JP2018001605A - Laser deposition method of optical transparent resin and laser deposition device of optical transparent resin - Google Patents

Laser deposition method of optical transparent resin and laser deposition device of optical transparent resin Download PDF

Info

Publication number
JP2018001605A
JP2018001605A JP2016131669A JP2016131669A JP2018001605A JP 2018001605 A JP2018001605 A JP 2018001605A JP 2016131669 A JP2016131669 A JP 2016131669A JP 2016131669 A JP2016131669 A JP 2016131669A JP 2018001605 A JP2018001605 A JP 2018001605A
Authority
JP
Japan
Prior art keywords
resin material
laser beam
laser
reflecting
jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016131669A
Other languages
Japanese (ja)
Other versions
JP6014834B1 (en
Inventor
渡辺 公彦
Kimihiko Watanabe
公彦 渡辺
裕樹 鬼頭
Yuki Kito
裕樹 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seidensha Electronics Co Ltd
Original Assignee
Seidensha Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seidensha Electronics Co Ltd filed Critical Seidensha Electronics Co Ltd
Priority to JP2016131669A priority Critical patent/JP6014834B1/en
Priority to PCT/JP2016/080713 priority patent/WO2018003133A1/en
Application granted granted Critical
Publication of JP6014834B1 publication Critical patent/JP6014834B1/en
Publication of JP2018001605A publication Critical patent/JP2018001605A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1619Mid infrared radiation [MIR], e.g. by CO or CO2 lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1622Far infrared radiation [FIR], e.g. by FIR lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • B29C65/1641Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding making use of a reflector on the opposite side, e.g. a polished mandrel or a mirror
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • B29C65/1658Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined scanning once, e.g. contour laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • B29C65/1667Laser beams characterised by the way of heating the interface making use of several radiators at the same time, i.e. simultaneous laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1687Laser beams making use of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/24Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools characterised by the means for heating the tool
    • B29C65/245Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools characterised by the means for heating the tool the heat transfer being achieved contactless, e.g. by radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/03After-treatments in the joint area
    • B29C66/034Thermal after-treatments
    • B29C66/0342Cooling, e.g. transporting through welding and cooling zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/242Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours
    • B29C66/2422Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being circular, oval or elliptical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/242Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours
    • B29C66/2422Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being circular, oval or elliptical
    • B29C66/24221Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being circular, oval or elliptical being circular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5227Joining tubular articles for forming multi-tubular articles by longitudinally joining elementary tubular articles wall-to-wall (e.g. joining the wall of a first tubular article to the wall of a second tubular article) or for forming multilayer tubular articles
    • B29C66/52271Joining tubular articles for forming multi-tubular articles by longitudinally joining elementary tubular articles wall-to-wall (e.g. joining the wall of a first tubular article to the wall of a second tubular article) or for forming multilayer tubular articles one tubular article being placed inside the other
    • B29C66/52272Joining tubular articles for forming multi-tubular articles by longitudinally joining elementary tubular articles wall-to-wall (e.g. joining the wall of a first tubular article to the wall of a second tubular article) or for forming multilayer tubular articles one tubular article being placed inside the other concentrically, e.g. for forming multilayer tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/532Joining single elements to the wall of tubular articles, hollow articles or bars
    • B29C66/5324Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length
    • B29C66/53241Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length said articles being tubular and said substantially annular single elements being of finite length relative to the infinite length of said tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8126General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/81266Optical properties, e.g. transparency, reflectivity
    • B29C66/81267Transparent to electromagnetic radiation, e.g. to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8126General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/81266Optical properties, e.g. transparency, reflectivity
    • B29C66/81268Reflective to electromagnetic radiation, e.g. to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/818General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps
    • B29C66/8181General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the cooling constructional aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91231Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the joining tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/934Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/961Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving a feedback loop mechanism, e.g. comparison with a desired value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/022Mechanical pre-treatments, e.g. reshaping
    • B29C66/0224Mechanical pre-treatments, e.g. reshaping with removal of material
    • B29C66/02245Abrading, e.g. grinding, sanding, sandblasting or scraping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7316Surface properties
    • B29C66/73161Roughness or rugosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8122General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the composition of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/865Independently movable welding apparatus, e.g. on wheels
    • B29C66/8652Independently movable welding apparatus, e.g. on wheels being pushed by hand or being self-propelling
    • B29C66/86531Independently movable welding apparatus, e.g. on wheels being pushed by hand or being self-propelling being guided
    • B29C66/86533Independently movable welding apparatus, e.g. on wheels being pushed by hand or being self-propelling being guided by rails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/004Bent tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7542Catheters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7542Catheters
    • B29L2031/7543Balloon catheters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7546Surgical equipment
    • B29L2031/7548Cannulas

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To overcome problems with conventional laser deposition device that deposition cannot be conducted well without large output laser output means, continuous deposition of long sized optical transparent resin material cannot be conducted, deposition quality is not uniform and productivity is bad.SOLUTION: By using a reflection jig having surfaces with a reflection surface which reflects a laser light respectively, a recess groove having a cross section shape corresponding to an outer periphery shape of a first resin material and a wall part formed at upper of both sides of the recess groove, the first resin material and a second resin material through which the laser light penetrates are mounted on the recess groove, a reflection lid having the reflection surface facing the recess groove of the reflection jig is mounted, the laser light is applied to the recess groove by a laser irradiation means, the laser light passed through the first resin material and the second resin material is repeatedly reflected between each reflection surface of the wall part and the reflection lid, the first resin material and the second resin material are heated and deposited.SELECTED DRAWING: Figure 1

Description

本発明は、二以上の光透過性の樹脂にレーザ光を照射して溶着するレーザ溶着方法およびレーザ溶着装置に関し、特に光透過性の樹脂である筒状又は管状等の中空をした第一の樹脂材と、当該第一の樹脂材内に挿入された筒状若しくは管状等の中空の樹脂材又は棒状等の中実の第二の樹脂材とを溶着するレーザ溶着方法と、レーザ溶着装置に関する。 The present invention relates to a laser welding method and a laser welding apparatus for welding by irradiating two or more light transmissive resins by irradiating a laser beam, and in particular, a first hollow tube or tubular hollow that is a light transmissive resin. The present invention relates to a laser welding method and a laser welding apparatus for welding a resin material, a hollow resin material such as a tube or tube inserted into the first resin material, or a solid second resin material such as a rod. .

従来、光透過性の樹脂である筒状又は管状等の中空の第一の樹脂材と、当該第一の樹脂材内に挿入された筒状若しくは管状等の中空の樹脂材又は棒状等の中実の第二の樹脂材とを溶着するレーザ溶着方法としては、出願人が発明した、凹部溝のある反射治具を用いて溶着する方法が知られている(例えば、特許文献1参照)。この方法によれば、鼻カニューレやカテーテルなどの医療用樹脂材のレーザ溶着をすることができる他、各種の光透過性の樹脂材を、レーザ光を照射して溶着することができる。
すなわちこのレーザ溶着方法では、図26A、図26Bのように、第一の樹脂材1に第二の樹脂材2を挿入した状態で、第一の樹脂材1の下半分の外周面を反射治具の凹部溝3aに嵌め、図27のように、レーザ光照射手段5から当該凹部溝3aの上に載置した第一の樹脂材1と第二の樹脂材2に向けてレーザ光6を照射する。すると、第一の樹脂材1と第二の樹脂材2を通過したレーザ光6が凹部溝3aの表面で反射して、第一の樹脂材1と第二の樹脂材2の通過と反射を繰り返す。レーザ光6は第一の樹脂材1と第二の樹脂材2に吸収されて、第一の樹脂材1と第二の樹脂材2は発熱し互いに溶着する。
しかし、上記従来のレーザ溶着装置では、図27の断面と同じ平面におけるレーザ光の反射についてよく検討されていたが、図27の断面に対して垂直な、いわゆる第一の樹脂材1と第二の樹脂材2の長手方向のレーザ光の反射については十分には検討されていなかった。すなわち、(A)レーザ光を、第一の樹脂材1と第二の樹脂材2の長手方向の一点に集中させるのか、(B)レーザ光を、第一の樹脂材1と第二の樹脂材2の長手方向の一定長さの範囲に集中させるのか、(C)レーザ光を、第一の樹脂材1と第二の樹脂材2の長手方向に移動させるのか、などについて深く検討されていなかった。
そのため、レーザ光源のエネルギーの利用が十分でなく、大出力のレーザ出力装置が必要であった。レーザ光の照射範囲に限定したレーザ溶着はできるが、パイプなどの管状の長尺の光透過性樹脂材を長い範囲を連続的に均一に溶着することが難しかった。反射治具の温度が一定せず、レーザ溶着強度等の溶着品質が均一にならなかった。反射治具が放熱して一定温度に戻るのに時間がかかり、レーザ溶着のサイクル時間が長くて生産性が悪かった。
Conventionally, a hollow first resin material such as a cylinder or a tube, which is a light-transmitting resin, and a hollow resin material such as a tube or a tube inserted into the first resin material or a rod As a laser welding method for welding the actual second resin material, a method of welding using a reflecting jig having a concave groove, invented by the applicant, is known (for example, see Patent Document 1). According to this method, it is possible to perform laser welding of a medical resin material such as a nasal cannula or a catheter, and it is possible to weld various light transmissive resin materials by irradiating laser light.
That is, in this laser welding method, the outer peripheral surface of the lower half of the first resin material 1 is subjected to reflection treatment with the second resin material 2 inserted into the first resin material 1 as shown in FIGS. 26A and 26B. As shown in FIG. 27, the laser beam 6 is applied to the first resin material 1 and the second resin material 2 placed on the recess groove 3a from the laser beam irradiation means 5 as shown in FIG. Irradiate. Then, the laser beam 6 that has passed through the first resin material 1 and the second resin material 2 is reflected by the surface of the recess groove 3a, and the first resin material 1 and the second resin material 2 are passed and reflected. repeat. The laser beam 6 is absorbed by the first resin material 1 and the second resin material 2, and the first resin material 1 and the second resin material 2 generate heat and are welded to each other.
However, in the conventional laser welding apparatus, reflection of laser light in the same plane as the cross section of FIG. 27 has been well studied, but the so-called first resin material 1 and second perpendicular to the cross section of FIG. The reflection of the laser beam in the longitudinal direction of the resin material 2 has not been sufficiently studied. That is, (A) the laser beam is concentrated at one point in the longitudinal direction of the first resin material 1 and the second resin material 2, or (B) the laser beam is focused on the first resin material 1 and the second resin material. Whether or not it is concentrated in a range of a certain length in the longitudinal direction of the material 2 or (C) whether the laser beam is moved in the longitudinal direction of the first resin material 1 and the second resin material 2 has been deeply studied. There wasn't.
For this reason, the energy of the laser light source is not sufficiently utilized, and a high-power laser output device is required. Although laser welding limited to the laser beam irradiation range can be performed, it has been difficult to continuously and uniformly weld a long tubular light-transmitting resin material such as a pipe over a long range. The temperature of the reflecting jig was not constant, and the welding quality such as laser welding strength was not uniform. It took time for the reflecting jig to radiate heat and return to a constant temperature, and the laser welding cycle time was long, resulting in poor productivity.

また、他の従来例として図28、図29に示したように、第一の樹脂材と第二の樹脂材を、樹脂材に非接触の反射面で取り巻いて、反射面の開口からレーザ光を照射して、第一の樹脂材と第二の樹脂材を溶着する方法も知られている。
ちなみに、図28では、チューブ部分のチューブ壁の熱吸収特性が互いに異なる少なくとも2つの物質層100、200から構築され、これらの層の1つがレーザ放射に対する熱吸収特性に優れた領域を少なくとも部分的に備えている。チューブ部分はミラー300に非接触で囲まれていて、レーザ照射手段500からのレーザ光600がミラー300で反射してチューブ部分を繰り返し照射すると発熱し、レーザ照射が終わると冷却、固化して溶着される。
また、図29では、管状部品110と吸収プラスチック部品210にレーザ光610を照射して溶着している。管状部品110と吸収プラスチック部品210は、円筒ミラー310に非接触で囲まれていて、円筒ミラー310は分散したレーザ光610を反射して、分散したレーザ光を管状部品110と吸収プラスチック部品210まで再循環させる。円筒ミラー310は、図29に示されるように、レーザ光が再反射を続けて、最終的にレーザ光が溶接される管状部品110と吸収プラスチック部品210の周囲の全方向から入射するような形状を有している。レーザ光の反射を繰り返すと、管状部品110と吸収プラスチック部品210は溶着する。しかし、図28と図29の断面図の平面に垂直な、いわゆる第一の樹脂材100(110)と第二の樹脂材200(210)の長手方向のレーザ光の反射については上記と同じく深く検討されていなかった。そして、上記の問題は解決されていなかった(例えば、特許文献2、3参照)。
As another conventional example, as shown in FIG. 28 and FIG. 29, a first resin material and a second resin material are surrounded by a non-contact reflective surface, and laser light is emitted from the opening of the reflective surface. A method of welding the first resin material and the second resin material is also known.
Incidentally, in FIG. 28, the tube wall of the tube part is constructed from at least two material layers 100, 200 having different heat absorption characteristics, and one of these layers has at least a partial area with excellent heat absorption characteristics for laser radiation. In preparation. The tube portion is surrounded by the mirror 300 in a non-contact manner. When the laser beam 600 from the laser irradiation means 500 is reflected by the mirror 300 and repeatedly irradiates the tube portion, heat is generated. Is done.
In FIG. 29, the tubular part 110 and the absorbing plastic part 210 are welded by irradiating with a laser beam 610. The tubular part 110 and the absorbing plastic part 210 are surrounded in a non-contact manner by the cylindrical mirror 310, and the cylindrical mirror 310 reflects the dispersed laser light 610 and transmits the dispersed laser light to the tubular part 110 and the absorbing plastic part 210. Recirculate. As shown in FIG. 29, the cylindrical mirror 310 is shaped so that the laser light continues to be re-reflected and finally incident from all directions around the tubular part 110 and the absorbing plastic part 210 to which the laser light is welded. have. When the reflection of the laser beam is repeated, the tubular part 110 and the absorbing plastic part 210 are welded. However, the reflection of the laser beam in the longitudinal direction of the first resin material 100 (110) and the second resin material 200 (210) perpendicular to the planes of the sectional views of FIGS. It was not examined. And said problem was not solved (for example, refer patent document 2, 3).

更に他の従来例として図30に示した第一の樹脂材120と第二の樹脂材220を一対の鏡320,330で挟み、第一の樹脂材120と第二の樹脂材220の斜めからレーザ光を照射して、第一の樹脂材120と第二の樹脂材220を溶着する方法が知られている。
しかし、図30の断面に垂直な、第一の樹脂材1と第二の樹脂材2の紙面の奥行き方向のレーザ光の反射については上記と同じく深く検討されていなかった。そして、上記の問題は解決されていなかった(例えば、特許文献4参照)。
結局、従来のレーザ溶着装置では、上記に説明したように、一品生産的にレーザ溶着ができるにとどまっていた。すなわち、二以上の光透過性の樹脂を量産的にレーザ溶着するために大出力のレーザ出力手段がないと溶着が上手にできない、長尺の光透過性樹脂材の連続溶着が上手にできない、溶着品質が均一でない、生産性が悪い、という、レーザ溶着装置を量産的に用いるための種々の課題が未解決のままであった。
As another conventional example, the first resin material 120 and the second resin material 220 shown in FIG. 30 are sandwiched between a pair of mirrors 320 and 330, and the first resin material 120 and the second resin material 220 are obliquely viewed. A method of welding the first resin material 120 and the second resin material 220 by irradiating laser light is known.
However, the reflection of laser light in the depth direction on the paper surface of the first resin material 1 and the second resin material 2 perpendicular to the cross section of FIG. And said problem was not solved (for example, refer patent document 4).
Eventually, with the conventional laser welding apparatus, as described above, laser welding can only be performed in a product-by-product manner. That is, in order to perform laser welding of two or more light transmissive resins in a mass production, welding cannot be performed well without a large output laser output means, continuous welding of a long light transmissive resin material cannot be performed well, Various problems for using the laser welding apparatus in mass production, such as non-uniform welding quality and poor productivity, remain unsolved.

特開2013−202876号公報JP 2013-202876 A 特表2009−532236号公報Special table 2009-532236 特表2010−527296号公報Special table 2010-527296 特開2011−5816号公報Japanese Unexamined Patent Publication No. 2011-5816

本発明は、第一の樹脂材と第二の樹脂材の短手方向(断面方向)と長手方向(軸方向)方向のレーザ光の反射に新技術を用いることで、レーザ光源のエネルギーの利用を向上させ、小出力のレーザ出力手段でレーザ溶着を可能とする課題解決手段の提供を目的にしている。
そして、斯かる課題解決手段に基づいて、従来の付随的な種々の課題を解決することを目的としている。すなわち、長尺の光透過性樹脂材の長手方向の一定範囲長さを均一に溶着することを可能とする、反射治具と反射蓋の温度を安定させて、レーザ溶着強度等の溶着品質を均一にすることを可能とする、反射治具等の冷却を短時間に行い、レーザ溶着のサイクル時間を短くして生産性を上げることを可能とする、等の、量産的に利用可能なレーザ溶着方法およびレーザ溶着装置を提供することを目的としている。
The present invention uses the energy of the laser light source by using a new technology for reflecting the laser light in the short direction (cross-sectional direction) and the long direction (axial direction) of the first resin material and the second resin material. It is an object of the present invention to provide a problem solving means that can improve laser welding and enable laser welding with a small output laser output means.
And it aims at solving various conventional incidental problems based on such problem solving means. That is, it is possible to uniformly weld a certain range length in the longitudinal direction of a long light transmitting resin material, stabilize the temperature of the reflecting jig and the reflecting lid, and improve the welding quality such as laser welding strength. Lasers that can be used in mass production, such as making it possible to cool the reflecting jig in a short time, shortening the cycle time of laser welding, and improving productivity. An object is to provide a welding method and a laser welding apparatus.

本発明のレーザ溶着装置は、光透過性の第一の樹脂材と第二の樹脂材とを当接させ、これらの第一および第二の樹脂材をレーザ溶着するレーザ装置であって、レーザ光照射手段と、前記第一の樹脂材の外周形状に対応した断面形状を持ち、表面がレーザ光を反射する反射面をなし、第二の樹脂材を当接させた状態で第一の樹脂材を載置して受容可能な凹部溝と、当該凹部溝の上方の両側にあって、表面がレーザ光を反射する反射面をなす壁部と、を持つ反射治具と、前記反射治具の凹部溝と壁部に対向する反射面と、前記レーザ光照射手段で発生したレーザ光を通すレーザ光通過孔を持ち、前記壁部の上に載置して取り付けられる反射蓋と、を有し、レーザ光照射手段で発生させたレーザ光は、前記壁部上に取り付けられた反射蓋のレーザ光通過孔から、前記第二の樹脂材を当接させて凹部溝に載置された第一の樹脂材に向けて照射され、前記第一の樹脂材と第二の樹脂材を通過したレーザ光は、前記凹部溝、壁部および反射蓋の反射面を繰り返し反射する間に、前記第一の樹脂材及び前記第二の樹脂材を加熱して溶着させるように構成している。   A laser welding apparatus according to the present invention is a laser apparatus in which a light-transmissive first resin material and a second resin material are brought into contact with each other, and these first and second resin materials are laser-welded. The first resin with a light irradiation means and a cross-sectional shape corresponding to the outer peripheral shape of the first resin material, the surface forming a reflective surface for reflecting laser light, and the second resin material in contact with the first resin A reflection jig having a recess groove on which a material can be placed and can be received; and a wall portion on both sides above the recess groove, the surface of which forms a reflection surface that reflects laser light, and the reflection jig And a reflecting surface having a laser beam passage hole through which the laser beam generated by the laser beam irradiating means is passed and mounted on the wall portion. However, the laser beam generated by the laser beam irradiation means is the laser beam of the reflection lid attached on the wall portion. Laser light that has passed through the first resin material and the second resin material by being irradiated toward the first resin material placed in the concave groove with the second resin material in contact with the second hole. Is configured to heat and weld the first resin material and the second resin material while repeatedly reflecting the concave groove, the wall, and the reflective surface of the reflective lid.

このように構成したことにより、レーザ光を反射治具の凹部溝および壁部の反射面と、反射蓋の反射面との間で第一の樹脂材及び前記第二の樹脂材に向けて繰り返し反射させて、レーザ光源のエネルギーの利用を向上させて、小出力のレーザ出力手段で所定のレーザ溶着を可能にする課題を解決している。
本発明のレーザ溶着装置は、反射蓋の反射面を球面にして、レーザ光が長手方向においてレーザ光照射の中心付近に集中するように反射させたり、反射蓋の反射面を円筒面と斜面を組み合わせた形にして、レーザ光が長手方向においてレーザ光照射の中心付近の一定長さの範囲に集中するようにしたりしている。また、レーザ光照射手段を反射蓋に載せ、記反射治具に沿って移動可能にしている。
With this configuration, the laser beam is repeatedly directed toward the first resin material and the second resin material between the concave groove and the reflection surface of the reflection jig and the reflection surface of the reflection lid. The problem of enabling predetermined laser welding with a laser output means with a small output by reflecting and improving the use of energy of the laser light source is solved.
In the laser welding apparatus of the present invention, the reflecting surface of the reflecting lid is made spherical so that the laser beam is reflected so as to be concentrated near the center of the laser beam irradiation in the longitudinal direction, or the reflecting surface of the reflecting lid is made to have a cylindrical surface and an inclined surface. In a combined form, the laser beam is concentrated in a certain length range near the center of the laser beam irradiation in the longitudinal direction. In addition, the laser beam irradiation means is placed on the reflection lid so that it can move along the reflection jig.

このように構成したことにより、レーザ光源のエネルギーを効率よく利用して長尺物の光透過樹脂材を溶着可能にしている。また、光透過樹脂材が固定された反射治具に沿ってレーザ光を移動させて、長尺物の光透過樹脂材を長手方向に長い範囲で均一に溶着可能にする課題を解決している。
本発明のレーザ溶着装置は、温度制御手段と、反射治具または前記反射蓋に温度センサを設け、前記反射治具または前記反射蓋で検出した温度により、レーザ光出力レベルあるいは反射蓋の反射治具に対する移動速度を制御している。
With this configuration, a long light-transmitting resin material can be welded by efficiently using the energy of the laser light source. In addition, the laser beam is moved along the reflecting jig to which the light transmissive resin material is fixed, thereby solving the problem that the light transmissive resin material of a long object can be uniformly welded in a long range in the longitudinal direction. .
The laser welding apparatus of the present invention is provided with a temperature control means and a temperature sensor in the reflection jig or the reflection lid, and the laser beam output level or the reflection treatment of the reflection lid depends on the temperature detected by the reflection jig or the reflection lid. Controls the moving speed of the tool.

このように構成したことにより、反射治具と反射蓋と第一の樹脂材と第二の樹脂材の温度制御をして一定温度範囲内でレーザ溶着を行うようにして、レーザ溶着強度等の溶着品質を均一にすることを可能とする課題を解決している。
本発明のレーザ溶着装置は、反射治具または前記反射蓋に冷却手段を設け、前記反射治具または前記反射蓋から検出した温度により、冷却手段を制御して、前記反射治具または前記反射蓋を冷却するようにしている。
With this configuration, the temperature of the reflecting jig, the reflecting lid, the first resin material, and the second resin material is controlled so that laser welding is performed within a certain temperature range. It solves the problem that enables uniform welding quality.
In the laser welding apparatus of the present invention, a cooling means is provided in the reflecting jig or the reflecting lid, and the cooling means is controlled by the temperature detected from the reflecting jig or the reflecting lid, so that the reflecting jig or the reflecting lid is controlled. To cool down.

このように構成したことにより、反射治具と反射蓋が加熱されてから冷却されるまでの温度サイクルの時間を短縮して、レーザ溶着の生産性を上げることを可能とする課題を解決している。   By configuring in this way, the problem that makes it possible to shorten the temperature cycle time from when the reflecting jig and the reflecting lid are heated to when they are cooled and to increase the productivity of laser welding is solved. Yes.

本発明は、レーザ光を反射治具と反射蓋との間で繰り返し反射させて、レーザ光源のエネルギーの利用を向上させたレーザ溶着装置を供給可能とし、長尺物の光透過樹脂材を連続的に均一に溶着できるレーザ溶着装置を供給可能とし、温度制御をして、レーザ溶着の品質の均一性を向上させたレーザ溶着装置を供給可能とし、冷却手段によりレーザ溶着の温度サイクルを短くして、レーザ溶着の生産性を向上させたレーザ溶着装置を供給可能としている。   The present invention makes it possible to supply a laser welding apparatus in which laser light is repeatedly reflected between a reflection jig and a reflection lid to improve the use of energy of a laser light source, and a continuous light-transmitting resin material is continuously provided. Laser welding equipment that can be uniformly welded can be supplied, laser welding equipment with improved uniformity of laser welding quality can be supplied by controlling the temperature, and the temperature cycle of laser welding can be shortened by cooling means Thus, it is possible to supply a laser welding apparatus with improved laser welding productivity.

本発明の実施形態1のレーザ溶着装置の要部断面図。1 is a cross-sectional view of a main part of a laser welding apparatus according to a first embodiment of the present invention. 図1に示す要部断面図に、レーザ光照射時のレーザ光の軌跡を示した図。The figure which showed the locus | trajectory of the laser beam at the time of laser beam irradiation to the principal part sectional drawing shown in FIG. 本発明の実施形態1のレーザ溶着装置のレーザ光照射時のレーザ光の軌跡を示した、溶着される樹脂材の長手方向に沿う要部断面図。The principal part sectional drawing in alignment with the longitudinal direction of the resin material to be welded which showed the locus | trajectory of the laser beam at the time of laser beam irradiation of the laser welding apparatus of Embodiment 1 of this invention. 本発明の実施形態1のレーザ溶着装置の外観斜視図。1 is an external perspective view of a laser welding apparatus according to a first embodiment of the present invention. 本発明の実施形態1のレーザ溶着装置の第一の変形例を示し、レーザ光照射時のレーザ光の軌跡を加えた要部断面図。Sectional drawing which shows the 1st modification of the laser welding apparatus of Embodiment 1 of this invention, and added the locus | trajectory of the laser beam at the time of laser beam irradiation. 本発明の実施形態1のレーザ溶着装置の第二の変形例を示し、レーザ光照射時のレーザ光の軌跡を加えた要部断面図。Sectional drawing which shows the 2nd modification of the laser welding apparatus of Embodiment 1 of this invention, and added the locus | trajectory of the laser beam at the time of laser beam irradiation. 本発明の実施形態1のレーザ溶着装置の第三の変形例を示した外観斜視図。The external appearance perspective view which showed the 3rd modification of the laser welding apparatus of Embodiment 1 of this invention. 本発明の実施形態1のレーザ溶着装置の第四の変形例を示した平面図。The top view which showed the 4th modification of the laser welding apparatus of Embodiment 1 of this invention. 本発明の実施形態1のレーザ溶着装置の第五の変形例を示した要部断面図。The principal part sectional drawing which showed the 5th modification of the laser welding apparatus of Embodiment 1 of this invention. 図9Aの要部断面図に、レーザ光照射時のレーザ光の軌跡を加えた図。The figure which added the locus | trajectory of the laser beam at the time of laser beam irradiation to the principal part sectional drawing of FIG. 9A. 本発明の実施形態2のレーザ溶着装置を示し、レーザ光照射時のレーザ光の軌跡を加えた要部断面図。Sectional drawing which shows the laser welding apparatus of Embodiment 2 of this invention, and added the locus | trajectory of the laser beam at the time of laser beam irradiation. 本発明の実施形態3のレーザ溶着装置を示し、レーザ光照射時のレーザ光の軌跡を加えた要部断面図。Sectional drawing which shows the laser welding apparatus of Embodiment 3 of this invention, and added the locus | trajectory of the laser beam at the time of laser beam irradiation. 本発明の実施形態3のレーザ溶着装置の第一の変形例を示し、レーザ光照射時のレーザ光の軌跡を加えた要部断面図。Sectional drawing which shows the 1st modification of the laser welding apparatus of Embodiment 3 of this invention, and added the locus | trajectory of the laser beam at the time of laser beam irradiation. 本発明の実施形態3のレーザ溶着装置の第二の変形例を示し、レーザ光照射時のレーザ光の軌跡を加えた要部断面図。Sectional drawing which shows the 2nd modification of the laser welding apparatus of Embodiment 3 of this invention, and added the locus | trajectory of the laser beam at the time of laser beam irradiation. 本発明の実施形態3のレーザ溶着装置の第三の変形例を示し、レーザ光照射時のレーザ光の軌跡を加えた要部断面図。Sectional drawing which shows the 3rd modification of the laser welding apparatus of Embodiment 3 of this invention, and added the locus | trajectory of the laser beam at the time of laser beam irradiation. 本発明の実施形態4のレーザ溶着装置の、レーザ溶着作業をしているときの外観斜視図。The external appearance perspective view when performing the laser welding operation | work of the laser welding apparatus of Embodiment 4 of this invention. 本発明の実施形態4のレーザ溶着装置のレーザ光照射時のレーザ光の軌跡を示し、溶着される樹脂材の長手方向に沿う要部断面図。The principal part sectional drawing which shows the locus | trajectory of the laser beam at the time of laser beam irradiation of the laser welding apparatus of Embodiment 4 of this invention, and follows the longitudinal direction of the resin material to weld. 本発明の実施形態5のレーザ溶着装置を示し、レーザ溶着作業をしているときの外観斜視図。The external appearance perspective view when the laser welding apparatus of Embodiment 5 of this invention is shown and the laser welding operation | work is being performed. 図17の要部断面図に、レーザ光照射時のレーザ光の軌跡を示した図。The figure which showed the locus | trajectory of the laser beam at the time of laser beam irradiation in the principal part sectional drawing of FIG. 本発明の実施形態5のレーザ溶着装置の動作手順を示したフロー図。The flowchart which showed the operation | movement procedure of the laser welding apparatus of Embodiment 5 of this invention. 本発明の実施形態5のレーザ溶着装置の変形例を示し、レーザ光照射時のレーザ光の軌跡を加えた要部断面図。The principal part sectional drawing which showed the modification of the laser welding apparatus of Embodiment 5 of this invention, and added the locus | trajectory of the laser beam at the time of laser beam irradiation. 本発明の実施形態5のレーザ溶着装置の変形例の動作手順を示したフロー図。The flowchart which showed the operation | movement procedure of the modification of the laser welding apparatus of Embodiment 5 of this invention. 本発明の実施形態6のレーザ溶着装置を示し、レーザ光照射時のレーザ光の軌跡を加えた要部断面図。Sectional drawing which shows the laser welding apparatus of Embodiment 6 of this invention, and added the locus | trajectory of the laser beam at the time of laser beam irradiation. 本発明の実施形態7のレーザ溶着装置を示し、レーザ光照射時のレーザ光の軌跡を加えた要部断面図。Sectional drawing which shows the laser welding apparatus of Embodiment 7 of this invention, and added the locus | trajectory of the laser beam at the time of laser beam irradiation. 本発明の実施形態8のレーザ溶着装置を示し、レーザ光照射時のレーザ光の軌跡を加えた要部断面図。The principal part sectional drawing which added the locus | trajectory of the laser beam at the time of the laser beam irradiation which shows the laser welding apparatus of Embodiment 8 of this invention. 本発明の実施形態9のレーザ溶着装置を示し、レーザ光照射時のレーザ光の軌跡を加えた要部断面図。Sectional drawing which shows the laser welding apparatus of Embodiment 9 of this invention, and added the locus | trajectory of the laser beam at the time of laser beam irradiation. 従来のレーザ溶着装置を示し、第一樹脂材、第二樹脂材および反射治具の位置関係を示した分解斜視図。The exploded perspective view which showed the conventional laser welding apparatus and showed the positional relationship of the 1st resin material, the 2nd resin material, and a reflective jig. 従来のレーザ溶着装置で、第一樹脂材と第二樹脂材を反射治具に載置示した状態を示した斜視図。The perspective view which showed the state which mounted and showed the 1st resin material and the 2nd resin material on the reflective jig with the conventional laser welding apparatus. 従来のレーザ溶着装置の、レーザ光照射時のレーザ光の軌跡を示した要部断面図。The principal part sectional drawing which showed the locus | trajectory of the laser beam at the time of laser beam irradiation of the conventional laser welding apparatus. 従来の他のレーザ溶着装置を示し、同装置の要部断面図。The other principal part laser welding apparatus is shown and principal part sectional drawing of the apparatus. 従来の更に他のレーザ溶着装置を示し、レーザ光照射時のレーザ光の軌跡を加えた要部断面図。The principal part sectional drawing which added the locus | trajectory of the laser beam at the time of laser beam irradiation which shows the other conventional laser welding apparatus. 従来の、更に又他のレーザ溶着装置を示し、同装置の要部断面図。The conventional laser welding apparatus is shown, and the principal part sectional drawing of the apparatus is shown.

(実施形態1)
以下、本発明の実施形態1について図面と共に説明する。図1は、本発明の実施形態1のレーザ溶着装置を示し、第一の樹脂材1と第二の樹脂材2、反射治具3、反射蓋4、そしてレーザ光照射手段5の位置関係を示した要部断面図である。但し、レーザ光出力のための制御装置、電源装置については図示を省略してある。
図1において、溶着させる管状の第一の樹脂材1と第二の樹脂材2は、第一の樹脂材1に第二の樹脂材2が挿入され、互いに当接した状態で、反射治具3の凹部溝3aに載置されている。反射治具3の樹脂材を受容する凹部溝3aの断面形状は、第一の樹脂材1の下半分の外周と密着する半円形をしていて、第一の樹脂材1の外周と当接する凹部溝3aの両側の上方に壁部(W)がある。図1では、凹部溝3aの上方に開口する斜面3b、3cのある壁部(W)が、開口に向かって拡開するように形成されている。
反射治具3の材料は、レーザ光を反射する金属材、例えばアルミニウムである。そして、反射治具3の凹部溝3aと壁部(W)の斜面3b、3cの表面は、鏡面にしてあり、レーザ光を反射する。凹部溝3aと斜面3b、3cの表面を鏡面にする方法としては、アルミニウムブロックの表面を鏡面研磨する方法、表面がアルミ箔で裏面に接着剤を塗布した鏡面テープ(T)を貼り付ける方法、表面を金属メッキする方法、表面に金属蒸着する方法、表面をコーティングする方法などがある。
図1では、反射治具3の凹部溝3aと壁部(W)の斜面3b、3c、反射蓋4の表面に、それぞれレーザ光を反射するアルミニュウムの薄い鏡面テープ(T1,T2)を、アルミ箔面を表にして貼り付けた姿を示している。なお、図1では、鏡面テープ(T1,T2)の厚さは、発明理解のために現実のものよりも厚く記載している。
図1では、管状の第一の樹脂材1の中心より下半分の外周面が反射治具3の凹部溝3aに密着している。第一の樹脂材1の上半分の外周面は、空間3dを挟んで反射蓋4と対峙している。反射治具3の上には、反射蓋4が、反射面4aを下にして着脱自在に載置されて取り付けられる。反射面4aは、反射治具3の壁部(W)の斜面3b、3cの先端をアーチ状に結ぶ球面でできている。反射面4aの表面は鏡面にしてあり、図1では、反射治具3と同様に、レーザ光を反射するアルミニュウムの薄い鏡面テープ(T1)がアルミ箔面を表にして貼り付けた姿を図示している。
図1では、反射蓋4の反射面4aの球面の中心Oを、管状の第一の樹脂材1と第二の樹脂材2の中心Oと一致させている。このことを発明理解のため、管状の第一の樹脂材1と第二の樹脂材2の外周面の中心Oからの距離をそれぞれ、半径R1、と示し球面をした反射面4aと中心Oからの距離を半径Rと図示した。
図2では、図1のレーザ光照射手段5からレーザ光が出力されたときのレーザ光6の軌跡を一点鎖線で示している。反射蓋4の中央上部には、レーザ光通過孔4bがあいている。レーザ光照射手段5は、レーザ光6がレーザ光通過孔4bを通して第一の樹脂材1と第二の樹脂材2に向けて照射するように、反射蓋4の上に載置されている。
レーザ光通過孔4bの直径Dは、図1、図2では誇張して大きく描いているが、実際には、第一の樹脂材1と第二の樹脂材2の大きさと材質、レーザ光照射手段5の出力等で定められる。レーザ光照射手段5で発生したレーザ光6は、反射治具3の凹部溝3aに載置されている第一の樹脂材1と第二の樹脂材2に照射される。
図2で、レーザ光照射手段5で発生したレーザ光6は、例えば、レーザ光6aとして第一の樹脂材1と第二の樹脂材2を貫通し、反射治具3の凹部溝3aで反射してレーザ光6b、6cと順次屈折して反射蓋4の反射面4aに達し、反射蓋4の反射面4aで反射して再び、反射治具3の凹部溝3a、壁部(W)の斜面3b、3cに向かう。
(Embodiment 1)
Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 shows a laser welding apparatus according to Embodiment 1 of the present invention. The positional relationship among a first resin material 1, a second resin material 2, a reflecting jig 3, a reflecting lid 4, and a laser beam irradiation means 5 is shown. It is the principal part sectional drawing shown. However, a control device and a power supply device for outputting laser light are not shown.
In FIG. 1, the tubular first resin material 1 and the second resin material 2 to be welded are in a state where the second resin material 2 is inserted into the first resin material 1 and in contact with each other. 3 in the recess groove 3a. The cross-sectional shape of the concave groove 3 a that receives the resin material of the reflecting jig 3 is a semicircular shape that is in close contact with the outer periphery of the lower half of the first resin material 1, and contacts the outer periphery of the first resin material 1. There are wall portions (W) above both sides of the recessed groove 3a. In FIG. 1, wall portions (W) having slopes 3 b and 3 c that open above the recessed grooves 3 a are formed so as to expand toward the openings.
The material of the reflecting jig 3 is a metal material that reflects laser light, such as aluminum. The surfaces of the concave groove 3a of the reflecting jig 3 and the inclined surfaces 3b and 3c of the wall (W) are mirror surfaces and reflect the laser light. As a method of making the surface of the concave groove 3a and the inclined surfaces 3b, 3c into a mirror surface, a method of mirror polishing the surface of the aluminum block, a method of applying a mirror tape (T) in which the surface is an aluminum foil and an adhesive is applied to the back surface, There are a method of metal plating the surface, a method of metal vapor deposition on the surface, a method of coating the surface, and the like.
In FIG. 1, a thin mirror tape (T1, T2) of aluminum that reflects laser light is applied to the concave groove 3a of the reflecting jig 3, the inclined surfaces 3b, 3c of the wall (W), and the surface of the reflecting lid 4, respectively. The figure is shown with the foil side facing up. In FIG. 1, the thickness of the mirror tape (T1, T2) is shown to be thicker than the actual one for understanding the invention.
In FIG. 1, the outer peripheral surface of the lower half from the center of the tubular first resin material 1 is in close contact with the concave groove 3 a of the reflecting jig 3. The outer peripheral surface of the upper half of the first resin material 1 faces the reflective lid 4 with the space 3d interposed therebetween. On the reflection jig 3, the reflection lid 4 is detachably mounted with the reflection surface 4a facing down. The reflecting surface 4a is made of a spherical surface that connects the tips of the slopes 3b and 3c of the wall (W) of the reflecting jig 3 in an arch shape. The surface of the reflecting surface 4a is a mirror surface, and in FIG. 1, like the reflecting jig 3, a thin aluminum mirror surface tape (T1) that reflects laser light is attached with the aluminum foil surface facing up. Show.
In FIG. 1, the center O 1 of the spherical surface of the reflecting surface 4 a of the reflecting lid 4 is matched with the center O 2 of the tubular first resin material 1 and the second resin material 2. For the purpose of understanding the invention, the distances from the center O 2 of the outer peripheral surfaces of the tubular first resin material 1 and second resin material 2 are shown as radii R 1 and R 2 , respectively, and reflecting surfaces having a spherical shape The distance from 4a and the center O 1 is shown as radius R 3 .
In FIG. 2, the locus of the laser beam 6 when the laser beam is output from the laser beam irradiation means 5 of FIG. 1 is indicated by a one-dot chain line. A laser beam passage hole 4 b is formed at the upper center of the reflection lid 4. The laser beam irradiation means 5 is placed on the reflection lid 4 so that the laser beam 6 is irradiated toward the first resin material 1 and the second resin material 2 through the laser beam passage hole 4b.
The diameter D of the laser beam passage hole 4b is exaggeratedly large in FIGS. 1 and 2, but actually, the size and material of the first resin material 1 and the second resin material 2, and laser beam irradiation. It is determined by the output of the means 5 or the like. The laser light 6 generated by the laser light irradiation means 5 is applied to the first resin material 1 and the second resin material 2 placed in the concave groove 3 a of the reflection jig 3.
In FIG. 2, the laser beam 6 generated by the laser beam irradiation means 5 passes through the first resin material 1 and the second resin material 2 as the laser beam 6 a and is reflected by the concave groove 3 a of the reflection jig 3. Then, the laser beams 6b and 6c are sequentially refracted to reach the reflecting surface 4a of the reflecting lid 4, and reflected by the reflecting surface 4a of the reflecting lid 4, and again, the concave groove 3a and the wall (W) of the reflecting jig 3 are reflected. Heading to slopes 3b and 3c.

なお、反射治具3の凹部溝3a、壁部(W)の斜面3b、3cと、反射蓋4の反射面4aではレーザ光6が反射するが、反射率は100%でないためレーザ光6の一部が吸収される。図1の反射治具3と反射蓋4は、アルミニュウムのブロックを削り出したものであり、ある程度の熱容量があり、レーザ光6を吸収して発熱し、保温されるとともに、外表面から放熱される。   The laser beam 6 is reflected by the concave groove 3a of the reflecting jig 3, the slopes 3b and 3c of the wall (W), and the reflecting surface 4a of the reflecting lid 4. However, since the reflectance is not 100%, Some are absorbed. The reflecting jig 3 and the reflecting lid 4 in FIG. 1 are formed by cutting an aluminum block, have a certain heat capacity, generate heat by absorbing the laser beam 6, and retain heat, and are radiated from the outer surface. The

第一の樹脂材1と第二の樹脂材2は、レーザ光の透過率(あるいは吸収率)に応じた割合のレーザ光を吸収して発熱する。また、第一の樹脂材1と第二の樹脂材2の当接面の表面粗さが粗いとレーザ光が、第一の樹脂材1と第二の樹脂材2の当接面のわずかな隙間で反射して発熱する。そして、第一の樹脂材1と第二の樹脂材2が当接面で溶融し、その後、レーザ光の照射を終了すると、固化して溶着する。   The first resin material 1 and the second resin material 2 generate heat by absorbing the laser light in a proportion corresponding to the transmittance (or absorption rate) of the laser light. Further, if the surface roughness of the contact surface between the first resin material 1 and the second resin material 2 is rough, the laser beam is slightly on the contact surface between the first resin material 1 and the second resin material 2. Heat is reflected from the gap. And the 1st resin material 1 and the 2nd resin material 2 fuse | melt at a contact surface, and will solidify and weld when the irradiation of a laser beam is complete | finished after that.

特に溶着強度が必要な場合等には、予め、第一の樹脂材1と第二の樹脂材2の当接面を粗面化しておくと良い。粗面化の方法としては、例えば、第一の樹脂材1と第二の樹脂材2の当接面の一方にサンドペーパで細かい凹凸をつけたり、文目つき金属ローレットを押し付けて細かい凹凸をつけたり、第一の樹脂材1か第二の樹脂材2の一方の成形時に成形金型で細かい凹凸をつけたり、サンドブラスト処理して細かい凹凸をつけたりしておけば良い。第一の樹脂材1と第二の樹脂材2の当接面の細かい凹凸のわずかな隙間でレーザ光は確実に反射して発熱し、レーザ光の照射を終了すると、固化して溶着する。
レーザ光の照射が1回であれば、それほどの発熱は期待できないが、本発明では、レーザ光の繰り返し反射により何度もレーザ光が通過する。第一の樹脂材1と第二の樹脂材2は、それぞれレーザ光を吸収して発熱する。第一の樹脂材1と第二の樹脂材2の当接面にごく細かい凹凸があれば、ごく細かい凹凸のある当接面で繰り返し反射して発熱する。
本発明で、予め第一の樹脂材1と第二の樹脂材2の当接面を粗面化しておくとしても、粗面化は、ごく細かい凹凸を付けるだけで良い。ごく細かい凹凸であれば、発熱により溶融して溶着面が透明になるという利点がある。
図3は、管状をしている第一の樹脂材1の長手方向に沿って切断した本発明の実施形態1の断面図である。第一の樹脂材1と第二の樹脂材2は長手方向の長さがあるため、反射蓋4の長手方向の両端(図4では左右端)には、隔離壁4c、4dが設けてある。隔離壁4c、4dは反射蓋4の下面から第一の樹脂材1の上半分の外周面に至る空間を占める形をしていて、反射蓋4と第一の樹脂材1の上半分の外周面に向き合っている空間3dを長手方向に隔離して、熱とレーザ光6が外部に逃げないようにしている。反射面4aと連なる隔離壁4c、4dの内面は鏡面としている。図3では、反射面4aと同様に、隔離壁4c、4dの内面にアルミニュウムの薄い鏡面テープ(T1)を、アルミ箔面を表にして貼り付けていることを示した。
図3では、レーザ光照射手段5で発生したレーザ光6の内、第一の樹脂材1と第二の樹脂材2を透過したレーザ光6が、反射治具3の凹部溝3aで反射して、レーザ光透過孔4b直下の外側に向かったときの軌跡を一点鎖線で示した。第一の樹脂材1と第二の樹脂材2を透過したレーザ光6が、反射治具3の凹部溝3aで反射して、レーザ光透過孔4b直下の外側に向かったときは、第一の樹脂材1と第二の樹脂材2を透過した後、反射蓋4の反射面4aで反射して、レーザ光透過孔4bの直下、つまりレーザ光照射範囲の中心に向かう。このように、反射蓋4に球面の反射面4aを形成しておくと、第一の樹脂材1と第二の樹脂材2が長手方向に長くても、レーザ光6の照射は、レーザ光照射範囲の中心に集まる。従来のレーザ溶着装置にはなかった、本発明特有の効果である。
図4に、本発明の実施形態1のレーザ装置の外観斜視図を示す。図2〜図4に示したレーザ光の軌跡を見れば、第一の樹脂材1と第二の樹脂材2に向けて照射されたレーザ光照射手段5からのレーザ光6は、反射治具3の凹部溝3a、壁部(W)の斜面3b、3cと反射蓋4の反射面4aで反射を繰り返すが、レーザ光6の照射範囲の中心から外側に拡散せず、第一の樹脂材1と第二の樹脂材2の長手方向についてもレーザ光6の照射範囲の中心に集まることが理解される。
このように、本発明のレーザ溶着装置は、レーザ光照射手段5から出力されるレーザ光6を繰り返し反射させて、第一の樹脂材1と第二の樹脂材2にレーザ光を繰り返し照射している。そして、レーザ光源のエネルギーのレーザ溶着のエネルギーとしての利用を向上させ、小出力のレーザ溶着装置で必要なレーザ溶着を実現するという課題を解決している。
なお本発明のレーザ溶着装置としては、光透過性樹脂である第一の樹脂材1と第二の樹脂材2をレーザ溶着するレーザ溶着装置を説明しているが、光透過性樹脂といっても、レーザ光の透過率が高く、ほとんどのレーザ光が透過して、一部のレーザ光が吸収されるものから、ある程度のレーザ光を透過するが、ある程度のレーザ光を吸収するレーザ光透過率が比較的高くないものにも適用することができる。
(実施形態1の第一の変形例)
上記で説明した反射蓋4の反射面4aの球面の中心Oと第一の樹脂材1と第二の樹脂材2の中心Oは、上下方向にずらしてもよい。反射面4aの球面の中心Oを上方に移動すれば、レーザ光の反射光は上方に集まる。このことを利用して、図5に示した実施形態1のレーザ溶着装置の第一の変形例のように、第一の樹脂材1と第二の樹脂材2の断面が上下に長い形状のときには、球面の中心Oを上方に移動して、第一の樹脂材1と第二の樹脂材2の上下中央にレーザ光の反射光を集めて、発熱温度を全体的に平均化することができる。
球面の中心Oを下方に移動すれば、レーザ光の反射光は第一の樹脂材1と第二の樹脂材2の下方に集まる。第一の樹脂材1と第二の樹脂材2の断面が上下に短軸の楕円形状のときには、球面の中心Oを下方に移動して、第一の樹脂材1と第二の樹脂材2の上下中央にレーザ光の反射光を集めて、発熱温度を全体的に平均化することができる。反射蓋4の反射面4aの球面の中心Oのずらし方は、実際のレーザ溶着結果から経験的に最適となるように設定すれば良い。
(実施形態1の第二の変形例)
図6に、本発明の実施形態1の第二の変形例のレーザ光照射時のレーザ光の軌跡を示した要部断面図を示した。実施形態1の第二の変形例では、反射治具3のアルミニュウム・ブロックを削り出した部分3Aを、凹部溝3aの高さ、つまり凹部溝3aと当接する第一の樹脂材1の下半分の外周面の高さまでとし、それ以上の壁部(W)の部分3Pをプラスチック製として、表面にレーザ光反射用の鏡面テープ(T2)を貼ったものとしている。また、反射蓋4Pもプラスチック製として、表面にレーザ光反射用の鏡面テープ(T1)を貼ったものとしている。
図1の反射治具3と反射蓋4は、アルミニュウムのブロックを削り出したものであり、ある程度の熱容量があり、レーザ光6を吸収して発熱し、保温されるとともに、外表面から放熱されることは、既に説明したとおりである。第二変形例の反射治具3でも、凹部溝3aより下の部分3Aは、レーザ光照射手段5からレーザ光を直接照射されて高温になる。しかし、凹部溝3aより上の部分3Pである壁部(W)と反射蓋4Pは、一度以上反射したレーザ光を受ける。そのため、凹部溝3aより下の部分3Aと同様に放熱したのでは、温度差ができる。
そこで、実施形態1の第二の変形例では、反射治具3のアルミニュウム・ブロックを削り出した部分3Aを、凹部溝3aの高さ、つまり凹部溝3aと当接する第一の樹脂材1の半分の外周面の高さまでとし、凹部溝3aの上にある壁部(W)の部分3Pを合成樹脂(プラスチック)製として、表面にレーザ光反射用の鏡面テープ(T2)を貼ったものとしている。また、反射蓋4Pも合成樹脂製として表面にレーザ光反射用の鏡面テープ(T1)を貼ったものとしている。
このことにより、プラスチック製部分3Pとした壁部(W)と反射蓋4Pでは、アルミニュウム・ブロック部3Aの凹部溝3aから伝熱される熱と、反射光として照射されるレーザ光による熱を放熱しにくいように保温し、第一の樹脂材1と第二の樹脂材2を全体的にほぼ同じ温度で囲むようにして、発熱温度を全体的に平均化するようにしている。
(実施形態1の第三の変形例)
図7に、第一の樹脂材1と第二の樹脂材2が長手方向に長い管状をしている場合に用いる本発明の実施形態1のレーザ溶着装置の第三の変形例を示した。図7では、長手方向の長さを長くした反射治具3の凹部溝3a上に、第一の樹脂材1と第二の樹脂材2を載置している。そして、反射蓋4の上に、レーザ光照射手段5を載せ、反射蓋4を図7の中央の白抜き矢印(M)で示す向きに移動できるようにしている。反射蓋4を図7の中央の白抜き矢印(M)で示す向きに移動すると、反射蓋4の移動に応じて、レーザ光6が第一の樹脂材1と第二の樹脂材2の長手方向の長い範囲を順次移動して照射する。レーザ光6は、反射蓋4下の一定の範囲内で反射を繰り返すので、第一の樹脂材1と第二の樹脂材2のレーザ光6が照射された範囲で順次発熱し、連続的にレーザ溶着される。
(実施形態1の第四の変形例)
図8に、本発明の実施形態1のレーザ溶着装置の第四の変形例を示した。図8は、第一の樹脂材1と第二の樹脂材2を長手方向に折れ曲がった形でレーザ溶着する場合の平面図であり、長手方向に折れ曲がった形をしている反射治具3と、反射治具3の凹部溝3aに載置され長手方向に折れ曲がった形の第一の樹脂材1と第二の樹脂材2が示されている。反射治具3と第一の樹脂材1と第二の樹脂材2の上には、四角形をした反射蓋4があり、反射蓋4にはレーザ光照射手段5が一体に取り付けられていて、白抜き矢印(M1〜M2)で示したように、左上(矢印M1)へ、上(矢印M2)へ、次に右上(矢印M3)へ順に移動することが示されている。
反射蓋4を図8の白抜き矢印の方向に移動すると、反射蓋4の移動に応じて、レーザ光6(図8には図示せず)が第一の樹脂材1と第二の樹脂材2の長手方向の長い範囲を順次移動して照射する。レーザ光6は、反射蓋4下の一定の範囲内で反射を繰り返すので、第一の樹脂材1と第二の樹脂材2のレーザ照射された範囲が順次発熱し、第一の樹脂材1と第二の樹脂材2が長手方向に折れ曲がった形のまま連続的にレーザ溶着される。
このように、長尺物の光透過樹脂材を連続的に溶着できるレーザ溶着装置を供給可能とする課題を解決している。
(実施形態1の第五の変形例)
図9A、図9Bに本発明の実施形態1の第五の変形例を示した。図9A、図9Bでは、反射治具3の反射面である凹部溝3aの形を変えている。図9A、図9Bでは、第一の樹脂材1の下方の外周面、すなわち凹部溝3aの断面円弧状の底部面と壁部(W)の斜面3b、3cが接するようにしている。なお、反射治具3の凹部溝3aと斜面3b、3cの表面は鏡面研磨加工した仕上げ面、つまり、鏡面テープを貼り付けていない鏡面反射面を示している。
先に従来技術として説明した、出願人の発明による特開2013-202876号公報では、第一の樹脂材1の下方の外周面に斜面3b、3cが接する反射治具を用いたときは、2つのレーザ光照射手段をそれぞれの斜面に沿って配置することを示したが、本発明では、反射治具3の上に反射蓋4を取り付け、反射蓋4の上に、レーザ光透過孔からレーザ光を出力する1つのレーザ光照射手段5を載せて、レーザ光透過孔からのレーザ光を反射治具3と反射蓋4で反射を繰り返し、レーザ光6が第一の樹脂材1と第二の樹脂材2に繰り返して貫通して発熱せることにより、1つのレーザ光照射手段5でレーザ溶着を可能にしている。
(実施形態2)
本発明の実施形態2について説明する。本発明の実施形態2は、本発明の実施形態1に、反射治具3と反射蓋4の温度制御手段と冷却手段を追加したレーザ溶着装置である。
なお、本明細書では、実施形態1の各部に相当し同一の機能を果たす部分には、同一の番号を付して、説明を省略している。例えば、管状の第一樹脂材1に相当し第一樹脂材1の機能を果たすものは、平板状をしていても「第一樹脂材1」というように表示した。以下、実施形態2を図面と共に説明する。
In particular, when the welding strength is required, the contact surfaces of the first resin material 1 and the second resin material 2 are preferably roughened in advance. As a roughening method, for example, one of the contact surfaces of the first resin material 1 and the second resin material 2 is finely uneven with sandpaper, or a metal knurl with a texture is pressed to make fine unevenness, What is necessary is just to give a fine unevenness with a shaping | molding die at the time of one shaping | molding of the 1st resin material 1 or the 2nd resin material 2, or to give a fine unevenness by sandblasting. The laser light is surely reflected and generated in a small gap of fine irregularities on the contact surface of the first resin material 1 and the second resin material 2, and solidifies and welds when the irradiation of the laser light is finished.
If the laser beam is irradiated once, so much heat generation cannot be expected, but in the present invention, the laser beam passes many times due to the repeated reflection of the laser beam. The first resin material 1 and the second resin material 2 each absorb laser light and generate heat. If there are very fine irregularities on the contact surfaces of the first resin material 1 and the second resin material 2, they are repeatedly reflected on the contact surfaces with very fine irregularities and generate heat.
In the present invention, even if the contact surface of the first resin material 1 and the second resin material 2 is roughened in advance, the roughening is only required to give very fine irregularities. If it is very fine unevenness, there is an advantage that the weld surface becomes transparent by melting due to heat generation.
FIG. 3 is a cross-sectional view of the first embodiment of the present invention cut along the longitudinal direction of the tubular first resin material 1. Since the first resin material 1 and the second resin material 2 have a length in the longitudinal direction, isolation walls 4c and 4d are provided at both ends in the longitudinal direction of the reflecting lid 4 (left and right ends in FIG. 4). . The isolation walls 4c and 4d occupy a space from the lower surface of the reflective lid 4 to the outer peripheral surface of the upper half of the first resin material 1, and the outer periphery of the upper half of the reflective lid 4 and the first resin material 1 The space 3d facing the surface is separated in the longitudinal direction so that the heat and the laser beam 6 do not escape to the outside. The inner surfaces of the separating walls 4c and 4d connected to the reflecting surface 4a are mirror surfaces. FIG. 3 shows that, like the reflective surface 4a, a thin mirror tape (T1) made of aluminum is attached to the inner surfaces of the separating walls 4c and 4d with the aluminum foil surface facing up.
In FIG. 3, the laser light 6 transmitted through the first resin material 1 and the second resin material 2 out of the laser light 6 generated by the laser light irradiation means 5 is reflected by the concave groove 3 a of the reflection jig 3. The locus when it goes to the outside just below the laser beam transmission hole 4b is shown by a one-dot chain line. When the laser light 6 transmitted through the first resin material 1 and the second resin material 2 is reflected by the concave groove 3a of the reflecting jig 3 and goes to the outside directly below the laser light transmission hole 4b, the first After passing through the resin material 1 and the second resin material 2, the light is reflected by the reflection surface 4 a of the reflection lid 4 and goes directly below the laser light transmission hole 4 b, that is, toward the center of the laser light irradiation range. As described above, when the spherical reflecting surface 4a is formed on the reflecting lid 4, even if the first resin material 1 and the second resin material 2 are long in the longitudinal direction, the laser beam 6 is irradiated with the laser beam. Collect in the center of the irradiation range. This is an effect unique to the present invention, which was not found in conventional laser welding apparatuses.
FIG. 4 is an external perspective view of the laser device according to the first embodiment of the present invention. 2 to 4, the laser beam 6 from the laser beam irradiation means 5 irradiated toward the first resin material 1 and the second resin material 2 is reflected by the reflection jig. The concave portion 3a, the slopes 3b and 3c of the wall (W) and the reflecting surface 4a of the reflecting lid 4 are repeatedly reflected, but the first resin material does not diffuse outward from the center of the irradiation range of the laser beam 6. It is understood that the longitudinal directions of the first and second resin materials 2 also gather at the center of the irradiation range of the laser light 6.
Thus, the laser welding apparatus of the present invention repeatedly reflects the laser beam 6 output from the laser beam irradiation means 5 and repeatedly irradiates the first resin material 1 and the second resin material 2 with the laser beam. ing. And the utilization of the energy of a laser light source as the energy of laser welding is improved, and the subject of realizing laser welding required with a low-power laser welding apparatus is solved.
As the laser welding apparatus of the present invention, a laser welding apparatus that laser welds the first resin material 1 and the second resin material 2 that are light transmissive resins has been described. However, the laser beam has a high transmittance, and most of the laser beam is transmitted and a part of the laser beam is absorbed. Therefore, a certain amount of laser beam is transmitted, but a certain amount of laser beam is absorbed. It can also be applied to those with a relatively low rate.
(First Modification of Embodiment 1)
Center O 2 of the center O 1 and the first resin member 1 and the second resin material 2 of the spherical reflecting surface 4a of the reflective lid 4 described above may be shifted in the vertical direction. If move the center O 1 of the spherical reflecting surface 4a upward, the light reflection of the laser beam is gathered upward. By utilizing this fact, the first resin material 1 and the second resin material 2 have long cross sections as in the first modification of the laser welding apparatus of the first embodiment shown in FIG. Sometimes, the center O 1 of the spherical surface is moved upward, and the reflected light of the laser light is collected at the upper and lower centers of the first resin material 1 and the second resin material 2 to average the heat generation temperature as a whole. Can do.
If the center O 1 of the spherical surface is moved downward, the reflected light of the laser light gathers below the first resin material 1 and the second resin material 2. When the cross sections of the first resin material 1 and the second resin material 2 are elliptical with a short axis up and down, the center O 1 of the spherical surface is moved downward, and the first resin material 1 and the second resin material The reflected light of the laser beam can be collected at the upper and lower centers of 2 to average the heat generation temperature as a whole. The method of shifting the center O 1 of the spherical surface of the reflecting surface 4a of the reflecting lid 4 may be set so as to be empirically optimized from the actual laser welding result.
(Second Modification of Embodiment 1)
FIG. 6 shows a cross-sectional view of the main part showing the locus of the laser beam during the laser beam irradiation of the second modification of the first embodiment of the present invention. In the second modification of the first embodiment, the portion 3A of the reflecting jig 3 cut out of the aluminum block is made the height of the recessed groove 3a, that is, the lower half of the first resin material 1 in contact with the recessed groove 3a. The portion 3P of the wall (W) beyond that is made of plastic, and a mirror tape (T2) for reflecting laser light is pasted on the surface. The reflecting lid 4P is also made of plastic, and a mirror surface tape (T1) for reflecting laser light is pasted on the surface.
The reflecting jig 3 and the reflecting lid 4 in FIG. 1 are formed by cutting an aluminum block, have a certain heat capacity, generate heat by absorbing the laser beam 6, and retain heat, and are radiated from the outer surface. This is as already explained. Even in the reflection jig 3 of the second modification, the portion 3A below the concave groove 3a is directly irradiated with laser light from the laser light irradiation means 5 and becomes high temperature. However, the wall portion (W), which is the portion 3P above the concave groove 3a, and the reflective lid 4P receive the laser light reflected once or more. Therefore, if the heat is dissipated in the same manner as the portion 3A below the concave groove 3a, a temperature difference is generated.
Therefore, in the second modification of the first embodiment, the portion 3A of the reflecting jig 3 cut out of the aluminum block is made to be the height of the concave groove 3a, that is, the first resin material 1 that comes into contact with the concave groove 3a. It is assumed that the height of the outer peripheral surface is half, the wall portion (W) 3P above the concave groove 3a is made of synthetic resin (plastic), and a mirror surface tape (T2) for reflecting laser light is pasted on the surface. Yes. The reflection lid 4P is also made of synthetic resin, and a mirror surface tape (T1) for reflecting laser light is pasted on the surface.
As a result, the wall (W) made of the plastic part 3P and the reflective lid 4P dissipate the heat transferred from the recessed groove 3a of the aluminum block 3A and the heat of the laser light irradiated as reflected light. The temperature is kept so as to be difficult, and the first resin material 1 and the second resin material 2 are entirely surrounded by substantially the same temperature so that the heat generation temperature is averaged as a whole.
(Third Modification of Embodiment 1)
FIG. 7 shows a third modification of the laser welding apparatus according to the first embodiment of the present invention used when the first resin material 1 and the second resin material 2 have a long tubular shape in the longitudinal direction. In FIG. 7, the first resin material 1 and the second resin material 2 are placed on the concave groove 3 a of the reflection jig 3 whose length in the longitudinal direction is increased. Then, the laser beam irradiation means 5 is placed on the reflection lid 4 so that the reflection lid 4 can be moved in the direction indicated by the white arrow (M) in the center of FIG. When the reflecting lid 4 is moved in the direction indicated by the white arrow (M) in the center of FIG. 7, the laser light 6 is moved along the length of the first resin material 1 and the second resin material 2 in accordance with the movement of the reflecting lid 4. Irradiate by moving sequentially in the long direction. Since the laser beam 6 repeats reflection within a certain range under the reflecting lid 4, the laser beam 6 generates heat sequentially in the range irradiated with the laser beam 6 of the first resin material 1 and the second resin material 2, and continuously. Laser welded.
(Fourth Modification of Embodiment 1)
In FIG. 8, the 4th modification of the laser welding apparatus of Embodiment 1 of this invention was shown. FIG. 8 is a plan view of the case where the first resin material 1 and the second resin material 2 are laser-welded in a shape bent in the longitudinal direction, and a reflecting jig 3 having a shape bent in the longitudinal direction; A first resin material 1 and a second resin material 2 which are placed in the concave groove 3a of the reflecting jig 3 and bent in the longitudinal direction are shown. On the reflection jig 3, the first resin material 1 and the second resin material 2, there is a quadrangular reflection lid 4, and the laser beam irradiation means 5 is integrally attached to the reflection lid 4. As indicated by the white arrows (M1 to M2), it is shown that the robot moves in order from the upper left (arrow M1), up (arrow M2), and then to the upper right (arrow M3).
When the reflecting lid 4 is moved in the direction of the white arrow in FIG. 8, the laser light 6 (not shown in FIG. 8) is sent to the first resin material 1 and the second resin material according to the movement of the reflecting lid 4. The long range of 2 in the longitudinal direction is sequentially moved and irradiated. Since the laser beam 6 is repeatedly reflected within a certain range under the reflecting lid 4, the laser irradiated range of the first resin material 1 and the second resin material 2 sequentially generates heat, and the first resin material 1. The second resin material 2 is continuously laser welded while being bent in the longitudinal direction.
In this way, the problem of enabling the supply of a laser welding apparatus capable of continuously welding a long light transmitting resin material is solved.
(Fifth Modification of Embodiment 1)
9A and 9B show a fifth modification of Embodiment 1 of the present invention. 9A and 9B, the shape of the concave groove 3a which is the reflection surface of the reflection jig 3 is changed. 9A and 9B, the lower outer peripheral surface of the first resin material 1, that is, the bottom surface of the concave groove 3a having an arcuate cross section is in contact with the slopes 3b and 3c of the wall (W). Note that the surfaces of the concave groove 3a and the inclined surfaces 3b and 3c of the reflecting jig 3 are mirror-polished finished surfaces, that is, mirror-reflecting surfaces to which no mirror tape is attached.
In Japanese Patent Application Laid-Open No. 2013-202876 according to the applicant's invention described above as the prior art, when a reflecting jig in which the inclined surfaces 3b and 3c are in contact with the lower outer peripheral surface of the first resin material 1, 2 is used. In the present invention, the reflecting lid 4 is mounted on the reflecting jig 3, and the laser beam is transmitted from the laser beam transmitting hole to the laser beam. One laser beam irradiating means 5 for outputting light is placed, and the laser beam from the laser beam transmitting hole is repeatedly reflected by the reflecting jig 3 and the reflecting lid 4, and the laser beam 6 is reflected by the first resin material 1 and the second resin material 1. By repeatedly penetrating the resin material 2 and generating heat, laser welding can be performed by one laser beam irradiation means 5.
(Embodiment 2)
A second embodiment of the present invention will be described. Embodiment 2 of the present invention is a laser welding apparatus in which temperature control means and cooling means for the reflection jig 3 and the reflection lid 4 are added to Embodiment 1 of the present invention.
In the present specification, portions corresponding to the respective portions of the first embodiment and performing the same functions are denoted by the same reference numerals and description thereof is omitted. For example, what is equivalent to the tubular first resin material 1 and fulfills the function of the first resin material 1 is indicated as “first resin material 1” even if it has a flat plate shape. Hereinafter, Embodiment 2 will be described with reference to the drawings.

図10は、本発明の実施形態2のレーザ溶着装置の概略構成を示したものである。第一の樹脂材1と第二の樹脂材2を反射治具3の凹部溝3aに載置し、反射治具3の一対の斜面3b、3cを第一の樹脂材1の下の外周面に接して開口するように設け、反射治具3の上には、反射蓋4が、反射面4aを下にして載置されている。反射面4aは、反射治具3の斜面3b、3cの上端縁をアーチ状に結ぶ球面または円筒面等の曲面でできている。
そして、反射蓋4の中央上部にはレーザ光照射手段5が載置されている。反射蓋4のレーザ光照射手段5を載置した所には、レーザ光通過孔4bがあいている。レーザ光照射手段5で発生したレーザ光6は、レーザ光通過孔4bから、反射治具3の凹部溝3aに載置されている第一の樹脂材1と第二の樹脂材2に照射される。
本発明の実施形態2では、図10に黒点で示した温度センサ(熱電対)7が反射治具3の内部に、温度センサ(熱電対)8が反射蓋4の内部にそれぞれ埋め込まれている。温度センサ7、8は、温度制御手段9に接続している。温度制御手段9は、レーザ光照射手段5の出力を温度センサ7、8の測定結果温度に基づいてオンオフ制御、あるいはフィードバック制御し、反射治具3と反射蓋4の温度を一定範囲内に保っている。
図10では、温度センサ7、8は、第一の樹脂材1と第二の樹脂材2の温度を直接測定するものでないため、第一の樹脂材1と第二の樹脂材2の温度変化を予測してレーザ光の出力を制御する。レーザ光透過性の第一の樹脂材1と第二の樹脂材2は、実際に用いる材質と大きさに応じた目標温度設定を行う。なお、熱電対の温度センサ7、8の代わりに、赤外線情報から温度を検出する非接触温度センサで第一の樹脂材1の表面温度を直接測定するようにしてもよい。なお、非接触温度センサを用いたレーザ溶着装置の構成は、実施形態7として図22を用いて後述する。
本発明の実施形態2のレーザ溶着装置は、反射治具3と反射蓋4の温度を予め定めた一定の温度範囲内に保つ温度制御をして、レーザ溶着の品質の均一性を向上させたレーザ溶着装置を供給可能とする課題を解決している。
また図10では、反射治具3に冷却用空洞3e、3fをあけていて、常温以下の空気などの冷却材を吹き付ける冷却ノズル10、11を取り付けている。冷却用空洞3e、3fは、反射治具3の外部に連通していて、冷却ノズル10、11から吹き付けられた冷却材は、反射治具3の熱を奪って、熱とともに反射治具3の外部に放出される。また、反射蓋4には、反射蓋4の下方の空間3dに向けて常温以下の空気などの冷却材を吹き付ける冷却ノズル12を取り付けている。空間3dは、反射蓋4の外部に連通していて、冷却ノズル12から吹き付けられた冷却材は、空間3dの熱を奪って、熱とともに反射蓋4の外部に放出される。
冷却ノズル10、11、12には、冷却手段13から常温以下の空気などの冷却材が供給される。冷却手段13は、温度制御手段9に接続している。温度制御手段9は、冷却手段13を温度センサ(熱電対)7、8の測定結果温度に基づいて、冷却ノズル10、11、12から冷却材の供給温度、供給量などを制御をして、反射治具3と反射蓋4の温度を予め定めた一定温度範囲内に冷却する。
このように、本発明の実施形態2は、本発明の実施形態1に、反射治具3と反射蓋4の温度制御手段9と冷却手段13を追加したレーザ溶着装置である。反射治具3と反射蓋4の温度を予め定めた一定温度範囲内にする温度制御をして、レーザ溶着の品質の均一性を向上させたレーザ溶着装置を供給可能とする課題を解決している。
そして、更に冷却ノズル10、11、12と冷却手段13を追加した構成では、レーザ溶着終了後、反射治具3と反射蓋4を冷却手段13で冷却し、レーザ溶着作業の温度サイクルを短くして、レーザ溶着の生産性を向上する課題を解決している。
なお図10では、温度センサ7、8をそれぞれ反射治具3と反射蓋4に埋め込んで、両方の温度を検出して温度制御することを説明したが、いずれか一つの温度センサを用いる構成としてもよい。また、冷却ノズル10、11、12についても、いずれか一つの冷却ノズルを用いる構成としてもよい。
(実施形態3)
本発明の実施形態3について説明する。本発明の実施形態3は、レーザ光を透過する平板状の第一の樹脂材と同じく平板状の第二の樹脂材をレーザ溶着するレーザ溶着装置である。以下、図面と共に説明する。なお図面では、第一と第二の樹脂材のように、これまで説明した実施形態と多少形状が変わっていても、同一機能を果たすものについては同一の符号を付して説明を省略する。
図11は、本発明の実施形態3のレーザ溶着装置の概略構成を示したものである。平板状の第一の樹脂材1と第二の樹脂材2を、これらを当接した状態で反射治具3の凹部溝3aに載置し、反射治具3の一対の壁部(W)の斜面3b、3cを第一の樹脂材1の外周面から上方に拡開して開口するように設け、反射治具3の上には、反射蓋4が、反射面4aを下にして載置されている。反射面4aは、反射治具3の壁部(W)の斜面3b、3cの上端縁を結ぶ球面又は円筒面等の曲面でできている。
そして、反射蓋4の中央上部にはレーザ光照射手段5が載置されている。反射蓋4のレーザ光照射手段5を載置した所には、レーザ光通過孔4bがあいている。レーザ光照射手段5で発生したレーザ光6は、反射治具3の凹部溝3aに載置されている第一の樹脂材1と第二の樹脂材2に照射される。
ここまでは、本発明の実施形態1の構成と基本的に同じであるが、レーザ溶着する第一の樹脂材と第二の樹脂材が平板状である点に特徴がある。すなわち、反射治具3の凹部溝3aは、断面長方形状の第一の樹脂材1の底面1aと側面1bに対応した凹溝形状をしている。
第一の樹脂材1と第二の樹脂材2は、レーザ光の吸収率に応じた割合でレーザ光を吸収して発熱する。また、第一の樹脂材1と第二の樹脂材2の当接面の表面粗さが粗いとレーザ光が、当接面のわずかな隙間で反射して発熱する。そして、第一の樹脂材1と第二の樹脂材2が当接面で溶融し、その後、レーザ光の照射が終了して固化し、溶着する。
反射治具の凹部溝の形状を平板状の第一の樹脂材の外周の形状と同じにしたことにより、レーザ光を透過する平板状の第一の樹脂材と第二の樹脂材をレーザ溶着することが出来る。
なお、平板状の第一の樹脂材1と第二の樹脂材2の当接面に与圧を与えた状態でレーザ光6を照射した方が、両者が確実に溶着する。そのため、平板状の第一の樹脂材1と同じく平板状の第二の樹脂材2の当接面に与圧を与えるようにしている。つまり、反射治具3と反射蓋4の間に、第一の樹脂材1と第二の樹脂材2の両方よりもレーザ光を透過する材質、例えば折り曲げた形のガラス板でできた与圧部材50を挟み、与圧部材50で、第一の樹脂材1と第二の樹脂材2を反射治具3の凹部溝3aに押し付けて、与圧を与えている。
(実施形態3の第一と第二の変形例)
図12と図13に、本発明の実施形態3の第一と第二の変形例を示した。図12では、第一の樹脂材1の底面の両端縁から上方に拡開して開口するように壁部(W)の斜面3b、3cが設けられている。図13では、第二の樹脂材2の上面の両端縁から上方に拡開して開口するように壁部(W)の斜面3b、3cが設けられている。第一と第二の変形例では、第一の樹脂材1と第二の樹脂材2の材質と大きさ、レーザ光出力手段の出力に応じて、壁部(W)の斜面3b、3cが設けられる位置を図12か図13のいずれかを選定して、レーザ溶着強度等のレーザ溶着品質を確保することができる。図12と図13では、与圧部材50の表面に鏡面テープ(T2)を貼り、反射治具3の壁部(W)の斜面3b、3cの上にある与圧部材50の表面でレーザ光6を反射させている。
(実施形態3の第三の変形例)
図14は、本発明の実施形態3の第三の変形例を示した。第一の樹脂材や第二の樹脂材となるバルーンカテーテルやカテーテルチューブは、赤色光及び近赤外線光に対し不透明な、つまり赤色光及び近赤外線光を吸収する熱可塑性ポリマー材料で形成されるが、図14では、第一の樹脂材と第二の樹脂材に与圧を与える与圧部材51を、近赤外のレーザ光を透過し遠赤外のレーザ光を吸収する素材、例えばシリコン(シリコンゴムゴム)に添加物を入れて不透明にして遠赤外のレーザ光を吸収するようにしたものを用い、厚さの厚い四辺形平板状の与圧部材51Aの周囲をアルミニュウム製の枠51Bで支持する構造にしている。平板状の与圧部材51Aと枠51Bを別部品にした方が作りやすく、強度が得られるためである。
図14では、近赤外線レーザ光を出力する第一のレーザ光照射手段5Aと、遠赤外線レーザ光を出力する第二のレーザ光照射手段5Bを反射蓋4の上に取り付けている。
第一のレーザ光照射手段5Aは、例えば半導体レーザであり、当該レーザ光の波長は700nm〜1200nmの範囲であり、好ましくは800nm〜1000nmである。第二のレーザ光照射手段5Bは、例えばCO2レーザであり遠赤外のレーザ光を照射する。当該レーザ光の波長は例えば10640nmである。
第一のレーザ光照射手段5Aは近赤外線レーザ光Raを出力して、与圧部材51A、第二の樹脂材2、第一の樹脂材1を照射し、近赤外線レーザ光Raを反射治具の凹部溝3aで反射させて再び、第一の樹脂材1、第二の樹脂材2、与圧部材51Aを照射し、反射蓋の反射面4aで反射させることを繰り返し、第一の樹脂材1と第二の樹脂材2を発熱させ、両者を溶着させる。
一方、第二のレーザ光照射手段5Bは、遠赤外線レーザを出力して、与圧部材51を照射し、発熱させている。この与圧部材51を発熱させると第二の樹脂部材2の上側外周面が与圧部材51の熱で温められる。そのため、第一と第二の樹脂部材は、それぞれ一定温度範囲に温度上昇した、反射治具3の凹部溝3a、壁部(W)、与圧部材51に囲まれた状態で、レーザ光が繰り返し照射されて発熱し、溶着する。遠赤外線レーザを出力するレーザ光照射手段5Bは、必要に応じて随時用いられる。
(実施形態4)
本発明の実施形態4では、反射蓋14の反射面となる曲面を円筒面14eと長手方向の一対の斜面14f、14fで形成した例を示した。図15のように、反射治具3の上には、反射蓋14が載置されている。反射蓋14は、円筒面14eと長手方向の一対の斜面14f、14fで形成してある。反射蓋14の上面にはレーザ光通過孔14bがあいている。反射蓋14の下面の長手方向の両側端には、隔離壁14c、14dが第一の樹脂材1の上面周囲の隙間を埋めるように設けてある。
レーザ光照射手段5では、内蔵した絞りレンズ(光学レンズ)5aでレーザ光6の光束を絞り、細いレーザ光6を反射蓋14の上面にあけたレーザ光通過孔14bから第一の樹脂材1と第二の樹脂材2に向けて再び広がるように照射している。レーザ光6は、反射蓋14の上面にあけたレーザ光通過孔14bを通ると、第一の樹脂材1の上面に広がって、第一の樹脂材1と第二の樹脂材2を貫通し、反射治具3の凹部溝3aの反射面で反射する。凹部溝3aで反射したレーザ光6は、再び、第一の樹脂材1と第二の樹脂材2を貫通し、反射蓋14の反射面14aで反射し、第一の樹脂材1と第二の樹脂材2を繰り返し照射する。
図16は、本発明の実施形態4のレーザ溶着装置の第一の樹脂材1の長手方向で切断した断面図である。反射蓋14の長手方向の両端には、隔離壁14c、14dが設けてある。隔離壁14c、14dは反射蓋14の下面から第一の樹脂材1の上半分の外周面に至る形をしている。隔離壁14c、14dの上端からは斜め上方に一対の斜面14f、14fが伸びていて、反射蓋14の中央部は、長手方向に沿った円筒面14eになっている。
隔離壁14c、14d、一対の斜面14f、14f、円筒面14eの内面は鏡面にしていて、第一の樹脂材1の上半分の外周面に向き合っている空間3dから熱とレーザ光が逃げないようにしている。
なお、図15では記載を省略したが、図16では、レーザ光照射手段5と反射蓋のレーザ光通過孔14bの間からレーザ光6が漏れないように反射蓋の上方部分にレーザ光案内部分14gを形成していることを示した。
図16では、レーザ光照射手段5で発生したレーザ光6の内、第一の樹脂材1と第二の樹脂材2を透過したレーザ光が、反射治具3の凹部溝3aの反射面で反射して、レーザ光照射範囲の中心に対して外側に向かったときの軌跡を示した。第一の樹脂材1と第二の樹脂材2を透過したレーザ光が、反射治具3の凹部溝3aで反射して、照射範囲の中心に対して外側に向かったときは、第一の樹脂材1と第二の樹脂材2を透過した後、反射蓋14により照射範囲の中心に向かうことになる。このように、反射蓋14に隔離壁14c、14dと、一対の斜面14f、14fと、円筒面14eを組み合せて形成しておくと、第一の樹脂材1と第二の樹脂材2は長手方向に長くても、レーザ光の照射は反射蓋14下のレーザ光照射範囲の中心に向かう。
但し、本発明の実施形態1の反射蓋4の反射面4aを球面とした図3と比べれば、レーザ光6は、第一の樹脂材1と第二の樹脂材2の特定部分に集中せず、長手方向の一定長さの範囲内で反射を繰り返す。その長手方向の一定範囲内では、第一の樹脂材1と第二の樹脂材2の温度が一定温度範囲内に加熱される。そのため、反射蓋14の反射面を両端の斜面14f、14fと中央の円筒面を組み合わせて、長手方向に広い範囲で溶着することができる。
(実施形態4の変形例)
図17に、実施形態4の変形例のレーザ溶着装置を示した。これは、反射蓋14が反射治具3の上を反射治具3に沿って自走するレーザ溶着装置である。反射蓋14には、自走式モノレールのように反射治具3の側面を挟む一対の走行輪19と、駆動モータ17で駆動される駆動輪18が取り付けられている。
一対の走行輪19と駆動モータ17で駆動される駆動輪18が、反射治具3の側面を挟んでいるので、駆動モータ17を一方向に回転すると反射治具3に沿って一方向に進み、反対方向に回転すると逆方向に進む。そのため正転と反転を組み合わせて進むことにより、例えば2mm前進して1mm後退し、再び2mm前進して1mm後退するような、前進と後退を繰り返して少しずつ進むという進み方もできる。前進と後退を繰り返して少しずつ進む進み方をすれば、第一の樹脂材1と第二の樹脂材2は長手方向に長い範囲を一定温度に保ちつつ移動させ、長手方向に連続的に均一にレーザ溶着することができる。
(実施形態5)
本発明の実施形態5を図18に示す。本発明の実施形態5のレーザ溶着装置は、発明の実施形態4の構成に、更に温度制御と駆動モータ17の駆動制御を追加して組み合わせたレーザ溶着装置である。図18では、反射治具3と反射蓋14の温度検出に接触式温度センサ27、28を用いて、反射治具3と反射蓋14の温度を検出しながら、反射蓋14を反射治具3の長手方向に移動できるようにしている。
図18では、反射蓋14の温度検出に接触式温度センサ28を用いた図を示したが、反射蓋14の温度検出には、熱電対を埋め込んだタイプのものとしてもよい。
温度センサ27、28で検出した温度データは、温度制御手段20aに伝えられる。温度制御手段20aは、駆動モータ17の駆動制御手段20bを制御して駆動モータ17を動かし、反射蓋14を反射治具3の側面に沿って長手方向に移動させる。反射蓋14に取り付けられているレーザ光照射手段5も、反射蓋14と同時に、反射治具3の側面に沿って長手方向に移動する。
図19に、本発明の実施形態5のレーザ溶着装置の動作手順をフロー図として示した。図19の動作手順としては、本発明の実施形態5のレーザ溶着装置が、(1)初期値設定したレーザ光出力レベル、進行速度でレーザ光照射と走行を開始する。(2)第一所定距離(L)まで、初期値設定のレーザ光照射と前進走行を行う。次に、(3)所定距離だけ後退走行する。(4)、(2)のと前進走行と(3)の後退走行を繰り返す。第二所定距離(L2)まで進むと、レーザ光出力レベルと進行速度を変更して、レーザ光照射と走行を行う。(5)、(2)のと前進走行と(3)の後退走行の繰り返しと(4)のレーザ光出力レベルと進行速度を変更する動作を繰り返す。第三所定距離(L)まで進むとレーザ光照射と走行を停止する。但し、反射治具と反射蓋の温度が異常温度範囲に入ったら、レーザ光出力レベル、進行速度を変えて、異常温度範囲から正常温度範囲に戻す動作をさせている。
図19の動作手順を各ステップ順に詳しく説明すると、以下のようになる。すなわち、図19では、まず操作者がレーザ溶着装置で、レーザ光出力レベル、進行速度の初期値設定をすると(ステップST1)、レーザ溶着装置は、レーザ光出力と走行を開始する(ステップST2)。所定時間経過後、第一所定距離(L)移動したか、否かを確認する(ステップST3)。「No」であれば、レーザ光出力と走行を続け、「Yes」になれば、「所定距離×1/n(nは任意の整数)」を後退する(ステップST4)。そして、反射治具3と反射蓋14の温度が所定範囲内に入っているか、否かを確認する(ステップST5)。「No」であれば、反射治具3と反射蓋14の温度が異常温度の範囲になったか否かを判定し(ステップST10)、「Yes」であれば、第二所定距離(L)移動したか、否かを確認する(ステップST6)。「No」、つまり第二所定距離(L)を移動していなければ、ステップST3に戻り、ステップST4(後退)、ST5(温度確認)、ST6(移動距離確認)の手順を繰り返す。ステップST6で「Yes」、つまり第二所定距離(L)を移動したら、レーザ光出力レベル、進行速度、nを変更する(ステップST7)。そして、レーザ光出力と走行を続け、所定時間経過後、第三所定距離(L)移動したか否かを確認する(ステップST8)。「No」、つまり第三所定距離(L)を移動していなければ、ステップST3(移動距離確認)に戻り、ステップST4(後退)、ST5(温度確認)、ST6(移動距離確認)、ST7(レーザ光出力レベル、進行速度、nを変更)の手順を繰り返す。ステップST8で「Yes」、つまり第三所定距離(L)を移動したら、レーザ光出力と走行を停止する(ステップST9)。
なお、ステップST5(温度確認)の判定で「No」、つまり反射治具3や反射蓋4という治具の温度が所定範囲内に入っていないときは、治具の温度が異常温度の範囲になったか否かを判定し(ステップST10)、判定結果が「Yes」、つまり異常温度の範囲であれば、異常温度範囲から正常温度範囲に戻るように、レーザ光出力レベル、進行速度、nを変更して(ステップST7)、レーザ光出力と走行を続ける。ステップST10の判定結果が「No」、つまり異常温度の範囲に入っていなければ、レーザ光出力レベル、進行速度、nはそのまま、変更しないで、レーザ光出力と走行を続ける。
実施形態5は、温度制御と駆動モータ17の駆動制御を組み合わせたレーザ溶着装置であり、上記のように、反射治具3と反射蓋14の温度を測定し、反射治具3と反射蓋14の温度に応じて、反射蓋14を反射治具3上で長手方向に移動し、反射治具3と反射蓋14で囲んだ空間を所定温度で移動させている。このことにより、第一の樹脂材1と第二の樹脂材2を長手方向に連続的に均一に溶着している。
なお、図19のフロー図は、第一、第二、第三の所定距離(L、L、L)を適切に入力することで汎用的に利用できる一例を示したもので、必要により任意の他のフロー図を用いてもよいことは、もちろんである。
(実施形態6)
本発明の実施形態6を図20に示す。本発明の実施形態6のレーザ溶着装置は、本発明の実施形態5の構成に冷却手段29を追加し、温度制御手段20aと駆動モータ17の駆動制御手段20bと冷却手段29を組み合わせたレーザ溶着装置である。
反射治具3の下面には、常温以下の温度の空気等の冷却材を吹付けて冷やすための冷却溝3g、3hが長手方向に2条、伸びている。反射治具3の下方のアーム部分には、冷却ノズル10、11の先端が冷却溝3g、3hに向けて取り付けてある。反射蓋14にも冷却ノズル12が取り付けてある。冷却ノズル10、11、12は冷却手段29につながっていて、冷却手段29が各冷却ノズル10、11、12に、常温以下の温度の空気等の冷却材を送って、反射治具3の冷却溝3g、3hと、反射蓋14の下方の空間に冷却材を供給できるようにしている。その他の構成は、図18で示した構成と同じである。
図21に、本発明の実施形態5のレーザ溶着装置の動作手順をフロー図として示した。図21の動作手順は、(1)初期値設定したレーザ光出力レベル、進行速度でレーザ光照射と走行を開始する。(2)第一所定距離(L)まで、初期値設定のレーザ光照射と走行を行う。次に、(3)所定距離だけ戻る。(4)、(2)と(3)を繰り返し、第二所定距離(L)まで進むと、レーザ光出力レベル、進行速度を変更して、レーザ光照射と走行を行う。(5)、(2)(3)(4)の動作を繰り返し、第三所定距離(L)まで進むとレーザ光照射と走行を停止する。但し、反射治具と反射蓋の温度が異常温度範囲に入ったら、冷却手段29を動作させて、常温以下の空気等の冷却材を冷却ノズルが吹き出す。そして、レーザ光出力レベル、進行速度を変えて、異常温度範囲から正常温度範囲に戻す動作をさせている。
図21の動作手順は、既に説明した図19の動作手順のステップST10の反射治具3と反射蓋14の温度が異常温度の範囲になったか否かを判定し(ステップST10)、判定結果が「Yes」、つまり異常温度の範囲と判定したときに、冷却手段29を動作させて、常温以下の空気等の冷却材を冷却ノズルが吹き出す動作(ステップST11)を追加したものである。
異常温度範囲に達したと判定したときに、反射治具と反射蓋を冷却手段で強制的に冷却し、迅速に正常温度範囲に戻るようにしている。念のため、図21の動作手順を詳しく説明すると、以下のようになる。
すなわち、図21では、まず操作者がレーザ溶着装置で、レーザ光出力レベル、進行速度の初期値設定をすると(ステップST1)、レーザ溶着装置は、レーザ光出力と走行を開始する(ステップST2)。所定時間経過後、第一所定距離(L)移動したか、否かを確認する(ステップST3)。「No」であれば、レーザ光出力と走行を続け、「Yes」になれば、「所定距離×1/n」を後退する(ステップST4)。そして、治具の温度は所定範囲内に入っているか、否かを確認する(ステップST5)。「No」であれば、治具の温度が異常温度の範囲になったか否かを判定し(ステップST10)、「Yes」であれば、第二所定距離(L)移動したか、否かを確認する(ステップST6)。「No」、つまり第二所定距離(L)を移動していなければ、ステップST3に戻り、ステップST4(後退)、ST5(温度確認)、ST6(移動距離確認)の手順を繰り返す。ステップST6で「Yes」、つまり第二所定距離(L)を移動したら、レーザ光出力レベル、進行速度、nを変更する(ステップST7)。そして、レーザ光出力と走行を続け、所定時間経過後、第三所定距離(L)移動したか否かを確認する(ステップST8)。「No」、つまり第三所定距離(L)を移動していなければ、ステップST3に戻り、ステップST4(後退)、ST5(温度確認)、ST6(移動距離確認)、ST7(レーザ光出力レベル、進行速度、nを変更)の手順を繰り返す。ステップST8で「Yes」、つまり第三所定距離(L)を移動したら、レーザ光出力と走行を停止する(ステップST9)。
なお、ステップST5の判定で「No」、つまり治具の温度が所定範囲内に入っていないときは、治具の温度が異常温度の範囲になったか否かを判定し(ステップST10)、判定結果が「Yes」、つまり異常温度の範囲であれば、異常温度範囲から正常温度範囲に戻るように、冷却手段を動作させて、常温以下の空気等の冷却材を冷却ノズルが吹き出す動作をする(ステップST11)。そしてステップST5に戻り、ステップST5の判定で「Yes」、つまり治具の温度が所定範囲内に入るまで、ステップST11の冷却動作を繰り返す。
ステップST10の判定結果が「No」、つまり異常温度の範囲でなければ、図19のフロー図と同じくステップ8に進み、レーザ光出力と走行を続ける。
図21のフロー図では、レーザ溶着の一つ動作手順を示したが、ステップST1の「レーザ光出力レベル、進行速度の初期値設定」を、「レーザ反射治具3と反射蓋4の温度に基づいた最適な初期値に自動設定する」としておけば、図21のフロー図を繰り返すことで、同じレーザ溶着作業を繰り返すことができる。
また、ステップST9の次に、冷却手段を動作させて、常温以下の空気等の冷却材を冷却ノズルが吹き出す動作をする「冷却手段で冷却する」というステップST12を追加すれば、反射治具3と反射蓋4の温度を短時間で常温に戻すことができる。
なお、図21のフロー図は、第一、第二、第三の所定距離(L、L、L)を適切に入力することで汎用的に利用できる一例を示したもので、必要により任意の他のフロー図を用いてもよいことは、もちろんである。
(実施形態7)
本発明の実施形態7は、赤外線情報等から温度を検出する非接触温度センサで第一の樹脂材1の表面温度を直接測定するようにした点に特徴がある。図22に、本発明の実施形態7のレーザ溶着装置の要部断面図を示した。図22では、反射蓋14に非接触温度センサ38を取り付け、非接触温度センサ38で第一の樹脂材1の表面の赤外線温度情報を非接触で直接読み取るようにしている。
既に図10で説明した、実施形態2のレーザ溶着装置では、反射治具3と反射蓋4にそれぞれ熱電対7、8を埋め込んで温度を検出していた。これは、第一の樹脂材1と第二の樹脂材2の温度を間接的に測定するものであった。本発明の実施形態7のレーザ溶着装置では、非接触温度センサ38で第一の樹脂材1の表面の赤外線温度情報を非接触で直接読み取るようにしている。そのため、第一の樹脂材1の表面温度を迅速かつ精度よく制御することができる。
FIG. 10 shows a schematic configuration of the laser welding apparatus according to the second embodiment of the present invention. The first resin material 1 and the second resin material 2 are placed in the recess groove 3 a of the reflection jig 3, and the pair of inclined surfaces 3 b and 3 c of the reflection jig 3 are arranged on the outer peripheral surface below the first resin material 1. A reflective lid 4 is placed on the reflective jig 3 with the reflective surface 4a facing down. The reflecting surface 4a is made of a curved surface such as a spherical surface or a cylindrical surface connecting the upper end edges of the inclined surfaces 3b and 3c of the reflecting jig 3 in an arch shape.
A laser beam irradiation means 5 is placed on the upper center of the reflection lid 4. A laser beam passage hole 4b is opened at the place where the laser beam irradiation means 5 of the reflecting lid 4 is placed. The laser beam 6 generated by the laser beam irradiation means 5 is irradiated to the first resin material 1 and the second resin material 2 placed in the concave groove 3a of the reflection jig 3 from the laser beam passage hole 4b. The
In Embodiment 2 of the present invention, a temperature sensor (thermocouple) 7 indicated by black dots in FIG. 10 is embedded in the reflecting jig 3, and a temperature sensor (thermocouple) 8 is embedded in the reflecting lid 4. . The temperature sensors 7 and 8 are connected to the temperature control means 9. The temperature control means 9 performs on / off control or feedback control on the output of the laser light irradiation means 5 based on the measurement result temperatures of the temperature sensors 7 and 8 to keep the temperature of the reflecting jig 3 and the reflecting lid 4 within a certain range. ing.
In FIG. 10, since the temperature sensors 7 and 8 do not directly measure the temperatures of the first resin material 1 and the second resin material 2, the temperature changes of the first resin material 1 and the second resin material 2. To control the output of the laser beam. The first resin material 1 and the second resin material 2 that are transparent to laser light are set to target temperatures according to the material and size that are actually used. Instead of the thermocouple temperature sensors 7 and 8, the surface temperature of the first resin material 1 may be directly measured by a non-contact temperature sensor that detects the temperature from infrared information. In addition, the structure of the laser welding apparatus using a non-contact temperature sensor is later mentioned using FIG.
In the laser welding apparatus according to the second embodiment of the present invention, the temperature of the reflecting jig 3 and the reflecting lid 4 is controlled within a predetermined temperature range to improve the uniformity of the laser welding quality. The problem of enabling supply of a laser welding apparatus is solved.
In FIG. 10, cooling cavities 3 e and 3 f are opened in the reflecting jig 3, and cooling nozzles 10 and 11 for blowing a coolant such as air at room temperature or lower are attached. The cooling cavities 3e and 3f communicate with the outside of the reflecting jig 3, and the coolant sprayed from the cooling nozzles 10 and 11 takes the heat of the reflecting jig 3 together with the heat of the reflecting jig 3. Released to the outside. In addition, a cooling nozzle 12 that blows a coolant such as air at room temperature or lower toward the space 3 d below the reflective lid 4 is attached to the reflective lid 4. The space 3d communicates with the outside of the reflecting lid 4, and the coolant sprayed from the cooling nozzle 12 takes the heat of the space 3d and is released to the outside of the reflecting lid 4 together with the heat.
The cooling nozzles 10, 11, and 12 are supplied with a coolant such as air at room temperature or lower from the cooling means 13. The cooling means 13 is connected to the temperature control means 9. The temperature control unit 9 controls the cooling unit 13 based on the measurement result temperatures of the temperature sensors (thermocouples) 7 and 8 to control the supply temperature and supply amount of the coolant from the cooling nozzles 10, 11, and 12. The temperature of the reflecting jig 3 and the reflecting lid 4 is cooled within a predetermined temperature range.
As described above, the second embodiment of the present invention is a laser welding apparatus in which the temperature control means 9 and the cooling means 13 for the reflecting jig 3 and the reflecting lid 4 are added to the first embodiment of the present invention. Solving the problem of supplying a laser welding apparatus that improves the uniformity of laser welding quality by controlling the temperature of the reflecting jig 3 and the reflecting lid 4 within a predetermined temperature range. Yes.
In the configuration in which the cooling nozzles 10, 11 and 12 and the cooling means 13 are further added, after the laser welding is finished, the reflecting jig 3 and the reflecting lid 4 are cooled by the cooling means 13 to shorten the temperature cycle of the laser welding work. This solves the problem of improving the productivity of laser welding.
In FIG. 10, it has been described that the temperature sensors 7 and 8 are embedded in the reflecting jig 3 and the reflecting lid 4, respectively, and the temperature is controlled by detecting both temperatures. Also good. Also, the cooling nozzles 10, 11, and 12 may be configured to use any one cooling nozzle.
(Embodiment 3)
Embodiment 3 of the present invention will be described. Embodiment 3 of the present invention is a laser welding apparatus for laser welding a flat second resin material in the same manner as a flat first resin material that transmits laser light. Hereinafter, it demonstrates with drawing. In the drawings, like the first resin material and the second resin material, even if the shape is slightly different from the embodiment described so far, the same reference numerals are given to the components that perform the same function, and the description is omitted.
FIG. 11 shows a schematic configuration of a laser welding apparatus according to Embodiment 3 of the present invention. The flat plate-like first resin material 1 and second resin material 2 are placed in the recess groove 3a of the reflection jig 3 in a state where they are in contact with each other, and a pair of wall portions (W) of the reflection jig 3 are placed. The slopes 3b and 3c are provided so as to open upward from the outer peripheral surface of the first resin material 1, and a reflective lid 4 is mounted on the reflective jig 3 with the reflective surface 4a facing down. Is placed. The reflecting surface 4a is made of a curved surface such as a spherical surface or a cylindrical surface connecting the upper end edges of the inclined surfaces 3b and 3c of the wall portion (W) of the reflecting jig 3.
A laser beam irradiation means 5 is placed on the upper center of the reflection lid 4. A laser beam passage hole 4b is opened at the place where the laser beam irradiation means 5 of the reflecting lid 4 is placed. The laser light 6 generated by the laser light irradiation means 5 is applied to the first resin material 1 and the second resin material 2 placed in the concave groove 3 a of the reflection jig 3.
Up to this point, the configuration is basically the same as that of the first embodiment of the present invention, but is characterized in that the first resin material and the second resin material to be laser-welded are flat. That is, the recessed groove 3a of the reflecting jig 3 has a recessed groove shape corresponding to the bottom surface 1a and the side surface 1b of the first resin material 1 having a rectangular cross section.
The first resin material 1 and the second resin material 2 generate heat by absorbing the laser light at a rate corresponding to the absorption rate of the laser light. Further, if the surface roughness of the contact surfaces of the first resin material 1 and the second resin material 2 is rough, the laser light is reflected by a slight gap between the contact surfaces and generates heat. Then, the first resin material 1 and the second resin material 2 are melted at the contact surfaces, and thereafter, irradiation with the laser light is finished, solidified, and welded.
By making the shape of the concave groove of the reflection jig the same as the shape of the outer periphery of the flat plate-like first resin material, laser welding of the flat plate-like first resin material that transmits laser light and the second resin material I can do it.
Note that, when the laser beam 6 is irradiated in a state where a pressure is applied to the contact surfaces of the flat first resin material 1 and the second resin material 2, the two are surely welded. Therefore, a pressure is applied to the contact surface of the flat plate-like second resin material 2 in the same manner as the flat plate-like first resin material 1. That is, the pressure applied between the reflecting jig 3 and the reflecting lid 4 is made of a material that transmits laser light more than both the first resin material 1 and the second resin material 2, for example, a bent glass plate. The member 50 is sandwiched and the pressurizing member 50 presses the first resin material 1 and the second resin material 2 against the concave groove 3a of the reflecting jig 3 to apply pressure.
(First and second modifications of Embodiment 3)
12 and 13 show first and second modifications of the third embodiment of the present invention. In FIG. 12, slopes 3 b and 3 c of the wall (W) are provided so as to open upward from both end edges of the bottom surface of the first resin material 1. In FIG. 13, slopes 3 b and 3 c of the wall (W) are provided so as to open upward from both end edges of the upper surface of the second resin material 2. In the first and second modifications, the slopes 3b and 3c of the wall (W) are formed according to the material and size of the first resin material 1 and the second resin material 2 and the output of the laser beam output means. Laser welding quality such as laser welding strength can be ensured by selecting either the position shown in FIG. 12 or FIG. 12 and 13, a mirror tape (T2) is applied to the surface of the pressurizing member 50, and laser light is applied to the surface of the pressurizing member 50 on the slopes 3b and 3c of the wall portion (W) of the reflecting jig 3. 6 is reflected.
(Third Modification of Embodiment 3)
FIG. 14 shows a third modification of the third embodiment of the present invention. The balloon catheter or catheter tube that is the first resin material or the second resin material is made of a thermoplastic polymer material that is opaque to red light and near infrared light, that is, absorbs red light and near infrared light. In FIG. 14, the pressurizing member 51 that applies pressure to the first resin material and the second resin material is made of a material that transmits near-infrared laser light and absorbs far-infrared laser light, such as silicon ( A silicon rubber rubber is used which is made opaque by absorbing far-infrared laser light, and a thick quadrilateral plate-shaped pressurizing member 51A is surrounded by an aluminum frame 51B. Supporting structure. This is because it is easier to make the plate-shaped pressurizing member 51A and the frame 51B as separate parts, and strength can be obtained.
In FIG. 14, the first laser light irradiation means 5 </ b> A that outputs near-infrared laser light and the second laser light irradiation means 5 </ b> B that outputs far-infrared laser light are mounted on the reflection lid 4.
5 A of 1st laser beam irradiation means is a semiconductor laser, for example, The wavelength of the said laser beam is the range of 700 nm-1200 nm, Preferably it is 800 nm-1000 nm. The second laser light irradiation means 5B is, for example, a CO2 laser and irradiates far-infrared laser light. The wavelength of the laser beam is 10640 nm, for example.
The first laser beam irradiation means 5A outputs a near infrared laser beam Ra, irradiates the pressurizing member 51A, the second resin material 2, and the first resin material 1, and reflects the near infrared laser beam Ra to the reflection jig. The first resin material 1, the second resin material 2, and the pressurizing member 51 </ b> A are irradiated again and reflected by the reflection surface 4 a of the reflective lid, and the first resin material 1 is reflected again. 1 and the 2nd resin material 2 are heated, and both are welded.
On the other hand, the second laser beam irradiation means 5B outputs a far-infrared laser to irradiate the pressurizing member 51 to generate heat. When the pressurizing member 51 is heated, the upper outer peripheral surface of the second resin member 2 is warmed by the heat of the pressurizing member 51. Therefore, the first and second resin members are surrounded by the recessed groove 3a, the wall (W), and the pressurizing member 51 of the reflecting jig 3 and the laser light is emitted from the first and second resin members. Repeated irradiation generates heat and welds. The laser beam irradiation means 5B that outputs a far-infrared laser is used as needed.
(Embodiment 4)
In the fourth embodiment of the present invention, an example is shown in which the curved surface serving as the reflecting surface of the reflecting lid 14 is formed by the cylindrical surface 14e and a pair of inclined surfaces 14f and 14f in the longitudinal direction. As shown in FIG. 15, the reflection lid 14 is placed on the reflection jig 3. The reflection lid 14 is formed by a cylindrical surface 14e and a pair of inclined surfaces 14f and 14f in the longitudinal direction. A laser beam passage hole 14 b is formed on the upper surface of the reflection lid 14. Isolation walls 14 c and 14 d are provided at both ends in the longitudinal direction of the lower surface of the reflection lid 14 so as to fill a gap around the upper surface of the first resin material 1.
In the laser beam irradiating means 5, the light beam of the laser beam 6 is stopped by a built-in aperture lens (optical lens) 5 a, and the first resin material 1 is formed from a laser beam passage hole 14 b in which the thin laser beam 6 is opened on the upper surface of the reflecting lid 14. And the second resin material 2 is irradiated so as to spread again. When the laser beam 6 passes through the laser beam passage hole 14 b formed in the upper surface of the reflection lid 14, it spreads on the upper surface of the first resin material 1 and penetrates the first resin material 1 and the second resin material 2. The light is reflected by the reflecting surface of the concave groove 3a of the reflecting jig 3. The laser beam 6 reflected by the concave groove 3a again passes through the first resin material 1 and the second resin material 2, is reflected by the reflecting surface 14a of the reflecting lid 14, and is reflected by the first resin material 1 and the second resin material 2. The resin material 2 is repeatedly irradiated.
FIG. 16 is a cross-sectional view taken along the longitudinal direction of the first resin material 1 of the laser welding apparatus according to Embodiment 4 of the present invention. Separation walls 14c and 14d are provided at both ends of the reflection lid 14 in the longitudinal direction. The isolation walls 14 c and 14 d have a shape extending from the lower surface of the reflecting lid 14 to the outer peripheral surface of the upper half of the first resin material 1. A pair of inclined surfaces 14f and 14f extend obliquely upward from the upper ends of the isolation walls 14c and 14d, and the central portion of the reflecting lid 14 is a cylindrical surface 14e along the longitudinal direction.
The inner surfaces of the isolation walls 14c and 14d, the pair of inclined surfaces 14f and 14f, and the cylindrical surface 14e are mirror surfaces, and heat and laser light do not escape from the space 3d facing the outer peripheral surface of the upper half of the first resin material 1. I am doing so.
Although omitted from FIG. 15, in FIG. 16, the laser beam guiding portion is provided above the reflecting lid so that the laser beam 6 does not leak from between the laser beam irradiation means 5 and the laser beam passage hole 14b of the reflecting lid. 14 g was formed.
In FIG. 16, the laser light transmitted through the first resin material 1 and the second resin material 2 out of the laser light 6 generated by the laser light irradiation means 5 is reflected on the reflection surface of the concave groove 3 a of the reflection jig 3. The trajectory when reflected toward the outside with respect to the center of the laser light irradiation range is shown. When the laser light transmitted through the first resin material 1 and the second resin material 2 is reflected by the concave groove 3a of the reflecting jig 3 and goes outward with respect to the center of the irradiation range, After passing through the resin material 1 and the second resin material 2, the reflection lid 14 moves toward the center of the irradiation range. As described above, when the isolation walls 14c and 14d, the pair of inclined surfaces 14f and 14f, and the cylindrical surface 14e are formed on the reflection lid 14, the first resin material 1 and the second resin material 2 are long. Even if it is long in the direction, the laser beam irradiation is directed toward the center of the laser beam irradiation range under the reflecting lid 14.
However, compared with FIG. 3 in which the reflection surface 4a of the reflection lid 4 of Embodiment 1 of the present invention is a spherical surface, the laser light 6 is concentrated on specific portions of the first resin material 1 and the second resin material 2. Instead, the reflection is repeated within a certain length in the longitudinal direction. Within a certain range in the longitudinal direction, the temperature of the first resin material 1 and the second resin material 2 is heated within the certain temperature range. Therefore, the reflecting surface of the reflecting lid 14 can be welded in a wide range in the longitudinal direction by combining the inclined surfaces 14f and 14f at both ends and the central cylindrical surface.
(Modification of Embodiment 4)
In FIG. 17, the laser welding apparatus of the modification of Embodiment 4 was shown. This is a laser welding apparatus in which the reflection lid 14 is self-propelled along the reflection jig 3 on the reflection jig 3. A pair of traveling wheels 19 sandwiching the side surface of the reflecting jig 3 and a driving wheel 18 driven by a driving motor 17 are attached to the reflecting lid 14 like a self-propelled monorail.
Since the driving wheel 18 driven by the pair of traveling wheels 19 and the driving motor 17 sandwiches the side surface of the reflecting jig 3, the driving motor 17 advances in one direction along the reflecting jig 3 when the driving motor 17 is rotated in one direction. Rotate in the opposite direction and go in the opposite direction. Therefore, by proceeding in combination with forward rotation and reversal, for example, it is possible to advance forward and backward little by little, for example, 2 mm forward and 1 mm backward, 2 mm forward and 1 mm backward again. If the advancement and retreat are repeated and the advancement is made little by little, the first resin material 1 and the second resin material 2 are moved while maintaining a constant temperature in a long range in the longitudinal direction, and are continuously uniform in the longitudinal direction. Can be laser welded.
(Embodiment 5)
A fifth embodiment of the present invention is shown in FIG. The laser welding apparatus according to the fifth embodiment of the present invention is a laser welding apparatus in which temperature control and drive control of the drive motor 17 are further added to the configuration of the fourth embodiment of the invention. In FIG. 18, the temperature of the reflection jig 3 and the reflection lid 14 is detected by using the contact temperature sensors 27 and 28, and the temperature of the reflection jig 3 and the reflection lid 14 is detected, and the reflection lid 14 is attached to the reflection jig 3. It can be moved in the longitudinal direction.
In FIG. 18, the contact-type temperature sensor 28 is used to detect the temperature of the reflective lid 14. However, the temperature detection of the reflective lid 14 may be a type in which a thermocouple is embedded.
The temperature data detected by the temperature sensors 27 and 28 is transmitted to the temperature control means 20a. The temperature control unit 20 a controls the drive control unit 20 b of the drive motor 17 to move the drive motor 17 and move the reflection lid 14 in the longitudinal direction along the side surface of the reflection jig 3. The laser beam irradiation means 5 attached to the reflection lid 14 also moves in the longitudinal direction along the side surface of the reflection jig 3 simultaneously with the reflection lid 14.
In FIG. 19, the operation | movement procedure of the laser welding apparatus of Embodiment 5 of this invention was shown as a flowchart. As the operation procedure of FIG. 19, the laser welding apparatus according to the fifth embodiment of the present invention starts (1) laser light irradiation and traveling at the laser light output level and traveling speed set as initial values. (2) First predetermined distance (L 1 ) Until the initial value setting laser beam irradiation and forward running. Next, (3) traveling backward by a predetermined distance. Repeat (4), (2) forward travel and (3) reverse travel. Second predetermined distance (L 2 ), The laser light output level and the traveling speed are changed, and laser light irradiation and traveling are performed. The operations (5) and (2) are repeated for forward travel and (3) for reverse travel, and (4) the operation for changing the laser light output level and the traveling speed is repeated. Third predetermined distance (L 3 ), The laser beam irradiation and running are stopped. However, when the temperature of the reflecting jig and the reflecting lid enters the abnormal temperature range, the laser light output level and the traveling speed are changed to return the abnormal temperature range to the normal temperature range.
The operation procedure of FIG. 19 will be described in detail in the order of each step as follows. That is, in FIG. 19, first, when the operator uses the laser welding apparatus to set the initial values of the laser light output level and the traveling speed (step ST1), the laser welding apparatus starts the laser light output and traveling (step ST2). . After a predetermined time has elapsed, the first predetermined distance (L 1 ) It is confirmed whether or not it has moved (step ST3). If “No”, the laser beam output and running are continued, and if “Yes”, “predetermined distance × 1 / n (n is an arbitrary integer)” is moved backward (step ST4). Then, it is confirmed whether or not the temperature of the reflecting jig 3 and the reflecting lid 14 is within a predetermined range (step ST5). If “No”, it is determined whether or not the temperature of the reflecting jig 3 and the reflecting lid 14 is in an abnormal temperature range (step ST10). If “Yes”, the second predetermined distance (L 2 ) It is confirmed whether or not it has moved (step ST6). “No”, that is, the second predetermined distance (L 2 ) Is not moved, the process returns to step ST3, and steps ST4 (retreat), ST5 (temperature confirmation), and ST6 (movement distance confirmation) are repeated. In step ST6, “Yes”, that is, the second predetermined distance (L 2 ) Is moved, the laser beam output level, traveling speed, and n are changed (step ST7). Then, the laser beam output and running are continued, and after a predetermined time has elapsed, a third predetermined distance (L 3 ) It is confirmed whether or not it has moved (step ST8). “No”, that is, the third predetermined distance (L 3 ) Is not moved, the process returns to step ST3 (movement distance confirmation), and steps ST4 (retraction), ST5 (temperature confirmation), ST6 (movement distance confirmation), ST7 (laser beam output level, traveling speed, n are changed). ) Repeat the procedure. In step ST8, “Yes”, that is, the third predetermined distance (L 3 ) Is moved, the laser beam output and traveling are stopped (step ST9).
It should be noted that if the determination in step ST5 (temperature check) is “No”, that is, if the temperature of the jig such as the reflective jig 3 or the reflective lid 4 is not within the predetermined range, the temperature of the jig falls within the abnormal temperature range. If the determination result is “Yes”, that is, the abnormal temperature range, the laser light output level, the traveling speed, and n are set so that the abnormal temperature range returns to the normal temperature range. After changing (step ST7), the laser beam output and running are continued. If the determination result in step ST10 is “No”, that is, if it is not in the abnormal temperature range, the laser light output level, the traveling speed, and n are not changed and the laser light output and traveling are continued.
The fifth embodiment is a laser welding apparatus that combines temperature control and drive control of the drive motor 17. As described above, the temperatures of the reflection jig 3 and the reflection lid 14 are measured, and the reflection jig 3 and the reflection lid 14 are measured. The reflecting lid 14 is moved in the longitudinal direction on the reflecting jig 3 in accordance with the temperature of the reflecting jig 3, and the space surrounded by the reflecting jig 3 and the reflecting lid 14 is moved at a predetermined temperature. Thus, the first resin material 1 and the second resin material 2 are continuously and uniformly welded in the longitudinal direction.
The flowchart of FIG. 19 shows the first, second, and third predetermined distances (L 1 , L 2 , L 3 ) Is shown as an example that can be used universally, and any other flow diagram may be used if necessary.
(Embodiment 6)
A sixth embodiment of the present invention is shown in FIG. The laser welding apparatus according to the sixth embodiment of the present invention adds a cooling means 29 to the configuration of the fifth embodiment of the present invention, and combines the temperature control means 20a, the drive control means 20b of the drive motor 17 and the cooling means 29 with laser welding. Device.
On the lower surface of the reflecting jig 3, two cooling grooves 3g and 3h for blowing and cooling a coolant such as air having a temperature below room temperature extend in the longitudinal direction. The tips of the cooling nozzles 10 and 11 are attached to the lower arm portion of the reflecting jig 3 toward the cooling grooves 3g and 3h. The cooling nozzle 12 is also attached to the reflection lid 14. The cooling nozzles 10, 11, and 12 are connected to the cooling means 29, and the cooling means 29 sends a cooling material such as air having a temperature below room temperature to each of the cooling nozzles 10, 11, and 12 to cool the reflecting jig 3. The coolant can be supplied to the grooves 3g and 3h and the space below the reflecting lid 14. Other configurations are the same as those shown in FIG.
In FIG. 21, the operation | movement procedure of the laser welding apparatus of Embodiment 5 of this invention was shown as a flowchart. The operation procedure of FIG. 21 is as follows: (1) Laser light irradiation and running are started at the laser light output level and traveling speed set as initial values. (2) First predetermined distance (L 1 ) Until the initial value setting laser beam irradiation and running. Next, (3) return by a predetermined distance. (4), (2) and (3) are repeated, and the second predetermined distance (L 2 ), The laser light output level and the traveling speed are changed, and laser light irradiation and traveling are performed. The operations of (5), (2), (3), and (4) are repeated to obtain a third predetermined distance (L 3 ), The laser beam irradiation and running are stopped. However, when the temperature of the reflecting jig and the reflecting lid enters the abnormal temperature range, the cooling means 29 is operated, and the cooling nozzle blows out a coolant such as air at room temperature or lower. Then, the laser light output level and the traveling speed are changed to return the abnormal temperature range to the normal temperature range.
The operation procedure of FIG. 21 determines whether or not the temperature of the reflection jig 3 and the reflection lid 14 in step ST10 of the operation procedure of FIG. 19 already described is in an abnormal temperature range (step ST10). When it is determined “Yes”, that is, when the temperature is in the abnormal temperature range, the cooling means 29 is operated, and an operation (step ST11) in which the cooling nozzle blows out a coolant such as air at room temperature or lower is added.
When it is determined that the abnormal temperature range has been reached, the reflecting jig and the reflecting lid are forcibly cooled by the cooling means so as to quickly return to the normal temperature range. As a precaution, the operation procedure of FIG. 21 will be described in detail as follows.
That is, in FIG. 21, first, when the operator uses the laser welding device to set the initial values of the laser light output level and the traveling speed (step ST1), the laser welding device starts running with the laser light output (step ST2). . After a predetermined time has elapsed, the first predetermined distance (L 1 ) It is confirmed whether or not it has moved (step ST3). If “No”, the laser beam output and running are continued, and if “Yes”, “predetermined distance × 1 / n” is moved backward (step ST4). Then, it is confirmed whether or not the temperature of the jig is within a predetermined range (step ST5). If “No”, it is determined whether or not the temperature of the jig is in an abnormal temperature range (step ST10). If “Yes”, the second predetermined distance (L 2 ) It is confirmed whether or not it has moved (step ST6). “No”, that is, the second predetermined distance (L 2 ) Is not moved, the process returns to step ST3, and steps ST4 (retreat), ST5 (temperature confirmation), and ST6 (movement distance confirmation) are repeated. In step ST6, “Yes”, that is, the second predetermined distance (L 2 ) Is moved, the laser beam output level, traveling speed, and n are changed (step ST7). Then, the laser beam output and running are continued, and after a predetermined time has elapsed, a third predetermined distance (L 3 ) It is confirmed whether or not it has moved (step ST8). “No”, that is, the third predetermined distance (L 3 ) Is not moved, the process returns to step ST3, and steps ST4 (retreat), ST5 (temperature confirmation), ST6 (movement distance confirmation), and ST7 (laser light output level, traveling speed, n are changed) are repeated. . In step ST8, “Yes”, that is, the third predetermined distance (L 3 ) Is moved, the laser beam output and traveling are stopped (step ST9).
If “No” is determined in step ST5, that is, if the temperature of the jig is not within the predetermined range, it is determined whether or not the temperature of the jig is in an abnormal temperature range (step ST10). If the result is “Yes”, that is, an abnormal temperature range, the cooling means is operated so as to return from the abnormal temperature range to the normal temperature range, and the cooling nozzle blows out a coolant such as air at room temperature or lower. (Step ST11). Then, returning to step ST5, the cooling operation of step ST11 is repeated until “Yes” in the determination of step ST5, that is, until the temperature of the jig falls within a predetermined range.
If the determination result of step ST10 is “No”, that is, it is not in the abnormal temperature range, the process proceeds to step 8 as in the flowchart of FIG.
In the flowchart of FIG. 21, one operation procedure of laser welding is shown. However, “setting of laser beam output level and initial value of traveling speed” in step ST1 is set to “temperature of laser reflecting jig 3 and reflecting lid 4”. If “automatically set based on the optimal initial value” is repeated, the same laser welding operation can be repeated by repeating the flowchart of FIG.
Further, after step ST9, if the cooling means is operated and the cooling nozzle blows out a coolant such as air at room temperature or lower, step ST12 of “cooling by the cooling means” is added. The temperature of the reflective lid 4 can be returned to room temperature in a short time.
The flowchart of FIG. 21 shows the first, second and third predetermined distances (L 1 , L 2 , L 3 ) Is shown as an example that can be used universally, and any other flow diagram may be used if necessary.
(Embodiment 7)
Embodiment 7 of the present invention is characterized in that the surface temperature of the first resin material 1 is directly measured by a non-contact temperature sensor that detects the temperature from infrared information or the like. FIG. 22 shows a cross-sectional view of the main part of the laser welding apparatus according to the seventh embodiment of the present invention. In FIG. 22, a non-contact temperature sensor 38 is attached to the reflective lid 14, and the infrared temperature information on the surface of the first resin material 1 is directly read by the non-contact temperature sensor 38 in a non-contact manner.
In the laser welding apparatus of the second embodiment already described with reference to FIG. 10, the temperature is detected by embedding the thermocouples 7 and 8 in the reflecting jig 3 and the reflecting lid 4, respectively. This indirectly measured the temperature of the first resin material 1 and the second resin material 2. In the laser welding apparatus according to the seventh embodiment of the present invention, the non-contact temperature sensor 38 directly reads the infrared temperature information on the surface of the first resin material 1 in a non-contact manner. Therefore, the surface temperature of the first resin material 1 can be controlled quickly and accurately.

本発明の実施形態7のレーザ溶着装置では、元々分離している別部品である反射治具3と反射蓋14を重ねて使用する構造であるため、両者を分解して、非接触温度センサ38の表面を清浄にメンテナンスすることが容易である。他の構造は、実施形態1から実施形態7までと同じであるので、説明を省略する。
(実施形態8)
本発明の実施形態8は、反射蓋24を小型・軽量化した点に特徴がある。図23に、本発明の実施形態6のレーザ溶着装置の要部断面図を示した。図23では、反射蓋24として、薄板状の球面プレートを用いている。実施形態1から実施形態7までは、反射蓋4として、アルミニュウムのブロックを所定形状に削り出したもの、あるいは斜面と円筒面をつないだものを示したが、実施形態8では、アルミニュウムの薄い平板を塑性変形させて球面プレートを作り、下面を鏡面にした反射蓋24を用いている。第一の樹脂材1と第二の樹脂材2の大きさが小さく、短時間に溶着できる場合は、反射蓋24の熱容量が小さくて良いからである。
なお、反射蓋24の材料をアルミニュウムの薄い平板の代わりにプラスチック板として、プラスチック板の表面にレーザ光透過孔のあいた鏡面テープ(T)を貼った構造にしてもよい。他の構造は、実施形態1から実施形態7までと同じであるので、説明を省略する。
(実施形態9)
本発明の実施形態9では、図24に示したように、反射蓋44の材質をレーザ光透過性の樹脂材にして、反射蓋44の下面には反射面44aを形成しているが、レーザ光照射手段5から出力されるレーザ光が通過する範囲には反射面44aを形成していないレーザ光透過孔44Hの部分を形成している。これは、反射蓋44が全体としてレーザ光透過性の樹脂材という通気性の孔のあいていない蓋であっても、光学的にレーザ光が通過する部分があれば、その部分が光学的にレーザ光通過孔として機能する。反射蓋44に通気性の孔があいていないので、第一の樹脂材1の上方の空間から外側に熱が逃げない利点がある。レーザ光通過孔は、少なくとも光学的にレーザ光を通す孔であればよいことを説明した。
In the laser welding apparatus according to the seventh embodiment of the present invention, since the reflecting jig 3 and the reflecting lid 14 which are separate parts which are originally separated are used in an overlapping manner, both are disassembled and the non-contact temperature sensor 38 is disassembled. It is easy to maintain a clean surface. Since other structures are the same as those in the first to seventh embodiments, the description thereof is omitted.
(Embodiment 8)
Embodiment 8 of the present invention is characterized in that the reflecting lid 24 is reduced in size and weight. FIG. 23 is a cross-sectional view of the main part of the laser welding apparatus according to the sixth embodiment of the present invention. In FIG. 23, a thin spherical plate is used as the reflective lid 24. In the first to seventh embodiments, the reflecting lid 4 is shown by cutting an aluminum block into a predetermined shape or connecting a slope and a cylindrical surface. In the eighth embodiment, a thin aluminum flat plate is used. Is used to make a spherical plate by plastic deformation and a reflective lid 24 having a lower surface as a mirror surface. This is because when the first resin material 1 and the second resin material 2 are small in size and can be welded in a short time, the heat capacity of the reflecting lid 24 may be small.
The material of the reflection lid 24 may be a plastic plate instead of a thin aluminum plate, and a mirror surface tape (T) with a laser beam transmitting hole may be attached to the surface of the plastic plate. Since other structures are the same as those in the first to seventh embodiments, the description thereof is omitted.
(Embodiment 9)
In Embodiment 9 of the present invention, as shown in FIG. 24, the reflective lid 44 is made of a resin material that is transparent to laser light, and the reflective surface 44a is formed on the lower surface of the reflective lid 44. In the range through which the laser beam output from the light irradiating means 5 passes, a portion of the laser beam transmitting hole 44H not formed with the reflecting surface 44a is formed. This is because, even if the reflective lid 44 is a laser beam transmitting resin material as a whole and does not have a breathable hole, if there is a portion through which the laser beam passes optically, that portion is optically It functions as a laser beam passage hole. Since there is no air permeable hole in the reflection lid 44, there is an advantage that heat does not escape from the space above the first resin material 1 to the outside. It has been described that the laser beam passage hole may be a hole through which laser beam is optically transmitted.

本発明の実施形態9は、光学的にレーザ光を通過するレーザ光通過孔44Hのあいた反射蓋44で、レーザ光6を第一の樹脂材1と第二の樹脂材2に照射するようにしたレーザ溶着装置である。反射蓋44に通気性のレーザ光通過孔をあけずにレーザ光を照射して、第一の樹脂材1の上方の空間から外側に熱が逃げない状態で、第一の樹脂材1と第二の樹脂材2を溶着できる。
(実施形態10)
本発明の実施形態10は図25に示したように、レーザ光照射手段5を反射治具3に取り付け、通気性の孔のあいていない反射蓋34で、レーザ光6を第一の樹脂材1と第二の樹脂材2に照射するようにしたレーザ溶着装置である。いわゆる反射炉型のレーザ溶着装置であり、反射蓋34にレーザ光通過孔をあけずに、反射治具3に設けたレーザ光通過孔3hからレーザ光を照射して、第一の樹脂材1と第二の樹脂材2を溶着できる。
In the ninth embodiment of the present invention, the first resin material 1 and the second resin material 2 are irradiated with the laser beam 6 by the reflection lid 44 having a laser beam passage hole 44H that optically transmits the laser beam. This is a laser welding apparatus. Laser light is irradiated on the reflective lid 44 without making a breathable laser light passage hole, and heat does not escape from the space above the first resin material 1 to the outside. The second resin material 2 can be welded.
(Embodiment 10)
In the tenth embodiment of the present invention, as shown in FIG. 25, the laser light irradiation means 5 is attached to the reflecting jig 3, and the laser light 6 is sent to the first resin material by the reflecting lid 34 having no air-permeable holes. 1 is a laser welding apparatus that irradiates the first and second resin materials 2. The first resin material 1 is a so-called reflection furnace type laser welding apparatus that irradiates laser light from a laser light passage hole 3 h provided in the reflection jig 3 without opening a laser light passage hole in the reflection lid 34. And the second resin material 2 can be welded.

なお上記実施形態1から実施形態10の説明では、第一の樹脂材1と第二の樹脂材2を管状の樹脂材、又は板状の樹脂材とした例を説明したが、その他の中空円筒で長さの短い筒状をした第一の樹脂材1と第二の樹脂材2のレーザ溶着や、筒状あるいは管状をした第一の樹脂材1と中実の棒状の第二の樹脂材2のレーザ溶着や、ブロック状の第一の樹脂材1と第二の樹脂材2のレーザ溶着にも適用することができる。   In the description of the first embodiment to the tenth embodiment, the example in which the first resin material 1 and the second resin material 2 are tubular resin materials or plate-shaped resin materials has been described. Laser welding of the first resin material 1 and the second resin material 2 having a short cylindrical shape, or the first resin material 1 having a cylindrical or tubular shape and the second resin material having a solid rod shape 2 and laser welding of the block-shaped first resin material 1 and the second resin material 2 can be applied.

本発明は、筒状又は管状等の中空の第一の樹脂材と、当該第一の樹脂材内に挿入された筒状若しくは管状等の中空の樹脂材又は棒状等の中実の第二の樹脂材とを溶着するレーザ溶着に適用することができる他、ブロック状の第一の樹脂材1と第二の樹脂材2のレーザ溶着にも適用することができる。
そして、鼻カニューレやカテーテルなどの医療用樹脂材のレーザ溶着をすることができる他、各種の光透過性の樹脂材を、レーザ光を照射して溶着することができる。
The present invention provides a hollow first resin material such as a cylinder or a tube, and a hollow second resin material such as a tube or a tube inserted into the first resin material or a solid second such as a rod. In addition to the laser welding for welding the resin material, it can also be applied to the laser welding of the block-shaped first resin material 1 and the second resin material 2.
In addition to laser welding of medical resin materials such as nasal cannulas and catheters, various light-transmitting resin materials can be welded by irradiating with laser light.

1 第一の樹脂材
2 第一の樹脂材
3 反射治具
3a 凹部溝
3b、3c 壁部の斜面
4 反射蓋
4a 反射蓋の反射面
4b レーザ光照射孔
5 レーザ光照射手段
6 レーザ光
7 反射治具の温度センサ
8 反射蓋の温度センサ
9 温度制御手段
10,11 反射治具の冷却材送出ノズル
12 反射蓋の冷却材送出ノズル
13 冷却手段
T 鏡面テープ
W 壁部
DESCRIPTION OF SYMBOLS 1 1st resin material 2 1st resin material 3 Reflective jig 3a Recessed groove 3b, 3c Slope of wall part 4 Reflective lid 4a Reflective surface of reflective lid 4b Laser beam irradiation hole 5 Laser beam irradiation means 6 Laser beam 7 Reflection Jig temperature sensor 8 Reflector lid temperature sensor 9 Temperature control means 10, 11 Reflector jig coolant delivery nozzle 12 Reflector lid coolant delivery nozzle 13 Cooling means T Mirror surface W Wall

Claims (16)

光透過性の第一の樹脂材と第二の樹脂材とを当接させ、これらの第一および第二の樹脂材をレーザ溶着するレーザ装置であって、
レーザ光照射手段と、
前記第一の樹脂材の外周形状に対応した断面形状を持ち、表面がレーザ光を反射する反射面をなし、第二の樹脂材を当接させた状態で第一の樹脂材を載置して受容可能な凹部溝と、当該凹部溝の上方の両側にあって、表面がレーザ光を反射する反射面をなす壁部と、を持つ反射治具と、
前記壁部の上に載置して取り付けられたとき、前記反射治具の凹部溝と壁部に対向する反射面と、前記レーザ光照射手段で発生したレーザ光を通すレーザ光通過孔とを持つ反射蓋と、を有し、
レーザ光照射手段で発生させたレーザ光は、前記壁部上に取り付けられた反射蓋のレーザ光通過孔から、前記第二の樹脂材を当接させて凹部溝に載置された第一の樹脂材に向けて照射され、
前記第一の樹脂材と第二の樹脂材を通過したレーザ光は、前記凹部溝、壁部および反射蓋の反射面を繰り返し反射する間に、前記第一の樹脂材及び前記第二の樹脂材を加熱して溶着させるように構成したことを特徴とするレーザ溶着装置。
A laser device that abuts a light-transmissive first resin material and a second resin material, and laser welds the first and second resin materials,
Laser light irradiation means;
The first resin material has a cross-sectional shape corresponding to the outer peripheral shape of the first resin material, the surface forms a reflective surface that reflects laser light, and the second resin material is in contact with the first resin material. A reflective jig having a concave groove that can be received by the light source, and a wall portion that is on both sides above the concave groove, and whose surface forms a reflective surface that reflects the laser beam,
When mounted on and mounted on the wall portion, a concave groove of the reflection jig, a reflection surface facing the wall portion, and a laser beam passage hole through which the laser beam generated by the laser beam irradiation means passes. Having a reflective lid,
The laser beam generated by the laser beam irradiating means is placed in the recess groove by contacting the second resin material from the laser beam passage hole of the reflection lid attached on the wall portion. Irradiated towards the resin material,
While the laser light that has passed through the first resin material and the second resin material is repeatedly reflected on the concave grooves, the walls, and the reflective surfaces of the reflective lid, the first resin material and the second resin A laser welding apparatus configured to heat and weld a material.
光透過性の第一の樹脂材と第二の樹脂材とを当接させ、これらの第一および第二の樹脂材をレーザ溶着するレーザ装置であって、
レーザ光照射手段と、
前記第一の樹脂材の外周形状に対応した断面形状を持ち、表面がレーザ光を反射する反射面をなし、第二の樹脂材を当接させた状態で第一の樹脂材を載置して受容可能な凹部溝と、当該凹部溝の上方の両側にあって、表面がレーザ光を反射する反射面をなす壁部と、前記レーザ光照射手段で発生したレーザ光を通すレーザ光通過孔と、を持つ反射治具と、
前記壁部の上に載置して取り付けられたとき、前記反射治具の凹部溝と壁部に対向する反射面を持つ反射蓋を有し、
レーザ光照射手段で発生させたレーザ光は、前記反射治具のレーザ光通過孔から前記反射蓋の反射面に照射されて、当該反射面で反射し、前記第二の樹脂材を当接させて凹部溝に載置された第一の樹脂材に向けて照射され、
前記第一の樹脂材と第二の樹脂材を通過したレーザ光は、前記凹部溝、壁部および反射蓋の反射面を繰り返し反射する間に、前記第一の樹脂材及び前記第二の樹脂材を加熱して溶着させるように構成したことを特徴とするレーザ溶着装置。
A laser device that abuts a light-transmissive first resin material and a second resin material, and laser welds the first and second resin materials,
Laser light irradiation means;
The first resin material has a cross-sectional shape corresponding to the outer peripheral shape of the first resin material, the surface forms a reflective surface that reflects laser light, and the second resin material is in contact with the first resin material. A recessed groove that can be received in this way, a wall portion on both sides above the recessed groove, the surface of which forms a reflecting surface that reflects the laser light, and a laser beam passage hole through which the laser beam generated by the laser beam irradiation means passes. And a reflection jig having
When mounted on and mounted on the wall portion, having a reflecting lid having a concave groove and a reflecting surface facing the wall portion of the reflecting jig,
The laser beam generated by the laser beam irradiating means is irradiated on the reflecting surface of the reflecting lid from the laser beam passage hole of the reflecting jig, reflected by the reflecting surface, and brought into contact with the second resin material. Irradiated toward the first resin material placed in the recess groove,
While the laser light that has passed through the first resin material and the second resin material is repeatedly reflected on the concave grooves, the walls, and the reflective surfaces of the reflective lid, the first resin material and the second resin A laser welding apparatus configured to heat and weld a material.
前記反射治具と前記反射蓋の間に挟持され、前記反射治具の凹部溝に載置された第一の樹脂材と第二の樹脂材を前記反射治具の凹部溝に与圧する与圧部材を設けた請求項1または請求項2のいずれかに記載のレーザ溶着装置。   Pressure applied between the reflective jig and the reflective lid, and pressurizing the first resin material and the second resin material placed in the concave groove of the reflective jig into the concave groove of the reflective jig The laser welding apparatus according to claim 1 or 2, wherein a member is provided. 更に、遠赤外レーザを吸収する材料でできた前記与圧部材と、
前記レーザ光照射手段として、近赤外線レーザ光を出力する第一のレーザ光照射手段と、遠赤外線レーザ光を出力する第二のレーザ光照射手段と、を用い、
第一のレーザ光照射手段は近赤外線レーザ光を出力して、与圧部材、第二の樹脂材、第一の樹脂材を照射し、近赤外線レーザ光を反射治具の凹部溝で反射させて再び、第一の樹脂材、第二の樹脂材、与圧部材を照射し、反射蓋の反射面で反射させることを繰り返し、第一の樹脂材と第二の樹脂材を発熱させ、両者を溶着させる、とともに、第二のレーザ光照射手段は、遠赤外線レーザを出力して、与圧部材を照射し、前記与圧部材を発熱させて前記与圧部材の熱で前記第一の樹脂材と第二の樹脂材を温めるようにした請求項3に記載のレーザ溶着装置。
Further, the pressurizing member made of a material that absorbs a far-infrared laser;
As the laser light irradiation means, a first laser light irradiation means that outputs a near infrared laser beam and a second laser light irradiation means that outputs a far infrared laser light,
The first laser beam irradiation means outputs a near infrared laser beam, irradiates the pressurizing member, the second resin material, and the first resin material, and reflects the near infrared laser beam by the concave groove of the reflection jig. Again, the first resin material, the second resin material, and the pressurizing member are irradiated and reflected by the reflecting surface of the reflecting lid, and the first resin material and the second resin material are heated, And the second laser beam irradiation means outputs a far-infrared laser, irradiates the pressurizing member, heats the pressurizing member, and heats the pressurizing member to the first resin. The laser welding apparatus according to claim 3, wherein the material and the second resin material are heated.
前記反射治具の凹部溝の上方の両側に設けた壁部に、前記前記反射蓋に対して開口する斜面を形成して、レーザ光を当該斜面の反射面と前記反射蓋の反射面により反射させたことを特徴とする請求項1から4のいずれか一に記載したレーザ溶着装置。 On the walls provided on both sides above the concave groove of the reflecting jig, a slope opening to the reflecting lid is formed, and the laser beam is reflected by the reflecting surface of the slope and the reflecting surface of the reflecting lid. The laser welding apparatus according to claim 1, wherein the laser welding apparatus is used. 前記反射蓋の反射面を球面とした請求項1から4のいずれか一に記載したレーザ溶着装置。 The laser welding apparatus according to claim 1, wherein the reflecting surface of the reflecting lid is a spherical surface. 前記反射蓋の反射面を円筒面とした請求項1から4のいずれか一に記載したレーザ溶着装置。 The laser welding apparatus as described in any one of Claim 1 to 4 which made the reflective surface of the said reflective cover the cylindrical surface. 前記反射蓋の円筒面とした反射面の円筒面の長手方向の両端に反射部を設けたことを特徴とする請求項7に記載したレーザ溶着装置。 The laser welding apparatus according to claim 7, wherein reflection portions are provided at both ends in a longitudinal direction of a cylindrical surface of the reflection surface which is a cylindrical surface of the reflection lid. 前記反射治具に対して反射蓋を相対的に移動自在にしたことを特徴とする請求項1または4のいずれか一に記載のレーザ溶着装置。 The laser welding apparatus according to claim 1, wherein a reflective lid is relatively movable with respect to the reflective jig. 前記反射治具に対して反射蓋を相対的に往復移動しながら進むようにしたことを特徴とする請求項1または4のいずれか一に記載のレーザ溶着装置。 5. The laser welding apparatus according to claim 1, wherein the laser beam is moved while reciprocating relative to the reflecting jig. 前記反射治具または前記反射蓋に温度センサを設け、前記反射治具または前記反射蓋から検出した温度により、レーザ光出力レベルあるいは反射蓋の移動速度を制御するようにしたことを特徴とする請求項1から10のいずれか一に記載したレーザ溶着装置。 A temperature sensor is provided in the reflecting jig or the reflecting lid, and a laser light output level or a moving speed of the reflecting lid is controlled by a temperature detected from the reflecting jig or the reflecting lid. Item 11. The laser welding apparatus according to any one of Items 1 to 10. 更に、前記反射治具および前記反射蓋の少なくとも一方に冷却手段を設け、前記反射治具または前記反射蓋から検出した温度により、前記冷却手段を制御して、前記反射治具および反射蓋の少なくとも一方を冷却するようにしたことを特徴とする請求項11に記載のレーザ溶着装置。 Furthermore, at least one of the reflecting jig and the reflecting lid is provided with a cooling means, and the cooling means is controlled by the temperature detected from the reflecting jig or the reflecting lid, so that at least the reflecting jig and the reflecting lid are The laser welding apparatus according to claim 11, wherein one side is cooled. 前記レーザ光照射手段は、レーザ光の光束を絞る光学レンズを有し、当該レンズで一旦絞ったレーザ光の光束を、レーザ光通過孔から第一の樹脂材と第二の樹脂材に向けて再び広がるように照射するようにした請求項1から4のいずれか一に記載したレーザ溶着装置。 The laser light irradiation means has an optical lens that narrows the light flux of the laser light, and directs the light flux of the laser light once narrowed by the lens from the laser light passage hole to the first resin material and the second resin material. The laser welding apparatus according to any one of claims 1 to 4, wherein irradiation is performed so as to spread again. 光透過性の第一の樹脂材に第二の樹脂材を当接させ、
前記第一の樹脂材の外周形状に対応した断面形状を持ち、表面がレーザ光を反射する反射面をなし、第二の樹脂材を当接させた状態で第一の樹脂材を載置して受容可能な凹部溝と、当該凹部溝の上方の両側にあって、表面がレーザ光を反射する反射面をなすとともに、前記凹部溝から開口する斜面を持つ壁部と、を持つ反射治具に、前記第2の樹脂材と当接させた前記第1の樹脂材を当該凹部溝の反射面と当接するように嵌合し、
前記壁部の上に載置して取り付けられたとき、前記反射治具の凹部溝と壁部に対向する反射面と、前記レーザ光照射手段で発生したレーザ光を通すレーザ光通過孔とを持つ反射蓋を、前記壁部の上に載置して取り付け、
前記壁部上に取り付けられた反射蓋のレーザ光通過孔をレーザ光が通る位置にレーザ光照射手段を取り付け、
レーザ光照射手段により前記凹部に向けてレーザ光を照射して、前記第1の樹脂材あるいは前記第1の樹脂材及び第2の樹脂材を通過したレーザ光を前記反射面により反射させ、更に、前記第一の樹脂材と第二の樹脂材を通過したレーザ光が、前記凹部溝、壁部および反射蓋の反射面を繰り返し反射する間に、前記第1の樹脂材及び前記第2の樹脂材を加熱して、溶着させることを特徴とするレーザ溶着方法。
The second resin material is brought into contact with the light-transmissive first resin material,
The first resin material has a cross-sectional shape corresponding to the outer peripheral shape of the first resin material, the surface forms a reflective surface that reflects laser light, and the second resin material is in contact with the first resin material. And a concave jig that is receptive to each other, and a wall having a slope that opens from the concave groove and has a reflective surface that reflects the laser beam on both sides of the concave groove. And fitting the first resin material in contact with the second resin material so as to contact the reflective surface of the concave groove,
When mounted on and mounted on the wall portion, a concave groove of the reflection jig, a reflection surface facing the wall portion, and a laser beam passage hole through which the laser beam generated by the laser beam irradiation means passes. Mount the reflective lid on the wall, and attach it.
Attach a laser beam irradiation means at a position where the laser beam passes through the laser beam passage hole of the reflection lid mounted on the wall,
A laser beam is irradiated toward the concave portion by a laser beam irradiation means, and the laser beam that has passed through the first resin material or the first resin material and the second resin material is reflected by the reflection surface, and The laser light that has passed through the first resin material and the second resin material is repeatedly reflected on the concave grooves, the walls, and the reflective surfaces of the reflecting lids, while the first resin material and the second resin material are reflected. A laser welding method characterized by heating and welding a resin material.
光透過性の第一の樹脂材に第二の樹脂材を当接させ、
前記第一の樹脂材の外周形状に対応した断面形状を持ち、表面がレーザ光を反射する反射面をなし、第二の樹脂材を当接させた状態で第一の樹脂材を載置して受容可能な凹部溝と、当該凹部溝の上方の両側にあって、表面がレーザ光を反射する反射面をなす壁部と、を持つ反射治具に、前記第2の樹脂材と当接させた前記第1の樹脂材を当該凹部溝の反射面と当接するように嵌合し、
前記反射治具の凹部溝に載置された第一の樹脂材と第二の樹脂材を前記反射治具の凹部溝に与圧する与圧部材を前記反射治具に取り付け、
前記壁部の上に載置して取り付けられたとき、前記反射治具の凹部溝と壁部に対向する反射面と、前記レーザ光照射手段で発生したレーザ光を通すレーザ光通過孔とを持つ反射蓋を、前記壁部の上に載置して取り付け、
前記壁部上に取り付けられた反射蓋のレーザ光通過孔をレーザ光の通る位置にレーザ光照射手段を取り付け、
レーザ光照射手段により前記凹部に向けてレーザ光を照射して、前記第1の樹脂材あるいは前記第1の樹脂材及び第2の樹脂材を通過したレーザ光を前記反射面により反射させ、更に、前記第一の樹脂材と第二の樹脂材を通過したレーザ光が、前記凹部溝、壁部および反射蓋の反射面を繰り返し反射する間に、前記第1の樹脂材及び前記第2の樹脂材を加熱して、溶着させることを特徴とするレーザ溶着方法。
The second resin material is brought into contact with the light-transmissive first resin material,
The first resin material has a cross-sectional shape corresponding to the outer peripheral shape of the first resin material, the surface forms a reflective surface that reflects laser light, and the second resin material is in contact with the first resin material. The second resin material is brought into contact with a reflection jig having a recess groove that can be received in this manner, and a wall portion that is on both sides above the recess groove and whose surface forms a reflection surface that reflects the laser beam. Fitting the first resin material so that it comes into contact with the reflective surface of the concave groove,
A pressurizing member that pressurizes the first resin material and the second resin material placed in the concave groove of the reflective jig into the concave groove of the reflective jig is attached to the reflective jig.
When mounted on and mounted on the wall portion, a concave groove of the reflection jig, a reflection surface facing the wall portion, and a laser beam passage hole through which the laser beam generated by the laser beam irradiation means passes. Mount the reflective lid on the wall, and attach it.
A laser beam irradiation means is attached to a position where the laser beam passes through a laser beam passage hole of the reflection lid mounted on the wall,
A laser beam is irradiated toward the concave portion by a laser beam irradiation means, and the laser beam that has passed through the first resin material or the first resin material and the second resin material is reflected by the reflection surface, and The laser light that has passed through the first resin material and the second resin material is repeatedly reflected on the concave grooves, the walls, and the reflective surfaces of the reflecting lids, while the first resin material and the second resin material are reflected. A laser welding method characterized by heating and welding a resin material.
光透過性の第一の樹脂材に第二の樹脂材を当接させ、
前記第一の樹脂材の外周形状に対応した断面形状を持ち、表面がレーザ光を反射する反射面をなし、第二の樹脂材を当接させた状態で第一の樹脂材を載置して受容可能な凹部溝と、当該凹部溝の上方の両側にあって、表面がレーザ光を反射する反射面をなす壁部と、を持つ反射治具に、前記第2の樹脂材と当接させた前記第1の樹脂材を当該凹部溝の反射面と当接するように嵌合し、
前記反射治具の凹部溝に載置された第一の樹脂材と第二の樹脂材を前記反射治具の凹部溝に与圧する遠赤外レーザを吸収する材料でできた与圧部材を前記反射治具に取り付け、
前記壁部の上に載置して取り付けられたとき、前記反射治具の凹部溝と壁部に対向する反射面と、前記レーザ光照射手段で発生したレーザ光を通すレーザ光通過孔とを持つ反射蓋を、前記壁部の上に載置して取り付け、
前記壁部上に取り付けられた反射蓋のレーザ光通過孔のレーザ光が通る位置に近赤外線レーザ光を出力する第一のレーザ光照射手段と、遠赤外線レーザ光を出力する第二のレーザ光照射手段とを取り付け、
第一のレーザ光照射手段で近赤外線レーザ光を出力して、与圧部材、第二の樹脂材、第一の樹脂材を照射し、近赤外線レーザ光を反射治具の凹部溝で反射させて再び、第一の樹脂材、第二の樹脂材、与圧部材を照射し、反射蓋の反射面で反射させることを繰り返し、第一の樹脂材と第二の樹脂材を発熱させ、両者を溶着させる、とともに、第二のレーザ光照射手段で、遠赤外線レーザを出力して、与圧部材を照射し、前記与圧部材を発熱させて前記与圧部材の熱で前記第一の樹脂材と第二の樹脂材を温めるようにしたレーザ溶着方法。
The second resin material is brought into contact with the light-transmissive first resin material,
The first resin material has a cross-sectional shape corresponding to the outer peripheral shape of the first resin material, the surface forms a reflective surface that reflects laser light, and the second resin material is in contact with the first resin material. The second resin material is brought into contact with a reflection jig having a recess groove that can be received in this manner, and a wall portion that is on both sides above the recess groove and whose surface forms a reflection surface that reflects the laser beam. Fitting the first resin material so that it comes into contact with the reflective surface of the concave groove,
A pressurizing member made of a material that absorbs a far-infrared laser that pressurizes the first resin material and the second resin material placed in the concave groove of the reflective jig into the concave groove of the reflective jig; Attach to the reflection jig,
When mounted on and mounted on the wall portion, a concave groove of the reflection jig, a reflection surface facing the wall portion, and a laser beam passage hole through which the laser beam generated by the laser beam irradiation means passes. Mount the reflective lid on the wall, and attach it.
A first laser beam irradiating means for outputting a near-infrared laser beam to a position where a laser beam of a laser beam passage hole of a reflecting lid attached on the wall passes; and a second laser beam for outputting a far-infrared laser beam Attach the irradiation means,
The near-infrared laser beam is output by the first laser beam irradiating means to irradiate the pressurizing member, the second resin material, and the first resin material, and the near-infrared laser beam is reflected by the concave groove of the reflecting jig. Again, the first resin material, the second resin material, and the pressurizing member are irradiated and reflected by the reflecting surface of the reflecting lid, and the first resin material and the second resin material are heated, And the second laser beam irradiating means outputs a far-infrared laser to irradiate the pressurizing member, heat the pressurizing member, and heat the pressurizing member to the first resin. Laser welding method in which the material and the second resin material are heated.
JP2016131669A 2016-07-01 2016-07-01 Laser welding method for light transmitting resin and laser welding apparatus for light transmitting resin Active JP6014834B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016131669A JP6014834B1 (en) 2016-07-01 2016-07-01 Laser welding method for light transmitting resin and laser welding apparatus for light transmitting resin
PCT/JP2016/080713 WO2018003133A1 (en) 2016-07-01 2016-10-17 Laser welding device for light-transmissive resin, and laser welding method for light-transmissive resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016131669A JP6014834B1 (en) 2016-07-01 2016-07-01 Laser welding method for light transmitting resin and laser welding apparatus for light transmitting resin

Publications (2)

Publication Number Publication Date
JP6014834B1 JP6014834B1 (en) 2016-10-26
JP2018001605A true JP2018001605A (en) 2018-01-11

Family

ID=57197531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016131669A Active JP6014834B1 (en) 2016-07-01 2016-07-01 Laser welding method for light transmitting resin and laser welding apparatus for light transmitting resin

Country Status (2)

Country Link
JP (1) JP6014834B1 (en)
WO (1) WO2018003133A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11931823B2 (en) 2019-02-05 2024-03-19 Dukane Ias, Llc Systems and methods for laser-welding a workpiece with a laser beam that reaches inaccessible areas of the workpiece using multiple reflecting parts
US11819940B2 (en) 2019-02-05 2023-11-21 Dukane Ias, Llc Systems and methods for laser-welding a workpiece with a laser beam that reaches inaccessible areas of the workpiece using multiple reflecting parts
US10926355B2 (en) * 2019-02-05 2021-02-23 Dukane Ias, Llc Systems and methods for laser-welding tubular components using a single, fixed optical reflector with multiple reflecting surfaces
JP2022128431A (en) * 2021-02-22 2022-09-01 デューケイン アイエーエス エルエルシー Systems and methods for laser-welding workpiece with laser beam that reaches inaccessible areas of workpiece using multiple reflecting parts
DE102022109123A1 (en) 2022-04-13 2023-10-19 Tox Pressotechnik Gmbh & Co. Kg joining device
CN116727998B (en) * 2023-08-14 2023-10-13 河北宾宏石化设备有限公司 Oblique tee bend pipe fitting fixed-position welding equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7820936B2 (en) * 2004-07-02 2010-10-26 Boston Scientific Scimed, Inc. Method and apparatus for controlling and adjusting the intensity profile of a laser beam employed in a laser welder for welding polymeric and metallic components
JP5193996B2 (en) * 2006-04-06 2013-05-08 フレゼニウス メディカル ケアー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Laser transmission welding method for joining molded plastic bodies
JP5116535B2 (en) * 2008-04-01 2013-01-09 ブランソン・ウルトラソニックス・コーポレーション Laser welding method
DE502008003181D1 (en) * 2008-08-28 2011-05-26 Leister Process Tech Connecting or branching element for connection to a pipe end section in the laser transmission method and laser head and method for connecting
JP5470059B2 (en) * 2010-01-15 2014-04-16 日東電工株式会社 Laser bonding method for resin members

Also Published As

Publication number Publication date
JP6014834B1 (en) 2016-10-26
WO2018003133A1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
JP6014834B1 (en) Laser welding method for light transmitting resin and laser welding apparatus for light transmitting resin
JP3303259B2 (en) Method and apparatus for bonding resin by laser
JP6047693B1 (en) Laser welding apparatus and laser welding method
JP4545079B2 (en) Laser welding method and laser welding apparatus for thermoplastic resin member
EP3296082B1 (en) Method for manufacturing resin mold assembly
JP5364039B2 (en) Manufacturing method of resin molded products
JP4572118B2 (en) Method and apparatus for trajectory welding thermoplastic moldings
JP2004136675A (en) Method and device for joining article of synthetic resin in three-dimensional shape
JP4490582B2 (en) Method and apparatus for welding thermoplastic synthetic materials by laser light
JP4202836B2 (en) Laser welding method and laser welding apparatus
JP2016503358A (en) Apparatus for laser light transmission welding and method for laser light transmission welding
JP4740028B2 (en) Hollow body forming equipment
JP2011161633A (en) Method for producing resin molding
JP2013071282A (en) Sheet joining device
JP2013202876A (en) Laser welding method, laser welding device, laser-welded resin material, and laser-welded cannula
US6373025B1 (en) Apparatus and method for laser fusion bonding
JP5436937B2 (en) Manufacturing method of resin molded products
WO2018097018A1 (en) Laser processing device and laser processing method
JP2004066739A (en) Method and device for laser welding
JP5912687B2 (en) Welding apparatus and welding method for thermoplastic resin tube
JP2006315313A (en) Transferring/joining method and transferring/joining apparatus
CN104999661B (en) A kind of laser synchronization welding procedure and device
JP4202853B2 (en) Laser welding method
JP6261406B2 (en) Welding apparatus and welding method
JP2014037141A (en) Laser deposition apparatus of resin molding

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R150 Certificate of patent or registration of utility model

Ref document number: 6014834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250