JP2018004323A - Immunological measurement method which makes dextran coexist - Google Patents
Immunological measurement method which makes dextran coexist Download PDFInfo
- Publication number
- JP2018004323A JP2018004323A JP2016127926A JP2016127926A JP2018004323A JP 2018004323 A JP2018004323 A JP 2018004323A JP 2016127926 A JP2016127926 A JP 2016127926A JP 2016127926 A JP2016127926 A JP 2016127926A JP 2018004323 A JP2018004323 A JP 2018004323A
- Authority
- JP
- Japan
- Prior art keywords
- dextran
- measurement
- antigen
- antibody
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Peptides Or Proteins (AREA)
Abstract
Description
本発明は、デキストランを共存させた免疫学的測定方法に関する。より詳しくは、抗原抗体反応を促進する水溶性高分子の抗原抗体反応液への添加に関する。 The present invention relates to an immunoassay method in which dextran coexists. More specifically, it relates to the addition of a water-soluble polymer that promotes an antigen-antibody reaction to an antigen-antibody reaction solution.
抗原抗体反応を利用した生体分子の測定は、研究分野だけでなく、検査目的の医療機器の一部や、簡易診断キットなどに幅広く利用されている。医療機器での利用は、ELISA法やEIA法、ラテックス凝集法、イムノクロマト法など多岐に渡る。これらの手法において、抗原抗体反応を起こす場は、主として抗原と抗体が含まれる水溶液中であり、それぞれの分子が分散した溶液中で、一定の結合定数をもつ組み合わせでのみ結合する、即ち抗原抗体反応を起こすことで測定の特異性が得られる。即ち、医療機器の性能を上げるためには、抗原抗体反応の反応効率を上昇させることが重要となる。これまでに、より高結合能の抗体の創出や、抗体のアミノ酸配列の改変等により、抗体の結合性を上昇させる試みは数多くなされ、多くの医療機器の高性能化に寄与している。また、抗原抗体反応の効率を上昇させる試みとして、非特異の反応を抑えることで相対的に特異的な抗原抗体反応の精度を上昇させることも重要であり、その意味で抗体のFab化などに代表される抗体の非特異結合に寄与する部分の除去や、アミノ酸残基の化学修飾、置換などが行われている。同時に、抗原抗体反応を起こす水溶液についても、その化学的な組成を適切にすることが重要であると考えられており、緩衝液の種類やpH、塩濃度などがそれぞれの抗体抗原反応に合わせて組成が調合される。このような組成の最適化は、通常、生体内の環境を模倣した組成が用いられるが、特に一般化した法則性は無く、目的とする抗体と抗原の組み合わせに合わせて調整がなされる。 Measurement of biomolecules using antigen-antibody reaction is widely used not only in the research field but also in some medical devices for testing purposes and simple diagnostic kits. There are a wide variety of uses in medical equipment such as ELISA, EIA, latex agglutination, and immunochromatography. In these methods, the antigen-antibody reaction occurs mainly in an aqueous solution containing the antigen and the antibody, and in the solution in which the respective molecules are dispersed, the antigen-antibody reaction binds only with a combination having a certain binding constant. Specificity of the measurement is obtained by causing a reaction. That is, in order to improve the performance of the medical device, it is important to increase the reaction efficiency of the antigen-antibody reaction. To date, many attempts have been made to increase antibody binding by creating antibodies with higher binding ability, modifying antibody amino acid sequences, and the like, contributing to higher performance of many medical devices. As an attempt to increase the efficiency of the antigen-antibody reaction, it is also important to increase the accuracy of the relatively specific antigen-antibody reaction by suppressing non-specific reactions. The removal of a portion that contributes to non-specific binding of a representative antibody, chemical modification or substitution of an amino acid residue, and the like are performed. At the same time, regarding the aqueous solution that causes antigen-antibody reaction, it is considered important to have an appropriate chemical composition, and the buffer type, pH, salt concentration, etc. are adjusted to suit each antibody-antigen reaction. The composition is formulated. For such optimization of the composition, a composition imitating the environment in the living body is usually used, but there is no generalized rule, and adjustment is made according to the target antibody and antigen combination.
これまでに、抗原抗体反応が起きる場である反応液については、さまざまな分子が利用されてきた。特に抗体を含めて生体由来の分子は親水性の表面を持つため、糖類などの親水性分子が利用されることが多い。 Until now, various molecules have been used for the reaction solution where antigen-antibody reaction occurs. In particular, since molecules derived from living bodies including antibodies have a hydrophilic surface, hydrophilic molecules such as saccharides are often used.
特許文献1には、ラテックス凝集法において非特異結合や担体間の凝集を抑制し、抗原添加時の凝集促進効果の高い免疫測定試薬および免疫測定方法を提供するために、プルランを含有する免疫測定試薬を提示している。しかしながら、プルランと類似した水溶性多糖類であるデキストランには、プルランのような効果は見られなかったことが記載されている。また特許文献2には、比濁法などの均一系の免疫測定方法について記載があり、PEGなどの非糖類の水溶性高分子が使われることもあるが、これらの高分子の添加によって非特異的な反応も促進することや、粘度の上昇による弊害もあると記載されている。特許文献3には、免疫化学反応において、反応液中にデキストランを共存させ抗原抗体反応を促進させることが記載されているが、デキストランについては、一定範囲の分子量を分画して用いても各種分子量のものを混合して用いてもその効果は変わらないとしている。 Patent Document 1 discloses an immunoassay containing pullulan in order to provide an immunoassay reagent and an immunoassay method that suppress non-specific binding and aggregation between carriers in a latex agglutination method and have a high aggregation promoting effect upon antigen addition. Reagents are presented. However, it is described that dextran, which is a water-soluble polysaccharide similar to pullulan, did not show the effect of pullulan. Patent Document 2 describes a homogeneous immunoassay method such as a turbidimetric method, and non-saccharide water-soluble polymers such as PEG are sometimes used. It also describes that there is a harmful effect due to an increase in viscosity. Patent Document 3 describes that in an immunochemical reaction, dextran is allowed to coexist in a reaction solution to promote an antigen-antibody reaction. However, for dextran, various molecular weights in a certain range may be fractionated and used. It is said that the effect does not change even if the molecular weight is mixed.
即ち、体外診断用医薬品のような測定の正確性が求められるような測定試薬の場合には、免疫反応の反応液の組成は、測定精度に与える影響を考慮して決定する必要がある。ラテックス凝集法や比濁法などの均一系免疫測定方法について、反応液への親水性高分子の添加による効果が示されている一方で、ELISA法などの固相用担体を用いる不均一系の免疫測定方法での親水性高分子の添加による抗原抗体反応の促進効果については不明である。 In other words, in the case of a measurement reagent that requires measurement accuracy such as an in vitro diagnostic drug, the composition of the reaction solution of the immune reaction needs to be determined in consideration of the influence on the measurement accuracy. For homogeneous immunoassay methods such as latex agglutination and turbidimetric methods, the effect of adding hydrophilic polymers to the reaction solution has been demonstrated, while heterogeneous systems using solid phase carriers such as the ELISA method have been shown. The effect of promoting antigen-antibody reaction by adding hydrophilic polymer in the immunoassay method is unknown.
本発明は、抗原抗体反応利用した免疫学的測定法において、測定性能を向上するために抗原抗体反応を向上させる分子を用いた測定方法を提供することを目的とする。 An object of the present invention is to provide a measurement method using a molecule that improves an antigen-antibody reaction in order to improve measurement performance in an immunological measurement method using an antigen-antibody reaction.
本発明者は上記課題を解決するために鋭意検討した結果、水溶性高分子であるデキストランが、非特異的な反応をほとんど促進することなく抗原抗体反応を促進することを見いだし、さらには測定精度にほとんど影響を及ぼさない濃度を見いだしたことにより、本発明を完成するに至った。
即ち本発明は、以下のとおりである。
(1) 試料中の測定対象物質を免疫学的方法によって測定する免疫学的測定方法において、平均分子量60,000ダルトン以上のデキストランを測定系に共存させて測定する前記方法。
(2) デキストランの平均分子量が200,000ダルトン以上である、(1)に記載の方法。
(3) 共存させるデキストランの濃度が15g/L以上、25g/L以下である、(1)又は(2)に記載の方法。
(4) 共存させるデキストランの濃度が15g/L以上、20g/L以下である、(1)から(3)いずれかに記載の方法。
As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that dextran, which is a water-soluble polymer, promotes an antigen-antibody reaction almost without promoting nonspecific reaction, and further has a measurement accuracy. As a result, the present invention has been completed.
That is, the present invention is as follows.
(1) In the immunological measurement method for measuring a substance to be measured in a sample by an immunological method, the dextran having an average molecular weight of 60,000 daltons or more is allowed to coexist in a measurement system.
(2) The method according to (1), wherein the average molecular weight of dextran is 200,000 daltons or more.
(3) The method according to (1) or (2), wherein the concentration of dextran to be coexisted is 15 g / L or more and 25 g / L or less.
(4) The method according to any one of (1) to (3), wherein the concentration of dextran to coexist is 15 g / L or more and 20 g / L or less.
以下に本発明を更に詳細に説明する。 The present invention is described in further detail below.
本発明において、試料としては特に限定はなく、例えばヒトの体液等があげられ、具体的には血液、血清、血漿、尿、腹水等があげられる。また測定対象物質にも特に限定はなく、例えば抗原、ハプテン、抗体、各種診断マーカー(例えばヒトリボヌクレアーゼ1)などがあげられる。また免疫学的方法によって測定する免疫学的測定方法とは、抗原抗体反応利用した測定法である。特に限定されるものではないが、ELISA法やEIA法、ラテックス凝集法、イムノクロマト法などがあげられ、少なくとも一つの抗原抗体反応が関与する測定法を指す。またサンドイッチ法や競合法等があげられる。本発明では、例えばヒトリボヌクレアーゼ1と抗ヒトリボヌクレアーゼ1抗体間の反応があげられ、また抗ヒトリボヌクレアーゼ1抗体がMrhRN0614であることが好ましい。 In the present invention, the sample is not particularly limited, and examples thereof include human body fluids, and specific examples include blood, serum, plasma, urine, and ascites. There are no particular limitations on the substance to be measured, and examples include antigens, haptens, antibodies, and various diagnostic markers (for example, human ribonuclease 1). Moreover, the immunological measurement method measured by an immunological method is a measurement method using an antigen-antibody reaction. Although not particularly limited, ELISA method, EIA method, latex agglutination method, immunochromatography method and the like are mentioned, and it refers to a measurement method involving at least one antigen-antibody reaction. Moreover, a sandwich method, a competitive method, etc. are mentioned. In the present invention, for example, the reaction between human ribonuclease 1 and anti-human ribonuclease 1 antibody can be mentioned, and the anti-human ribonuclease 1 antibody is preferably MrhRN0614.
本発明ではこのような測定系にデキストランを共存させる。測定系は抗原抗体反応が溶液中で行われることが多いので、その反応液中にデキストランを共存させればよい。本発明において用いられるデキストランは、平均分子量が60,000ダルトン以上である。また平均分子量が200,000ダルトン以上であることが好ましい。デキストランの平均分子量の上限には特に限定はないが、好ましくは約1,000,000である。本発明において測定系中に共存させるデキストラン濃度は特に限定されないが、15〜25g/Lであることが好ましく、15〜20g/Lがさらに好ましい。 In the present invention, dextran coexists in such a measurement system. In the measurement system, the antigen-antibody reaction is often carried out in a solution, so dextran may be allowed to coexist in the reaction solution. The dextran used in the present invention has an average molecular weight of 60,000 daltons or more. The average molecular weight is preferably 200,000 daltons or more. The upper limit of the average molecular weight of dextran is not particularly limited, but is preferably about 1,000,000. In the present invention, the concentration of dextran coexisting in the measurement system is not particularly limited, but is preferably 15 to 25 g / L, and more preferably 15 to 20 g / L.
本発明により、抗原抗体反応が促進され、免疫反応に基づく測定において感度の良い測定が可能になる。この効果によって、より少ない量の試料の測定や、より短時間での測定が可能になる。 According to the present invention, an antigen-antibody reaction is promoted, and a highly sensitive measurement is possible in a measurement based on an immune reaction. This effect enables measurement of a smaller amount of sample and measurement in a shorter time.
以下、実施例により本発明をさらに詳細に説明するが、本発明は実施例により限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by an Example.
以下の実施例においては、免疫測定装置として全自動エンザイムイムノアッセイ装置(AIA−CL2400、東ソー社製)を利用し、免疫測定用試薬は、特開2016−42083号公報に記載の抗RNase1抗体を使用した総RNase1量測定試薬を以下に示した方法で調製して使用した。測定は、2ステップ法により各測定を行った。 In the following examples, a fully automatic enzyme immunoassay device (AIA-CL2400, manufactured by Tosoh Corporation) is used as an immunoassay device, and an anti-RNase1 antibody described in JP-A-2006-42083 is used as an immunoassay reagent. The total RNase 1 amount measuring reagent prepared was used by the method shown below. Each measurement was performed by a two-step method.
RrhRN203抗体固定化磁性微粒子は、JSR社製磁性微粒子(MX200/Carboxyl)の表面に露出するカルボキシル基をEDCで活性化し、活性化されたアミノ基を介して磁性微粒子の乾燥重量1μgに対して4ngのRrhRN203抗体を共有結合させることで調製した。磁性微粒子は抗体を固定化した後に、ブロッキング処理を行った。2つの反応槽を持つ磁力透過性の容器の第1反応槽に乾燥重量相当で50μgの磁性微粒子を懸濁した緩衝液(20mM TrisHCl(pH 7.4),150mM NaCl,1%BSA,5%FBS,5%マンニトール,5%スクロース)を入れ、もう一方の第2反応槽には、15ngのアルカリ性フォスファターゼ標識を施したMrhRN0614抗体を含む緩衝液(20mM TrisHCl(pH 7.4),150mM NaCl,1%BSA,5%FBS,5%スクロース)を加えて、凍結乾燥した。第2反応槽に加える抗体を含む緩衝液には、以下の実施例で必要に応じて水溶性高分子を0.5%−2.5%の範囲で添加した。 The RrhRN203 antibody-immobilized magnetic fine particles are obtained by activating carboxyl groups exposed on the surface of magnetic fine particles (MX200 / Carboxyl) manufactured by JSR with EDC, and 4 ng with respect to 1 μg of dry weight of the magnetic fine particles via the activated amino groups. Of RrhRN203 antibody was prepared by covalent binding. The magnetic fine particles were subjected to blocking treatment after the antibody was immobilized. A buffer solution (20 mM TrisHCl (pH 7.4), 150 mM NaCl, 1% BSA, 5%) in which magnetic fine particles of 50 μg are suspended in a first reaction tank of a magnetically permeable container having two reaction tanks in a dry weight equivalent. FBS, 5% mannitol, 5% sucrose) was added, and the other second reaction tank contained a buffer containing 20 ng of alkaline phosphatase labeled MrhRN0614 antibody (20 mM TrisHCl (pH 7.4), 150 mM NaCl, 1% BSA, 5% FBS, 5% sucrose) was added and lyophilized. In the buffer solution containing the antibody added to the second reaction tank, a water-soluble polymer was added in the range of 0.5% to 2.5% as necessary in the following examples.
この試薬と市販の全自動エンザイムイムノアッセイ装置(AIA−CL2400、東ソー社製)を用いて、試料中に含まれるヒトリボヌクレアーゼ1量を測定した。その測定原理は以下の通りである。即ち、第1反応槽に測定サンプル50μLを加え、磁性微粒子を撹拌しながら37℃で5分間反応させた。洗浄液で磁性微粒子を洗浄した後に、溶解液で可溶化したアルカリ性フォスファターゼ標識抗体を含む緩衝液を第2反応槽から50μL分を第1反応槽に移し、更に磁性微粒子を撹拌しながら37℃で3分間反応させた。反応後、B/F分離操作を行い、遊離の標識抗体を分離除去し、アルカリフォスファターゼ活性を測定する化学発光基質を使用して検出した。 Using this reagent and a commercially available fully automatic enzyme immunoassay apparatus (AIA-CL2400, manufactured by Tosoh Corporation), the amount of human ribonuclease contained in the sample was measured. The measurement principle is as follows. That is, 50 μL of a measurement sample was added to the first reaction vessel, and the magnetic fine particles were reacted at 37 ° C. for 5 minutes while stirring. After washing the magnetic fine particles with the washing solution, 50 μL of the buffer solution containing the alkaline phosphatase-labeled antibody solubilized with the lysis solution is transferred from the second reaction vessel to the first reaction vessel, and the magnetic fine particles are stirred at 37 ° C. for 3 Reacted for 1 minute. After the reaction, a B / F separation operation was performed to separate and remove the free labeled antibody, and detection was performed using a chemiluminescent substrate that measures alkaline phosphatase activity.
実施例1 水溶性高分子の分子量に依存した抗原抗体反応促進
アルカリ性フォスファターゼ標識抗体を含む緩衝液に、表1に示した水溶性高分子を25g/Lの濃度で添加して測定試薬を作製した。また、参照用の試薬として、水溶性高分子を添加しない試薬を作製した。
Example 1 Acceleration of antigen-antibody reaction depending on molecular weight of water-soluble polymer A reagent for measurement was prepared by adding the water-soluble polymer shown in Table 1 at a concentration of 25 g / L to a buffer containing an alkaline phosphatase-labeled antibody. . In addition, a reagent without adding a water-soluble polymer was prepared as a reference reagent.
以上の結果から、デキストランの平均分子量が大きくなるほど、測定値が増加することが分かる。またプルランの添加はデキストラン200Kと同等の効果を示していることが分かる。特に40%以上の測定値の増加を示した分子は、デキストランの平均分子量が60,000Da、150,000Da、200,000Daのもの、及びプルランであった。また、同じ測定試薬を使用して、ヒトリボヌクレアーゼ1を含まない緩衝液を測定した場合の測定値を、試薬1で50ng/mLのヒトリボヌクレアーゼ1を含む標準品を測った測定値を100%とした時の相対値として示す。全ての試薬で、水溶性高分子の添加により顕著な非特異反応を引き起こしていないことが分かり、測定性能を示すS/N比は、水溶性高分子を未添加の参照試薬と比べて遜色のない高値となっている。 From the above results, it can be seen that the measured value increases as the average molecular weight of dextran increases. It can also be seen that the addition of pullulan shows the same effect as dextran 200K. In particular, the molecules that showed an increase in the measured value of 40% or more were dextran having an average molecular weight of 60,000 Da, 150,000 Da, 200,000 Da, and pullulan. In addition, using the same measurement reagent, the measurement value when measuring a buffer solution not containing human ribonuclease 1 is 100%, and the measurement value obtained by measuring a standard product containing 50 ng / mL human ribonuclease 1 with reagent 1 is 100%. The relative value is shown. It was found that the addition of the water-soluble polymer did not cause a significant non-specific reaction in all the reagents, and the S / N ratio indicating the measurement performance was inferior to that of the reference reagent to which no water-soluble polymer was added. There is no high price.
実施例2 水溶性高分子の抗原抗体反応促進効果の評価
表1の試薬1と試薬6について、第1反応槽の磁性微粒子懸濁液のみを凍結乾燥して、第2反応槽のアルカリ性フォスファターゼ標識抗体を含む緩衝液は凍結乾燥しなかった試薬を同時に作製して、第2反応槽のアルカリ性フォスファターゼ標識抗体を含む緩衝液を凍結乾燥したものと比較した結果を表2に示す。測定条件は、実施例1と同様である。
Example 2 Evaluation of antigen-antibody reaction promoting effect of water-soluble polymer For reagent 1 and reagent 6 in Table 1, only the magnetic fine particle suspension in the first reaction tank was freeze-dried to label the alkaline phosphatase in the second reaction tank. Table 2 shows the results obtained by simultaneously preparing a reagent that was not lyophilized for the buffer containing the antibody and comparing the buffer containing the alkaline phosphatase labeled antibody in the second reaction tank with lyophilized. The measurement conditions are the same as in Example 1.
実施例3 デキストラン添加濃度による抗原抗体反応促進効果の評価
実施例1で抗原抗体反応の促進効果が高かった試薬4,5,6について、デキストラン添加濃度による影響を評価した。実施例1に記載の方法で、添加濃度を5g/L、15g/L、25g/Lにした試薬を調整し、同時に作製した基準とする試薬1(25g/L)と比較した結果(相対値)を表3に示す。測定条件は、実施例1と同様である。
Example 3 Evaluation of Antigen-antibody Reaction Promotion Effect by Dextran Addition Concentration The effects of dextran addition concentration were evaluated on
つぎに、平均分子量が200,000Daのデキストランを添加した試薬6について、デキストラン添加濃度による免疫測定試薬の測定精度について検討した。測定は、実施例1と同様に50ng/mLのヒトリボヌクレアーゼ1を含む標準品を1条件あたり3回測定して、各濃度における測定値の平均と標準偏差を図1に示した。 Next, for the reagent 6 to which dextran having an average molecular weight of 200,000 Da was added, the measurement accuracy of the immunoassay reagent according to the concentration of dextran added was examined. As in Example 1, a standard product containing 50 ng / mL human ribonuclease 1 was measured three times per condition, and the average and standard deviation of the measured values at each concentration are shown in FIG.
デキストラン添加濃度に依存して測定値が増加していることから、抗原抗体反応の促進効果があることが分かる反面、測定値のばらつきを示す標準偏差も、デキストラン添加濃度に依存して増加することが明らかとなった。高い測定精度が求められる免疫測定試薬は、測定上のばらつきが一定の基準以下である必要があり、基準を15%とした場合、デキストラン添加濃度が25g/L以下であることが望ましく、更に厳しい10%とした場合、デキストラン添加濃度が20g/L以下であることが望ましいことが明らかとなった。 The measured value increases depending on the concentration of dextran added, so it can be seen that there is an effect of promoting antigen-antibody reaction, but the standard deviation indicating the variation in measured value also increases depending on the concentration of dextran added. Became clear. An immunoassay reagent that requires high measurement accuracy needs to have a variation in measurement below a certain standard. When the standard is 15%, it is desirable that the concentration of dextran added is 25 g / L or less, which is even stricter. When it was set to 10%, it became clear that the dextran addition concentration is desirably 20 g / L or less.
以上の結果を総合して、免疫測定試薬を高い測定精度に保つ範囲で、抗原抗体反応の促進するデキストラン添加濃度は、15g/Lから25g/Lの範囲であることが示され、最適な添加濃度は、平均分子量が200,000Daのデキストランを15g/Lから20g/Lの範囲で添加することであることが明らかとなった。 Based on the above results, it was shown that the concentration of dextran that promotes the antigen-antibody reaction is within the range of 15 g / L to 25 g / L within the range where the immunoassay reagent is kept at high measurement accuracy. The concentration was found to be the addition of dextran having an average molecular weight of 200,000 Da in the range of 15 g / L to 20 g / L.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016127926A JP2018004323A (en) | 2016-06-28 | 2016-06-28 | Immunological measurement method which makes dextran coexist |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016127926A JP2018004323A (en) | 2016-06-28 | 2016-06-28 | Immunological measurement method which makes dextran coexist |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018004323A true JP2018004323A (en) | 2018-01-11 |
Family
ID=60946564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016127926A Pending JP2018004323A (en) | 2016-06-28 | 2016-06-28 | Immunological measurement method which makes dextran coexist |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018004323A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021038980A (en) * | 2019-09-02 | 2021-03-11 | 富士レビオ株式会社 | Afp-l3 measurement method and afp-l3 measurement kit, and blocked labeled lectin used for these |
WO2021045065A1 (en) * | 2019-09-02 | 2021-03-11 | 富士レビオ株式会社 | Method for measuring lectin-binding substance, kit for measuring lectin-binding substance, and capture support to be used therein |
WO2021045061A1 (en) | 2019-09-02 | 2021-03-11 | 富士レビオ株式会社 | Method for measuring lectin-associated substance, kit for measuring lectin-associated substance, and blocked labeled lectin used in same |
-
2016
- 2016-06-28 JP JP2016127926A patent/JP2018004323A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021038980A (en) * | 2019-09-02 | 2021-03-11 | 富士レビオ株式会社 | Afp-l3 measurement method and afp-l3 measurement kit, and blocked labeled lectin used for these |
WO2021045065A1 (en) * | 2019-09-02 | 2021-03-11 | 富士レビオ株式会社 | Method for measuring lectin-binding substance, kit for measuring lectin-binding substance, and capture support to be used therein |
WO2021045061A1 (en) | 2019-09-02 | 2021-03-11 | 富士レビオ株式会社 | Method for measuring lectin-associated substance, kit for measuring lectin-associated substance, and blocked labeled lectin used in same |
CN114303063A (en) * | 2019-09-02 | 2022-04-08 | 富士瑞必欧株式会社 | Method and kit for measuring lectin-binding substance, and capture carrier used for the same |
US20220326245A1 (en) * | 2019-09-02 | 2022-10-13 | Fujirebio Inc. | Lectin-binding substance measurement method, lectin-binding substance measurement kit, and blocked labeled lectin for use in these |
JP7361543B2 (en) | 2019-09-02 | 2023-10-16 | 富士レビオ株式会社 | AFP-L3 measurement method, AFP-L3 measurement kit, and blocked labeled lectin used therefor |
US11988666B2 (en) | 2019-09-02 | 2024-05-21 | Fujirebio Inc. | Lectin-binding substance measurement method, lectin-binding substance measurement kit, and blocked labeled lectin for use in these |
US12038440B2 (en) | 2019-09-02 | 2024-07-16 | Fujirebio Inc. | Lectin-binding substance measurement method, lectin-binding substance measurement kit, and capture carrier for use in these |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103308698B (en) | Method for covalently coupling amino-containing molecules to microspheres | |
US10520486B2 (en) | Method for suppressing protein adsorption | |
CN110736837B (en) | Latex immunoturbidimetric assay kit for neuron-specific enolase | |
JP2018004323A (en) | Immunological measurement method which makes dextran coexist | |
CN108593641A (en) | A kind of kit and method quantitatively detecting test substance in whole blood sample | |
KR102075949B1 (en) | Immunological analysis method and reagent | |
WO2017126525A1 (en) | Method for allergen detection by immunochromatographic assay | |
WO1987004794A1 (en) | Latex agglutination using avidin/biotin system | |
JP6729995B2 (en) | Immunoassay method and reagent | |
JPWO2007126051A1 (en) | Reagent for anti-phospholipid antibody measurement | |
JP2008190946A (en) | Immunoassay using protein adsorption inhibitor, and substrate and kit for immunoassay | |
CN115856286A (en) | Preparation method of high-stability magnetic beads | |
JP2015184125A (en) | Immunoassay suppressing non-specific reaction | |
JPS59102161A (en) | Antigen detection reagent by anti-passive agglutination | |
CN102445540A (en) | Kit for quantitatively detecting HCV-aAg concentration in human serum by virtue of polystyrene microspheres | |
CN107462708B (en) | Method, application and the kit of antigen or antibody coating magnetic particle | |
JP6604081B2 (en) | Method for measuring pancreatic ribonuclease 1 to which an N-type sugar chain is added | |
JP2019138919A (en) | Method for analyzing immunity and reagent | |
JPH0750110B2 (en) | Immunoassay | |
WO2012124344A1 (en) | Inhibitor of binding between lectin and anti-lectin antibody | |
CN114966022B (en) | Myeloperoxidase detection kit | |
JP2017090338A (en) | Method for immunological measurement of test antibody in sample | |
JP5720318B2 (en) | Detection method and quantification method of detection target | |
JPH08327629A (en) | Pretreatment of specimen | |
JP2584924B2 (en) | Method for producing immunological agglutination particles |