JP2018003118A - Method for manufacturing thin film, thin film deposition material, optical thin film and optical member - Google Patents

Method for manufacturing thin film, thin film deposition material, optical thin film and optical member Download PDF

Info

Publication number
JP2018003118A
JP2018003118A JP2016133564A JP2016133564A JP2018003118A JP 2018003118 A JP2018003118 A JP 2018003118A JP 2016133564 A JP2016133564 A JP 2016133564A JP 2016133564 A JP2016133564 A JP 2016133564A JP 2018003118 A JP2018003118 A JP 2018003118A
Authority
JP
Japan
Prior art keywords
thin film
film
refractive index
optical
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016133564A
Other languages
Japanese (ja)
Other versions
JP6702039B2 (en
Inventor
元太郎 田中
Gentaro Tanaka
元太郎 田中
祐文 田中
Sukefumi Tanaka
祐文 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2016133564A priority Critical patent/JP6702039B2/en
Publication of JP2018003118A publication Critical patent/JP2018003118A/en
Application granted granted Critical
Publication of JP6702039B2 publication Critical patent/JP6702039B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide: a method for manufacturing an optical thin film excellent in durability and having a low refractive index, capable of forming the thin film without passing a complicated process; a thin film deposition material; an optical thin film; and an optical member.SOLUTION: The method for manufacturing a thin film comprises the steps of: depositing an object to be deposited by a thin film deposition material and a physical vapor deposition method to form a vapor deposition film; and contacting the vapor deposition film with an acid material to obtain a thin film having an air space. The thin film deposition material includes indium oxide and silicon oxide, and a mixture having an indium oxide of 0.05-0.25 mol to a silicon oxide of 1 mol is used. Silicon monoxide is included as the principal component of the silicon oxide; the refractive index of the thin film is 1.38 or less; and the porosity of the thin film is 8-70%.SELECTED DRAWING: Figure 3

Description

本発明は、薄膜の製造方法、薄膜形成材料、光学薄膜、及び光学部材に関する。   The present invention relates to a method for manufacturing a thin film, a thin film forming material, an optical thin film, and an optical member.

光学薄膜は、光の干渉現象を応用することで、古くから様々な光学機器に利用されている。潜水艦の潜望鏡、顕微鏡、双眼鏡などの光学機器の増透膜として利用が始まり、近年においては、天体望遠鏡、眼鏡レンズ、カメラレンズなどのへの光学薄膜の利用が進んでいる。このような光学機器に利用される光学薄膜は、特定の波長の光の反射を防止する反射防止膜、特定の波長のみを透過させるバンドパスフィルター、入射した光の一部を反射し一部を透過させるビームスプリッターなどの光学ピックアップ部品のような光を利用する機器にも使用されている。最近では、車載用の近赤外フィルターや近紫外フィルターなどの光学フィルターにも光学薄膜が利用されており、最新のエレクトロニクス分野においても不可欠の材料として、広範囲の分野で光学薄膜が使用されている。   Optical thin films have long been used in various optical devices by applying the light interference phenomenon. It has begun to be used as a permeable film for optical devices such as submarine periscopes, microscopes, and binoculars. In recent years, optical thin films have been used for astronomical telescopes, spectacle lenses, camera lenses, and the like. The optical thin film used in such an optical device includes an antireflection film that prevents reflection of light of a specific wavelength, a bandpass filter that transmits only a specific wavelength, and partially reflects incident light. It is also used in equipment that uses light, such as an optical pickup component such as a beam splitter that transmits light. Recently, optical thin films are also used in optical filters such as near-infrared filters and near-ultraviolet filters for vehicles, and optical thin films are used in a wide range of fields as an indispensable material in the latest electronics field. .

光学薄膜の反射防止効果を高めるためには、被成膜物の屈折率の平方根の数値と近い数値となる屈折率を有する光学薄膜を、被成膜物の最表面に形成することが効果的である。このような光学薄膜を形成するためには、薄膜内に屈折率1.0の空気を含有することが有用であり、ゾルゲル法を含む様々な方法で空気を含有させた光学薄膜が提案されている。
例えば、特許文献1には、ガラス基板側から順に、真空蒸着法にて成膜したシリカを主成分とする第1層と、真空蒸着法にて成膜した無機系酸化膜の第2層と、この第2層上に中空のシリカ微粒子とバインダを含有する溶液を塗布して焼成した第3層とを有する反射防止膜を備えた光学素子が記載されている。
また、特許文献2には、基材上に、無機材料からなる無機下地層と、SiO等の無機酸化物を含む表面改質層と、表面改質層上に積層されたアクリル樹脂等のバインダを含む密着層と、中空シリカ粒子がバインダにより結着された低屈折率層とを備えた反射防止膜が記載されている。
特許文献3には、フッ化マグネシウム(MgF)微粒子が分散したゾル液と、非晶質酸化ケイ素系バインダ溶液とを混合した混合液を、基材に塗布して熱処理し、基材とMgF微粒子間が非晶質酸化ケイ素系バインダにより結着されるとともに、MgF微粒子間に多数の空隙が形成された光学薄膜の製造方法が記載されている。
In order to enhance the antireflection effect of the optical thin film, it is effective to form an optical thin film having a refractive index close to the value of the square root of the refractive index of the film on the outermost surface of the film. It is. In order to form such an optical thin film, it is useful to contain air having a refractive index of 1.0 in the thin film, and optical thin films containing air by various methods including the sol-gel method have been proposed. Yes.
For example, Patent Document 1 discloses, in order from the glass substrate side, a first layer mainly composed of silica formed by a vacuum evaporation method, and a second layer of an inorganic oxide film formed by a vacuum evaporation method. An optical element including an antireflection film having a third layer obtained by applying a solution containing hollow silica fine particles and a binder on the second layer and firing the same is described.
Patent Document 2 discloses an inorganic base layer made of an inorganic material, a surface modified layer containing an inorganic oxide such as SiO 2 , an acrylic resin laminated on the surface modified layer, etc. An antireflection film including an adhesion layer containing a binder and a low refractive index layer in which hollow silica particles are bound by a binder is described.
In Patent Document 3, a mixed liquid in which a sol solution in which magnesium fluoride (MgF 2 ) fine particles are dispersed and an amorphous silicon oxide-based binder solution is applied to a substrate and heat-treated. A method for producing an optical thin film in which two fine particles are bound by an amorphous silicon oxide-based binder and a large number of voids are formed between MgF 2 fine particles is described.

特開2016−018095号公報JP 2006-018095 A 特開2015−222450号公報JP2015-222450A 国際公開第2006/030848号International Publication No. 2006/030848

しかし、特許文献1〜3に記載されているように、微粒子とバインダとを含むゾルを結着させたゾルゲル法により最表層となる光学薄膜を形成した場合、ゾルゲル法による薄膜の形成は大気中で行なわれるため、最表層よりも下層を真空中で形成した場合に、ゾルゲル法を行なうために大気開放されると異物が吸着しやすく、異物の除去を行なうことが必要となる問題がある。また、特許文献1〜3に記載されているようにゾルゲル法により最表層となる光学薄膜を形成した場合、膜厚を精密に制御するためにはゾルの粘度の経時変化を厳密に管理することが必要であり、常時ゾルの粘度をモニターしながら薄膜を形成しなければならず、製造が煩雑となる場合がある。さらにゾルゲル法により最表層となる光学薄膜を形成する場合、ディップコーティング法によりゾルを被成膜物に塗布する場合は過剰量のゾルが必要となり、スピンコーティング法によりゾルを被成膜物に塗布する場合は曲面へ均一な膜厚で塗布し難いという問題もある。さらにゾルゲル法により光学薄膜を形成する場合、ゾルを塗布した後に熱処理する必要があり、耐熱性が低い材料、例えば耐熱性が低いプラスチック等から形成された被成膜物には光学薄膜を形成し難いという問題がある。
そこで、本発明の一実施形態は、煩雑な工程を経ることなく薄膜を形成することができ、耐久性に優れた低屈折率の光学薄膜の製造方法、薄膜形成材料、光学薄膜及び光学部材を提供することを目的とする。
However, as described in Patent Documents 1 to 3, when an optical thin film that is the outermost layer is formed by a sol-gel method in which a sol containing fine particles and a binder is bound, the formation of the thin film by the sol-gel method is performed in the atmosphere. Therefore, when the lower layer than the outermost layer is formed in vacuum, there is a problem that foreign matter is easily adsorbed when it is opened to the atmosphere for performing the sol-gel method, and it is necessary to remove the foreign matter. In addition, when an optical thin film that is the outermost layer is formed by the sol-gel method as described in Patent Documents 1 to 3, the change in the viscosity of the sol over time must be strictly controlled in order to precisely control the film thickness. And a thin film must be formed while constantly monitoring the viscosity of the sol, which may complicate the production. Furthermore, when forming an optical thin film that is the outermost layer by the sol-gel method, an excessive amount of sol is required when applying the sol to the film by dip coating, and the sol is applied to the film by the spin coating method. When it does, there also exists a problem that it is difficult to apply | coat to a curved surface with a uniform film thickness. Furthermore, when an optical thin film is formed by the sol-gel method, it is necessary to perform a heat treatment after applying the sol, and an optical thin film is formed on a film formed from a material having low heat resistance, for example, plastic having low heat resistance. There is a problem that it is difficult.
Therefore, one embodiment of the present invention is a method for producing an optical thin film having a low refractive index excellent in durability, a thin film forming material, an optical thin film, and an optical member. The purpose is to provide.

前記課題を解決するための手段は、以下の通りであり、本発明は、以下の形態を包含する。
本発明の第一の実施形態は、薄膜形成材料を物理蒸着法により被成膜物に堆積させて、蒸着膜を形成する工程と、前記蒸着膜と、酸性物質とを接触させて、空隙を有する薄膜を得る工程とを含み、前記薄膜形成材料として、酸化インジウムと、酸化ケイ素とを含み、酸化インジウムが酸化ケイ素1モルに対して0.05モル以上0.25モル以下である混合物を用いることを特徴とする薄膜の製造方法である。
Means for solving the above problems are as follows, and the present invention includes the following forms.
In the first embodiment of the present invention, a thin film forming material is deposited on an object to be deposited by physical vapor deposition to form a vapor deposition film, and the vapor deposition film and an acidic substance are brought into contact with each other to form voids. And using the mixture containing indium oxide and silicon oxide as the thin film forming material, the indium oxide being 0.05 mol or more and 0.25 mol or less with respect to 1 mol of silicon oxide. This is a method for producing a thin film.

本発明の第二の実施形態は、酸化インジウムと、酸化ケイ素とを含み、酸化インジウムが酸化ケイ素1モルに対して0.05モル以上0.25モル以下である混合物であることを特徴とする薄膜形成材料である。   A second embodiment of the present invention is characterized in that it is a mixture containing indium oxide and silicon oxide, and the indium oxide is 0.05 mol or more and 0.25 mol or less with respect to 1 mol of silicon oxide. It is a thin film forming material.

本発明の第三の実施形態は、酸化インジウムと、酸化ケイ素とを含み、屈折率が1.38以下であることを特徴とする光学薄膜である。   A third embodiment of the present invention is an optical thin film characterized by containing indium oxide and silicon oxide and having a refractive index of 1.38 or less.

本発明の第四の実施形態は、前記光学薄膜と、被成膜物とを有する光学部材である。   4th embodiment of this invention is an optical member which has the said optical thin film and a to-be-film-formed object.

本発明の実施形態によれば、耐久性に優れた低屈折率の光学薄膜の製造方法、薄膜形成材料、光学薄膜及び光学部材を提供することができる。   According to the embodiment of the present invention, it is possible to provide a method for producing an optical thin film having a low refractive index excellent in durability, a thin film forming material, an optical thin film, and an optical member.

図1は、本発明の実施例2の光学薄膜の表面のSEM写真である。FIG. 1 is a SEM photograph of the surface of the optical thin film of Example 2 of the present invention. 図2は、本発明の実施例2の光学薄膜の断面のSEM写真である。FIG. 2 is a SEM photograph of a cross section of the optical thin film of Example 2 of the present invention. 図3は、実施例の空隙を有する薄膜の屈折率を1.38以下とするための酸性物質との接触時間と、薄膜形成材料のIn/SiOモル比との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the contact time with an acidic substance for reducing the refractive index of the thin film having voids in Examples to 1.38 or less and the In 2 O 3 / SiO molar ratio of the thin film forming material. is there.

以下、本開示に係る光学薄膜の製造方法、薄膜形成材料、光学薄膜及び光学部材の一実施形態に基づいて説明する。ただし、以下に示す実施の一形態は、本発明の技術思想を具体化するための例示であって、本発明は、以下の薄膜の製造方法、薄膜形成材料、光学薄膜及び光学部材に限定されない。なお、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。   Hereinafter, an optical thin film manufacturing method, a thin film forming material, an optical thin film, and an optical member according to an embodiment of the present disclosure will be described. However, one embodiment described below is an example for embodying the technical idea of the present invention, and the present invention is not limited to the following thin film manufacturing method, thin film forming material, optical thin film, and optical member. . In addition, the content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. .

〔薄膜の製造方法〕
本発明の一実施形態は、薄膜形成材料を物理蒸着法により被成膜物に堆積させて、蒸着膜を形成する工程と、前記蒸着膜と、酸性物質とを接触させ、空隙を有する薄膜を得る工程とを含み、前記薄膜形成材料として、酸化インジウムと、酸化ケイ素とを含み、酸化インジウムが酸化ケイ素1モルに対して0.05モル以上0.25モル以下である混合物を用いる、薄膜の製造方法である。
[Method for producing thin film]
In one embodiment of the present invention, a thin film-forming material is deposited on an object to be deposited by physical vapor deposition to form a vapor deposition film, and the vapor deposition film is contacted with an acidic substance to form a thin film having a void. And a step of using a mixture of indium oxide and silicon oxide, wherein the indium oxide is 0.05 mol or more and 0.25 mol or less with respect to 1 mol of silicon oxide. It is a manufacturing method.

(薄膜形成材料)
本発明の一実施形態の製造方法に用いる薄膜形成材料は、酸化インジウムと酸化ケイ素とを含み、酸化インジウムが酸化ケイ素1モルに対して0.05モル以上0.25モル以下である混合物を用いる。
薄膜形成材料として、酸化インジウムと酸化ケイ素を含み、酸化インジウムが酸化ケイ素1モルに対して0.05モル以上0.25モル以下である混合物を用いることによって、物理蒸着法により、酸化インジウム(I)(InO)と酸化インジウム(III)(In)と二酸化ケイ素(IV)(SiO)とから構成された蒸着膜を形成することができる。酸化インジウム(I)は、酸性物質に対する溶解性が高いため、蒸着膜を酸性物質と接触させることによって、蒸着膜中に含まれる酸化インジウム(InO)を短時間で取り除くことができ、所望の屈折率を満たす空隙を有する薄膜を形成することができる。
薄膜形成材料として、混合物中の酸化ケイ素1モルに対する酸化インジウムのモル比が0.05未満であると、薄膜形成材料中の酸化インジウムが少なく、蒸着膜を形成した後に酸性物質に接触させても所望の屈折率を満たす空隙を有する薄膜を形成することが困難となる。
薄膜形成材料である混合物中の酸化ケイ素1モルに対する酸化インジウムのモル比が0.25を超えると、酸化インジウムの量が多すぎて、酸性物質と接触させた場合に空隙が多くなりすぎて薄膜が剥がれやすくなる場合があり、好ましくない。
薄膜形成材料として用いる混合物は、酸化インジウムが酸化ケイ素1モルに対してより好ましくは0.06以上0.25以下であり、さらに好ましくは0.08以上0.23以下であり、よりさらに好ましくは0.10以上0.22以下である。
(Thin film forming material)
The thin film forming material used in the manufacturing method of one embodiment of the present invention uses a mixture containing indium oxide and silicon oxide, and the indium oxide is 0.05 mol or more and 0.25 mol or less with respect to 1 mol of silicon oxide. .
By using a mixture containing indium oxide and silicon oxide as a thin film forming material, and indium oxide is 0.05 mol or more and 0.25 mol or less with respect to 1 mol of silicon oxide, indium oxide (I ) (In 2 O), indium oxide (III) (In 2 O 3 ) and silicon dioxide (IV) (SiO 2 ) can be formed. Since indium (I) oxide is highly soluble in acidic substances, indium oxide (In 2 O) contained in the deposited film can be removed in a short time by bringing the deposited film into contact with the acidic substance. A thin film having a void satisfying the refractive index of can be formed.
When the molar ratio of indium oxide to 1 mol of silicon oxide in the mixture is less than 0.05 as a thin film forming material, the amount of indium oxide in the thin film forming material is small, and even after contact with an acidic substance after forming a deposited film It becomes difficult to form a thin film having a void satisfying a desired refractive index.
When the molar ratio of indium oxide to 1 mol of silicon oxide in the mixture which is a thin film forming material exceeds 0.25, the amount of indium oxide is too large, and when it is brought into contact with an acidic substance, there are too many voids. May be easily peeled off, which is not preferable.
The mixture used as the thin film forming material is more preferably 0.06 or more and 0.25 or less, more preferably 0.08 or more and 0.23 or less, still more preferably indium oxide with respect to 1 mol of silicon oxide. It is 0.10 or more and 0.22 or less.

膜形成材料の原料に用いる酸化インジウムは、酸化インジウム(III)(In)であることが好ましい。
薄膜形成材料の原料に用いる酸化ケイ素は、主成分として一酸化ケイ素(SiO)を含むことが好ましい。ここで、酸化ケイ素中に「主成分として一酸化ケイ素を含む」とは、薄膜形成材料の原料に用いる酸化ケイ素100質量%中に一酸化ケイ素を少なくとも50質量%以上含むことをいう。薄膜形成材料の原料として用いられる酸化ケイ素(100質量%)中の一酸化ケイ素(SiO)の含有量は、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、特に好ましくは99質量%以上、最も好ましくは実質的に100質量%である。薄膜形成材料の原料として用いられる「酸化ケイ素中の一酸化ケイ素の含有量が実質的に100質量%」とは、酸化ケイ素中の一酸化ケイ素以外の物質の含有量が0.1質量%以下であることを意味する。
本発明の一実施形態の製造方法における物理的蒸着法は、電子ビーム蒸着法に限定される訳ではないが、例えば、電子ビーム蒸着法による場合、一酸化ケイ素(SiO)は、比較的低い温度で昇華するため、蒸着時に二酸化ケイ素(SiO)のように溶融することなく気体となり得るので、被成膜物に付着する固形異物(スプラッシュ)の量を低減することができる。また、一酸化ケイ素(SiO)は、同じ昇華性材料である酸化インジウム(III)(In)とともに昇華させることができるので、それらを同時に含む蒸着膜を形成することができる。
薄膜形成材料の原料に用いる酸化ケイ素には、固形異物を増大しない範囲で二酸化ケイ素(SiO)を含んでいてもよい。薄膜形成材料の原料に用いる酸化ケイ素中の二酸化ケイ素の含有量は、30質量%未満であることが好ましく、より好ましくは20質量%未満、更に好ましくは10質量%未満、特に好ましくは1質量%未満、最も好ましくは0.1質量%未満である。
Indium oxide used as a raw material for the film forming material is preferably indium oxide (III) (In 2 O 3 ).
The silicon oxide used as the raw material for the thin film forming material preferably contains silicon monoxide (SiO) as a main component. Here, “containing silicon monoxide as a main component” in silicon oxide means that at least 50% by mass of silicon monoxide is contained in 100% by mass of silicon oxide used as a raw material for a thin film forming material. The content of silicon monoxide (SiO) in silicon oxide (100% by mass) used as a raw material for the thin film forming material is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more. Particularly preferred is 99% by mass or more, and most preferred is substantially 100% by mass. “The content of silicon monoxide in silicon oxide is substantially 100% by mass” used as a raw material for the thin film forming material means that the content of substances other than silicon monoxide in silicon oxide is 0.1% by mass or less. It means that.
The physical vapor deposition method in the manufacturing method of one embodiment of the present invention is not limited to the electron beam vapor deposition method. For example, in the case of the electron beam vapor deposition method, silicon monoxide (SiO) has a relatively low temperature. Therefore, the amount of solid foreign matter (splash) adhering to the film-forming object can be reduced because it can become a gas without melting like silicon dioxide (SiO 2 ) during vapor deposition. Moreover, since silicon monoxide (SiO) can be sublimated together with indium (III) oxide (In 2 O 3 ), which is the same sublimable material, a vapor deposition film containing them simultaneously can be formed.
The silicon oxide used as the raw material for the thin film forming material may contain silicon dioxide (SiO 2 ) as long as solid foreign substances are not increased. The content of silicon dioxide in silicon oxide used as a raw material for the thin film forming material is preferably less than 30% by mass, more preferably less than 20% by mass, still more preferably less than 10% by mass, and particularly preferably 1% by mass. Less than, most preferably less than 0.1% by weight.

薄膜形成材料は、酸化インジウム(III)(In)と、酸化ケイ素(SiO、SiO)とを、酸化インジウムが酸化ケイ素1モルに対して0.05モル以上0.25モル以下となるように混合して原料混合物とし、この原料混合物をプレス成形して成形物とした後、焼成して、焼結した混合物(焼結体)を薄膜形成材料として用いることが好ましい。薄膜形成材料として焼結した混合物(焼結体)を用いることにより、物理蒸着法によって、薄膜形成材料が略均一に気化し、酸化インジウム(III)(In)と、その酸化インジウム(III)(In)の熱分解により生じた酸化インジウム(I)(InO)と、二酸化ケイ素(SiO)が略均一に混合した蒸着膜を被成膜物の表面に略均等に堆積させることができる。
原料混合物をプレス成形した成形物は、不活性ガス雰囲気中で焼成することが好ましい。不活性ガス雰囲気とは、アルゴン、ヘリウム、窒素等を雰囲気中の主成分とする雰囲気を意味する。不活性ガス雰囲気は、必然的に不純物として酸素を含むことがあるが、本明細書において、雰囲気中に含まれる酸素の濃度が15体積%以下であれば不活性ガス雰囲気とする。不活性ガス雰囲気中の酸素の濃度は、好ましくは10体積%以下、より好ましくは5体積%以下、更に好ましくは1体積%以下である。原料混合物をプレス成形した固形物は、不活性ガス雰囲気中で焼成することにより、薄膜形成材料中に不純物を可能な限り含まないようにすることができる。
As the thin film forming material, indium oxide (III) (In 2 O 3 ) and silicon oxide (SiO, SiO 2 ) are used, and indium oxide is 0.05 mol to 0.25 mol with respect to 1 mol of silicon oxide. It is preferable to mix the raw material mixture into a raw material mixture, press-mold the raw material mixture into a molded product, and then fire and sinter the mixture (sintered body) as the thin film forming material. By using a sintered mixture (sintered body) as the thin film forming material, the thin film forming material is substantially uniformly vaporized by physical vapor deposition, and indium oxide (III) (In 2 O 3 ) and its indium oxide ( III) A vapor deposition film in which indium (I) oxide (In 2 O) generated by thermal decomposition of (In 2 O 3 ) and silicon dioxide (SiO 2 ) is substantially uniformly mixed is substantially evenly formed on the surface of the film. Can be deposited.
The molded product obtained by press-molding the raw material mixture is preferably fired in an inert gas atmosphere. The inert gas atmosphere means an atmosphere containing argon, helium, nitrogen or the like as a main component in the atmosphere. The inert gas atmosphere inevitably contains oxygen as an impurity. In this specification, an inert gas atmosphere is used when the concentration of oxygen contained in the atmosphere is 15% by volume or less. The concentration of oxygen in the inert gas atmosphere is preferably 10% by volume or less, more preferably 5% by volume or less, and still more preferably 1% by volume or less. The solid material obtained by press-molding the raw material mixture can be made to contain as little impurities as possible in the thin film forming material by firing in an inert gas atmosphere.

原料混合物を焼成して焼結体とする温度は、好ましくは500℃以上900℃以下であり、より好ましくは600℃以上880℃以下であり、さらに好ましくは700℃以上850℃以下である。原料混合物を焼成する温度が上限値以下であると、酸化インジウムが熱還元により金属インジウムとなることがない。この金属インジウムは上限値を超えた温度では液体であり、その表面張力により凝集してしまう。上限値以下とすることにより、このような凝集を避けることができるので、混合物に含まれる材料の均一性が損なわれる虞がない。さらに、このように均一性が損なわれなければ、物理蒸着法によって薄膜形成材料を気化させる際にも、気化された材料の均一性が損なわれず、酸化インジウム(I)(InO)と酸化インジウム(III)(In)と二酸化ケイ素(SiO)が略均一に混合した蒸着膜を被成膜物の表面に堆積させることができる。 The temperature at which the raw material mixture is fired to form a sintered body is preferably 500 ° C. or higher and 900 ° C. or lower, more preferably 600 ° C. or higher and 880 ° C. or lower, and further preferably 700 ° C. or higher and 850 ° C. or lower. If the temperature at which the raw material mixture is fired is not more than the upper limit value, indium oxide will not become metal indium by thermal reduction. This metal indium is a liquid at a temperature exceeding the upper limit, and is agglomerated due to its surface tension. By setting it to the upper limit value or less, such aggregation can be avoided, and there is no possibility that the uniformity of the material contained in the mixture is impaired. Furthermore, if the uniformity is not impaired in this way, even when the thin film forming material is vaporized by physical vapor deposition, the uniformity of the vaporized material is not impaired, and indium (I) oxide (In 2 O) and oxidation A vapor deposition film in which indium (III) (In 2 O 3 ) and silicon dioxide (SiO 2 ) are substantially uniformly mixed can be deposited on the surface of the deposition target.

(蒸着膜を形成する工程)
本発明の一実施形態の製造方法は、薄膜形成材料を物理蒸着法により被成膜物に堆積させて蒸着膜を形成する。
物理蒸着法としては、抵抗加熱蒸着法、電子ビーム蒸着法、イオンビーム蒸着法、イオンプレーティング法、スパッタ法等が挙げられる。中でも、物理蒸着法は、抵抗加熱蒸着法又は電子ビーム蒸着法、を用いることが好ましく、電子ビーム蒸着法を用いることがより好ましい。抵抗加熱蒸着法又は電子ビーム蒸着法は、大面積又は曲率半径の小さい曲面にも均一に蒸着膜を形成することができる。さらに電子ビーム蒸着法は、薄膜形成材料に電子ビームを直接照射して加熱するため熱効率がよく、高融点で熱伝導低い酸化物等の薄膜形成材料であっても効率良く気化させて、比較的短い時間で被成膜物に、薄膜形成材料の組成に基づく安定した組成を有する蒸着膜を形成することができる。
イオンアシストのためイオン源を備えたイオンアシストビーム蒸着法を用いてもよい。
(Process for forming a deposited film)
In the manufacturing method of one embodiment of the present invention, a thin film forming material is deposited on an object to be deposited by physical vapor deposition to form a vapor deposition film.
Examples of physical vapor deposition include resistance heating vapor deposition, electron beam vapor deposition, ion beam vapor deposition, ion plating, and sputtering. Among them, the physical vapor deposition method is preferably a resistance heating vapor deposition method or an electron beam vapor deposition method, and more preferably an electron beam vapor deposition method. The resistance heating vapor deposition method or the electron beam vapor deposition method can uniformly form a vapor deposition film on a curved surface having a large area or a small curvature radius. Furthermore, since the electron beam evaporation method heats the thin film forming material directly by irradiating an electron beam, it has high thermal efficiency, and even a thin film forming material such as an oxide having a high melting point and low thermal conductivity is efficiently vaporized, A vapor deposition film having a stable composition based on the composition of the thin film forming material can be formed on the deposition object in a short time.
For ion assist, an ion assist beam deposition method including an ion source may be used.

蒸着膜形成時の雰囲気圧力は、使用する物理蒸着法の種類によって異なる。物理蒸着法として、電子ビーム蒸着法を使用する場合には、被成膜物に蒸着膜を形成する際の雰囲気圧力は、1.0×10−4Pa以上5.0×10−2Pa以下であることが好ましい。被成膜物に蒸着膜を形成する際の雰囲気圧力は、例えば、蒸着装置内に酸素を導入することによって制御することができる。
また、蒸着膜形成時の被成膜物の温度は、好ましくは50℃以上150℃以下であり、より好ましくは80℃以上120℃以下である。蒸着膜形成時の被成膜物の温度が上記範囲内であれば、耐熱性の低いプラスチック等の材料から形成された被成膜物に悪影響を及ぼしにくい。
The atmospheric pressure at the time of vapor deposition film formation changes with kinds of physical vapor deposition to be used. When the electron beam evaporation method is used as the physical vapor deposition method, the atmospheric pressure when forming the vapor deposition film on the film formation object is 1.0 × 10 −4 Pa or more and 5.0 × 10 −2 Pa or less. It is preferable that The atmospheric pressure at the time of forming the vapor deposition film on the deposition target can be controlled, for example, by introducing oxygen into the vapor deposition apparatus.
Moreover, the temperature of the film formation object at the time of vapor deposition film formation becomes like this. Preferably it is 50 to 150 degreeC, More preferably, it is 80 to 120 degreeC. If the temperature of the film formation object at the time of vapor deposition film formation is in the said range, it will be hard to exert a bad influence on the film formation object formed from materials, such as a plastic with low heat resistance.

本発明の一実施形態の製造方法において、被成膜物は、ガラスや光学ガラスから形成されたものであってもよく、プラスチックから形成されたものであってもよい。プラスチックとしては、ポリエステル系、アクリル系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリオレフィン系の樹脂が挙げられる。被成膜物の形態は、例えば平板状又は曲面を有するレンズ状の基板であってもよく、柔軟性を有するシートであってもよい。本発明の一実施形態の製造方法は、比較的低温でも蒸着膜の形成が可能であるので、耐熱性の低い材料から形成された被成膜物に対しても屈折率が低い光学薄膜を形成することができる。   In the manufacturing method of one embodiment of the present invention, the film formation object may be formed from glass or optical glass, or may be formed from plastic. Examples of the plastic include polyester, acrylic, polycarbonate, polyamide, polyimide, polyethersulfone, polysulfone, and polyolefin resins. The form of the film-formation object may be, for example, a flat or curved lens-like substrate, or a flexible sheet. Since the manufacturing method of one embodiment of the present invention can form a deposited film even at a relatively low temperature, an optical thin film having a low refractive index is formed even on an object formed from a material having low heat resistance. can do.

(酸性物質と接触させる工程)
本発明の一実施形態の製造方法は、前記蒸着膜と、酸性物質とを接触させ、空隙を有する薄膜を得る工程を含む。
薄膜形成材料として、酸化インジウムと酸化ケイ素を含み、酸化インジウムが酸化ケイ素1モルに対して0.05モル以上0.25モル以下である混合物を用いて、物理蒸着法によって、被成膜物に形成された蒸着膜は、酸化インジウム(I)(InO)と酸化インジウム(III)(In)と二酸化ケイ素(IV)(SiO)を含む。これらの蒸着膜を構成する酸化物のうち、酸化インジウム(I)(InO)は、酸性物質に対する溶解性が高いため、蒸着膜を酸性物質と接触させることによって、酸化インジウム(I)を蒸着膜から溶出させて、所望の屈折率を満たす空隙を有する薄膜を形成することができる。また、蒸着膜を構成する酸化物のうち、酸化インジウム(III)(In)も、酸性物質との接触時間によって薄膜から溶出し、酸化インジウム(III)(In)に取り囲まれた二酸化ケイ素(IV)(SiO)の一部も、酸化インジウム(III)(In)が薄膜から溶出する際に同時に薄膜から外れる場合がある。空隙を有する薄膜を構成する物質は、主に二酸化ケイ素(IV)(SiO)であり、溶出しない酸化インジウム(III)(In)も含まれる。
本発明の一実施形態の製造方法において、本発明の一実施形態の薄膜形成材料を用いることによって、酸性物質に対する溶解性が高い酸化インジウム(I)(InO)と、酸化インジウム(III)(In)と、二酸化ケイ素(IV)(SiO)とを含む蒸着膜を形成することができ、その後に蒸着膜を酸性物質と接触させることによって、薄膜の耐久性を損なうことなく、溶解性の高い酸化インジウム(I)(InO)を先に溶出させて、薄膜の空隙率を高めることができ、空隙率を高めることによって、薄膜の屈折率を低くすることができ、屈折率が低い薄膜を形成することができる。
酸化インジウム(I)(InO)は、体色が黒色であり、薄膜に酸化インジウム(I)(InO)が残存していると、可視光を吸収する。例えば分光光度計で薄膜の吸収率{100-(透過率+反射率)}を測定することによって、薄膜が可視光を吸収した場合には薄膜の吸収率が上昇し、吸収率が上昇している場合には、薄膜中に酸化インジウム(I)(InO)が残存していることを確認することができる。
本発明の一実施形態の製造方法によって得られる薄膜は、前記蒸着膜を酸性物質と接触させることによって、溶出しやすい酸化インジウム(I)(InO)を蒸着膜内から溶出させることができ、酸化インジウム(I)(InO)の溶出によって空隙率が高く、屈折率を低くすることができる。
(Step of contacting with an acidic substance)
The manufacturing method of one Embodiment of this invention includes the process of making the said vapor deposition film and an acidic substance contact, and obtaining the thin film which has a space | gap.
Using a mixture containing indium oxide and silicon oxide as a thin film forming material, and indium oxide being 0.05 mol or more and 0.25 mol or less with respect to 1 mol of silicon oxide, The formed deposited film contains indium (I) oxide (In 2 O), indium oxide (III) (In 2 O 3 ), and silicon dioxide (IV) (SiO 2 ). Among these oxides constituting the vapor deposition film, indium (I) oxide (In 2 O) has high solubility in acidic substances, so that the vapor deposition film is brought into contact with the acidic substance, so that indium (I) oxide is converted. By eluting from the deposited film, a thin film having voids satisfying a desired refractive index can be formed. Of the oxides constituting the deposited film, indium (III) oxide (In 2 O 3 ) is also eluted from the thin film depending on the contact time with the acidic substance, and is surrounded by indium (III) oxide (In 2 O 3 ). Some of the silicon dioxide (IV) (SiO 2 ) that has been released may also be detached from the thin film at the same time as indium (III) oxide (In 2 O 3 ) is eluted from the thin film. The substance constituting the thin film having voids is mainly silicon dioxide (IV) (SiO 2 ), and indium (III) oxide (In 2 O 3 ) that does not elute is also included.
In the manufacturing method of one embodiment of the present invention, by using the thin film forming material of one embodiment of the present invention, indium (I) oxide (In 2 O) and indium (III) oxide having high solubility in an acidic substance. A vapor-deposited film containing (In 2 O 3 ) and silicon dioxide (IV) (SiO 2 ) can be formed, and then the vapor-deposited film is brought into contact with an acidic substance without impairing the durability of the thin film. Insoluble (I) oxide (In 2 O) with high solubility can be eluted first to increase the porosity of the thin film, and by increasing the porosity, the refractive index of the thin film can be lowered, A thin film having a low refractive index can be formed.
Indium oxide (I) (In 2 O) has a black body color, and absorbs visible light when indium oxide (I) (In 2 O) remains in the thin film. For example, by measuring the absorptivity {100− (transmittance + reflectance)} of a thin film with a spectrophotometer, when the thin film absorbs visible light, the absorptance of the thin film increases and the absorptance increases. When it is, it can be confirmed that indium (I) oxide (In 2 O) remains in the thin film.
The thin film obtained by the manufacturing method of one embodiment of the present invention can elute indium oxide (I) (In 2 O), which is easily eluted, from the deposited film by bringing the deposited film into contact with an acidic substance. By elution of indium (I) oxide (In 2 O), the porosity is high and the refractive index can be lowered.

(酸性物質)
酸性物質としては、塩酸、硫酸、硝酸等が挙げられる。酸性物質は、蒸着膜中の酸化インジウム(I)(InO)、酸化インジウム(III)(In)の溶解度が大きく、電離度が高い塩酸であることが好ましい。
(Acid substance)
Examples of acidic substances include hydrochloric acid, sulfuric acid, nitric acid and the like. The acidic substance is preferably hydrochloric acid having high solubility and high ionization degree of indium (I) oxide (In 2 O) and indium oxide (III) (In 2 O 3 ) in the deposited film.

蒸着膜と酸性物質とを接触させる温度は、温度が高いほど蒸着膜中の酸化インジウム(I)(InO)及び/又は酸化インジウム(III)(In)の溶出を促進させることができ、接触時間を短縮できることができるので、製造上好ましい。
一方、蒸着膜と酸性物質とを接触させる温度が高すぎると、酸性物質による腐食に耐えるために、耐熱耐食性の容器や、安全性を確保するための設備が必要となり、製造コストが高くなる虞がある。
蒸着膜と酸性物質とを接触させる温度は、好ましくは10℃以上100℃以下であり、より好ましくは20℃以上90℃以下、さらに好ましくは30℃以上85℃以下、よりさらに好ましくは40℃以上80℃以下、特に好ましくは45℃以上75℃以下である。
The temperature at which the vapor-deposited film and the acidic substance are brought into contact increases the elution of indium (I) oxide (In 2 O) and / or indium (III) oxide (In 2 O 3 ) in the vapor-deposited film as the temperature increases. And the contact time can be shortened, which is preferable in manufacturing.
On the other hand, if the temperature at which the deposited film is brought into contact with the acidic substance is too high, a heat-resistant and corrosion-resistant container and equipment for ensuring safety are required to withstand the corrosion caused by the acidic substance, which may increase the manufacturing cost. There is.
The temperature at which the deposited film is brought into contact with the acidic substance is preferably 10 ° C. or higher and 100 ° C. or lower, more preferably 20 ° C. or higher and 90 ° C. or lower, further preferably 30 ° C. or higher and 85 ° C. or lower, and still more preferably 40 ° C. or higher. 80 ° C. or lower, particularly preferably 45 ° C. or higher and 75 ° C. or lower.

蒸着膜と酸性物質とを接触させる時間は、接触温度や酸性物質の濃度によって異なり、所望の屈折率を満たす空隙率を有する薄膜が得られる時間であればよい。蒸着膜と酸性物質とを接触させる時間は、製造効率を向上し、薄膜及び被成膜物の耐久性を維持するために、好ましくは10秒以上、より好ましくは30秒以上であり、好ましくは36時間以下、より好ましくは25時間以下である。   The time for contacting the vapor deposition film and the acidic substance varies depending on the contact temperature and the concentration of the acidic substance, and may be a period for obtaining a thin film having a porosity satisfying a desired refractive index. The time for contacting the vapor-deposited film and the acidic substance is preferably 10 seconds or more, more preferably 30 seconds or more, preferably in order to improve the production efficiency and maintain the durability of the thin film and the film formation object. 36 hours or less, more preferably 25 hours or less.

蒸着膜と酸性物質とを接触させる方法は、一般的には酸性溶液中に蒸着膜を形成した被成膜物を浸漬させる方法や、被成膜物に形成された蒸着膜のみを酸性溶液中に浸漬させる方法や、蒸着膜に酸性溶液を吹き付ける方法等が挙げられる。蒸着膜を酸性物質に浸漬させる方法では、所定時間経過後に蒸着膜中の酸化インジウム(I)(InO)が溶出し、さらに酸性物質の濃度及び酸性物質との接触時間によっては酸化インジウム(III)(In)も溶出する。蒸着膜に酸性溶液を吹き付ける方法では、所定時間経過後に蒸着膜を水に浸漬することによって酸化インジウム(I)(InO)が溶出し、さらに酸性物質の濃度及び酸性物質と蒸着膜の接触時間によっては酸化インジウム(III)(In)が水に溶出する。蒸着膜中の酸化インジウム(I)(InO)が溶出し、場合によっては酸化インジウム(III)(In)が溶出することによって、空隙を有する薄膜が得られる。 In general, the method of bringing a vapor deposition film into contact with an acidic substance is a method of immersing a film-forming object in which a vapor-deposited film is formed in an acidic solution, or a method in which only a vapor-deposited film formed on a film-forming object is in an acidic solution. And a method of spraying an acidic solution on the vapor deposition film. In the method of immersing the deposited film in an acidic substance, indium oxide (I) (In 2 O) in the deposited film elutes after a predetermined time has elapsed, and indium oxide (In 2 O) depends on the concentration of the acidic substance and the contact time with the acidic substance. III) (In 2 O 3 ) is also eluted. In the method of spraying the acidic solution onto the deposited film, indium (I) oxide (In 2 O) is eluted by immersing the deposited film in water after a predetermined time has passed, and the concentration of the acidic substance and the contact between the acidic substance and the deposited film Depending on the time, indium (III) oxide (In 2 O 3 ) elutes in water. Indium (I) oxide (In 2 O) in the deposited film elutes and in some cases indium oxide (III) (In 2 O 3 ) elutes, a thin film having voids is obtained.

〔空隙を有する薄膜:光学薄膜〕
本発明の一実施形態の方法によって製造された空隙を有する薄膜は、酸化インジウム(III)(In)と、酸化ケイ素(IV)(SiO)とを含み、屈折率が1.38以下の光学薄膜である。
被成膜物を構成するガラス又は光学ガラスの屈折率は1.43〜1.69程度であり、ポリカーボネート、ポリメタクリル酸メチル樹脂等のプラスチックの屈折率は1.59〜1.70程度である。また、従来、低屈折材料として知られているフッ化マグネシウム(MgF)の屈折率は1.38である。
本発明の一実施形態の光学薄膜は、屈折率が1.38以下であり、従来の低屈折材料として知られているフッ化マグネシウム(MgF)の屈折率以下なので、被成膜物である光学ガラス又はプラスチックの屈折率の平方根(約1.20〜1.30)に近い値となり、反射防止効果を高めることができる。
本発明の一実施形態の光学薄膜の屈折率は、後述する実施例に基づき、光学薄膜について、分光光度計で反射スペクトルを測定し、入射光強度を100としたときの反射光強度の極小値を反射率として測定し、この測定した反射率からフレネル係数を用いて算出することができる。
[Thin film with voids: optical thin film]
The thin film having voids manufactured by the method of one embodiment of the present invention includes indium (III) oxide (In 2 O 3 ) and silicon oxide (IV) (SiO 2 ), and has a refractive index of 1.38. It is the following optical thin film.
The refractive index of the glass or optical glass constituting the film formation is about 1.43 to 1.69, and the refractive index of plastics such as polycarbonate and polymethyl methacrylate resin is about 1.59 to 1.70. . In addition, the refractive index of magnesium fluoride (MgF 2 ), which is conventionally known as a low refractive material, is 1.38.
The optical thin film according to an embodiment of the present invention has a refractive index of 1.38 or less and is equal to or lower than the refractive index of magnesium fluoride (MgF 2 ), which is known as a conventional low refractive material, and thus is an object to be deposited. It becomes a value close to the square root (about 1.20 to 1.30) of the refractive index of optical glass or plastic, and the antireflection effect can be enhanced.
The refractive index of the optical thin film of one embodiment of the present invention is based on the examples described later, and the reflection spectrum of the optical thin film is measured with a spectrophotometer and the reflected light intensity is set to 100 when the incident light intensity is 100. Can be measured as a reflectance, and can be calculated from the measured reflectance using a Fresnel coefficient.

本発明の一実施形態の方法によって製造された空隙を有する薄膜は、空隙率が8%以上70%以下である光学薄膜であることが好ましい。
光学薄膜の空隙率が8%以上70%以下であることによって、薄膜の耐久性を維持しつつ、薄膜の屈折率を低くすることができる。
本発明の一実施形態の方法によって製造された空隙を有する薄膜は、空隙率が、より好ましくは10%以上68%以下であり、さらに好ましくは15%以上67%以下である。光学薄膜の空隙率(全気孔率Vp)は、後述する実施例に基づき、Lorenz-Lorenz式を用いて求めることができる。
The thin film having voids produced by the method of one embodiment of the present invention is preferably an optical thin film having a porosity of 8% or more and 70% or less.
When the porosity of the optical thin film is 8% or more and 70% or less, the refractive index of the thin film can be lowered while maintaining the durability of the thin film.
The thin film having voids produced by the method of one embodiment of the present invention has a porosity of more preferably 10% or more and 68% or less, and further preferably 15% or more and 67% or less. The porosity (total porosity Vp) of the optical thin film can be determined using the Lorenz-Lorenz equation based on examples described later.

〔光学部材〕
本発明の一実施形態の光学薄膜と、被成膜物とを備えた光学部材は、天体望遠鏡、眼鏡レンズ、カメラ、バンドパスフィルター、ビームスプリッター等の光学ピックアップ部品を備えたディスクドライブ装置、高精細の液晶パネルを備えた表示装置等の光学部材として利用することができる。また、光学薄膜を発光装置の外部への光の取り出し部分に適用することで、発光装置から外部へ光の射出を促進させ、光の取り出し効率の向上や発熱の軽減を期待することができる。
(Optical member)
An optical member including an optical thin film and a film formation object according to an embodiment of the present invention includes a disk drive device including an optical pickup component such as an astronomical telescope, a spectacle lens, a camera, a band pass filter, and a beam splitter, It can be used as an optical member for a display device or the like provided with a fine liquid crystal panel. In addition, by applying the optical thin film to the light extraction portion to the outside of the light emitting device, the emission of light from the light emitting device to the outside can be promoted, and the improvement of the light extraction efficiency and the reduction of heat generation can be expected.

以下、本発明を実施例により具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

(実施例1)
(薄膜形成材料の製造)
酸化インジウム(III)粉末(In)(純度:99.99質量%)140gと、一酸化ケイ素粉末(SiO)(純度:99.9質量%)100gとを1Lのナイロンポットに投入し、これらの粉末とともに直径20mm(φ20)のナイロンボールを投入し、凝集物をほぐしながら30分混合し、原料混合物を得た。酸化ケイ素1モルに対する酸化インジウムのモル比(In/SiOモル比)は、0.22であった。原料混合物をポットから取り出し、プレス成形し成形体とした。この成形体を不活性雰囲気(アルゴン(Ar):99.99体積%)中で、800℃で2時間焼成し、薄膜形成材料(焼結体)1を得た。
Example 1
(Manufacture of thin film forming materials)
140 g of indium (III) oxide powder (In 2 O 3 ) (purity: 99.99 mass%) and 100 g of silicon monoxide powder (SiO) (purity: 99.9 mass%) were put into a 1 L nylon pot. A nylon ball having a diameter of 20 mm (φ20) was added together with these powders, and mixed for 30 minutes while loosening the aggregates to obtain a raw material mixture. The molar ratio of indium oxide to 1 mol of silicon oxide (In 2 O 3 / SiO molar ratio) was 0.22. The raw material mixture was taken out of the pot and press-molded to obtain a molded body. This molded body was fired at 800 ° C. for 2 hours in an inert atmosphere (argon (Ar): 99.99% by volume) to obtain a thin film forming material (sintered body) 1.

(蒸着膜の製造)
被成膜物として、両面研磨ガラス(ショット(SHOTT AG)社製、BK-7)を用いた。蒸着装置内に、被成膜物と、前記薄膜形成材料1を配置し、蒸着装置内の圧力を1.0×10−4Paまで減圧した状態で、薄膜形成材料1に電子ビーム(日本電子株式会社製、JEBG-102UH0)を照射し、被成膜物の片面に酸化インジウム(I)(InO)と酸化インジウム(III)(In)と二酸化ケイ素(SiO)とを含む蒸着膜を形成した。成膜時の被成膜物の温度を100℃とし、成膜時の蒸着装置内の制御圧力を酸素導入により2.0×10−2Paとした。
(Manufacture of evaporated film)
A double-sided polished glass (manufactured by SHOTT AG, BK-7) was used as the film formation. An object to be deposited and the thin film forming material 1 are placed in a vapor deposition apparatus, and an electron beam (JEOL) is applied to the thin film forming material 1 in a state where the pressure in the vapor deposition apparatus is reduced to 1.0 × 10 −4 Pa. Irradiated with JEBG-102UH0 manufactured by Co., Ltd., and indium oxide (I) (In 2 O), indium oxide (III) (In 2 O 3 ), and silicon dioxide (SiO 2 ) are applied to one surface of the film formation object. The vapor deposition film containing was formed. The temperature of the film formation object during film formation was set to 100 ° C., and the control pressure in the vapor deposition apparatus during film formation was set to 2.0 × 10 −2 Pa by introducing oxygen.

(空隙を有する薄膜の製造)
酸性溶液として50℃に加熱した18質量%の濃度の塩酸溶液を用い、この塩酸溶液に蒸着膜が形成された被成膜物を浸漬し、蒸着膜から主に酸化インジウム(I)(InO)を溶出させて、空隙を有する薄膜を製造した。蒸着膜と酸性溶液との接触時間(浸漬時間)を1分間とし、得られた空隙を有する薄膜の屈折率を後述する方法によって測定した。酸性溶液との接触時間(浸漬時間)が1分間で、屈折率が1.18の空隙を有する薄膜が得られた。
また、前述の方法によって形成された蒸着膜を、50℃の酸性溶液と、75℃の酸性溶液のそれぞれに接触(浸漬)させ、それぞれの温度の酸性溶液で薄膜の屈折率が1.38以下となる、酸性溶液との接触(浸漬)時間を測定した。
(Manufacture of thin film having voids)
A hydrochloric acid solution having a concentration of 18% by mass heated to 50 ° C. was used as the acidic solution, and the film-formed material on which the deposited film was formed was immersed in this hydrochloric acid solution, and mainly indium (I) oxide (In 2 O) was eluted to produce a thin film having voids. The contact time (immersion time) between the vapor-deposited film and the acidic solution was 1 minute, and the refractive index of the obtained thin film having voids was measured by the method described later. A thin film having voids with a contact time (immersion time) with an acidic solution of 1 minute and a refractive index of 1.18 was obtained.
In addition, the deposited film formed by the above-described method is brought into contact (immersion) with each of an acidic solution at 50 ° C. and an acidic solution at 75 ° C., and the refractive index of the thin film is 1.38 or less with the acidic solution at each temperature. The contact (immersion) time with the acidic solution was measured.

(実施例2)
In粉末120g、SiO粉末100g(In/SiOモル比が0.19)を混合し、実施例1と同様にして薄膜形成材料2を得た。この薄膜形成材料2を用いたこと以外は実施例1と同様にして空隙を有する薄膜を製造した。蒸着膜と酸性溶液との接触時間(浸漬時間)を1分間とし、得られた空隙を有する薄膜の屈折率を後述する方法によって測定した。酸性溶液との接触時間(浸漬時間)が1分間で、屈折率が1.29の空隙を有する薄膜が得られた。蒸着膜を50℃の酸性溶液に1分間接触(浸漬)させて得られた実施例2の薄膜の表面のSEM写真を図1に示し、薄膜の断面のSEM写真を図2に示す。
また、前述の方法によって形成された蒸着膜を、50℃の酸性溶液と、75℃の酸性溶液のそれぞれに接触(浸漬)させ、それぞれの温度の酸性溶液で薄膜の屈折率が1.38以下となる、酸性溶液との接触(浸漬)時間を測定した。
(Example 2)
120 g of In 2 O 3 powder and 100 g of SiO powder (In 2 O 3 / SiO molar ratio was 0.19) were mixed, and a thin film forming material 2 was obtained in the same manner as in Example 1. A thin film having voids was produced in the same manner as in Example 1 except that this thin film forming material 2 was used. The contact time (immersion time) between the vapor-deposited film and the acidic solution was 1 minute, and the refractive index of the obtained thin film having voids was measured by the method described later. A thin film having voids having a contact time (immersion time) with an acidic solution of 1 minute and a refractive index of 1.29 was obtained. An SEM photograph of the surface of the thin film of Example 2 obtained by contacting (immersing) the deposited film with an acidic solution at 50 ° C. for 1 minute is shown in FIG. 1, and an SEM photograph of the cross section of the thin film is shown in FIG.
In addition, the deposited film formed by the above-described method is brought into contact (immersion) with each of an acidic solution at 50 ° C. and an acidic solution at 75 ° C., and the refractive index of the thin film is 1.38 or less with the acidic solution at each temperature. The contact (immersion) time with the acidic solution was measured.

(実施例3)
In粉末80g、SiO粉末100g(In/SiOモル比が0.13)を混合し、実施例1と同様にして薄膜形成材料3を得た。この薄膜形成材料3を用いたこと以外は実施例1と同様にして空隙を有する薄膜を製造した。蒸着膜と酸性溶液との接触時間(浸漬時間)を1分間とし、得られた空隙を有する薄膜の屈折率を後述する方法によって測定した。酸性溶液との接触時間(浸漬時間)が1分間で、屈折率が1.35の空隙を有する薄膜が得られた。
また、前述の方法によって形成された蒸着膜を、50℃の酸性溶液と、75℃の酸性溶液のそれぞれに接触(浸漬)させ、それぞれの温度の酸性溶液で薄膜の屈折率が1.38以下となる、酸性溶液との接触(浸漬)時間を測定した。
(Example 3)
80 g of In 2 O 3 powder and 100 g of SiO powder (In 2 O 3 / SiO molar ratio was 0.13) were mixed, and a thin film forming material 3 was obtained in the same manner as in Example 1. A thin film having voids was produced in the same manner as in Example 1 except that this thin film forming material 3 was used. The contact time (immersion time) between the vapor-deposited film and the acidic solution was 1 minute, and the refractive index of the obtained thin film having voids was measured by the method described later. A thin film having voids with a contact time (immersion time) with an acidic solution of 1 minute and a refractive index of 1.35 was obtained.
In addition, the deposited film formed by the above-described method is brought into contact (immersion) with each of an acidic solution at 50 ° C. and an acidic solution at 75 ° C., and the refractive index of the thin film is 1.38 or less with the acidic solution at each temperature. The contact (immersion) time with the acidic solution was measured.

(実施例4)
In粉末60g、SiO粉末100g(In/SiOモル比が0.10)を混合し、実施例1と同様にして薄膜形成材料4を得た。この薄膜形成材料4を用いたこと以外は実施例1と同様にして空隙を有する薄膜を製造した。蒸着膜と酸性溶液との接触時間(浸漬時間)を1分間とし、得られた空隙を有する薄膜の屈折率を後述する方法によって測定した。酸性溶液との接触時間(浸漬時間)が1分間で、屈折率が1.45の空隙を有する薄膜が得られた。
また、前述の方法によって形成された蒸着膜を、50℃の酸性溶液に接触(浸漬)させ、薄膜の屈折率が1.38以下となる、酸性溶液との接触(浸漬)時間を測定した。
Example 4
60 g of In 2 O 3 powder and 100 g of SiO powder (In 2 O 3 / SiO molar ratio was 0.10) were mixed, and a thin film forming material 4 was obtained in the same manner as in Example 1. A thin film having voids was produced in the same manner as in Example 1 except that this thin film forming material 4 was used. The contact time (immersion time) between the vapor-deposited film and the acidic solution was 1 minute, and the refractive index of the obtained thin film having voids was measured by the method described later. A thin film having a void having a contact time (immersion time) with an acidic solution of 1 minute and a refractive index of 1.45 was obtained.
Moreover, the vapor deposition film formed by the above-mentioned method was contacted (immersed) in an acidic solution at 50 ° C., and the contact (immersion) time with the acidic solution at which the refractive index of the thin film was 1.38 or less was measured.

(実施例5)
In粉末40g、SiO粉末100g(In/SiOモル比が0.06)を混合し、実施例1と同様にして薄膜形成材料5を得た。この薄膜形成材料5を用いたこと以外は実施例1と同様にして空隙を有する薄膜を製造した。蒸着膜と酸性溶液との接触時間(浸漬時間)を1分間とし、得られた空隙を有する薄膜の屈折率を後述する方法によって測定した。酸性溶液との接触時間(浸漬時間)が1分間で、屈折率が1.47の空隙を有する薄膜が得られた。
また、前述の方法によって形成された蒸着膜を、50℃の酸性溶液に接触(浸漬)させ、薄膜の屈折率が1.38以下となる、酸性溶液との接触(浸漬)時間を測定した。
(Example 5)
40 g of In 2 O 3 powder and 100 g of SiO powder (In 2 O 3 / SiO molar ratio was 0.06) were mixed, and a thin film forming material 5 was obtained in the same manner as in Example 1. A thin film having voids was produced in the same manner as in Example 1 except that this thin film forming material 5 was used. The contact time (immersion time) between the vapor-deposited film and the acidic solution was 1 minute, and the refractive index of the obtained thin film having voids was measured by the method described later. A thin film having voids with a contact time (immersion time) with an acidic solution of 1 minute and a refractive index of 1.47 was obtained.
Moreover, the vapor deposition film formed by the above-mentioned method was contacted (immersed) in an acidic solution at 50 ° C., and the contact (immersion) time with the acidic solution at which the refractive index of the thin film was 1.38 or less was measured.

(実施例6)
酸性溶液の温度を75℃にし、それ以外は実施例4と同様にして、空隙を有する薄膜を製造した。蒸着膜と酸性溶液との接触時間(浸漬時間)を1分間とし、得られた空隙を有する薄膜の屈折率を後述する方法によって測定した。75℃の酸性溶液との接触時間(浸漬時間)が1分間で、屈折率が1.45の空隙を有する薄膜が得られた。
また、前述の方法によって形成された蒸着膜を、75℃の酸性溶液に接触(浸漬)させ、薄膜の屈折率が1.38以下となる接触(浸漬)時間を測定した。
(Example 6)
A thin film having voids was produced in the same manner as in Example 4 except that the temperature of the acidic solution was 75 ° C. The contact time (immersion time) between the vapor-deposited film and the acidic solution was 1 minute, and the refractive index of the obtained thin film having voids was measured by the method described later. A thin film having a void having a refractive index of 1.45 with a contact time (immersion time) of 1 minute with an acidic solution at 75 ° C. was obtained.
Moreover, the vapor deposition film formed by the above-mentioned method was contacted (immersed) in an acidic solution at 75 ° C., and the contact (immersion) time when the refractive index of the thin film was 1.38 or less was measured.

(実施例7)
酸性溶液の温度を75℃にし、それ以外は実施例5と同様にして、空隙を有する薄膜を製造した。蒸着膜と酸性溶液との接触時間(浸漬時間)を1分間とし、得られた空隙を有する薄膜の屈折率を後述する方法によって測定した。75℃の酸性溶液との接触時間(浸漬時間)が1分間で、屈折率が1.47の空隙を有する薄膜が得られた。
また、前述の方法によって形成された蒸着膜を、75℃の酸性溶液に接触(浸漬)させ、薄膜の屈折率が1.38以下となる接触(浸漬)時間を測定した。
(Example 7)
A thin film having voids was produced in the same manner as in Example 5 except that the temperature of the acidic solution was 75 ° C. The contact time (immersion time) between the vapor-deposited film and the acidic solution was 1 minute, and the refractive index of the obtained thin film having voids was measured by the method described later. The contact time (immersion time) with the acidic solution at 75 ° C. was 1 minute, and a thin film having voids with a refractive index of 1.47 was obtained.
Moreover, the vapor deposition film formed by the above-mentioned method was contacted (immersed) in an acidic solution at 75 ° C., and the contact (immersion) time when the refractive index of the thin film was 1.38 or less was measured.

(比較例1)
In粉末190g、SiO粉末100g(In/SiOモル比が0.03)を混合し、実施例1と同様にして焼結した薄膜形成材料8を得た。この薄膜形成材料8を用いたこと以外は実施例1と同様にして空隙を有する薄膜を製造した。蒸着膜と酸性溶液との接触時間(浸漬時間)を1分間とすると、蒸着膜が被成膜物から剥がれ、空隙を有する薄膜が形成できなかった。
(Comparative Example 1)
190 g of In 2 O 3 powder and 100 g of SiO powder (In 2 O 3 / SiO molar ratio was 0.03) were mixed to obtain a thin film forming material 8 that was sintered in the same manner as in Example 1. A thin film having voids was produced in the same manner as in Example 1 except that this thin film forming material 8 was used. When the contact time (immersion time) between the vapor deposition film and the acidic solution was 1 minute, the vapor deposition film was peeled off from the film formation target, and a thin film having voids could not be formed.

<空隙を有する薄膜(光学薄膜)の評価>
以下のように実施例及び比較例の空隙を有する薄膜(光学薄膜)の評価を行なった。結果を表1に示す。
<Evaluation of thin film (optical thin film) having voids>
The thin film (optical thin film) having voids in Examples and Comparative Examples was evaluated as follows. The results are shown in Table 1.

(屈折率)
分光光度計(株式会社日立ハイテクノロジーズ、製品名:U−4100、入射角5°)を用いて、実施例の空隙を有する薄膜(光学薄膜)の反射スペクトルを測定した。入射光強度を100としたときの反射光強度の極小値を反射率として測定し、この測定した反射率からフレネル係数を用いて屈折率を算出した。
実施例において、薄膜を形成する被成膜物として両面研磨ガラスを用いていることから、測定から得られた反射率R’は、裏面反射を含む多重繰り返し反射を含んでいる。測定された反射率R’は、多重繰り返し反射を含んでいることから、薄膜の反射率Rは、以下の式(1)で表すことができる。
(Refractive index)
Using a spectrophotometer (Hitachi High-Technologies Corporation, product name: U-4100, incident angle 5 °), the reflection spectrum of the thin film (optical thin film) having voids in the examples was measured. The minimum value of the reflected light intensity when the incident light intensity was 100 was measured as the reflectance, and the refractive index was calculated from the measured reflectance using the Fresnel coefficient.
In the example, since double-sided polished glass is used as the film formation object for forming a thin film, the reflectance R ′ obtained from the measurement includes multiple repetitive reflections including back surface reflection. Since the measured reflectance R ′ includes multiple repeated reflections, the reflectance R of the thin film can be expressed by the following formula (1).

前記式(1)中において、Rは基板(被成膜物)の反射率である。実際に測定された薄膜の反射率R’から式(1)に基づき、薄膜の反射率Rを算出した。薄膜の反射率Rは、裏面からの反射を考慮しない反射率である。
薄膜の反射率Rは、フレネル係数を用いると、基板(被成膜物)の屈折率nと薄膜の屈折率nを以下の式(2)を用いて表すことができる。
In the formula (1) in, R o is the reflectance of the substrate (deposition material). The thin film reflectance R was calculated from the actually measured thin film reflectance R ′ based on the equation (1). The reflectance R of the thin film is a reflectance that does not consider reflection from the back surface.
Reflectance of the thin film R is the use of Fresnel coefficients may represent the refractive index n of the refractive index n m and the thin film substrate (deposition material) using equation (2) below.

ここで、大気の屈折率を1と近似し、基板の屈折率nの平方根よりも薄膜の屈折率nが大きい場合には、以下の式(3)で薄膜の屈折率nを表すことができる。 Here, by approximating the refractive index of the atmosphere is 1, the greater the refractive index n of the thin film than the square root of the refractive index n m of the substrate, that the refractive index n of the thin film by the following formula (3) it can.

また、基板の屈折率nの平方根よりも薄膜の屈折率nが小さい場合には、以下の式(4)で薄膜の屈折率nを表すことができる。 Also, the smaller the refractive index n of the thin film than the square root of the refractive index n m of the substrate may represent a refractive index n of the thin film by the following equation (4).

前記式(1)ないし(4)に基づき、空隙を有する薄膜(光学薄膜)の屈折率nを算出した。なお、光学薄膜の屈折率nに関して、「小檜山光信著、「光学薄膜の基礎理論−フレネル係数、特性マトリクス−」、株式会社オプトロニクス社出版、平成23年2月25日、増補改訂版第1刷」を参照にした。   Based on the formulas (1) to (4), the refractive index n of the thin film (optical thin film) having voids was calculated. Regarding the refractive index n of the optical thin film, “Mitsunobu Koyama,“ Basic theory of optical thin film-Fresnel coefficient, characteristic matrix ””, Optronics Co., Ltd., February 25, 2011, first revised edition "

(空隙率(%))
実施例の空隙を有する薄膜(光学薄膜)の空隙率(全気孔率Vp)は、下記式(5)に示すLorenz-Lorenz式を用いて求めた。下記式(5)において、nは薄膜の観測された屈折率であり、nは薄膜の骨格の屈折率である。薄膜の屈折率nは、前記式(1)から(4)に基づき求めた空隙を有する薄膜(光学薄膜)の屈折率である。薄膜の骨格の屈折率nは、薄膜形成材料の組成と酸性物質との接触時間1分後の屈折率を用いて求めた。
(Porosity (%))
The porosity (total porosity Vp) of the thin film (optical thin film) having voids in the examples was determined using the Lorenz-Lorenz equation shown in the following equation (5). In the following formula (5), n f is the observed refractive index of the thin film, n b is the refractive index of the backbone of the film. The refractive index n f of the thin film is the refractive index of the thin film (optical thin film) having voids obtained based on the above formulas (1) to (4). Refractive index n b of the backbone of the film was determined using the refractive index of the contact time after 1 minute of the composition and the acidic substance film materials.

(耐久性)
実施例の空隙を有する薄膜(光学薄膜)の上にシルボン紙を重ね、シルボン紙の上から鉛筆硬度試験器(JIS K5600 引っかき硬度(鉛筆法)を準拠した。)を用いて、500g/cmの荷重をかけながら、乾式で20往復した。シルボン紙を外し、空隙を有する薄膜(光学薄膜)の表面を目視で確認し、傷又は反射光の色変化が確認できたものをB(Bad)とし、薄膜の表面に変化がないものをG(good)として評価した。
(durability)
Silbon paper is layered on the thin film (optical thin film) having voids in the examples, and 500 g / cm 2 using a pencil hardness tester (based on JIS K5600 scratch hardness (pencil method)) from above the Silbon paper. The sample was reciprocated 20 times while applying a load of. Remove the Sylbon paper, visually check the surface of the thin film (optical thin film) with voids, and B (Bad) is the one where the color change of scratches or reflected light is confirmed, and G is the one where the surface of the thin film does not change (Good).

(酸性物質の接触時間とIn/SiOモル比との関係)
実施例の空隙を有する薄膜の屈折率を1.38以下とするための酸性物質との接触時間と、In/SiOモル比との関係を図3に示す。
(Relationship between contact time of acidic substance and In 2 O 3 / SiO molar ratio)
FIG. 3 shows the relationship between the contact time with an acidic substance for adjusting the refractive index of the thin film having voids in the examples to 1.38 or less and the In 2 O 3 / SiO molar ratio.

表1に示すように、実施例1から7の薄膜は、屈折率を1.38以下とすることができた。酸性物質との接触時間が1分以内では、薄膜の屈折率を1.38以下にすることができない場合であっても、酸性物質との接触時間を長くすることによって薄膜の屈折率を1.38以下とすることができた。実施例1から7の薄膜は、分光光度計で透過率と反射率から吸収率を測定したところ、吸収率の増大が確認できず、薄膜中に体色が黒色である酸化インジウム(I)(InO)は存在せず、酸性物質との接触によって薄膜中の酸化インジウム(I)(InO)が全て溶出していることが確認できた。
比較例1に示すように、In/SiOモル比が0.25モルを超える薄膜形成材料を用いて形成した蒸着膜は、酸性物質との接触によって蒸着膜が剥がれ、被成膜物の所望とする部分に空隙を有する薄膜を形成することができなかった。
As shown in Table 1, the thin films of Examples 1 to 7 could have a refractive index of 1.38 or less. Even if the refractive index of the thin film cannot be reduced to 1.38 or less when the contact time with the acidic substance is within 1 minute, the refractive index of the thin film is increased by 1. by increasing the contact time with the acidic substance. It could be 38 or less. As for the thin films of Examples 1 to 7, when the absorptance was measured from the transmittance and the reflectance with a spectrophotometer, an increase in the absorptance could not be confirmed, and indium (I) oxide whose body color is black in the thin film ( In 2 O) was not present, and it was confirmed that all of indium oxide (I) (In 2 O) in the thin film was eluted by contact with the acidic substance.
As shown in Comparative Example 1, the deposited film formed by using a thin film forming material having an In 2 O 3 / SiO molar ratio exceeding 0.25 mole is peeled off by contact with an acidic substance, It was not possible to form a thin film having voids in the desired portions.

図1に示すように、実施例2の薄膜の表面のSEM写真から、薄膜には細かい溝状の空隙が形成されていることが確認できた。
図2に示すように、実施例2の薄膜の断面のSEM写真から、薄膜には基板の表面から薄膜の表面まで続く不定形な柱状の構造が多数形成されており、柱と柱の間には空隙が確認された。図2のSEM写真に示されている柱状の構造は、二酸化ケイ素(SiO)及び一部が酸化インジウム(III)(In)から形成されていると推測された。
As shown in FIG. 1, from the SEM photograph of the surface of the thin film of Example 2, it was confirmed that fine groove-like voids were formed in the thin film.
As shown in FIG. 2, from the SEM photograph of the cross section of the thin film of Example 2, the thin film has many irregular columnar structures extending from the surface of the substrate to the surface of the thin film, and between the columns. Voids were confirmed. The columnar structure shown in the SEM photograph of FIG. 2 was presumed to be formed of silicon dioxide (SiO 2 ) and partly indium oxide (III) (In 2 O 3 ).

図3に示すように、薄膜形成材料のIn/SiOモル比が0.05を下回ると、蒸着膜と酸性物質とを接触させる温度が75℃であっても、屈性率が1.38以下の薄膜を有するために、蒸着膜と酸性物質を接触させる時間が25時間を超えると予測されるため、製造時間が長くなり、生産性が低下した。一方、表1の比較例1に示すように、薄膜形成材料のIn/SiOモル比が0.25を超えて0.30であると、蒸着膜と酸性物質との接触時間が1分間以内であっても、薄膜が剥がれ、耐久性が低下した。 As shown in FIG. 3, when the In 2 O 3 / SiO molar ratio of the thin film forming material is less than 0.05, even if the temperature at which the deposited film and the acidic substance are brought into contact is 75 ° C., the refractive index is 1 Since it has a thin film of .38 or less, the contact time between the deposited film and the acidic substance is expected to exceed 25 hours, so that the manufacturing time becomes longer and the productivity is lowered. On the other hand, as shown in Comparative Example 1 of Table 1, when the In 2 O 3 / SiO molar ratio of the thin film forming material exceeds 0.25 and is 0.30, the contact time between the deposited film and the acidic substance is 1 Even within a minute, the thin film was peeled off and the durability was lowered.

本発明の一実施形態における薄膜の製造方法によれば、耐久性に優れた屈折率が低い光学薄膜を比較的に容易に製造することができ、カメラレンズのみならず、高精細の液晶パネル等にも利用できる光学薄膜を提供することができる。本発明の一実施形態における光学薄膜は、天体望遠鏡、眼鏡レンズ、カメラ、バンドパスフィルター、ビームスプリッター等の光学ピックアップ部品を備えたディスクドライブ装置、高精細の液晶パネルを備えた表示装置等の光学部材として利用することができる。   According to the method for producing a thin film in one embodiment of the present invention, an optical thin film having excellent durability and low refractive index can be produced relatively easily, and not only a camera lens but also a high-definition liquid crystal panel or the like. In addition, an optical thin film that can also be used can be provided. An optical thin film according to an embodiment of the present invention includes an optical device such as a disk drive device including an optical pickup component such as an astronomical telescope, a spectacle lens, a camera, a band pass filter, and a beam splitter, and a display device including a high-definition liquid crystal panel. It can be used as a member.

Claims (9)

薄膜形成材料を物理蒸着法により被成膜物に堆積させて、蒸着膜を形成する工程と、
前記蒸着膜と、酸性物質とを接触させて、空隙を有する薄膜を得る工程とを含み、
前記薄膜形成材料として、酸化インジウムと、酸化ケイ素とを含み、酸化インジウムが酸化ケイ素1モルに対して0.05モル以上0.25モル以下である混合物を用いることを特徴とする薄膜の製造方法。
Depositing a thin film forming material on an object to be deposited by physical vapor deposition to form a deposited film;
Contacting the vapor deposition film with an acidic substance to obtain a thin film having voids,
A method for producing a thin film comprising using, as the thin film forming material, a mixture containing indium oxide and silicon oxide, wherein the indium oxide is 0.05 mol or more and 0.25 mol or less with respect to 1 mol of silicon oxide. .
前記酸化ケイ素が主成分として一酸化ケイ素を含む、請求項1に記載の薄膜の製造方法。   The method for producing a thin film according to claim 1, wherein the silicon oxide contains silicon monoxide as a main component. 前記薄膜の屈折率が1.38以下である、請求項1又は2に記載の薄膜の製造方法。   The manufacturing method of the thin film of Claim 1 or 2 whose refractive index of the said thin film is 1.38 or less. 前記薄膜の空隙率が8%以上70%以下である、請求項1から3のいずれか一項に記載の薄膜の製造方法。   The manufacturing method of the thin film as described in any one of Claim 1 to 3 whose porosity of the said thin film is 8% or more and 70% or less. 酸化インジウムと、酸化ケイ素とを含み、酸化インジウムが酸化ケイ素1モルに対して0.05モル以上0.25モル以下含まれる混合物であることを特徴とする薄膜形成材料。   A thin film forming material comprising indium oxide and silicon oxide, wherein the indium oxide is a mixture containing 0.05 mol or more and 0.25 mol or less with respect to 1 mol of silicon oxide. 前記酸化ケイ素が主成分として一酸化ケイ素を含む、請求項5に記載の薄膜形成材料。   The thin film forming material according to claim 5, wherein the silicon oxide contains silicon monoxide as a main component. 酸化インジウムと、酸化ケイ素とを含み、屈折率が1.38以下であることを特徴とする光学薄膜。   An optical thin film comprising indium oxide and silicon oxide and having a refractive index of 1.38 or less. 空隙率8%以上70%以下である、請求項7に記載の光学薄膜。   The optical thin film according to claim 7, which has a porosity of 8% or more and 70% or less. 前記請求項7又は8に記載の光学薄膜と、被成膜物とを有する光学部材。   An optical member comprising the optical thin film according to claim 7 or 8 and a film formation target.
JP2016133564A 2016-07-05 2016-07-05 Thin film manufacturing method, thin film forming material, optical thin film, and optical member Active JP6702039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016133564A JP6702039B2 (en) 2016-07-05 2016-07-05 Thin film manufacturing method, thin film forming material, optical thin film, and optical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016133564A JP6702039B2 (en) 2016-07-05 2016-07-05 Thin film manufacturing method, thin film forming material, optical thin film, and optical member

Publications (2)

Publication Number Publication Date
JP2018003118A true JP2018003118A (en) 2018-01-11
JP6702039B2 JP6702039B2 (en) 2020-05-27

Family

ID=60947694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016133564A Active JP6702039B2 (en) 2016-07-05 2016-07-05 Thin film manufacturing method, thin film forming material, optical thin film, and optical member

Country Status (1)

Country Link
JP (1) JP6702039B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020050945A (en) * 2018-09-25 2020-04-02 日亜化学工業株式会社 Method for manufacturing optical thin film, thin film deposition material, optical thin film and optical member
JP2022132616A (en) * 2019-11-14 2022-09-08 日亜化学工業株式会社 Thin film forming material, optical thin film, and optical member
CN115201940A (en) * 2021-04-10 2022-10-18 光驰科技(上海)有限公司 Method for manufacturing transparent low-density ultralow-reflectivity film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389656A (en) * 1986-10-01 1988-04-20 Agency Of Ind Science & Technol Electrically conductive transparent film and its formation
JPH03187955A (en) * 1989-03-07 1991-08-15 Asahi Glass Co Ltd Permselective article and production thereof
JP2004182491A (en) * 2002-11-29 2004-07-02 Mitsubishi Chemicals Corp Porous silica film, laminated substrate having the same, production method therefor, and electroluminescence element
JP2004345223A (en) * 2003-05-22 2004-12-09 Dainippon Printing Co Ltd Functional optical film and image display
JP2005352303A (en) * 2004-06-11 2005-12-22 Pentax Corp Anti-reflection coating and optical element having anti-reflection coating
JP2014035415A (en) * 2012-08-08 2014-02-24 Canon Inc Optical element and optical device having the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389656A (en) * 1986-10-01 1988-04-20 Agency Of Ind Science & Technol Electrically conductive transparent film and its formation
JPH03187955A (en) * 1989-03-07 1991-08-15 Asahi Glass Co Ltd Permselective article and production thereof
JP2004182491A (en) * 2002-11-29 2004-07-02 Mitsubishi Chemicals Corp Porous silica film, laminated substrate having the same, production method therefor, and electroluminescence element
JP2004345223A (en) * 2003-05-22 2004-12-09 Dainippon Printing Co Ltd Functional optical film and image display
JP2005352303A (en) * 2004-06-11 2005-12-22 Pentax Corp Anti-reflection coating and optical element having anti-reflection coating
JP2014035415A (en) * 2012-08-08 2014-02-24 Canon Inc Optical element and optical device having the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020050945A (en) * 2018-09-25 2020-04-02 日亜化学工業株式会社 Method for manufacturing optical thin film, thin film deposition material, optical thin film and optical member
JP7227473B2 (en) 2018-09-25 2023-02-22 日亜化学工業株式会社 Optical thin film manufacturing method, thin film forming material, optical thin film, and optical member
JP2022132616A (en) * 2019-11-14 2022-09-08 日亜化学工業株式会社 Thin film forming material, optical thin film, and optical member
JP7410431B2 (en) 2019-11-14 2024-01-10 日亜化学工業株式会社 Thin film forming materials, optical thin films, and optical members
CN115201940A (en) * 2021-04-10 2022-10-18 光驰科技(上海)有限公司 Method for manufacturing transparent low-density ultralow-reflectivity film

Also Published As

Publication number Publication date
JP6702039B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
JP6682188B2 (en) Hard antireflective film and its manufacture and use
US6627320B2 (en) Method for producing composition for vapor deposition, composition for vapor deposition, and method for producing optical element with antireflection film
US20220283339A1 (en) Method for producing thin film, thin film forming material, optical thin film, and optical member
JP6702039B2 (en) Thin film manufacturing method, thin film forming material, optical thin film, and optical member
JP4796264B2 (en) Optical element with surface mirror coating and method of forming the coating
EP1801621B1 (en) Optical coating material for vapor deposition, use of the material, and optical element
JP7227473B2 (en) Optical thin film manufacturing method, thin film forming material, optical thin film, and optical member
JP7376777B2 (en) Optical thin film manufacturing method, optical thin film, and optical member
JP2011107359A (en) Optical article
CN110546118B (en) Film-attached glass substrate, article, and method for producing film-attached glass substrate
JP7410431B2 (en) Thin film forming materials, optical thin films, and optical members
US8029923B2 (en) Vaporizing material for producing highly refractive optical layers
WO2023234067A1 (en) Low-reflection member, and coating liquid for low-reflection film
JP2022058236A (en) Method for manufacturing optical multilayer film and optical member
JP2004300580A (en) Method for manufacturing vapor deposition composition, and method for manufacturing optical component having vapor deposition composition and reflection preventive film
TWI557442B (en) Titanium oxide films and method of manufacture thereof
EP3097066A1 (en) Ceramic substrate with a functional coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200420

R150 Certificate of patent or registration of utility model

Ref document number: 6702039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250