting a storage level of a light-transmitting liquid stored in a light-transmitting container,
A light emitting part for emitting light toward the side wall part of the container;
A light receiving unit that receives light emitted from the light emitting unit and transmitted through the container;
A level detection unit that detects a storage level of the liquid stored in the container based on the amount of light received by the light receiving unit;
The light emitting part and the light receiving part are respectively disposed on adjacent side wall parts of the container, and the light emitted from the light emitting part is transmitted through the corner part of the container mounted on the electric device. Type optical coupling device is configured,
There is provided an electric device in which light emitting edge light having a light emission directivity angle out of light emitted from the light emitting portion and a light receiving edge portion having a light reception directivity angle of light received by the light receiving portion are optically coupled.

好ましくは、前記発光部及び前記受光部は、前記容器の深さ方向に配置された複数の発光素子及び複数の受光素子をそれぞれ有し、
前記発光部での前記複数の発光素子の全てを発光させるとともに、前記受光部は、前記複数の受光素子によって生成された各光電流値を加算した加算値に対応した出力値を出力する。
Preferably, the light emitting unit and the light receiving unit respectively include a plurality of light emitting elements and a plurality of light receiving elements arranged in the depth direction of the container,
All of the plurality of light emitting elements in the light emitting unit emit light, and the light receiving unit outputs an output value corresponding to an addition value obtained by adding the respective photocurrent values generated by the plurality of light receiving elements.

好ましくは、前記容器が所定場所に装着又は脱離されているのを検出する容器検出部と、
動作初期において前記容器検出部によって前記容器の脱離が検出されたときに前記受光部が受光した受光量を初期受光量として記憶する記憶部と、
前記容器検出部によって前記容器の脱離が検出されたときに前記受光部が受光した受光量と、前記記憶部に記憶された前記初期受光量とを比較して、前記初期受光量に対する前記受光量の低下が所定値よりも大きいか否かを検出する受光量低下検出部と、
前記初期受光量に対する前記受光量の低下が所定値よりも大きい場合に、前記受光量の低下を通知する通知部とを備える。
Preferably, a container detection unit that detects that the container is attached or detached from a predetermined place;
A storage unit that stores the received light amount received by the light receiving unit as an initial received light amount when detachment of the container is detected by the container detection unit in an initial operation;
The received light amount received by the light receiving unit when the container detecting unit detects the detachment of the container and the initial received light amount stored in the storage unit, and the received light amount with respect to the initial received light amount A received light amount decrease detection unit for detecting whether or not the decrease in the amount is greater than a predetermined value;
A notification unit that notifies the decrease in the amount of received light when the decrease in the amount of received light with respect to the initial amount of received light is greater than a predetermined value.

この発明の透過型光結合装置によれば、受光部の方向に直進しないで出射される光が出射光規制部によって遮光されるので、液体を貯留した容器内の界面で反射する反射光が減少して、反射光が受光部で受光されにくくなる。そのため、反射光に起因した誤検出を防止できる。したがって、界面で反射した反射光が受光部で受光されることを防止して、容器に貯留された液体の貯留レベルを正確に検出できる。   According to the transmission type optical coupling device of the present invention, the light emitted without going straight in the direction of the light receiving unit is blocked by the outgoing light regulating unit, so that the reflected light reflected at the interface in the container storing the liquid is reduced. Thus, the reflected light is less likely to be received by the light receiving unit. Therefore, erroneous detection due to reflected light can be prevented. Therefore, it is possible to prevent the reflected light reflected at the interface from being received by the light receiving unit, and to accurately detect the storage level of the liquid stored in the container.

この発明の第1実施形態に係る透過型光結合装置を備える加熱調理器の模式正面図。The schematic front view of a heating cooker provided with the transmissive | pervious optical coupling device which concerns on 1st Embodiment of this invention. 図1に示した加熱調理器の模式縦断面図。The schematic longitudinal cross-sectional view of the heating cooker shown in FIG. 図1に示した加熱調理器の制御ブロック図。The control block diagram of the heating cooker shown in FIG. 上記透過型光結合装置及び該装置の設置された容器の模式横断面図。The schematic cross-sectional view of the said transmission type optical coupling device and the container in which this device was installed. 図4に示した透過型光結合装置の模式縦断面図。The schematic longitudinal cross-sectional view of the transmissive | pervious optical coupling device shown in FIG. 透過型光結合装置における発光部の模式説明図。The model explanatory drawing of the light emission part in a transmissive | pervious optical coupling device. この発明の第2実施形態に係る透過型光結合装置及び該装置の設置された容器の模式横断面図。The transmissive | pervious optical coupling device which concerns on 2nd Embodiment of this invention, and the model cross section of the container in which this device was installed. 図7に示した透過型光結合装置の設置された容器のコーナー部を発光部側から見たときの模式縦断面図。The schematic longitudinal cross-sectional view when the corner part of the container in which the transmissive | pervious optical coupling device shown in FIG. 7 was installed was seen from the light emission part side. 図7に示した透過型光結合装置の設置された容器のコーナー部を発光部及び受光部を含む断面における模式縦断面図。The schematic longitudinal cross-sectional view in the cross section containing the light emission part and the light-receiving part in the corner part of the container in which the transmissive | pervious optical coupling device shown in FIG. 7 was installed. 容器内での液体の貯留レベルと受光部での出力値との関係を説明する図。The figure explaining the relationship between the storage level of the liquid in a container, and the output value in a light-receiving part. 複数の受光素子によって生成された光電流を加算するときの回路図。The circuit diagram when adding the photocurrent produced | generated by the several light receiving element. 液体の供給方向の閾値と排出方向の閾値とが異なるようにレベル検出部がヒステリシスを有するように構成されていることを説明する図。The figure explaining that the level detection part is comprised so that it may have a hysteresis so that the threshold value of the supply direction of a liquid may differ from the threshold value of a discharge direction. 第4実施形態に係る透過型光結合装置の要部を示す模式縦断面図。The schematic longitudinal cross-sectional view which shows the principal part of the transmissive | pervious optical coupling device which concerns on 4th Embodiment. 図13に示した透過型光結合装置における容器内での液体の貯留レベルと受光部での出力値との関係を説明する図。The figure explaining the relationship between the storage level of the liquid in the container in the transmission type optical coupling device shown in FIG. 13, and the output value in a light-receiving part.

以下、図面を参照しながら、この発明の第1実施形態に係る透過型光結合装置50を備える加熱調理器1を説明する。なお、この実施形態は、あくまでも一例であって、この発明は当該実施形態に限定されるものではない。   Hereinafter, a cooking device 1 including a transmission type optical coupling device 50 according to a first embodiment of the present invention will be described with reference to the drawings. This embodiment is merely an example, and the present invention is not limited to this embodiment.

〔第1実施形態〕
図1は、この発明の第1実施形態の透過型光結合装置50を備える加熱調理器1を前方から見たときの状態を示す模式図である。
[First Embodiment]
FIG. 1 is a schematic diagram showing a state when the cooking device 1 including the transmissive optical coupling device 50 according to the first embodiment of the present invention is viewed from the front.

この加熱調理器1は、図1に示すように、直方体形状の本体ケーシング1aと、この本体ケーシング1a内に設けられた加熱室2と、本体ケーシング1aの前面側に下側の辺を軸に回動可能に取り付けられた扉3と、本体ケーシング1aに収容されると共に着脱可能に取り付けられた給水タンク4とを備えている。なお、給水タンク4は、光透過性を有する液体としての水70を貯留する容器の一例である。   As shown in FIG. 1, the heating cooker 1 has a rectangular parallelepiped main body casing 1a, a heating chamber 2 provided in the main body casing 1a, and a lower side on the front side of the main body casing 1a. A door 3 that is pivotably attached and a water supply tank 4 that is housed in the main casing 1a and is detachably attached are provided. The water supply tank 4 is an example of a container that stores water 70 as a light-transmitting liquid.

本体ケーシング1aの上側かつ後側には、吹出口5aを有する排気ダクト5が設けられている。この加熱室2内の蒸気などが吹出口5aから外部へ排気される。   An exhaust duct 5 having an outlet 5a is provided on the upper side and the rear side of the main casing 1a. The steam or the like in the heating chamber 2 is exhausted from the outlet 5a to the outside.

加熱室2は、被加熱物20(図2に示す)を出し入れするための開口部2aを前側に有する。   The heating chamber 2 has an opening 2a on the front side for taking in and out the article to be heated 20 (shown in FIG. 2).

扉3は、加熱室2の開口部2aを開閉する。この扉3の前面(加熱室2とは反対側の表面)には、耐熱性を有する透明な外ガラス6が設けられている。また、扉3は、外ガラス6の上側に位置するハンドル7と、外ガラス6の右側に設けられた操作パネル8とを有する。   The door 3 opens and closes the opening 2 a of the heating chamber 2. A transparent outer glass 6 having heat resistance is provided on the front surface of the door 3 (the surface opposite to the heating chamber 2). The door 3 has a handle 7 positioned on the upper side of the outer glass 6 and an operation panel 8 provided on the right side of the outer glass 6.

操作パネル8は、カラー液晶表示部9、ボタン群10及びダイヤル11を有する。このボタン群10は、途中で加熱を止めるときや、操作をやり直すときに押圧される取り消しボタンと、レンジ加熱を自動で行ったり、他の加熱を開始したりするときに押圧される温めスタートボタンとなどを含んでいる。また、ダイヤル11は、レンジの出力を調整するときになどに使用する。   The operation panel 8 includes a color liquid crystal display unit 9, a button group 10, and a dial 11. This group of buttons 10 includes a cancel button that is pressed when heating is stopped halfway or when the operation is repeated, and a warm start button that is pressed when range heating is automatically performed or other heating is started. And so on. The dial 11 is used to adjust the range output.

給水タンク4は、本体ケーシング1aに取り付けられると、扉3の右側の部分の下側に位置する。このとき、給水タンク4の前面は、他の部材で覆われずに露出する。給水タンク4は、光透過性を有する樹脂部材(例えば、ポリカーボネート)からなっている。   When the water supply tank 4 is attached to the main body casing 1 a, the water supply tank 4 is positioned below the right portion of the door 3. At this time, the front surface of the water supply tank 4 is exposed without being covered with other members. The water supply tank 4 is made of a light-transmissive resin member (for example, polycarbonate).

図4及び5に示すように、給水タンク4は、全体として直方体形状をしており、蓋4aと、発光側側壁部4bと受光側側壁部4cと他の2つの側壁部と底面部4dとを有する筐体とから構成されている。受光側側壁部4c側の底面部4dには、受光側側壁部4cの方に上向きに傾斜した傾斜部4eが形成されている。隣り合った側壁部である発光側側壁部4b及び受光側側壁部4cが交わる部分とその近傍には、コーナー部4fが形成されている。   As shown in FIGS. 4 and 5, the water supply tank 4 has a rectangular parallelepiped shape as a whole, and includes a lid 4a, a light emitting side wall 4b, a light receiving side wall 4c, two other side walls, and a bottom surface 4d. It is comprised from the housing | casing which has. The bottom surface portion 4d on the light-receiving side wall portion 4c side is formed with an inclined portion 4e that is inclined upward toward the light-receiving side wall portion 4c. A corner portion 4f is formed at a portion where the light emitting side wall portion 4b and the light receiving side wall portion 4c, which are adjacent side wall portions, intersect and in the vicinity thereof.

水70(液体)が給水タンク4に貯留されると、水70と当該水70に接する空気74(気体)との間には、液面71(界面)が形成される。また、水70と当該水70に接する給水タンク4の底面部4dとの間には、底界面72(界面)が形成される。   When the water 70 (liquid) is stored in the water supply tank 4, a liquid level 71 (interface) is formed between the water 70 and the air 74 (gas) in contact with the water 70. Further, a bottom interface 72 (interface) is formed between the water 70 and the bottom surface portion 4 d of the water supply tank 4 in contact with the water 70.

図2は、加熱調理器1を前後方向に平行な鉛直面で切った断面を示す模式図である。   FIG. 2 is a schematic diagram showing a cross section of the cooking device 1 cut along a vertical plane parallel to the front-rear direction.

本体ケーシング1a内かつ加熱室2外には、水蒸気発生装置12が設置されている。この水蒸気発生装置12は、給水タンク4からの水70をヒータ加熱して水蒸気にして加熱室2内に供給したり、その水蒸気をさらにヒータ加熱して過熱水蒸気にして加熱室2内に供給したりする。このとき、給水タンク4から水蒸気発生装置12への送水は、給水ポンプ13(図3に示す)によって行われる。なお、過熱水蒸気とは、100℃を超える温度になった水蒸気のことである。   A steam generator 12 is installed inside the main casing 1a and outside the heating chamber 2. The steam generator 12 heats the water 70 from the water supply tank 4 by heating with a heater to supply the steam into the heating chamber 2, or further heats the steam with a heater to supply superheated steam into the heating chamber 2. Or At this time, water is supplied from the water supply tank 4 to the water vapor generator 12 by a water supply pump 13 (shown in FIG. 3). In addition, superheated steam is the steam which became the temperature exceeding 100 degreeC.

また、加熱室2の下側には、マグネトロン14(図3に示す)が発生させたマイクロ波を攪拌するアンテナ15が設置されている。このアンテナ15はモータ19によって回転駆動される。   Further, an antenna 15 for agitating the microwave generated by the magnetron 14 (shown in FIG. 3) is installed below the heating chamber 2. The antenna 15 is rotationally driven by a motor 19.

加熱室2は、被加熱物20を搭載するトレイ16を収容可能に形成されている。このトレイ16は、加熱室2の内壁面の棚受け(図示せず)で支持される。また、トレイ16上の被加熱物20は、水蒸気発生装置12からの水蒸気や過熱水蒸気で加熱されたり、上ヒータ17や下ヒータ18の輻射熱で加熱されたりする。また、上ヒータ17下には加熱室2の天壁があり、下ヒータ18上には加熱室2の底壁があって、上ヒータ17及び下ヒータ18は加熱室2内に露出していない。なお、底壁はセラミックから成っており、加熱室2の底壁以外の壁は金属からなっている。   The heating chamber 2 is formed so as to accommodate the tray 16 on which the article to be heated 20 is mounted. The tray 16 is supported by a shelf holder (not shown) on the inner wall surface of the heating chamber 2. Further, the object to be heated 20 on the tray 16 is heated by water vapor or superheated water vapor from the water vapor generating device 12 or is heated by radiant heat of the upper heater 17 or the lower heater 18. Further, the top wall of the heating chamber 2 is located below the upper heater 17, and the bottom wall of the heating chamber 2 is located above the lower heater 18, so that the upper heater 17 and the lower heater 18 are not exposed in the heating chamber 2. . The bottom wall is made of ceramic, and the walls other than the bottom wall of the heating chamber 2 are made of metal.

また、加熱調理器1は、給水タンク4に貯留された水70の貯留レベルを検出する透過型光結合装置50を備えている。透過型光結合装置50は、本体ケーシング1aに取り付けられた給水タンク4の後部側、すなわち、給水タンク4の取り出し側の反対側に設置されている。   The heating cooker 1 also includes a transmissive optical coupling device 50 that detects the storage level of the water 70 stored in the water supply tank 4. The transmissive optical coupling device 50 is installed on the rear side of the water supply tank 4 attached to the main body casing 1 a, that is, on the opposite side to the take-out side of the water supply tank 4.

透過型光結合装置50は、給水タンク4の発光側側壁部4bに向けて光を出射する発光部30と、発光部30から出射されて給水タンク4を透過した光を受光する受光部40と、発光部30及び受光部40を支持して本体ケーシング1aに取り付けるための支持体52とを備えている。   The transmissive optical coupling device 50 includes a light emitting unit 30 that emits light toward the light emitting side wall 4b of the water supply tank 4, and a light receiving unit 40 that receives light emitted from the light emitting unit 30 and transmitted through the water supply tank 4. And a support 52 for supporting the light emitting unit 30 and the light receiving unit 40 and attaching them to the main body casing 1a.

発光部30は、近赤外光を出射する少なくとも1つの発光素子を有し、この実施形態では給水タンク4の深さ方向に配置された3つの発光素子、すなわち第1発光素子31と第2発光素子32と第3発光素子33とを有する。発光部30は、給水タンク4の発光側側壁部4bに向けて略水平に光を出射するように構成されている。各発光素子31,32,33は、例えば、近赤外光を出射する発光ダイオードであり、発光基板34の上に取り付けられている。   The light emitting unit 30 includes at least one light emitting element that emits near-infrared light. In this embodiment, three light emitting elements arranged in the depth direction of the water supply tank 4, that is, the first light emitting element 31 and the second light emitting element 30. The light emitting element 32 and the third light emitting element 33 are included. The light emitting unit 30 is configured to emit light substantially horizontally toward the light emitting side wall portion 4 b of the water supply tank 4. Each of the light emitting elements 31, 32, and 33 is, for example, a light emitting diode that emits near infrared light, and is mounted on the light emitting substrate 34.

受光部40は、発光部30の発光素子に対応する少なくとも1つの受光素子を有し、この実施形態では給水タンク4の深さ方向に配置された3つの受光素子、すなわち第1受光素子41と第2受光素子42と第3受光素子43とを有する。受光部40は、発光部30から略水平に出射されて給水タンク4を略水平に透過した光を受光する。各受光素子41,42,43は、例えば、近赤外光を受光するフォトダイオードであり、受光基板44の上に取り付けられている。受光部40は、各受光素子41,42,43が受光した受光量に応じた出力値(例えば、出力電圧)を出力する。   The light receiving unit 40 includes at least one light receiving element corresponding to the light emitting element of the light emitting unit 30. In this embodiment, three light receiving elements arranged in the depth direction of the water supply tank 4, that is, a first light receiving element 41 and A second light receiving element 42 and a third light receiving element 43 are included. The light receiving unit 40 receives light emitted from the light emitting unit 30 substantially horizontally and transmitted through the water supply tank 4 substantially horizontally. Each of the light receiving elements 41, 42, 43 is, for example, a photodiode that receives near-infrared light, and is mounted on the light receiving substrate 44. The light receiving unit 40 outputs an output value (for example, an output voltage) corresponding to the amount of light received by each of the light receiving elements 41, 42, and 43.

図3は、加熱調理器1の制御ブロック図である。   FIG. 3 is a control block diagram of the heating cooker 1.

加熱調理器1は、マイクロコンピュータと入出力回路などからなる制御装置60を備えている。この制御装置60には、マグネトロン14,操作パネル8,水蒸気発生装置12,給水ポンプ13,上ヒータ17,下ヒータ18,モータ19,記憶部22,通知部23,発光部30及び受光部40などが接続されている。   The heating cooker 1 includes a control device 60 including a microcomputer and an input / output circuit. The control device 60 includes a magnetron 14, an operation panel 8, a water vapor generator 12, a water supply pump 13, an upper heater 17, a lower heater 18, a motor 19, a storage unit 22, a notification unit 23, a light emitting unit 30, a light receiving unit 40, and the like. Is connected.

制御装置60は、操作パネル8からの信号に基づいて、マグネトロン14,操作パネル8,水蒸気発生装置12,給水ポンプ13,上ヒータ17,下ヒータ18,モータ19などを制御する。また、制御装置60は、発光部30の発光を制御し、発光部30からの光を受光する受光部40からの出力値に基づいて、給水タンク4内での水70の貯留レベルを検出する。すなわち、制御装置60は、透過型光結合装置50の受光部40からの出力値に基づき、給水タンク4の有無と、給水タンク4に貯留された水70の有無を検出する。そして、受光部40が受光する受光量の大きさは、給水タンク4が装着されていないとき、給水タンク4が装着されて給水タンク4内に水70が貯留されていないとき、給水タンク4が装着されて給水タンク4内に水70が貯留されているとき、の順で大きくなる。   The control device 60 controls the magnetron 14, the operation panel 8, the water vapor generation device 12, the water supply pump 13, the upper heater 17, the lower heater 18, the motor 19 and the like based on the signal from the operation panel 8. Further, the control device 60 controls the light emission of the light emitting unit 30 and detects the storage level of the water 70 in the water supply tank 4 based on the output value from the light receiving unit 40 that receives the light from the light emitting unit 30. . That is, the control device 60 detects the presence / absence of the water supply tank 4 and the presence / absence of the water 70 stored in the water supply tank 4 based on the output value from the light receiving unit 40 of the transmissive optical coupling device 50. The magnitude of the amount of light received by the light receiving unit 40 is such that when the water supply tank 4 is not attached, the water supply tank 4 is attached, and when the water 70 is not stored in the water supply tank 4, the water supply tank 4 is When the water 70 is stored and stored in the water supply tank 4, the size increases in the order.

記憶部22は、制御装置60との間での様々な情報のやりとりを行うための様々な制御プログラムを記憶されている。そして、記憶部22は、動作初期において容器検出部60aによって給水タンク4の脱離が検出されたときに受光部40が受光した受光量を初期受光量として記憶する。記憶部22は、ROM(Read Only Memory)及びRAM(Random Access Memory)などから構成されている。   The storage unit 22 stores various control programs for exchanging various information with the control device 60. And the memory | storage part 22 memorize | stores the light reception amount which the light-receiving part 40 received when the detachment | desorption of the water supply tank 4 was detected by the container detection part 60a in the operation | movement initial stage as an initial light reception amount. The storage unit 22 includes a ROM (Read Only Memory) and a RAM (Random Access Memory).

通知部23は、初期受光量に対する受光量の低下が所定値よりも大きい場合に、受光量の低下を通知するときに使用される。通知部23は、スピーカーによって音声で通知したり、表示部によって視覚で通知する。   The notification unit 23 is used to notify the decrease in the amount of received light when the decrease in the amount of received light with respect to the initial amount of received light is greater than a predetermined value. The notification unit 23 notifies the speaker by voice or visually by the display unit.

制御装置60は、容器検出部60aと、レベル検出部60bと、受光量低下検出部60cとを有する。   The control device 60 includes a container detection unit 60a, a level detection unit 60b, and a received light amount decrease detection unit 60c.

容器検出部60aは、受光部40での受光量すなわち受光部40から出力された出力値に基づいて、給水タンク4が本体ケーシング1aの所定位置に装着されているか又は脱離されているかを判定して、給水タンク4の有無を検出する。   The container detection unit 60a determines whether the water supply tank 4 is attached or detached at a predetermined position of the main casing 1a based on the amount of light received by the light receiving unit 40, that is, the output value output from the light receiving unit 40. Then, the presence or absence of the water supply tank 4 is detected.

レベル検出部60bは、受光部40での受光量すなわち受光部40から出力された出力値に基づいて、給水タンク4内に水70が或る貯留レベルにあるか否かを判定して、給水タンク4に貯留された水70の貯留レベルを検出する。   The level detection unit 60b determines whether the water 70 is in a certain storage level in the water supply tank 4 based on the amount of light received by the light receiving unit 40, that is, the output value output from the light receiving unit 40. The storage level of the water 70 stored in the tank 4 is detected.

受光量低下検出部60cは、容器検出部60aによって給水タンク4の脱離が検出されたときに受光部40が受光した受光量と、記憶部22に記憶された初期受光量とを比較して、初期受光量に対する受光量の低下が所定値よりも大きいか否かを検出する。   The received light amount decrease detection unit 60c compares the received light amount received by the light receiving unit 40 when the container detection unit 60a detects the detachment of the water supply tank 4 with the initial received light amount stored in the storage unit 22. Then, it is detected whether or not the decrease in the amount of received light with respect to the initial amount of received light is greater than a predetermined value.

そして、容器検出部60a、レベル検出部60b及び受光量低下検出部60cは、それぞれ、ソフトウェアから構成されている。   And the container detection part 60a, the level detection part 60b, and the light reception amount fall detection part 60c are each comprised from the software.

発光部30と給水タンク4の発光側側壁部4bとの間には、出射光規制部35a及び他の出射光規制部35bが設けられている。出射光規制部35a及び他の出射光規制部35bは、発光部30の一部分として組み込まれて、出射光が出射される部分を除いて発光素子31,32,33の発光側を覆うように発光素子31,32,33の近傍に配設されている。なお、出射光規制部35a及び他の出射光規制部35bは、発光側側壁部4bの側に、あるいは、発光部30と発光側側壁部4bとの中間部分に配設してもよい。   Between the light emission part 30 and the light emission side wall part 4b of the water supply tank 4, the emitted light regulation part 35a and the other emitted light regulation part 35b are provided. The outgoing light restricting part 35a and the other outgoing light restricting part 35b are incorporated as a part of the light emitting part 30, and emit light so as to cover the light emitting side of the light emitting elements 31, 32, 33 except for the part where the outgoing light is emitted. Arranged in the vicinity of the elements 31, 32 and 33. In addition, you may arrange | position the emitted light regulation part 35a and the other emitted light regulation part 35b in the intermediate part of the light emission part 30 and the light emission side side wall part 4b on the light emission side side wall part 4b side.

発光素子31,32,33の出射側には、出射光規制部としての上遮光部35a、他の出射光規制部としての下遮光部35bと、受光部40の方向に直進して出射される直進光を通過可能とする出射開口35cとが設けられている。上遮光部35aは、受光部40の方向に直進しないで水70内を透過して液面71(界面)で反射する反射光となりうる非直進光を遮光する。下遮光部35bは、受光部40の方向に直進しないで水70内を透過して底界面72(界面)で反射する反射光となりうる非直進光を遮光する。したがって、出射光規制部35a及び他の出射光規制部35bは、受光部40の方向に直進して出射される直進光を通過可能とする一方、受光部40の方向に直進しないでそれぞれ液面71(界面)及び底界面72(界面)で反射する反射光となりうる非直進光を遮光する。   On the emission side of the light emitting elements 31, 32, 33, the light is emitted by going straight in the direction of the upper light shielding part 35a as an outgoing light restricting part, the lower light shielding part 35b as another outgoing light restricting part, and the light receiving part 40. An exit opening 35c that allows straight light to pass therethrough is provided. The upper light-shielding part 35a shields non-straight light that can be reflected light that is transmitted through the water 70 and reflected by the liquid surface 71 (interface) without going straight in the direction of the light receiving part 40. The lower light-shielding part 35b shields non-straight light that can be reflected light that passes through the water 70 and reflects at the bottom interface 72 (interface) without going straight in the direction of the light-receiving part 40. Accordingly, the outgoing light restricting portion 35a and the other outgoing light restricting portions 35b are allowed to pass the straight light emitted straightly traveling in the direction of the light receiving portion 40, while not traveling straight in the direction of the light receiving portion 40. Non-straight light that can be reflected light at 71 (interface) and bottom interface 72 (interface) is shielded.

上遮光部35aは、発光部30の上側に設けられて、上方向に出射される光を遮光する。すなわち、発光部30の光軸より上側に出射され、水70の液面71が当該発光部30の光軸よりも上側にある給水タンク4に貯留された水70の液面71方向に出射される光を遮光する。発光部30が複数の発光素子(例えば、第1発光素子31,第2発光素子32,第3発光素子33)を有する場合、各発光素子31,32,33の上側に上遮光部35aがそれぞれ設けられる。第2発光素子32に設けられた上遮光部35aは、第2発光素子32から出射された光が第1受光素子41で受光されるのを防止する機能を有する。また、第3発光素子33に設けられた上遮光部35aは、第3発光素子33から出射された光が第1受光素子41及び第2受光素子42で受光されるのを防止する機能を有する。当該上遮光部35aにより、対になっていない発光素子及び受光素子間でのいわゆるクロストークの発生を防止できる。   The upper light shielding part 35a is provided on the upper side of the light emitting part 30, and shields light emitted upward. That is, the light is emitted upward from the optical axis of the light emitting unit 30, and the liquid level 71 of the water 70 is emitted in the direction of the liquid level 71 of the water 70 stored in the water supply tank 4 located above the optical axis of the light emitting unit 30. To block the light. When the light emitting unit 30 includes a plurality of light emitting elements (for example, the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33), the upper light shielding part 35a is provided above each of the light emitting elements 31, 32, and 33, respectively. Provided. The upper light shielding portion 35 a provided in the second light emitting element 32 has a function of preventing the light emitted from the second light emitting element 32 from being received by the first light receiving element 41. Further, the upper light shielding portion 35 a provided in the third light emitting element 33 has a function of preventing the light emitted from the third light emitting element 33 from being received by the first light receiving element 41 and the second light receiving element 42. . The upper light-shielding portion 35a can prevent so-called crosstalk from occurring between the light emitting element and the light receiving element that are not paired.

下遮光部35bは、発光部30の下側に設けられて、下方向に出射される光を遮光する。すなわち、発光部30の光軸より下側に出射され、水70の液面71が当該発光部30の光軸よりも上側にある水70の貯留された給水タンク4の底面部4d方向すなわち底界面72方向に出射される光を遮光する。発光部30が複数の発光素子(例えば、第1発光素子31,第2発光素子32,第3発光素子33)を有する場合、下遮光部35bは、各発光素子31,32,33の下側にそれぞれ設けられる。第1発光素子31に設けられた下遮光部35bは、第1発光素子31から出射された光が第2受光素子42及び第3受光素子43で受光されるのを防止する機能を有する。また、第2発光素子32に設けられた下遮光部35bは、第2発光素子33から出射された光が第3受光素子43で受光されるのを防止する機能を有する。当該下遮光部35bにより、対になっていない発光素子及び受光素子間でのいわゆるクロストークの発生を防止できる。   The lower light-shielding part 35b is provided on the lower side of the light emitting part 30, and shields light emitted downward. That is, it is emitted below the optical axis of the light emitting unit 30, and the liquid level 71 of the water 70 is in the direction of the bottom surface 4 d of the water supply tank 4 in which the water 70 is stored above the optical axis of the light emitting unit 30. Light emitted in the direction of the interface 72 is shielded. When the light emitting unit 30 includes a plurality of light emitting elements (for example, the first light emitting element 31, the second light emitting element 32, and the third light emitting element 33), the lower light shielding part 35 b is provided on the lower side of each light emitting element 31, 32, 33. Are provided respectively. The lower light shielding portion 35 b provided in the first light emitting element 31 has a function of preventing the light emitted from the first light emitting element 31 from being received by the second light receiving element 42 and the third light receiving element 43. Further, the lower light-shielding portion 35 b provided in the second light emitting element 32 has a function of preventing the light emitted from the second light emitting element 33 from being received by the third light receiving element 43. The lower light shielding portion 35b can prevent so-called crosstalk from occurring between the light emitting element and the light receiving element that are not paired.

上遮光部35a及び下遮光部35bは、上下方向(縦方向)に延びる板形状、出射光の直進方向(横方向)に延びる板形状、又は、上下方向(縦方向)及び直進方向(横方向)に延びる形状とすることができる。板形状の上遮光部35a及び下遮光部35bは、例えば、平板形状や湾曲形状や三角(切妻)屋根形状にすることができる。上遮光部35aが湾曲形状又は三角(切妻)屋根形状をしている場合、上方に突出した形状をしている。また、下遮光部35bが湾曲形状又は三角(切妻)屋根形状をしている場合、下方に突出した形状をしている。   The upper light-shielding portion 35a and the lower light-shielding portion 35b have a plate shape extending in the vertical direction (vertical direction), a plate shape extending in the straight traveling direction (lateral direction) of the emitted light, or the vertical direction (vertical direction) and the straight traveling direction (lateral direction). ). The plate-shaped upper light-shielding part 35a and the lower light-shielding part 35b can have, for example, a flat plate shape, a curved shape, or a triangular (gable) roof shape. When the upper light-shielding portion 35a has a curved shape or a triangular (gable) roof shape, it has a shape protruding upward. Moreover, when the lower light-shielding part 35b has a curved shape or a triangular (gable) roof shape, it has a shape protruding downward.

発光部30は、遮光部として、上遮光部35a及び下遮光部35bをつなぐ連結遮光部35dをさらに備えることができる。光結合のために出射光のうちの中央光Laを用いる場合、例えば図6に示すように、上遮光部35a及び下遮光部35bの左右の両側をつなぐ連結遮光部35dを備える閉じたループ形状とすることができる。閉じたループ形状の遮光部によれば、上下左右方向に出射される光が遮光される。閉じたループ形状としては、円形状、トラック形状、三角形状、正方形、長方形、台形形状等の多角形形状を例示することができる。   The light emitting unit 30 may further include a connected light shielding part 35d that connects the upper light shielding part 35a and the lower light shielding part 35b as a light shielding part. When the center light La of the emitted light is used for optical coupling, for example, as shown in FIG. 6, a closed loop shape including a connected light shielding portion 35d that connects the left and right sides of the upper light shielding portion 35a and the lower light shielding portion 35b. It can be. According to the closed loop-shaped light shielding portion, light emitted in the vertical and horizontal directions is shielded. Examples of the closed loop shape include a polygonal shape such as a circular shape, a track shape, a triangular shape, a square shape, a rectangular shape, and a trapezoidal shape.

液面71,底界面72で反射した反射光を受光するのを防止するために、受光部40と給水タンク4の受光側側壁部4cとの間には、出射光規制部35aと同様の受光規制部45aと、他の出射光規制部35bと同様の他の受光規制部45bとが設けられている。受光規制部45a及び他の受光規制部45bは、受光部40の一部分として組み込まれて、光を受光する部分を除いて受光素子41,42,43の受光側を覆うように受光素子41,42,43の近傍に配設されている。なお、受光規制部45a及び他の受光規制部45bは、受光側側壁部4cの側に、あるいは、受光部40と受光側側壁部4cとの中間部分に配設してもよい。   In order to prevent the reflected light reflected by the liquid level 71 and the bottom interface 72 from being received, light reception similar to that of the outgoing light restricting portion 35a is provided between the light receiving portion 40 and the light receiving side wall portion 4c of the water supply tank 4. A restricting portion 45a and another light receiving restricting portion 45b similar to the other emitted light restricting portions 35b are provided. The light receiving restricting part 45a and the other light receiving restricting part 45b are incorporated as a part of the light receiving part 40, and the light receiving elements 41, 42 are covered so as to cover the light receiving side of the light receiving elements 41, 42, 43 except for the light receiving part. , 43 in the vicinity. Note that the light receiving restriction part 45a and the other light receiving restriction part 45b may be disposed on the light receiving side wall part 4c side, or in an intermediate part between the light receiving part 40 and the light receiving side wall part 4c.

受光素子41,42,43の受光側には、受光規制部としての上遮光部45aと、他の受光規制部としての下遮光部45bと、直進光を通過可能とする受光開口45cとが設けられている。   On the light receiving side of the light receiving elements 41, 42, 43, there are provided an upper light shielding part 45a as a light receiving restriction part, a lower light shielding part 45b as another light receiving restriction part, and a light receiving opening 45c through which straight light can pass. It has been.

上遮光部45aは、受光部40の上側に設けられて、上方向から入射される光を遮光する。すなわち、発光部30の光軸より上側に出射され、水70の液面71が当該発光部30の光軸よりも上側にある給水タンク4に貯留された水70の液面71で反射した光(非直進光)を遮光する。受光部40が複数の受光素子(例えば、第1受光素子41,第2受光素子42,第3受光素子43)を有する場合、各受光素子41,42,43の上側にそれぞれ設けられる。第2受光素子42に設けられた上遮光部45aは、第1発光素子31から出射された光を遮光する機能を有する。第3受光素子43に設けられた上遮光部45aは、第1発光素子31及び第2発光素子32から出射された光を遮光する機能を有する。当該上遮光部45aにより、対になっていない発光素子及び受光素子間でのいわゆるクロストークの発生を防止できる。   The upper light shielding unit 45a is provided on the upper side of the light receiving unit 40 and shields light incident from above. That is, the light that is emitted above the optical axis of the light emitting unit 30 and the liquid level 71 of the water 70 is reflected by the liquid level 71 of the water 70 stored in the water supply tank 4 that is above the optical axis of the light emitting unit 30. (Non-straight light) is shielded. When the light receiving unit 40 includes a plurality of light receiving elements (for example, the first light receiving element 41, the second light receiving element 42, and the third light receiving element 43), the light receiving units 40 are provided above the respective light receiving elements 41, 42, and 43. The upper light shielding portion 45 a provided in the second light receiving element 42 has a function of shielding the light emitted from the first light emitting element 31. The upper light shielding portion 45 a provided in the third light receiving element 43 has a function of shielding light emitted from the first light emitting element 31 and the second light emitting element 32. The upper light shielding portion 45a can prevent so-called crosstalk from occurring between the light emitting element and the light receiving element that are not paired.

下遮光部45bは、受光部40の下側に設けられて、下方向から入射される光を遮光する。すなわち、発光部30の光軸より下側に出射され、水70の液面71が当該発光部30の光軸よりも上側にある水70の貯留された給水タンク4の底面部4dすなわち底界面72で反射した光(非直進光)を遮光する。受光部40が複数の受光素子(例えば、第1受光素子41,第2受光素子42,第3受光素子43)を有する場合、下遮光部45bは、各受光素子41,42,43の下側にそれぞれ設けられる。第1受光素子41に設けられた下遮光部45bは、第2発光素子32及び第3発光素子33から出射された光を遮光する機能を有する。第2受光素子42に設けられた下遮光部45bは、第3発光素子33から出射された光を遮光する機能を有する。当該下遮光部45bにより、対になっていない発光素子及び受光素子間でのいわゆるクロストークの発生を防止できる。   The lower light-shielding part 45b is provided below the light-receiving part 40 and shields light incident from below. That is, the bottom surface portion 4d of the water supply tank 4 in which the water 70 is emitted below the optical axis of the light emitting unit 30 and the water surface 71 of the water 70 is above the optical axis of the light emitting unit 30 is stored. The light reflected at 72 (non-straight light) is shielded. When the light receiving unit 40 includes a plurality of light receiving elements (for example, the first light receiving element 41, the second light receiving element 42, and the third light receiving element 43), the lower light shielding part 45 b is provided on the lower side of each light receiving element 41, 42, 43. Are provided respectively. The lower light shielding portion 45 b provided in the first light receiving element 41 has a function of shielding light emitted from the second light emitting element 32 and the third light emitting element 33. The lower light shielding part 45 b provided in the second light receiving element 42 has a function of shielding light emitted from the third light emitting element 33. The lower light shielding portion 45b can prevent so-called crosstalk from occurring between the light emitting element and the light receiving element that are not paired.

上遮光部45a及び下遮光部45bは、上下方向(縦方向)に延びる板形状、入射光の直進方向(横方向)に延びる板形状、又は、上下方向(縦方向)及び直進方向(横方向)に延びる形状とすることができる。板形状の上遮光部45a及び下遮光部45bは、例えば、平板形状や湾曲形状や三角(切妻)屋根形状にすることができる。上遮光部45aが湾曲形状又は三角(切妻)屋根形状をしている場合、上方に突出した形状をしている。また、下遮光部45bが湾曲形状又は三角(切妻)屋根形状をしている場合、下方に突出した形状をしている。   The upper light-shielding portion 45a and the lower light-shielding portion 45b have a plate shape extending in the vertical direction (longitudinal direction), a plate shape extending in the straight traveling direction (lateral direction) of incident light, or the vertical direction (vertical direction) and the straight traveling direction (lateral direction). ). The plate-shaped upper light-shielding portion 45a and lower light-shielding portion 45b can be formed into, for example, a flat plate shape, a curved shape, or a triangular (gable) roof shape. When the upper light-shielding part 45a has a curved shape or a triangular (gable) roof shape, it has a shape protruding upward. Moreover, when the lower light-shielding part 45b has a curved shape or a triangular (gable) roof shape, it has a shape protruding downward.

受光部40は、遮光部として、上遮光部45a及び下遮光部45bをつなぐ連結遮光部をさらに備えることができる。光結合のために出射光のうちの中央光Laを用いる場合、上遮光部45a及び下遮光部45bの左右の両側をつなぐ連結遮光部を備える閉じたループ形状とすることができる。閉じたループ形状の遮光部によれば、上下左右方向に受光される光が遮光される。閉じたループ形状としては、円形状、トラック形状、三角形状、正方形、長方形、台形形状等の多角形形状を例示することができる。   The light receiving unit 40 may further include a connected light blocking unit that connects the upper light blocking unit 45a and the lower light blocking unit 45b as the light blocking unit. When the center light La of the emitted light is used for optical coupling, it can be formed into a closed loop shape including a connected light shielding part that connects the left and right sides of the upper light shielding part 45a and the lower light shielding part 45b. According to the closed loop-shaped light shielding portion, light received in the vertical and horizontal directions is shielded. Examples of the closed loop shape include a polygonal shape such as a circular shape, a track shape, a triangular shape, a square shape, a rectangular shape, and a trapezoidal shape.

図4、図5、図10、図11及び図12を参照して、透過型光結合装置50を用いて、給水タンク4に貯留された水70の貯留レベルを検出する方法を説明する。   With reference to FIGS. 4, 5, 10, 11, and 12, a method of detecting the storage level of the water 70 stored in the water supply tank 4 using the transmissive optical coupling device 50 will be described.

図4は、透過型光結合装置50と、該装置50の設置された給水タンク4とを模式的に示す横断面図である。図5は、図4に示した透過型光結合装置50及び給水タンク4を模式的に示す縦断面図である。   FIG. 4 is a cross-sectional view schematically showing the transmissive optical coupling device 50 and the water supply tank 4 in which the device 50 is installed. FIG. 5 is a longitudinal sectional view schematically showing the transmission type optical coupling device 50 and the water supply tank 4 shown in FIG.

透過型光結合装置50は、本体ケーシング1aに装着された給水タンク4の後部側のコーナー部4fに適合するように構成されている。発光部30から発光側側壁部4bに向けて出射された光が、給水タンク4の後部側のコーナー部4fを横切るように、受光部40が発光部30に対向して配置されている。すなわち、発光部30から出射された光が、給水タンク4の発光側側壁部4bと、給水タンク4内に貯留された水70と、給水タンク4の受光側側壁部4cとを透過して受光部40で受光されるように、発光部30及び受光部40が配置されている。   The transmissive optical coupling device 50 is configured to fit the corner portion 4f on the rear side of the water supply tank 4 attached to the main casing 1a. The light receiving unit 40 is disposed to face the light emitting unit 30 so that the light emitted from the light emitting unit 30 toward the light emitting side wall 4b crosses the corner 4f on the rear side of the water supply tank 4. That is, the light emitted from the light emitting unit 30 passes through the light emitting side wall portion 4b of the water supply tank 4, the water 70 stored in the water supply tank 4, and the light receiving side wall portion 4c of the water supply tank 4 to receive light. The light emitting unit 30 and the light receiving unit 40 are arranged so as to be received by the unit 40.

図4に示した透過型光結合装置50では、発光側側壁部4bと受光側側壁部4cとが直角をなす給水タンク4に対しては、発光部30から出射される光が発光側側壁部4bに対して或る角度をなすように発光部30が斜めに位置している。そして、受光部40で受光される光が受光側側壁部4cに対して前記或る角度の余角をなすように受光部40が斜めに位置している。例えば、受光部40から出射される光が受光側側壁部4cに対して45度の角度をなし、受光部40で受光される光が受光側側壁部4cに対して45度の角度をなす。   In the transmissive optical coupling device 50 shown in FIG. 4, the light emitted from the light emitting unit 30 is emitted from the light emitting side wall portion 4 with respect to the water supply tank 4 in which the light emitting side wall portion 4 b and the light receiving side wall portion 4 c form a right angle. The light emitting unit 30 is positioned obliquely so as to form a certain angle with respect to 4b. The light receiving unit 40 is positioned obliquely so that the light received by the light receiving unit 40 forms an additional angle of the certain angle with respect to the light receiving side wall 4c. For example, the light emitted from the light receiving unit 40 forms an angle of 45 degrees with respect to the light receiving side wall 4c, and the light received by the light receiving unit 40 forms an angle of 45 degrees with respect to the light receiving side wall 4c.

第1発光素子31と第1受光素子41とが対になし、発光部30の第1発光素子31から出射された光が受光部40の第1受光素子41で受光される。同様に、第2発光素子32と第2受光素子42とが対になし、第2発光素子32から出射された光が第2受光素子42で受光される。また、第3発光素子33と第3受光素子43とが対になし、第3発光素子33から出射された光が第3受光素子43で受光される。給水タンク4の深さ方向に上から順に、第1発光素子31及び第1受光素子41と,第2発光素子32及び第2受光素子42と、第3発光素子33及び第3受光素子43とが配設されている。   The first light emitting element 31 and the first light receiving element 41 form a pair, and the light emitted from the first light emitting element 31 of the light emitting unit 30 is received by the first light receiving element 41 of the light receiving unit 40. Similarly, the second light emitting element 32 and the second light receiving element 42 form a pair, and the light emitted from the second light emitting element 32 is received by the second light receiving element 42. In addition, the third light emitting element 33 and the third light receiving element 43 form a pair, and the light emitted from the third light emitting element 33 is received by the third light receiving element 43. The first light emitting element 31 and the first light receiving element 41, the second light emitting element 32 and the second light receiving element 42, the third light emitting element 33 and the third light receiving element 43, in order from the top in the depth direction of the water supply tank 4. Is arranged.

第1発光素子31から出射された光のうち、液面71方向に出射された光が、上遮光部35aで遮光されて、液面71で反射光が生じることが防止される。それにより、液面71での反射光が第1受光素子41で受光されるのが防止される。第1発光素子31から出射された光のうち、底界面72方向に出射された光が、下遮光部35bで遮光されて、底界面72で反射光が生じることが防止される。それにより、底界面72での反射光が第1受光素子41で受光されるのが防止される。また、第1受光素子41と対を構成する第1発光素子31以外の発光素子(第2発光素子32及び第3発光素子33)から出射された光が第1受光素子41でダイレクトに受光されるのが防止される。したがって、第1発光素子31から出射された光のうち、光軸周りの光であって比較的発光光度の大きな中央光Laが、第1受光素子41と光学的に結合する。すなわち、第1発光素子31から出射された中央光Laが第1受光素子41でダイレクトに受光され、第1発光素子31からの直接光が第1受光素子41で受光される。   Of the light emitted from the first light emitting element 31, the light emitted in the direction of the liquid level 71 is blocked by the upper light blocking portion 35 a, and the reflected light is prevented from being generated on the liquid level 71. Thereby, the reflected light at the liquid level 71 is prevented from being received by the first light receiving element 41. Of the light emitted from the first light emitting element 31, the light emitted in the direction of the bottom interface 72 is blocked by the lower light shielding portion 35 b, thereby preventing the reflected light from being generated at the bottom interface 72. Thereby, the reflected light at the bottom interface 72 is prevented from being received by the first light receiving element 41. In addition, light emitted from light emitting elements (second light emitting element 32 and third light emitting element 33) other than the first light emitting element 31 forming a pair with the first light receiving element 41 is directly received by the first light receiving element 41. Is prevented. Therefore, among the light emitted from the first light emitting element 31, the central light La that is around the optical axis and has a relatively large luminous intensity is optically coupled to the first light receiving element 41. That is, the central light La emitted from the first light emitting element 31 is directly received by the first light receiving element 41, and the direct light from the first light emitting element 31 is received by the first light receiving element 41.

同様に、第2発光素子32から出射された光のうち、光軸周りの光であって比較的発光光度の大きな中央光Laが、第2受光素子42と光学的に結合し、第2受光素子42でダイレクトに受光される。第3発光素子33から出射された光のうち、光軸周りの光であって比較的発光光度の大きな中央光Laが、第3受光素子43と光学的に結合し、第3受光素子43でダイレクトに受光される。   Similarly, of the light emitted from the second light emitting element 32, the central light La that is around the optical axis and has a relatively large luminous intensity is optically coupled to the second light receiving element 42, and the second light receiving element. Light is directly received by the element 42. Of the light emitted from the third light emitting element 33, the center light La that is around the optical axis and has a relatively large luminous intensity is optically coupled to the third light receiving element 43. Light is received directly.

したがって、第1発光素子31及び第1受光素子41によって上位置の貯留レベルが検出され、第2発光素子32及び第2受光素子42によって中間位置の貯留レベルが検出され、第3発光素子33及び第3受光素子43によって下位置の貯留レベルが検出される。   Accordingly, the storage level at the upper position is detected by the first light emitting element 31 and the first light receiving element 41, the storage level at the intermediate position is detected by the second light emitting element 32 and the second light receiving element 42, and the third light emitting element 33 and The storage level at the lower position is detected by the third light receiving element 43.

上述したように、発光部30から発光側側壁部4bに向けて出射された光が、給水タンク4の後部側のコーナー部4fを横切るように、受光部40が発光部30に対向して配置されている。これにより、発光部30及び受光部40が給水タンク4における対向する側壁部にそれぞれ設置される場合と比較して、発光部30から受光部40までの光路長が短くなり、光軸のずれによる光結合性の低下を防止できる。   As described above, the light receiving unit 40 is disposed facing the light emitting unit 30 so that the light emitted from the light emitting unit 30 toward the light emitting side wall 4b crosses the corner 4f on the rear side of the water supply tank 4. Has been. Thereby, compared with the case where the light emission part 30 and the light-receiving part 40 are each installed in the side wall part which opposes in the water supply tank 4, the optical path length from the light emission part 30 to the light-receiving part 40 becomes short, and it is based on the shift | offset | difference of an optical axis. It is possible to prevent a decrease in optical coupling property.

図11は、複数の受光素子(第1受光素子41と第2受光素子42と第3受光素子43と)によって生成された光電流を加算するときの回路図である。   FIG. 11 is a circuit diagram when the photocurrents generated by a plurality of light receiving elements (the first light receiving element 41, the second light receiving element 42, and the third light receiving element 43) are added.

制御装置60によって、発光部30の各発光素子31,32,33の全てが発光するように制御されている。各発光素子31,32,33のそれぞれが出射した光を受光部40が受光すると、受光部40の受光素子41,42,43は、受光した受光量に応じて、光電流値I、I、Iをそれぞれ出力する。受光部40は、各光電流値I、I、Iを加算した加算値を出力値(例えば、出力電圧)として出力する。各光電流値I、I、Iを加算した1つの加算値を出力することで、受光部40での出力に係る回路構成を簡略化することができる。 The control device 60 controls all the light emitting elements 31, 32, and 33 of the light emitting unit 30 to emit light. When the light receiving unit 40 receives the light emitted from each of the light emitting elements 31, 32, and 33, the light receiving elements 41, 42, and 43 of the light receiving unit 40 have photocurrent values I 1 and I according to the amount of received light. 2 and I 3 are output. The light receiving unit 40 outputs an added value obtained by adding the photocurrent values I 1 , I 2 , and I 3 as an output value (for example, an output voltage). By outputting one added value obtained by adding the respective photocurrent values I 1 , I 2 , and I 3 , the circuit configuration related to the output at the light receiving unit 40 can be simplified.

レベル検出部60bは、受光部40によって出力された出力値(例えば、出力電圧)に基づいて、貯留レベルを検出する。すなわち、受光部40によって出力された出力値(例えば、出力電圧)は、例えばマイコンによってA/D変換され、変換されたデジタル信号が、各貯留レベルに対応する値と比較されることによって、貯留レベルが検出される。   The level detection unit 60b detects the storage level based on the output value (for example, output voltage) output by the light receiving unit 40. That is, an output value (for example, output voltage) output by the light receiving unit 40 is A / D converted by, for example, a microcomputer, and the converted digital signal is compared with a value corresponding to each storage level. The level is detected.

図10は、給水タンク4内での水70の貯留レベルと受光部40での出力値(例えば、出力電圧)との関係、及び、本体ケーシング1aの所定位置への給水タンク4の装着又は脱離と受光部40での出力値(例えば、出力電圧)との関係を模式的に示している。図10において、横軸が給水タンク4内での水70の貯留レベルを示し、縦軸が受光部40での出力値(例えば、出力電圧)を示している。なお、横軸及び縦軸に示された各数値は、理解を容易にするための例示であり、当該数値に限定されるものではない。   FIG. 10 shows the relationship between the storage level of the water 70 in the water supply tank 4 and the output value (for example, output voltage) at the light receiving unit 40, and the attachment or removal of the water supply tank 4 at a predetermined position of the main body casing 1a. The relationship between the separation and the output value (for example, output voltage) at the light receiving unit 40 is schematically shown. In FIG. 10, the horizontal axis indicates the storage level of the water 70 in the water supply tank 4, and the vertical axis indicates the output value (for example, output voltage) at the light receiving unit 40. In addition, each numerical value shown on the horizontal axis and the vertical axis is an example for facilitating understanding, and is not limited to the numerical value.

上述したように、発光部30の各発光素子31,32,33の全てが発光して、受光部40は、各受光素子41,42,43が受光した受光量に応じた出力値(例えば、出力電圧)を出力するように構成されている。   As described above, all of the light emitting elements 31, 32, and 33 of the light emitting unit 30 emit light, and the light receiving unit 40 outputs an output value (for example, an amount of light received by each of the light receiving elements 41, 42, and 43) (for example, Output voltage).

本体ケーシング1aの所定位置に装着された給水タンク4が水70で大略満たされた状態を初期の満水状態とする。そして、その後、水蒸気発生装置12への送水、すなわち給水タンク4からの排水によって、給水タンク4内での水70の貯留レベル(液面71)が徐々に低下する様子を説明する。   A state in which the water supply tank 4 mounted at a predetermined position of the main casing 1a is substantially filled with water 70 is defined as an initial full water state. Then, a state in which the storage level (liquid level 71) of the water 70 in the water supply tank 4 gradually decreases due to water supply to the steam generator 12, that is, drainage from the water supply tank 4, will be described.

初期の満水状態では、水70の貯留レベル(液面71)が第1発光素子31及び第1受光素子41の光軸よりも上位置にあるので、給水タンク4と給水タンク4内に満たされた水70とを透過した光が各受光素子41,42,43で受光されなくなる。各受光素子41,42,43での受光量に応じて出力された各出力値が加算されるが、各受光素子41,42,43が給水タンク4及び水70を透過した光を受光するので、各出力値を加算した加算値が最も低くなる。そのため、初期の満水状態で受光部40から出力される出力値は、出力値Aとして最も低い値になり、理想状態であれば0になる。   In the initial full water state, the water 70 storage level (liquid level 71) is above the optical axis of the first light emitting element 31 and the first light receiving element 41, so that the water supply tank 4 and the water supply tank 4 are filled. The light transmitted through the water 70 is not received by the light receiving elements 41, 42, 43. Each output value output according to the amount of light received by each light receiving element 41, 42, 43 is added, but each light receiving element 41, 42, 43 receives light transmitted through the water supply tank 4 and water 70. The added value obtained by adding the output values is the lowest. Therefore, the output value output from the light receiving unit 40 in the initial full state is the lowest value as the output value A, and is 0 in the ideal state.

満水状態から排水が少し排出された高貯水段階でも、水70の貯留レベル(液面71)が第1発光素子31及び第1受光素子41の光軸よりも上に位置する状態が継続するので、受光部40からの出力値が、或る一定の出力値Aを有する。   Even in a high water storage stage where a little drainage is discharged from the full water state, the state in which the storage level (liquid level 71) of the water 70 is located above the optical axes of the first light emitting element 31 and the first light receiving element 41 continues. The output value from the light receiving unit 40 has a certain output value A.

さらなる排水が行われると、水70の貯留レベル(液面71)が第1発光素子31及び第1受光素子41の光軸の近傍に位置する第1貯水段階になる。第1貯水段階では、第1発光素子31から出射された光が給水タンク4の水70の影響を受けなくなるため、第1受光素子41での受光量が増えて第1受光素子41からの出力値が増加する方向になる。   When further drainage is performed, the storage level (liquid level 71) of the water 70 becomes the first water storage stage located in the vicinity of the optical axis of the first light emitting element 31 and the first light receiving element 41. In the first water storage stage, the light emitted from the first light emitting element 31 is not affected by the water 70 of the water supply tank 4, so that the amount of light received by the first light receiving element 41 is increased and the output from the first light receiving element 41 is increased. The value increases.

しかしながら、出力値が、第1発光素子31の出射開口35c及び第1受光素子41の受光開口45cの影響を受ける。すなわち、第1発光素子31が給水タンク4の深さ方向に或る開口幅を有し、第1受光素子41も、給水タンク4の深さ方向に或る開口幅を有するので、第1発光素子31及び第1受光素子41によって検出できる範囲も、給水タンク4の深さ方向に或る幅を持っている。対の第1発光素子31及び第1受光素子41において、水70によって遮光される出射開口35c及び受光開口45cの比率すなわち開口遮光比率(第1発光素子31の出射開口35c及び第1受光素子41の受光開口45cの各開口面積を合計した総開口面積に対する、水70によって遮光される第1発光素子31の出射開口35c及び第1受光素子41の受光開口45cの各遮光面積を合計した総遮光面積)が、水70の貯留レベル(液面71)に応じて変化する。そのため、第1貯水段階において水70の貯留レベル(液面71)が低下するとき、第1発光素子31及び第1受光素子41における開口遮光比率が低下するので、第1受光素子41からの出力値が、出力値Bとして徐々に増加しながら変化する。すなわち、出力値Bが左肩上がりで増加する。なお、上記説明は、第1発光素子31の出射開口35c及び第1受光素子41の受光開口45cにおいて、出射光及び入射光の光量が各開口面内で均一であってばらつきのないことを前提にしている。   However, the output value is affected by the emission opening 35 c of the first light emitting element 31 and the light receiving opening 45 c of the first light receiving element 41. That is, the first light emitting element 31 has a certain opening width in the depth direction of the water supply tank 4, and the first light receiving element 41 also has a certain opening width in the depth direction of the water supply tank 4. The range that can be detected by the element 31 and the first light receiving element 41 also has a certain width in the depth direction of the water supply tank 4. In the pair of the first light emitting element 31 and the first light receiving element 41, the ratio of the emission opening 35c and the light receiving opening 45c shielded by water 70, that is, the aperture light shielding ratio (the emission opening 35c of the first light emitting element 31 and the first light receiving element 41). The total light shielding area obtained by summing the light shielding areas of the light emitting opening 35c of the first light emitting element 31 and the light receiving opening 45c of the first light receiving element 41 which are shielded by water 70 with respect to the total opening area obtained by summing the opening areas of the light receiving openings 45c. Area) changes according to the storage level of the water 70 (the liquid level 71). Therefore, when the storage level (liquid level 71) of the water 70 is reduced in the first water storage stage, the aperture light shielding ratio in the first light emitting element 31 and the first light receiving element 41 is reduced, so that the output from the first light receiving element 41 is reduced. The value changes while gradually increasing as the output value B. That is, the output value B increases with increasing left shoulder. Note that the above description is based on the premise that the light amounts of the emitted light and the incident light are uniform within the respective opening surfaces in the light emitting opening 35c of the first light emitting element 31 and the light receiving opening 45c of the first light receiving element 41. I have to.

さらなる排水が行われると、水70の貯留レベル(液面71)が、第1発光素子31及び第1受光素子41の光軸よりも下に位置するとともに第2発光素子32及び第2受光素子42の光軸よりも上に位置する状態が継続する中貯水段階になる。そのため、中貯水段階では、出力値が、或る一定の出力値Cを有する。   When further drainage is performed, the storage level (liquid level 71) of the water 70 is located below the optical axis of the first light emitting element 31 and the first light receiving element 41, and the second light emitting element 32 and the second light receiving element. It becomes the middle water storage stage where the state located above the optical axis of 42 continues. Therefore, in the middle water storage stage, the output value has a certain output value C.

さらなる排水が行われると、水70の貯留レベル(液面71)が第2発光素子32及び第2受光素子42の光軸の近傍に位置する第2貯水段階になる。第2貯水段階では、第2発光素子32から出射された光が給水タンク4の水70の影響を受けなくなるため、第2受光素子42での受光量が増えて第2受光素子42からの出力値が増加する方向になる。上記の第1発光素子31及び第1受光素子41と同様に、出力値が、第2発光素子32の出射開口35c及び第2受光素子42の受光開口45cの影響を受ける。すなわち、第2発光素子32が給水タンク4の深さ方向に或る開口幅を有し、第2受光素子42も、給水タンク4の深さ方向に或る開口幅を有するので、第2発光素子32及び第2受光素子42によって検出できる範囲も、給水タンク4の深さ方向に或る幅を持っている。対の第2発光素子32及び第2受光素子42において、水70によって遮光される出射開口35c及び受光開口45cの比率すなわち開口遮光比率(対の第2発光素子32の出射開口35c及び第2受光素子42の受光開口45cの各開口面積を合計した総開口面積に対する、水70によって遮光される第2発光素子32の出射開口35c及び第2受光素子42の受光開口45cの各遮光面積を合計した総遮光面積)が、水70の貯留レベル(液面71)に応じて変化する。そのため、第2貯水段階において水70の貯留レベル(液面71)が低下するとき、第2発光素子32及び第2受光素子42における開口遮光比率が低下するので、第2受光素子42からの出力値が、出力値Dとして徐々に増加しながら変化する。すなわち、出力値Dが左肩上がりで増加する。なお、上記説明は、第2発光素子32の出射開口35c及び第2受光素子42の受光開口45cにおいて、出射光及び入射光の光量が各開口面内で均一であってばらつきのないことを前提にしている。   When further drainage is performed, the storage level (liquid level 71) of the water 70 is in the second water storage stage where the second light emitting element 32 and the second light receiving element 42 are located in the vicinity of the optical axis. In the second water storage stage, the light emitted from the second light emitting element 32 is not affected by the water 70 of the water supply tank 4, so that the amount of light received by the second light receiving element 42 is increased and output from the second light receiving element 42. The value increases. Similar to the first light emitting element 31 and the first light receiving element 41 described above, the output value is affected by the emission opening 35 c of the second light emitting element 32 and the light receiving opening 45 c of the second light receiving element 42. That is, since the second light emitting element 32 has a certain opening width in the depth direction of the water supply tank 4, and the second light receiving element 42 also has a certain opening width in the depth direction of the water supply tank 4, The range that can be detected by the element 32 and the second light receiving element 42 also has a certain width in the depth direction of the water supply tank 4. In the pair of the second light emitting element 32 and the second light receiving element 42, the ratio of the emission opening 35c and the light receiving opening 45c shielded by the water 70, that is, the aperture light shielding ratio (the emission opening 35c of the pair of second light emitting element 32 and the second light receiving element). The total light-shielding areas of the light-emitting openings 35c of the second light-emitting elements 32 and the light-receiving openings 45c of the second light-receiving elements 42, which are shielded by water 70, are totaled with respect to the total aperture area obtained by summing the areas of the light-receiving openings 45c of the elements 42 The total light shielding area) changes according to the storage level of the water 70 (the liquid level 71). Therefore, when the storage level (liquid level 71) of the water 70 decreases in the second water storage stage, the aperture light shielding ratio in the second light emitting element 32 and the second light receiving element 42 decreases, so that the output from the second light receiving element 42 The value changes while gradually increasing as the output value D. That is, the output value D increases with increasing left shoulder. Note that the above description is based on the premise that the light amounts of the emitted light and the incident light are uniform within the respective opening surfaces in the light emitting opening 35c of the second light emitting element 32 and the light receiving opening 45c of the second light receiving element 42. I have to.

さらなる排水が行われると、水70の貯留レベル(液面71)が、第2発光素子32及び第2受光素子42の光軸よりも下に位置するとともに第3発光素子33及び第3受光素子43の光軸よりも上に位置する状態が継続する低貯水段階になる。そのため、低貯水段階では、出力値が、或る一定の出力値Eを有する。   When further drainage is performed, the storage level (liquid level 71) of the water 70 is located below the optical axis of the second light emitting element 32 and the second light receiving element 42, and the third light emitting element 33 and the third light receiving element. It becomes the low water storage stage where the state located above 43 optical axes continues. Therefore, in the low water storage stage, the output value has a certain output value E.

さらなる排水が行われると、水70の貯留レベル(液面71)が第3発光素子33及び第3受光素子43の光軸の近傍に位置する第3貯水段階になる。第3貯水段階では、第3発光素子33から出射された光が給水タンク4の水70の影響を受けなくなるために、第3受光素子43での受光量が増えて第3受光素子42からの出力値が増加する方向になる。上記の第1発光素子31及び第1受光素子41と同様に、出力値が、第3発光素子33の出射開口35c及び第3受光素子43の受光開口45cの影響を受ける。すなわち、第3発光素子33が給水タンク4の深さ方向に或る開口幅を有し、第3受光素子43も、給水タンク4の深さ方向に或る開口幅を有するので、第3発光素子33及び第3受光素子43によって検出できる範囲も、給水タンク4の深さ方向に或る幅を持っている。対の第3発光素子33及び第3受光素子43において、水70によって遮光される出射開口35c及び受光開口45cの比率すなわち開口遮光比率(対の第3発光素子33の出射開口35c及び第3受光素子43の受光開口45cの各開口面積を合計した総開口面積に対する、水70によって遮光される第3発光素子33の出射開口35c及び第3受光素子43の受光開口45cの各遮光面積を合計した総遮光面積)が、水70の貯留レベル(液面71)に応じて変化する。そのため、第3貯水段階において水70の貯留レベル(液面71)が低下するとき、第3発光素子33及び第3受光素子43における開口遮光比率が低下するので、第3受光素子43からの出力値が、出力値Fとして徐々に増加しながら変化する。すなわち、出力値Fが左肩上がりで増加する。なお、上記説明は、第3発光素子33の出射開口35c及び第3受光素子43の受光開口45cにおいて、出射光及び入射光の光量が各開口面内で均一であってばらつきのないことを前提にしている。   When further drainage is performed, the storage level (liquid level 71) of the water 70 becomes the third water storage stage located near the optical axis of the third light emitting element 33 and the third light receiving element 43. In the third water storage stage, since the light emitted from the third light emitting element 33 is not affected by the water 70 of the water supply tank 4, the amount of light received by the third light receiving element 43 is increased and the light from the third light receiving element 42 is increased. The output value increases. Similar to the first light emitting element 31 and the first light receiving element 41 described above, the output value is affected by the emission opening 35 c of the third light emitting element 33 and the light receiving opening 45 c of the third light receiving element 43. That is, the third light emitting element 33 has a certain opening width in the depth direction of the water supply tank 4, and the third light receiving element 43 also has a certain opening width in the depth direction of the water supply tank 4. The range that can be detected by the element 33 and the third light receiving element 43 also has a certain width in the depth direction of the water supply tank 4. In the pair of third light emitting element 33 and third light receiving element 43, the ratio of the light emitting opening 35c and the light receiving opening 45c shielded by water 70, that is, the aperture light shielding ratio (the light emitting opening 35c and third light receiving of the pair of third light emitting element 33). The total light-shielding area of the light-emitting opening 35c of the third light-emitting element 33 and the light-receiving opening 45c of the third light-receiving element 43, which are shielded by water 70, is added to the total opening area of the light-receiving openings 45c of the element 43. The total light shielding area) changes according to the storage level of the water 70 (the liquid level 71). Therefore, when the storage level (liquid level 71) of the water 70 is reduced in the third water storage stage, the aperture light shielding ratio in the third light emitting element 33 and the third light receiving element 43 is reduced, so that the output from the third light receiving element 43 is reduced. The value changes while gradually increasing as the output value F. That is, the output value F increases with increasing left shoulder. The above description is based on the premise that the light amounts of the emitted light and the incident light are uniform within the respective opening surfaces in the emission opening 35c of the third light emitting element 33 and the light receiving opening 45c of the third light receiving element 43. I have to.

さらなる排水が行われると、水70の貯留レベル(液面71)が、第3発光素子33及び第3受光素子43の光軸よりも下に位置する状態が継続する底貯水段階になる。そのため、底貯水段階では、出力値が、或る一定の出力値Gを有する。   When further drainage is performed, the water storage level (liquid level 71) of the water 70 is in the bottom water storage stage in which the state where the level is lower than the optical axes of the third light emitting element 33 and the third light receiving element 43 continues. Therefore, in the bottom water storage stage, the output value has a certain output value G.

上記のように、給水タンク4内での水70の貯留レベル(液面71)に応じて、受光部40での出力値が変化するので、受光部40での出力値に基づいて、給水タンク4内での水70の貯留レベル(液面71)を検出できる。すなわち、この実施形態では、給水タンク4内での水70の貯留レベル(液面71)として、上から順に、高貯水段階(満水状態)、第1貯水段階、中貯水段階、第2貯水段階、低貯水段階、第3貯水段階及び底貯水段階が検出される。   As described above, since the output value at the light receiving unit 40 changes according to the storage level (liquid level 71) of the water 70 in the water supply tank 4, the water supply tank is based on the output value at the light receiving unit 40. 4, the water 70 storage level (liquid level 71) can be detected. That is, in this embodiment, as a storage level (liquid level 71) of the water 70 in the water supply tank 4, a high water storage stage (full water state), a first water storage stage, a middle water storage stage, and a second water storage stage in order from the top. The low water storage stage, the third water storage stage and the bottom water storage stage are detected.

受光部40での受光量すなわち受光部40から出力された出力値に基づいて、給水タンク4が本体ケーシング1aの所定位置に装着されているか又は脱離されているかを判定して、給水タンク4の有無を検出することについて説明する。   Based on the amount of light received by the light receiving unit 40, that is, the output value output from the light receiving unit 40, it is determined whether the water supply tank 4 is attached to or detached from the predetermined position of the main body casing 1a, and the water supply tank 4 The detection of the presence or absence of will be described.

本体ケーシング1aの所定位置から給水タンク4を取り除くと、発光部30から出射された光を遮光するものが何も無いため、受光部40での受光量が、最大になり、給水タンク4の脱離状態での出力値が、出力値Gよりも大きな出力値Hとして出力される。   When the water supply tank 4 is removed from the predetermined position of the main body casing 1a, there is nothing that blocks the light emitted from the light emitting unit 30, so that the amount of light received by the light receiving unit 40 is maximized, and the water tank 4 is detached. The output value in the separated state is output as an output value H larger than the output value G.

したがって、受光部40からの出力値が出力値Gよりも大きな出力値Hが得られるならば、給水タンク4が本体ケーシング1aの所定位置から脱離していることが検出される。容器検出部60aは、受光部40の受光量すなわち受光部40から出力された出力値(例えば、出力電圧)に基づいて、給水タンク4が本体ケーシング1aの所定位置に装着されているか又は脱離されているかを判定する。すなわち、受光部40から出力された出力値(例えば、出力電圧)が、例えばマイコンによってA/D変換され、変換されたデジタル値が、或る所定値(出力値G)と比較されることによって、給水タンク4の装着又は脱離が検出される。   Therefore, if the output value H from the light receiving unit 40 is larger than the output value G, it is detected that the water supply tank 4 is detached from the predetermined position of the main casing 1a. Based on the amount of light received by the light receiving unit 40, that is, the output value (for example, output voltage) output from the light receiving unit 40, the container detection unit 60a has the water supply tank 4 attached to a predetermined position of the main casing 1a or detached. It is determined whether it is done. That is, an output value (for example, output voltage) output from the light receiving unit 40 is A / D converted by, for example, a microcomputer, and the converted digital value is compared with a certain predetermined value (output value G). The attachment or detachment of the water supply tank 4 is detected.

なお、図10では、底貯水段階での横軸方向長さが高貯水段階、中貯水段階及び低貯水段階のものよりも長くなっている。これは、図5に示すように、給水タンク4内での発光素子31,32,33及び受光素子41,42,43の高さ方向での配置に対応している。すなわち、第3発光素子33及び第3受光素子43の光路(開口)と底面部4dとの間隔が、第1発光素子31及び第1受光素子41と第2発光素子32及び第2受光素子42との互いの光路の間、及び、第2発光素子32及び第2受光素子42と第3発光素子33及び第3受光素子43との互いの光路の間(開口間)よりも長くなっていることに対応している。なお、3つの対の発光素子及び受光素子同士の互いの光路の間(開口間)と、第3発光素子33及び第3受光素子43の光路(開口)と底面部4dとの間隔とがいずれも大略等しいときには、高貯水段階、中貯水段階、低貯水段階及び底貯水段階での各横軸方向長さが大略等しくなる。   In FIG. 10, the length in the horizontal axis direction at the bottom water storage stage is longer than that at the high water storage stage, middle water storage stage, and low water storage stage. This corresponds to the arrangement in the height direction of the light emitting elements 31, 32, 33 and the light receiving elements 41, 42, 43 in the water supply tank 4, as shown in FIG. That is, the distance between the optical path (opening) of the third light emitting element 33 and the third light receiving element 43 and the bottom surface portion 4d is such that the first light emitting element 31, the first light receiving element 41, the second light emitting element 32, and the second light receiving element 42. And between the optical paths of the second light emitting element 32 and the second light receiving element 42 and the third light emitting element 33 and the third light receiving element 43 (between the openings). It corresponds to that. Note that the distance between the optical paths of the three pairs of light-emitting elements and the light-receiving elements (between the openings) and the distance between the optical paths (openings) of the third light-emitting elements 33 and the third light-receiving elements 43 and the bottom surface portion 4d are any. Are substantially equal, the horizontal axis lengths in the high water storage stage, the middle water storage stage, the low water storage stage, and the bottom water storage stage are substantially equal.

また、図5に示すように、各発光素子31,32,33の各出射開口35cが高さ方向に同じ開口幅を有するとともに各受光素子41,42,43の各受光開口45cが高さ方向に同じ開口幅を有している。そのため、第1貯水段階、第2貯水段階、第3貯水段階での各横軸方向長さが大略等しくなる。なお、出射開口35c及び受光開口45cの高さ方向の開口幅を大きくすることによって出射光及び入射光の光量を大きくできる。このことを利用して、出力値を大きく変化させたいところに配置される発光素子及び受光素子の出射開口35c及び受光開口45cの高さ方向の各開口幅を大きくすることにより、出力値の変化を大きくさせることができる。   Further, as shown in FIG. 5, the emission openings 35 c of the light emitting elements 31, 32, 33 have the same opening width in the height direction, and the light receiving openings 45 c of the light receiving elements 41, 42, 43 are in the height direction. Have the same opening width. Therefore, the horizontal direction lengths in the first water storage stage, the second water storage stage, and the third water storage stage are substantially equal. In addition, the light quantity of an emitted light and incident light can be enlarged by enlarging the opening width of the height direction of the output opening 35c and the light-receiving opening 45c. By making use of this fact, the output value changes by increasing the respective opening widths in the height direction of the emission openings 35c and the light receiving openings 45c of the light emitting element and the light receiving element arranged where the output value is to be greatly changed. Can be increased.

図10において、受光部40での受光量が最も大きなところ(出力値H)が、給水タンク4の装着又は脱離の検出に利用されているが、発光素子31,32,33の劣化や光学素子(レンズ)の汚れに起因した異常検出にも利用できる。発光素子31,32,33の劣化や発光部30及び受光部40での光学素子(レンズ)の汚れ等に起因した何らかの異常が生じると、受光部40での受光量が動作初期の受光量よりも低下するようになる。   In FIG. 10, the place where the amount of light received by the light receiving unit 40 is the largest (output value H) is used to detect the attachment or detachment of the water supply tank 4, but the deterioration of the light emitting elements 31, 32, 33 and the optical properties. It can also be used for detecting abnormalities caused by contamination of the element (lens). If any abnormality occurs due to deterioration of the light emitting elements 31, 32, 33, dirt of the optical element (lens) in the light emitting unit 30 and the light receiving unit 40, the amount of light received by the light receiving unit 40 is greater than the amount of light received at the initial stage of operation. Will also decline.

したがって、記憶部22が、動作初期において容器検出部60aによって給水タンク4の脱離が検出されたときに受光部40が受光した受光量を初期受光量として記憶し、受光量低下検出部60cが、容器検出部60aによって給水タンク4の脱離が検出されたときに受光部40が受光した受光量と、記憶部22に記憶された初期受光量とを比較して、初期受光量に対する受光量の低下が所定値よりも大きいか否かを検出することにより、上記異常を検出することができる。そして、通知部23によって、初期受光量に対する受光量の低下が所定値よりも大きい場合に、受光量の低下を通知して、使用者に注意喚起することができる。なお、上記のような何らかの異常が検出された場合、例えば、発光素子31,32,33に流れる電流を調整することで、発光部30の自動補正を行うことができる。   Therefore, the storage unit 22 stores the received light amount received by the light receiving unit 40 as the initial received light amount when the detachment of the water supply tank 4 is detected by the container detection unit 60a in the initial operation, and the received light amount decrease detection unit 60c The received light amount received by the light receiving unit 40 when the container detecting unit 60a detects the detachment of the water supply tank 4 and the initial received light amount stored in the storage unit 22 are compared, and the received light amount with respect to the initial received light amount. The abnormality can be detected by detecting whether or not the decrease is greater than a predetermined value. Then, the notification unit 23 can notify the user by notifying the decrease in the amount of received light when the decrease in the amount of received light with respect to the initial amount of received light is greater than a predetermined value. When any abnormality as described above is detected, the light emitting unit 30 can be automatically corrected by adjusting the current flowing through the light emitting elements 31, 32, 33, for example.

図12は、水70の供給方向の閾値と排出方向の閾値とが異なるようにレベル検出部60bがヒステリシスを有するように構成されていることを説明する図である。図12において、左側の縦軸が給水タンク4内での水70の貯留レベルを示す。   FIG. 12 is a diagram illustrating that the level detection unit 60b is configured to have hysteresis so that the supply direction threshold value of the water 70 and the discharge direction threshold value are different. In FIG. 12, the left vertical axis indicates the storage level of the water 70 in the water supply tank 4.

給水タンク4から水70を排水する際に、排水の影響を受けて、液面71がわずかに変動する。同様に、給水タンク4に水70を注水する際にも、注水の影響を受けて、液面71がわずかに変動する。そのため、受光部40から出力される出力値が変動することにより、給水タンク4内での水70の貯留レベルの検出結果が安定化しないおそれがある。   When the water 70 is drained from the water supply tank 4, the liquid level 71 slightly varies under the influence of the drainage. Similarly, when the water 70 is poured into the water supply tank 4, the liquid level 71 slightly fluctuates due to the influence of the water injection. Therefore, when the output value output from the light receiving unit 40 fluctuates, the detection result of the storage level of the water 70 in the water supply tank 4 may not be stabilized.

そこで、水70の供給方向の閾値dと排出方向の閾値eとが異なるように、レベル検出部60bがヒステリシスを有するように構成されている。給水タンク4内での水70の貯留レベル(液面71)が、下から上に移動する(すなわち水70が注水される)とき、供給方向の閾値dを超えると、水70の液面71がある貯留レベルに達したことを検出する。給水タンク4内での水70の貯留レベル(液面71)が、上から下に移動する(すなわち水70が排水される)とき、排出方向の閾値eを下回ると、水70の液面71がある貯留レベルに達したことを検出する。レベル検出部60bがこのようなヒステリシスを有することにより、液面71がわずかに変動しても、受光部40から出力される出力値が安定し、給水タンク4内での水70の貯留レベルの検出結果を安定化させることができる。   Therefore, the level detection unit 60b is configured to have hysteresis so that the threshold value d in the supply direction of the water 70 and the threshold value e in the discharge direction are different. When the storage level (liquid level 71) of the water 70 in the water supply tank 4 moves from the bottom to the top (that is, when the water 70 is poured), the liquid level 71 of the water 70 exceeds the threshold d in the supply direction. Detect that a certain storage level has been reached. When the storage level (liquid level 71) of the water 70 in the water supply tank 4 moves from the top to the bottom (that is, the water 70 is drained), the level 70 of the water 70 falls below the threshold e in the discharge direction. Detect that a certain storage level has been reached. Since the level detection unit 60b has such a hysteresis, the output value output from the light receiving unit 40 is stabilized even if the liquid level 71 fluctuates slightly, and the storage level of the water 70 in the water supply tank 4 is stable. The detection result can be stabilized.

また、給水タンク4内に貯留された水70の液面71が変動しても、レベル検出部60bによるレベル検出を安定化させるために、受光部40は、受光量に応じたアナログ出力を行い、該アナログ出力に対してフィルタ処理又はアベレージング処理を行うようにしてもよい。   Further, even if the liquid level 71 of the water 70 stored in the water supply tank 4 fluctuates, the light receiving unit 40 performs analog output corresponding to the amount of received light in order to stabilize the level detection by the level detecting unit 60b. The analog output may be subjected to filter processing or averaging processing.

以上説明したように、本実施形態によれば、出射光規制部35aによって、直進光が通過できるのに対して非直進光が遮光されるので、水70を貯留した給水タンク4内の界面(液面)71で反射する反射光が減少して、反射光が受光部40で受光されにくくなる。そのため、反射光に起因した誤検出を防止でき、給水タンク4に貯留された水70の貯留レベルを正確に検出できる。   As described above, according to the present embodiment, the outgoing light restricting portion 35a allows the straight light to pass through but blocks the non-straight light, so that the interface (in the water supply tank 4 storing the water 70) ( The reflected light reflected by the (liquid level) 71 is reduced, and the reflected light is hardly received by the light receiving unit 40. Therefore, erroneous detection due to the reflected light can be prevented, and the storage level of the water 70 stored in the water supply tank 4 can be accurately detected.

〔第2実施形態〕
次に、第2実施形態に係る透過型光結合装置50について、図7、図8及び図9を参照しながら説明する。第2実施形態において、上記第1実施形態での構成要素と同じ機能を有する構成要素には同じ符号を付して、重複する説明を省略する。
[Second Embodiment]
Next, the transmissive optical coupling device 50 according to the second embodiment will be described with reference to FIGS. 7, 8, and 9. In the second embodiment, components having the same functions as the components in the first embodiment are given the same reference numerals, and redundant descriptions are omitted.

図7は、第2実施形態に係る透過型光結合装置50及び該装置50の設置された給水タンク4の模式横断面図である。図8は、図7に示した透過型光結合装置50の設置された給水タンク4のコーナー部4fを発光部30側から見たときの模式縦断面図である。図9は、図7に示した透過型光結合装置50の設置された給水タンク4のコーナー部4fを発光部30及び受光部40を含む断面における模式縦断面図である。   FIG. 7 is a schematic cross-sectional view of the transmissive optical coupling device 50 according to the second embodiment and the water supply tank 4 in which the device 50 is installed. FIG. 8 is a schematic longitudinal sectional view of the corner portion 4f of the water supply tank 4 in which the transmissive optical coupling device 50 shown in FIG. 7 is installed as viewed from the light emitting portion 30 side. FIG. 9 is a schematic longitudinal sectional view in a cross section including the light emitting unit 30 and the light receiving unit 40 in the corner portion 4f of the water supply tank 4 in which the transmission type optical coupling device 50 shown in FIG.

図9に示すように、発光部30の各発光素子31,32,33が上述した出射光規制部35a及び他の出射光規制部35bを備えておらず、発光部30は、或る大きさの発光指向角Pで光を出射する。受光部40の各受光素子41,42,43も上述した受光規制部45a及び他の受光規制部45bを備えておらず、受光部40は、或る大きさの受光指向角Qで光を受光する。また、発光部30は、発光部スペーサ53を介して発光側側壁部4bに配設されており、受光部40は、受光部スペーサ54を介して受光側側壁部4cに配設されている。   As shown in FIG. 9, each light emitting element 31, 32, 33 of the light emitting unit 30 does not include the above-described outgoing light restricting portion 35 a and other outgoing light restricting portions 35 b, and the light emitting portion 30 has a certain size. The light is emitted at the emission directivity angle P. The light receiving elements 41, 42, and 43 of the light receiving unit 40 also do not include the light receiving restriction unit 45a and the other light receiving restriction units 45b described above, and the light receiving unit 40 receives light at a certain light reception directivity angle Q. To do. In addition, the light emitting unit 30 is disposed on the light emitting side wall portion 4b via the light emitting portion spacer 53, and the light receiving portion 40 is disposed on the light receiving side sidewall portion 4c via the light receiving portion spacer 54.

上述した第1実施形態では、発光部30から出射される直進光として中央光Laを用いており、発光部30から出射される光が発光側側壁部4bに対して或る角度をなすように発光部30が斜めに配置されている。そして、発光部30から出射される光のうちの中央光Laが、受光部40と光学的に結合している。当該構成によれば、発光部30において、発光側側壁部4bと反対側の端部が突出して、透過型光結合装置50のサイズが大きくなって、取付スペースが大きくなる。   In the first embodiment described above, the central light La is used as the straight light emitted from the light emitting unit 30 so that the light emitted from the light emitting unit 30 forms an angle with respect to the light emitting side wall 4b. The light emitting unit 30 is disposed obliquely. The center light La of the light emitted from the light emitting unit 30 is optically coupled to the light receiving unit 40. According to the said structure, in the light emission part 30, the edge part on the opposite side to the light emission side side wall part 4b protrudes, the size of the transmissive | pervious optical coupling device 50 becomes large, and an attachment space becomes large.

発光部30から出射される光は、一般に、或る大きさの発光指向角Pを有している。そこで、第2実施形態に係る透過型光結合装置50では、或る大きさの発光指向角Pを持った発光素子31,32,33を用いて、発光部30から出射される光のうちの発光指向角Pの発光エッジ光Lpが、受光部40と光学的に結合するように構成されている。   The light emitted from the light emitting unit 30 generally has a certain light emission directivity angle P. Therefore, in the transmissive optical coupling device 50 according to the second embodiment, the light emitting elements 31, 32, and 33 having a certain light emission directivity angle P are used to out of the light emitted from the light emitting unit 30. The light emitting edge light Lp having the light emission directivity angle P is configured to be optically coupled to the light receiving unit 40.

発光部30から出射される光のうちの発光指向角Pの発光エッジ光Lpと受光部40で受光される光の受光指向角Qの受光エッジ部Lqとが、光学的に結合するように構成されている。当該光学的結合のために、例えば、発光部30から出射される光軸光が発光側側壁部4bに対して直角をなすように発光部30が配置されているとともに、受光部40で受光される光軸光が受光側側壁部4cに対して直角をなすように受光部40が配置されている。発光部30において、発光側側壁部4bと反対側の端部の突出が抑制されるとともに、受光部40において、受光側側壁部4cと反対側の端部の突出が抑制されて、透過型光結合装置50のサイズが小さくなって、取付スペースが小さくなる。   Of the light emitted from the light emitting unit 30, the light emitting edge light Lp having the light emitting directivity angle P and the light receiving edge portion Lq having the light receiving directivity angle Q of the light received by the light receiving unit 40 are optically coupled. Has been. For the optical coupling, for example, the light emitting unit 30 is arranged so that the optical axis light emitted from the light emitting unit 30 is perpendicular to the light emitting side wall 4b and is received by the light receiving unit 40. The light receiving part 40 is arranged so that the optical axis light is perpendicular to the light receiving side wall part 4c. In the light emitting unit 30, the protrusion of the end opposite to the light emitting side wall 4 b is suppressed, and in the light receiving unit 40, the protrusion of the end opposite to the light receiving side wall 4 c is suppressed, thereby transmitting light. The size of the coupling device 50 is reduced, and the mounting space is reduced.

したがって、透過型光結合装置50が出射光規制部35aと他の出射光規制部35b及び受光規制部45aと他の受光規制部45bを有しないことにより、発光部30及び受光部40の構成を簡略化することができる。そして、発光部30及び受光部40の出っ張りが少なくなるので、透過型光結合装置50を加熱調理器1に設置するときの設置スペースが小さくなり、該設置に伴うデッドスペースが小さくなる。   Therefore, since the transmissive optical coupling device 50 does not include the outgoing light restricting portion 35a, the other outgoing light restricting portion 35b, the light receiving restricting portion 45a, and the other light receiving restricting portion 45b, the configurations of the light emitting portion 30 and the light receiving portion 40 are configured. It can be simplified. And since the protrusion of the light emission part 30 and the light-receiving part 40 decreases, the installation space when installing the transmissive | pervious optical coupling device 50 in the heating cooker 1 becomes small, and the dead space accompanying this installation becomes small.

なお、発光側側壁部4bに対する発光部30の配置は、直角をなす配置に限定されず、受光部40に対向する方向に傾けた配置としてもよい。また、受光側側壁部4cに対する受光部40の配置も、直角をなす配置に限定されず、発光部30に対向する方向に傾けた配置としてもよい。   Note that the arrangement of the light emitting unit 30 with respect to the light emitting side wall 4b is not limited to an arrangement with a right angle, and may be an arrangement inclined in a direction facing the light receiving unit 40. In addition, the arrangement of the light receiving unit 40 with respect to the light receiving side wall 4c is not limited to the arrangement at a right angle, and may be an arrangement inclined in a direction facing the light emitting unit 30.

この発明の具体的な実施形態について説明したが、この発明は上記実施形態に限定されるものではなく、この発明の範囲内で様々に変更したり適宜に組み合わせたりして、実施することができる。   Although a specific embodiment of the present invention has been described, the present invention is not limited to the above-described embodiment, and can be implemented with various modifications or appropriate combinations within the scope of the present invention. .

上記実施形態では、発光部30及び受光部40は、貯留レベルの検出のために近赤外光を用いていたが、近赤外光以外の光(例えば可視光)を用いてもよい。   In the above embodiment, the light emitting unit 30 and the light receiving unit 40 use near infrared light for detection of the storage level, but light other than near infrared light (for example, visible light) may be used.

また、上記実施形態では、受光部40からの出力値は、電圧であったが、これに限らず、例えば電流であってもよい。   Moreover, in the said embodiment, although the output value from the light-receiving part 40 was a voltage, it is not restricted to this, For example, an electric current may be sufficient.

また、上記実施形態では、容器としての給水タンク4は、透明の部材から構成されていたが、半透明の部材から構成されていてもよく、光透過性を有していればよい。同様に、液体としての水70は、透明であるが、半透明の液体であってもよく、光透過性を有していればよい。特に、水と空気のように、液体70と気体74との間での屈折率に大きな差があるほど効果がある。   Moreover, in the said embodiment, although the water supply tank 4 as a container was comprised from the transparent member, it may be comprised from the translucent member and should just have a light transmittance. Similarly, the water 70 as a liquid is transparent, but may be a translucent liquid as long as it has optical transparency. In particular, the greater the difference in refractive index between the liquid 70 and the gas 74, such as water and air, the more effective.

また、上記実施形態では、水70の貯留レベルを検出するが、クエン酸溶液を含む公知の洗浄液等の液体70の貯留レベル(液位)を検出してもよい。さらに、光透過性が非常に小さなあるいは小さな液体70、例えばインクにおいても、その貯留レベル(液位)を検出できることはいうまでもない。   Moreover, in the said embodiment, although the storage level of the water 70 is detected, you may detect the storage level (liquid level) of the liquids 70, such as a well-known washing | cleaning liquid containing a citric acid solution. Furthermore, it goes without saying that the storage level (liquid level) can be detected even in a liquid 70 having a very small or low light transmittance, such as ink.

また、上記実施形態では、容器検出部60aは、給水タンク4の装着又は脱離を透過型光結合装置50及びソフトウェアで検出するが、別に設けられたハードウェア(例えば、機械式(メカ)スイッチ)によって、給水タンク4の装着又は脱離を検出してもよい。   In the above-described embodiment, the container detection unit 60a detects the attachment or detachment of the water supply tank 4 by the transmission type optical coupling device 50 and software. However, hardware (for example, a mechanical (mechanical) switch provided separately) ) May detect whether the water supply tank 4 is attached or detached.

また、上記実施形態では、レベル検出部60bは、複数の出力値(光電流値)を加算した加算値に基づいて、貯留レベルを検出しているが、対の発光素子及び受光素子毎に個別に独立して駆動して、コンパレータで個々の出力値と貯留レベルに対応した値とを比較することで貯留レベルを検出する態様にしてもよい。   Moreover, in the said embodiment, although the level detection part 60b detects the storage level based on the addition value which added the several output value (photocurrent value), it is separately for every pair of light emitting element and light receiving element. Alternatively, the storage level may be detected by independently driving and comparing each output value with a value corresponding to the storage level by a comparator.

発光部30から出射される光が略水平に出射されて発光部30及び受光部40がほぼ同じレベルに位置するように構成されているが、これに限られない。例えば、発光部30から出射される光が水平面に対して斜め上方又は斜め下方に出射されて、発光部30及び受光部40が異なるレベルに位置するように構成されてもよい。また、対の発光素子及び受光素子を、液体70の貯留レベル(液位)を検出したい位置に配置することで、液体70の貯留レベル(液位)を自由に設定できる。   Although the light emitted from the light emitting unit 30 is emitted substantially horizontally and the light emitting unit 30 and the light receiving unit 40 are positioned at substantially the same level, the present invention is not limited thereto. For example, the light emitted from the light emitting unit 30 may be emitted obliquely upward or obliquely downward with respect to the horizontal plane, and the light emitting unit 30 and the light receiving unit 40 may be positioned at different levels. Further, the storage level (liquid level) of the liquid 70 can be freely set by arranging the pair of light emitting elements and light receiving elements at positions where the storage level (liquid level) of the liquid 70 is desired to be detected.

また、上記実施形態では、給水タンク4内の水70の貯留レベルを検出するために、3対の発光素子31,32,33及び受光素子41,42,43を用いているが、1対の発光素子及び受光素子、2対の発光素子及び受光素子、4対以上の発光素子及び受光素子を用いてもよい。   Moreover, in the said embodiment, in order to detect the storage level of the water 70 in the water supply tank 4, three pairs of light emitting elements 31, 32, and 33 and light receiving elements 41, 42, and 43 are used. A light emitting element and a light receiving element, two pairs of light emitting elements and light receiving elements, four or more pairs of light emitting elements and light receiving elements may be used.

〔第3実施形態〕
また、電子レンジのように電磁ノイズが発生する電気機器1においては、発光素子及び受光素子に入り込むノイズを低減するために、出射光規制部35aと他の出射光規制部35b及び受光規制部45aと他の受光規制部45bが、導電性を有する材料から構成されて接地された態様にしてもよい。
[Third Embodiment]
Further, in the electrical apparatus 1 that generates electromagnetic noise such as a microwave oven, in order to reduce noise entering the light emitting element and the light receiving element, the outgoing light restricting portion 35a, the other outgoing light restricting portion 35b, and the light receiving restricting portion 45a. The other light receiving regulation part 45b may be made of a conductive material and grounded.

〔第4実施形態〕
次に、第4実施形態に係る透過型光結合装置50について、図13及び図14を参照しながら説明する。第4実施形態において、上記第1実施形態での構成要素と同じ機能を有する構成要素には同じ符号を付して、重複する説明を省略する。
[Fourth Embodiment]
Next, a transmissive optical coupling device 50 according to a fourth embodiment will be described with reference to FIGS. 13 and 14. In the fourth embodiment, components having the same functions as the components in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

図13は、第4実施形態に係る透過型光結合装置50の要部を示す模式縦断面図である。図14は、図13に示した透過型光結合装置50における給水タンク4内での水70の貯留レベルと受光部40での出力値との関係を説明する図である。   FIG. 13 is a schematic longitudinal sectional view showing a main part of a transmissive optical coupling device 50 according to the fourth embodiment. FIG. 14 is a diagram for explaining the relationship between the storage level of water 70 in the water supply tank 4 and the output value at the light receiving unit 40 in the transmissive optical coupling device 50 shown in FIG.

図13に示すように、給水タンク4のコーナー部4fの底面部4dには、外側部分が斜めに切り欠かれた傾斜部4eが形成されている。傾斜部4eに対応する位置に、対の第3発光素子33及び第3受光素子43が配設されている。第3発光素子33及び第3受光素子43の上方には、下から順に、対の第2発光素子32及び第2受光素子42と、対の第1発光素子31及び第1受光素子41が配設されているが、図13では対の第1発光素子31及び第1受光素子41の図示を省略している。   As shown in FIG. 13, the bottom surface portion 4 d of the corner portion 4 f of the water supply tank 4 is formed with an inclined portion 4 e whose outer portion is cut out obliquely. A pair of third light emitting element 33 and third light receiving element 43 is disposed at a position corresponding to the inclined portion 4e. Above the third light emitting element 33 and the third light receiving element 43, a pair of the second light emitting element 32 and the second light receiving element 42, and the pair of the first light emitting element 31 and the first light receiving element 41 are arranged in order from the bottom. Although not shown, the pair of the first light emitting element 31 and the first light receiving element 41 is not shown in FIG.

第3発光素子33から出射された光は、傾斜部4eを含む給水タンク4内部を通過して第3受光素子43で受光されるが、給水タンク4内部を通過するときの光路長が、傾斜部4eによって切り欠かれた外側部分の分だけ、他の部分(高貯水段階、中貯水段階など)よりも短くなっている。水70を貯留した給水タンク4内部での光路長が短いほど、水70による光の減衰が少なくなるので、第3受光素子43での受光量が大きくなる。また、傾斜部4eによる切り欠きが底面部4dに存在する分、底面部4d側での内容積が、他の部分(高貯水段階、中貯水段階など)の内容積と比較して、小さくなっている。これらの要因により、給水タンク4の底面部4d側で貯留された水70の容積が少し変化すると、第3受光素子43での受光量が大きく変化し、出力値の変化も大きくなる。その結果、図14に示すように、底面部4d側に形成された傾斜部4eによって、出力値Fの傾きが出力値Dの傾きよりも大きくなり、出力値Fが変化しやすくなる。したがって、底面部4d側での出力値Fが変化しやすいことを利用して、給水タンク4から水70を排出するとき、底面部4d側での貯留レベルの変化をより詳細に検出でき、給水タンク4内で水70が無くなる手前の残水量をより詳細に検出できる。   The light emitted from the third light emitting element 33 passes through the inside of the water supply tank 4 including the inclined portion 4e and is received by the third light receiving element 43, but the optical path length when passing through the inside of the water supply tank 4 is inclined. The outer portion cut out by the portion 4e is shorter than other portions (high water storage stage, middle water storage stage, etc.). As the optical path length in the water supply tank 4 storing the water 70 is shorter, the attenuation of light by the water 70 is reduced, so that the amount of light received by the third light receiving element 43 is increased. Further, since the notch by the inclined portion 4e is present in the bottom surface portion 4d, the internal volume on the bottom surface portion 4d side is smaller than the internal volume of other portions (high water storage stage, medium water storage stage, etc.). ing. Due to these factors, when the volume of the water 70 stored on the bottom surface portion 4d side of the water supply tank 4 changes slightly, the amount of light received by the third light receiving element 43 changes greatly, and the change in output value also increases. As a result, as shown in FIG. 14, the slope of the output value F becomes larger than the slope of the output value D by the sloped part 4 e formed on the bottom face part 4 d side, and the output value F is likely to change. Therefore, by utilizing the fact that the output value F on the bottom surface portion 4d side is likely to change, when discharging the water 70 from the water supply tank 4, the change in the storage level on the bottom surface portion 4d side can be detected in more detail. The amount of remaining water before the water 70 disappears in the tank 4 can be detected in more detail.

上記実施形態1から実施形態4では、電気機器として加熱調理器1(具体的には、スチーム調理器)について説明したが、例えば、保湿用給水タンクを有するジャー炊飯器、液体洗剤用タンクを有する洗濯機、水フィルター用タンクを有する掃除機、製氷用給水タンクを有する冷蔵庫、加湿用給水タンクを有する空気清浄機やイオン発生器、給水タンクを有するコーヒーメーカー、スチーム発生用タンクを有するアイロンなどの、使用される液体70を貯留するための容器4を有する各種電気機器1に適用できる。また、上記用途の他に、除湿用回収タンクを有する空気清浄機やイオン発生器、水滴回収用タンクを有する食器乾燥機などの、排出された液体70を回収するための容器4を有する各種電気機器1にも適用できる。   In the first embodiment to the fourth embodiment, the heating cooker 1 (specifically, the steam cooker) has been described as the electric device. For example, the jar rice cooker having the moisture-retaining water supply tank and the liquid detergent tank are provided. Washing machines, vacuum cleaners with water filter tanks, refrigerators with ice-making water tanks, air purifiers and ion generators with humidifying water tanks, coffee makers with water tanks, irons with steam generating tanks, etc. It can be applied to various electric devices 1 having a container 4 for storing the liquid 70 to be used. In addition to the above applications, various electric appliances having a container 4 for recovering discharged liquid 70 such as an air cleaner having a dehumidifying recovery tank, an ion generator, and a tableware dryer having a water droplet recovery tank. It can also be applied to the device 1.

以上説明したように、この発明の透過型光結合装置50は、
光透過性を有する容器4に貯留された光透過性を有する液体70の貯留レベルを検出可能な透過型光結合装置50であって、
前記容器4の側壁部4bに向けて光を出射する発光部30と、
前記発光部30から出射されて前記容器4を透過した光を受光する受光部40と、
前記受光部40の受光量に基づいて、前記容器4に貯留された前記液体70の貯留レベルを検出するレベル検出部60bと、
前記発光部30から出射する光のうち、前記受光部40の方向に直進して出射される直進光を通過可能とする一方、前記液体70内を透過し当該液体70と当該液体70に接する気体74との界面71で反射する反射光となりうる非直進光を遮光する出射光規制部35aとを備えることを特徴とする。
As described above, the transmission optical coupling device 50 of the present invention is
A transmission type optical coupling device 50 capable of detecting a storage level of a light-transmitting liquid 70 stored in a light-transmitting container 4,
A light emitting unit 30 that emits light toward the side wall 4b of the container 4;
A light receiving unit 40 that receives light emitted from the light emitting unit 30 and transmitted through the container 4;
A level detection unit 60b for detecting the storage level of the liquid 70 stored in the container 4 based on the amount of light received by the light receiving unit 40;
Among the light emitted from the light emitting unit 30, the straight traveling light that travels straight in the direction of the light receiving unit 40 is allowed to pass, while the liquid 70 passes through the liquid 70 and contacts the liquid 70. And an outgoing light restricting portion 35a that shields non-straight light that can be reflected light at the interface 71 with the light source 74.

上記構成によれば、出射光規制部35aによって直進光が通過できるのに対して非直進光が遮光されるので、液体70内を透過(液面71が受発光の光軸より上の状態)し、液体70及び気体74の界面71で反射する反射光が減少して、反射光が受光部40で受光されにくくなる。このため、反射光に起因した誤検出を防止でき、容器4に貯留された液体70の貯留レベルを正確に検出できる。   According to the above configuration, the straight light can pass through the outgoing light restricting portion 35a, but the non-straight light is shielded, so that the liquid 70 is transmitted (the liquid surface 71 is above the light receiving / emitting optical axis). However, the reflected light reflected at the interface 71 between the liquid 70 and the gas 74 is reduced, and the reflected light is hardly received by the light receiving unit 40. For this reason, the erroneous detection resulting from reflected light can be prevented, and the storage level of the liquid 70 stored in the container 4 can be detected accurately.

好ましくは、上記透過型光結合装置50では、前記出射光規制部は、前記発光部30の上側に設けられた上遮光部35aである。   Preferably, in the transmissive optical coupling device 50, the outgoing light restricting portion is an upper light shielding portion 35a provided on the upper side of the light emitting portion 30.

上記構成によれば、上遮光部35aによって発光部30から液体70及び気体74の界面71方向に出射される非直進光が遮光されるので、液体70及び気体74の界面71で反射する液面反射光が減少して、液面反射光が受光部40で受光されにくくなるため、液面反射光に起因した誤検出を防止できる。   According to the above configuration, the non-straight light emitted from the light emitting unit 30 in the direction of the interface 71 between the liquid 70 and the gas 74 is shielded by the upper light shielding unit 35 a, and thus the liquid level reflected at the interface 71 between the liquid 70 and the gas 74. Since the reflected light is reduced and the liquid surface reflected light is less likely to be received by the light receiving unit 40, erroneous detection due to the liquid surface reflected light can be prevented.

好ましくは、上記透過型光結合装置50は、他の出射光規制部として、前記発光部30の下側に設けられた下遮光部35bを有する。   Preferably, the transmissive optical coupling device 50 includes a lower light-shielding portion 35b provided on the lower side of the light emitting portion 30 as another outgoing light restricting portion.

上記構成によれば、下遮光部35bによって容器4の底面部4d方向に出射される非直進光が遮光されるので、液体70が貯留された容器4の底面部4dで反射する底面反射光が減少して、底面反射光が受光部40で受光されにくくなるため、底面反射光に起因した誤検出を防止できる。   According to the above configuration, since the non-straight light emitted in the direction of the bottom surface portion 4d of the container 4 is shielded by the lower light shielding portion 35b, the bottom surface reflected light reflected by the bottom surface portion 4d of the container 4 storing the liquid 70 is reflected. Since the bottom surface reflected light is less likely to be received by the light receiving unit 40, erroneous detection due to the bottom surface reflected light can be prevented.

好ましくは、上記透過型光結合装置50では、前記容器4が所定場所に対して装着又は脱離されていることを検出する容器検出部60aをさらに備え、
前記容器検出部60aは、前記受光部40の受光量が、前記液体70の貯留レベルを検出する場合の受光量よりも大きい場合に、前記容器4の脱離を検出する。
Preferably, the transmissive optical coupling device 50 further includes a container detection unit 60a for detecting that the container 4 is attached to or detached from a predetermined place,
The container detector 60a detects the detachment of the container 4 when the amount of light received by the light receiver 40 is larger than the amount of light received when the storage level of the liquid 70 is detected.

上記構成によれば、受光部40での受光量の変化によって、容器4の装着又は脱離を検出できる。   According to the above configuration, the attachment or detachment of the container 4 can be detected by the change in the amount of light received by the light receiving unit 40.

好ましくは、上記透過型光結合装置50では、前記レベル検出部60bは、ヒステリシスを有する。   Preferably, in the transmissive optical coupling device 50, the level detection unit 60b has hysteresis.

上記構成によれば、排水や注水などによって、液体70及び気体74の間での界面71が変動した場合でも、レベル検出部60bによるレベル検出を安定化させることができる。   According to the above configuration, even when the interface 71 between the liquid 70 and the gas 74 varies due to drainage or water injection, level detection by the level detection unit 60b can be stabilized.

好ましくは、上記透過型光結合装置50では、前記受光部40は、受光量に応じたアナログ出力を行い、該アナログ出力に対してフィルタ処理又はアベレージング処理を行う。   Preferably, in the transmissive optical coupling device 50, the light receiving unit 40 performs an analog output corresponding to the amount of received light, and performs a filtering process or an averaging process on the analog output.

上記構成によれば、排水や注水などによって、液体70及び気体74の間での界面71が変動した場合でも、レベル検出部60bによるレベル検出を安定化させることができる。   According to the above configuration, even when the interface 71 between the liquid 70 and the gas 74 varies due to drainage or water injection, level detection by the level detection unit 60b can be stabilized.

また、この発明の電気機器1は、上記の透過型光結合装置50を備える。   Moreover, the electric apparatus 1 of the present invention includes the above-described transmission type optical coupling device 50.

上記構成によれば、発光部30及び受光部40を検出したい高さに配置することで、検出したい液体70の貯留レベルで出力が変化するように調整することが可能であり、電気機器1において、容器4に貯留された液体70の貯留レベルを確実に且つ安定して検出できる。   According to the above configuration, by arranging the light emitting unit 30 and the light receiving unit 40 at a height to be detected, it is possible to adjust the output to change depending on the storage level of the liquid 70 to be detected. The storage level of the liquid 70 stored in the container 4 can be detected reliably and stably.

好ましくは、上記電気機器1では、前記発光部30及び前記受光部40が、前記容器4における隣り合った側壁部4b,4cにそれぞれ配置されて、前記発光部30から出射された光が前記電気機器1に装着された前記容器4のコーナー部4fを横切るように前記透過型光結合装置50が構成され、
前記発光部30と前記受光部40とを対向配置して光学的に結合する。
Preferably, in the electric device 1, the light emitting unit 30 and the light receiving unit 40 are disposed on adjacent side wall parts 4 b and 4 c in the container 4, respectively, and light emitted from the light emitting unit 30 is the electric The transmissive optical coupling device 50 is configured to cross the corner portion 4f of the container 4 attached to the device 1,
The light emitting unit 30 and the light receiving unit 40 are disposed opposite to each other and optically coupled.

上記構成によれば、発光部30及び受光部40が容器4における対向する側壁部にそれぞれ設置される場合と比較して、発光部30から受光部40までの光路長が短くなり、光軸のずれによる光結合性の低下を防止できる。また、上記構成によれば、容器4内での液体70の有無によって、光の屈折や全反射などの光学的特性が異なり、受光部40からの出力が異なる。その結果、或る貯留レベル(液位)での液体70の有無を効果的に判定できる。   According to the said structure, compared with the case where the light emission part 30 and the light-receiving part 40 are each installed in the side wall part which opposes in the container 4, the optical path length from the light emission part 30 to the light-receiving part 40 becomes short, and an optical axis of It is possible to prevent a decrease in optical connectivity due to the shift. Further, according to the above configuration, depending on the presence or absence of the liquid 70 in the container 4, the optical characteristics such as light refraction and total reflection are different, and the output from the light receiving unit 40 is different. As a result, the presence or absence of the liquid 70 at a certain storage level (liquid level) can be effectively determined.

この発明の電気機器1は、
光透過性を有する容器4に貯留された光透過性を有する液体70の貯留レベルを検出可能な透過型光結合装置50を備える電気機器1であって、
前記容器4の側壁部4bに向けて光を出射する発光部30と、
前記発光部30から出射されて前記容器4を透過した光を受光する受光部40と、
前記受光部40の受光量に基づいて、前記容器4に貯留された前記液体70の貯留レベルを検出するレベル検出部60bとを備え、
前記発光部30及び前記受光部40が、前記容器4における隣り合った側壁部4b,4cにそれぞれ配置されて、前記発光部30から出射された光が前記電気機器1に装着された前記容器4のコーナー部4fを横切るように前記透過型光結合装置50が構成され、
前記発光部30から出射される光のうちの発光指向角Pの発光エッジ光Lpと前記受光部40で受光される光の受光指向角Qの受光エッジ部Lqとが、光学的に結合することを特徴とする。
The electrical device 1 of the present invention is
An electrical apparatus 1 including a transmissive optical coupling device 50 capable of detecting a storage level of a light-transmitting liquid 70 stored in a light-transmitting container 4,
A light emitting unit 30 that emits light toward the side wall 4b of the container 4;
A light receiving unit 40 that receives light emitted from the light emitting unit 30 and transmitted through the container 4;
A level detection unit 60b for detecting the storage level of the liquid 70 stored in the container 4 based on the amount of light received by the light receiving unit 40;
The container 4 in which the light emitting unit 30 and the light receiving unit 40 are respectively disposed on adjacent side wall parts 4 b and 4 c in the container 4, and light emitted from the light emitting unit 30 is attached to the electric device 1. The transmissive optical coupling device 50 is configured to cross the corner portion 4f of
Of the light emitted from the light emitting unit 30, the light emitting edge light Lp having the light emitting directivity angle P and the light receiving edge portion Lq having the light receiving directivity angle Q of the light received by the light receiving unit 40 are optically coupled. It is characterized by.

上記構成によれば、透過型光結合装置50が出射光規制部35aと他の出射光規制部35b及び受光規制部45aと他の受光規制部45bを有しないことにより、発光部30及び受光部40の構成を簡略化することができる。そして、発光部30及び受光部40の出っ張りが少なくなるので、透過型光結合装置50を電気機器1に設置するときの設置スペースが小さくなり、該設置に伴うデッドスペースが小さくなる。   According to the above configuration, since the transmissive optical coupling device 50 does not include the outgoing light restricting portion 35a, the other outgoing light restricting portion 35b, the light receiving restricting portion 45a, and the other light receiving restricting portion 45b, the light emitting portion 30 and the light receiving portion. Forty configurations can be simplified. And since the protrusion of the light emission part 30 and the light-receiving part 40 decreases, the installation space when installing the transmissive | pervious optical coupling device 50 in the electric equipment 1 becomes small, and the dead space accompanying this installation becomes small.

好ましくは、上記電気機器1では、前記発光部30及び前記受光部40は、前記容器4の深さ方向に配置された複数の発光素子31,32,33及び複数の受光素子41,42,43をそれぞれ有し、
前記発光部30での前記複数の発光素子31,32,33の全てを発光させるとともに、前記受光部40は、前記複数の受光素子41,42,43によって生成された各光電流値を加算した加算値に対応した出力値を出力する。
Preferably, in the electric device 1, the light emitting unit 30 and the light receiving unit 40 include a plurality of light emitting elements 31, 32, 33 and a plurality of light receiving elements 41, 42, 43 arranged in the depth direction of the container 4. Each with
The light emitting unit 30 causes all of the plurality of light emitting elements 31, 32, and 33 to emit light, and the light receiving unit 40 adds the respective photocurrent values generated by the plurality of light receiving elements 41, 42, and 43. The output value corresponding to the added value is output.

上記構成によれば、複数の発光素子31,32,33と複数の受光素子41,42,43とを個別に独立して駆動して出力する場合よりも、処理回路を簡略化できる。   According to the above configuration, the processing circuit can be simplified as compared with the case where the plurality of light emitting elements 31, 32, 33 and the plurality of light receiving elements 41, 42, 43 are individually driven and output.

好ましくは、上記電気機器1では、前記容器4が所定場所に装着又は脱離されているのを検出する容器検出部60aと、
動作初期において前記容器検出部60aによって前記容器4の脱離が検出されたときに前記受光部40が受光した受光量を初期受光量として記憶する記憶部22と、
前記容器検出部60aによって前記容器4の脱離が検出されたときに前記受光部40が受光した受光量と、前記記憶部22に記憶された前記初期受光量とを比較して、前記初期受光量に対する前記受光量の低下が所定値よりも大きいか否かを検出する受光量低下検出部60cと、
前記初期受光量に対する前記受光量の低下が所定値よりも大きい場合に、前記受光量の低下を通知する通知部23とを備える。
Preferably, in the electrical device 1, a container detection unit 60a that detects that the container 4 is attached or detached at a predetermined location;
A storage unit 22 for storing the received light amount received by the light receiving unit 40 when the container detection unit 60a detects the detachment of the container 4 in the initial stage of operation as an initial received light amount;
The light receiving amount received by the light receiving unit 40 when the container detecting unit 60a detects the detachment of the container 4 and the initial light receiving amount stored in the storage unit 22 are compared, and the initial light receiving A received light amount decrease detection unit 60c for detecting whether or not the decrease in the received light amount with respect to the amount is greater than a predetermined value;
And a notification unit for notifying the decrease in the amount of received light when the decrease in the amount of received light with respect to the initial amount of received light is greater than a predetermined value.

上記構成によれば、受光量の低下が動作初期と比較して所定値よりも大きくなった場合に通知されるので、発光部30及び受光部40の劣化や発光部30及び受光部40に設けられたレンズの汚れ等を検出できる。   According to the above configuration, since a notification is given when the decrease in the amount of received light is greater than a predetermined value compared to the initial stage of operation, the light emitting unit 30 and the light receiving unit 40 are deteriorated or provided in the light emitting unit 30 and the light receiving unit 40. It is possible to detect dirt on the lens.

1 加熱調理器(電気機器)
1a 本体ケーシング
2 加熱室
4 給水タンク(容器)
4a 蓋
4b 発光側側壁部
4c 受光側側壁部
4d 底面部
4f コーナー部
4e 傾斜部
22 記憶部
23 通知部
30 発光部
31 第1発光素子
32 第2発光素子
33 第3発光素子
34 発光基板
35a 上遮光部(出射光規制部)
35b 下遮光部(他の出射光規制部)
35c 出射開口
35d 連結遮光部
40 受光部
41 第1受光素子
42 第2受光素子
43 第3受光素子
44 受光基板
45a 上遮光部(受光規制部)
45b 下遮光部(他の受光規制部)
45c 受光開口
50 透過型光結合装置
52 支持体
53 発光部スペーサ
54 受光部スペーサ
60 制御装置
60a 容器検出部
60b レベル検出部
60c 受光量低下検出部
70 水(液体)
71 液面(界面)
72 底界面(界面)
74 空気(気体)
P 発光指向角
Q 受光指向角
La 中央光
Lp 発光エッジ光
Lq 受光エッジ部
1 Heating cooker (electric equipment)
1a Body casing 2 Heating chamber 4 Water supply tank (container)
4a Lid 4b Light-emitting side wall 4c Light-receiving side wall 4d Bottom 4f Corner 4e Inclined 22 Storage 23 Notification unit 30 Light-emitting unit 31 First light-emitting element 32 Second light-emitting element 33 Third light-emitting element 34 Light-emitting substrate 35a Shading part (emitted light regulation part)
35b Lower light shielding part (other outgoing light regulating part)
35c Outgoing aperture 35d Connection light shielding part 40 Light receiving part 41 First light receiving element 42 Second light receiving element 43 Third light receiving element 44 Light receiving substrate 45a Upper light shielding part (light receiving restriction part)
45b Lower light shielding part (other light receiving regulation part)
45c Light receiving opening 50 Transmission type optical coupling device 52 Support body 53 Light emitting portion spacer 54 Light receiving portion spacer 60 Control device 60a Container detecting portion 60b Level detecting portion 60c Light receiving amount decrease detecting portion 70 Water (liquid)
71 Liquid level (interface)
72 Bottom interface (interface)
74 Air (gas)
P Light emitting directivity angle Q Light receiving directivity angle La Center light Lp Light emitting edge light Lq Light receiving edge portion

Claims (11)

光透過性を有する容器に貯留された光透過性を有する液体の貯留レベルを検出可能な透過型光結合装置であって、
前記容器の側壁部に向けて光を出射する発光部と、
前記発光部から出射されて前記容器を透過した光を受光する受光部と、
前記受光部の受光量に基づいて、前記容器に貯留された前記液体の貯留レベルを検出するレベル検出部と、
前記発光部から出射する光のうち、前記受光部の方向に直進して出射される直進光を通過可能とする一方、前記液体内を透過し当該液体と当該液体に接する気体との界面で反射する反射光となりうる非直進光を遮光する出射光規制部とを備えることを特徴とする透過型光結合装置。
A transmission type optical coupling device capable of detecting a storage level of a liquid having optical transparency stored in a container having optical transparency,
A light emitting part for emitting light toward the side wall part of the container;
A light receiving unit that receives light emitted from the light emitting unit and transmitted through the container;
Based on the amount of light received by the light receiving unit, a level detection unit that detects a storage level of the liquid stored in the container;
Among the light emitted from the light emitting part, the straight light emitted straightly in the direction of the light receiving part is allowed to pass, while being reflected at the interface between the liquid and the gas in contact with the liquid. A transmission type optical coupling device comprising: an outgoing light restricting unit that blocks non-straight light that can be reflected light.
前記出射光規制部は、前記発光部の上側に設けられた上遮光部であることを特徴とする、請求項1に記載の透過型光結合装置。   2. The transmissive optical coupling device according to claim 1, wherein the outgoing light restricting portion is an upper light shielding portion provided on an upper side of the light emitting portion. 他の出射光規制部として、前記発光部の下側に設けられた下遮光部を有することを特徴とする、請求項1又は請求項2に記載の透過型光結合装置。   The transmissive optical coupling device according to claim 1, further comprising a lower light-shielding portion provided below the light-emitting portion as another outgoing light regulating portion. 前記容器が所定場所に対して装着又は脱離されていることを検出する容器検出部をさらに備え、
前記容器検出部は、前記受光部の受光量が、前記液体の貯留レベルを検出する場合の受光量よりも大きい場合に、前記容器の脱離を検出することを特徴とする、請求項1から請求項3のいずれか1項に記載の透過型光結合装置。
A container detection unit for detecting that the container is attached to or detached from the predetermined place;
The container detection unit detects the detachment of the container when the amount of light received by the light receiving unit is larger than the amount of light received when the storage level of the liquid is detected. The transmissive optical coupling device according to claim 3.
前記レベル検出部は、ヒステリシスを有することを特徴とする請求項1から請求項4のいずれか1項に記載の透過型光結合装置。   The transmissive optical coupling device according to claim 1, wherein the level detection unit has hysteresis. 前記受光部は、受光量に応じたアナログ出力を行い、該アナログ出力に対してフィルタ処理又はアベレージング処理を行うことを特徴とする、請求項1から請求項4のいずれか1項に記載の透過型光結合装置。   The said light-receiving part performs the analog output according to the light reception amount, and performs a filter process or an averaging process with respect to this analog output, The Claim 1 characterized by the above-mentioned. Transmission type optical coupling device. 請求項1から請求項6のいずれか1項に記載の透過型光結合装置を備える電気機器。   An electric apparatus comprising the transmissive optical coupling device according to any one of claims 1 to 6. 前記発光部及び前記受光部が、前記容器における隣り合った側壁部にそれぞれ配置されて、前記発光部から出射された光が前記電気機器に装着された前記容器のコーナー部を横切るように前記透過型光結合装置が構成され、
前記発光部と前記受光部とを対向配置して光学的に結合することを特徴とする、請求項7に記載の電気機器。
The light emitting part and the light receiving part are respectively disposed on adjacent side wall parts of the container, and the light emitted from the light emitting part is transmitted through the corner part of the container mounted on the electric device. Type optical coupling device is configured,
The electric device according to claim 7, wherein the light emitting unit and the light receiving unit are disposed to face each other and optically coupled.
光透過性を有する容器に貯留された光透過性を有する液体の貯留レベルを検出可能な透過型光結合装置を備える電気機器であって、
前記容器の側壁部に向けて光を出射する発光部と、
前記発光部から出射されて前記容器を透過した光を受光する受光部と、
前記受光部の受光量に基づいて、前記容器に貯留された前記液体の貯留レベルを検出するレベル検出部とを備え、
前記発光部及び前記受光部が、前記容器における隣り合った側壁部にそれぞれ配置されて、前記発光部から出射された光が前記電気機器に装着された前記容器のコーナー部を横切るように前記透過型光結合装置が構成され、
前記発光部から出射される光のうちの発光指向角の発光エッジ光と前記受光部で受光される光の受光指向角の受光エッジ部とが、光学的に結合することを特徴とする電気機器。
An electrical apparatus including a transmissive optical coupling device capable of detecting a storage level of a light-transmitting liquid stored in a light-transmitting container,
A light emitting part for emitting light toward the side wall part of the container;
A light receiving unit that receives light emitted from the light emitting unit and transmitted through the container;
A level detection unit that detects a storage level of the liquid stored in the container based on the amount of light received by the light receiving unit;
The light emitting part and the light receiving part are respectively disposed on adjacent side wall parts of the container, and the light emitted from the light emitting part is transmitted through the corner part of the container mounted on the electric device. Type optical coupling device is configured,
An electric device characterized in that light emission edge light having a light emission directivity angle out of light emitted from the light emission portion and a light reception edge portion having a light reception directivity angle of light received by the light reception portion are optically coupled. .
前記発光部及び前記受光部は、前記容器の深さ方向に配置された複数の発光素子及び複数の受光素子をそれぞれ有し、
前記発光部での前記複数の発光素子の全てを発光させるとともに、前記受光部は、前記複数の受光素子によって生成された各光電流値を加算した加算値に対応した出力値を出力することを特徴とする、請求項7又は請求項9に記載の電気機器。
The light emitting part and the light receiving part respectively have a plurality of light emitting elements and a plurality of light receiving elements arranged in the depth direction of the container,
The light emitting unit emits all of the plurality of light emitting elements, and the light receiving unit outputs an output value corresponding to an added value obtained by adding the photocurrent values generated by the plurality of light receiving elements. The electrical device according to claim 7, wherein the electrical device is characterized.
前記容器が所定場所に装着又は脱離されているのを検出する容器検出部と、
動作初期において前記容器検出部によって前記容器の脱離が検出されたときに前記受光部が受光した受光量を初期受光量として記憶する記憶部と、
前記容器検出部によって前記容器の脱離が検出されたときに前記受光部が受光した受光量と、前記記憶部に記憶された前記初期受光量とを比較して、前記初期受光量に対する前記受光量の低下が所定値よりも大きいか否かを検出する受光量低下検出部と、
前記初期受光量に対する前記受光量の低下が所定値よりも大きい場合に、前記受光量の低下を通知する通知部とを備えることを特徴とする、請求項7又は請求項9に記載の電気機器。
A container detection unit for detecting that the container is attached to or detached from the predetermined place;
A storage unit that stores the received light amount received by the light receiving unit as an initial received light amount when detachment of the container is detected by the container detection unit in an initial operation;
The received light amount received by the light receiving unit when the container detecting unit detects the detachment of the container and the initial received light amount stored in the storage unit, and the received light amount with respect to the initial received light amount A received light amount decrease detection unit for detecting whether or not the decrease in the amount is greater than a predetermined value;
The electric device according to claim 7, further comprising a notification unit that notifies the decrease in the amount of received light when the decrease in the amount of received light with respect to the initial amount of received light is greater than a predetermined value. .
JP2016136199A 2016-07-08 2016-07-08 Transmission type optical coupling device and electrical equipment equipped with the device Active JP6778034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016136199A JP6778034B2 (en) 2016-07-08 2016-07-08 Transmission type optical coupling device and electrical equipment equipped with the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016136199A JP6778034B2 (en) 2016-07-08 2016-07-08 Transmission type optical coupling device and electrical equipment equipped with the device

Publications (2)

Publication Number Publication Date
JP2018004605A true JP2018004605A (en) 2018-01-11
JP6778034B2 JP6778034B2 (en) 2020-10-28

Family

ID=60946183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016136199A Active JP6778034B2 (en) 2016-07-08 2016-07-08 Transmission type optical coupling device and electrical equipment equipped with the device

Country Status (1)

Country Link
JP (1) JP6778034B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270881A (en) * 1985-05-24 1986-12-01 Shimadzu Corp Liquid detector
JPH08271320A (en) * 1995-03-31 1996-10-18 Tsuuden:Kk Method for detecting liquid in pipe or vessel, and device therefor
JPH09133568A (en) * 1995-11-08 1997-05-20 Kansai Electric Power Co Inc:The Liquid level indicator
JPH09178535A (en) * 1995-12-01 1997-07-11 Alcon Lab Inc Method and apparatus for detecting liquid level
JPH112554A (en) * 1997-06-11 1999-01-06 Opt Techno:Kk Liquid level detecting element
JP2000329609A (en) * 1999-05-24 2000-11-30 Tdk Corp Liquid detector
US20080000485A1 (en) * 2006-06-30 2008-01-03 David Lloyd Williams System and method to zero chambers in a surgical cassette
US20080266565A1 (en) * 2007-04-27 2008-10-30 Mcconica Charles H Device and method for measuring ink levels in a container
JP2009112331A (en) * 2007-11-01 2009-05-28 Mitsubishi Electric Corp Steam recovering device and cooker with steam recovering device
JP2012011230A (en) * 2011-09-29 2012-01-19 Mitsubishi Electric Corp Steam recovering device, cooking tool, and water level sensing device
JP2012145477A (en) * 2011-01-13 2012-08-02 Panasonic Corp Non-contact fluid detection configuration
JP2014006171A (en) * 2012-06-26 2014-01-16 Panasonic Corp Non-contact liquid detection structure

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270881A (en) * 1985-05-24 1986-12-01 Shimadzu Corp Liquid detector
JPH08271320A (en) * 1995-03-31 1996-10-18 Tsuuden:Kk Method for detecting liquid in pipe or vessel, and device therefor
JPH09133568A (en) * 1995-11-08 1997-05-20 Kansai Electric Power Co Inc:The Liquid level indicator
JPH09178535A (en) * 1995-12-01 1997-07-11 Alcon Lab Inc Method and apparatus for detecting liquid level
JPH112554A (en) * 1997-06-11 1999-01-06 Opt Techno:Kk Liquid level detecting element
JP2000329609A (en) * 1999-05-24 2000-11-30 Tdk Corp Liquid detector
US20080000485A1 (en) * 2006-06-30 2008-01-03 David Lloyd Williams System and method to zero chambers in a surgical cassette
US20080266565A1 (en) * 2007-04-27 2008-10-30 Mcconica Charles H Device and method for measuring ink levels in a container
JP2009112331A (en) * 2007-11-01 2009-05-28 Mitsubishi Electric Corp Steam recovering device and cooker with steam recovering device
JP2012145477A (en) * 2011-01-13 2012-08-02 Panasonic Corp Non-contact fluid detection configuration
JP2012011230A (en) * 2011-09-29 2012-01-19 Mitsubishi Electric Corp Steam recovering device, cooking tool, and water level sensing device
JP2014006171A (en) * 2012-06-26 2014-01-16 Panasonic Corp Non-contact liquid detection structure

Also Published As

Publication number Publication date
JP6778034B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
KR20150049013A (en) Humidifier
EP2083669A1 (en) Dishwasher with an alarm device
KR20150075489A (en) Humidifier
KR20110127183A (en) Turbidity sensor for an electric household appliance
JP5328832B2 (en) Steam recovery apparatus and cooking device provided with the steam recovery apparatus
JP2018004605A (en) Transparency type optical coupling device and electric apparatus with the same
EP2411773B1 (en) Apparatus for detecting the level of a liquid, a gel or a powder in a container
WO2015190475A1 (en) Cooker
EP3433411B1 (en) Household washing machine
JP4964348B2 (en) Steam recovery device, cooking device, and water level detection device
WO2018065202A1 (en) A household appliance with a control panel assembly
JP4615493B2 (en) Cooker
CN112534192B (en) Air conditioner
WO2013098004A1 (en) Oven with optical detection means
JP5441645B2 (en) Tank container and rice cooker equipped with this tank container
JP2011129254A (en) Cooker
CN109556155B (en) Oil smoke detection device for range hood and range hood
JP7223416B2 (en) heating cooker
JP2005043019A (en) Heating apparatus
JP4964189B2 (en) Steam recovery device, cooking device, and water level detection device
JP7223417B2 (en) heating cooker
JP2015064981A (en) Heating cooker
CN220541169U (en) Temperature measurement module and range hood
US20240197142A1 (en) A sensor assembly for sensing the turbidity of a cleaning medium in a cleaning appliance
CN215650941U (en) Respirator and dish washing machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200319

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200330

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200805

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200805

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200818

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201009

R150 Certificate of patent or registration of utility model

Ref document number: 6778034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150