JP2017536209A5 - - Google Patents

Download PDF

Info

Publication number
JP2017536209A5
JP2017536209A5 JP2017529823A JP2017529823A JP2017536209A5 JP 2017536209 A5 JP2017536209 A5 JP 2017536209A5 JP 2017529823 A JP2017529823 A JP 2017529823A JP 2017529823 A JP2017529823 A JP 2017529823A JP 2017536209 A5 JP2017536209 A5 JP 2017536209A5
Authority
JP
Japan
Prior art keywords
phase
voxels
magnetic resonance
voxel
phase map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017529823A
Other languages
Japanese (ja)
Other versions
JP6626507B2 (en
JP2017536209A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/EP2015/077993 external-priority patent/WO2016087336A1/en
Publication of JP2017536209A publication Critical patent/JP2017536209A/en
Publication of JP2017536209A5 publication Critical patent/JP2017536209A5/ja
Application granted granted Critical
Publication of JP6626507B2 publication Critical patent/JP6626507B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (14)

撮像ゾーン内の被験体から磁気共鳴データを収集するための磁気共鳴撮像システムであって、当該磁気共鳴撮像システムは:
・機械実行可能命令およびパルス・シーケンス・データを記憶するためのメモリであって、前記パルス・シーケンス・データは、n点ディクソン磁気共鳴撮像法を使って磁気共鳴データを収集するためのコマンドを含み、nは2以上の整数である、メモリと;
当該磁気共鳴撮像システムを制御するプロセッサとを有しており、前記命令の実行は、前記プロセッサに、
・磁気共鳴データを収集するよう前記パルス・シーケンス・データをもって当該磁気共鳴撮像システムを制御する段階と;
・n点ディクソン磁気共鳴撮像法に従って前記磁気共鳴データを使って二つの位相候補マップを構築する段階であって、前記二つの位相候補マップのそれぞれは画像空間にあり、前記二つの位相候補マップのそれぞれはボクセルの集合を含み、各ボクセルは位相マップ値をもつ、段階と;
・オブジェクト識別アルゴリズムを使って前記ボクセルの集合におけるオブジェクト・ボクセルの集合を識別する段階と;
・境界識別アルゴリズムを使って前記オブジェクト・ボクセルの集合内で境界ボクセルの集合および内部ボクセルを識別する段階と;
・前記メモリにおいて、前記ボクセルの集合を有する選別位相候補マップを生成する段階と;
・前記二つの位相候補マップから、前記選別位相マップにおける前記境界ボクセルの集合の少なくとも一部について、選別位相マップ値を選択する段階であって、該位相マップ値は、前記二つの位相候補マップのそれぞれにおける前記境界ボクセルの集合の各ボクセルについての位相候補マップ値を比較して、最低の脂肪対水比を示す候補位相マップ値を選択することによって選ばれる、段階と;
・位相候補選択アルゴリズムに従って前記オブジェクト・ボクセルの位相マップ値を計算する段階であって、該候補選択アルゴリズムのための入力は、前記二つの位相候補マップと、前記選別位相マップにおける前記境界ボクセルの集合の前記少なくとも一部についての前記選別位相マップ値とを含む、段階とを実行させる、
磁気共鳴撮像システム。
A magnetic resonance imaging system for collecting magnetic resonance data from a subject in an imaging zone, the magnetic resonance imaging system comprising:
A memory for storing machine-executable instructions and pulse sequence data, the pulse sequence data including commands for collecting magnetic resonance data using n-point Dickson magnetic resonance imaging , N is an integer greater than or equal to 2, memory;
A processor for controlling the magnetic resonance imaging system, and the execution of the instructions is executed by the processor,
Controlling the magnetic resonance imaging system with the pulse sequence data to collect magnetic resonance data;
Constructing two phase candidate maps using the magnetic resonance data according to the n-point Dixon magnetic resonance imaging method, each of the two phase candidate maps being in an image space, of the two phase candidate maps Each contains a set of voxels, each voxel having a phase map value; and
Identifying the set of object voxels in the set of voxels using an object identification algorithm;
Identifying a set of boundary voxels and internal voxels within the set of object voxels using a boundary identification algorithm;
Generating a selection phase candidate map having the set of voxels in the memory;
Selecting a selected phase map value for at least part of the set of boundary voxels in the selected phase map from the two phase candidate maps, wherein the phase map value is a value of the two phase candidate maps; Comparing the phase candidate map values for each voxel of the set of boundary voxels at each and selecting the candidate phase map value that exhibits the lowest fat to water ratio;
Calculating a phase map value of the object voxel according to a phase candidate selection algorithm, the inputs for the candidate selection algorithm being the two phase candidate maps and the set of boundary voxels in the selected phase map And including the sorted phase map values for the at least a portion of
Magnetic resonance imaging system.
前記オブジェクト識別アルゴリズムが前記ボクセルの集合のボクセルをオブジェクト・ボクセルとして識別するのは、そのボクセルが前記二つの位相候補マップにおけるノイズの標準偏差のx倍より大きい絶対値をもち、n個の入力データセットにおける最大振幅の少なくともy倍の振幅をもつときであり、xは第一の所定の値であり、yは1以下である第二の所定の値である、請求項1記載の磁気共鳴撮像システム。   The object identification algorithm identifies a voxel of the set of voxels as an object voxel because the voxel has an absolute value greater than x times the standard deviation of noise in the two phase candidate maps, and n input data 2. The magnetic resonance imaging of claim 1, wherein the magnetic resonance imaging has an amplitude at least y times the maximum amplitude in the set, x is a first predetermined value, and y is a second predetermined value that is 1 or less. system. xは:3から5の間、3.5から4.5の間、2から4の間、4から6の間のいずれかであり、yは0.06から0.08の間、0.05から0.07の間、0.07から0.09の間、1/14から1/16の間、1/13から1/15の間、1/15から1/17の間のいずれかである、請求項2記載の磁気共鳴撮像システム。   x is between 3 and 5, between 3.5 and 4.5, between 2 and 4 and between 4 and 6, and y is between 0.06 and 0.08, between 0.05 and 0.07, and between 0.07 and 0.09 3. The magnetic resonance imaging system according to claim 2, wherein the magnetic resonance imaging system is any of the following: between 1/14 and 1/16, between 1/13 and 1/15, and between 1/15 and 1/17. 前記ボクセルの集合は縁をもち、前記境界識別アルゴリズムは、前記プロセッサに、前記背景ボクセルの集合を介して前記縁に経路で接続されているオブジェクト・ボクセルから前記境界ボクセルを識別させる、請求項1記載の磁気共鳴撮像システム。 Said set of voxels has an edge, the boundary identification algorithm in the processor, thereby identifying the boundary voxels from the object voxels are connected by the route to the edge via said set of background voxels claim 1 serial mounting a magnetic resonance imaging system. 前記境界識別アルゴリズムは、前記プロセッサに、前記背景ボクセルの集合から選ばれた少なくとも一つの背景ボクセルに隣接する前記オブジェクト・ボクセルの集合から選ばれたオブジェクト・ボクセルを識別することによって、前記境界ボクセルの集合を識別させる、請求項1記載の磁気共鳴撮像システム。 The boundary identification algorithm identifies the boundary voxel by identifying to the processor an object voxel selected from the set of object voxels adjacent to at least one background voxel selected from the set of background voxels. to identify the set, according to claim 1 Symbol mounting a magnetic resonance imaging system. 前記位相候補選択アルゴリズムは、前記プロセッサに、前記オブジェクト・ボクセルの前記位相マップ値を計算することを:
・前記境界ボクセルの集合の各ボクセルについて初期に選ばれた位相マップ値を使って前記オブジェクト・ボクセルの位相マップ値を補間し;
・前記オブジェクト・ボクセルの位相マップ値を前記二つの位相候補マップを用いて補正することによって逐次反復式アルゴリズムに従って実行させる、
請求項1記載の磁気共鳴撮像システム。
The phase candidate selection algorithm causes the processor to calculate the phase map value of the object voxel:
Interpolating the phase map value of the object voxel using the phase map value initially selected for each voxel of the set of boundary voxels;
-Executing according to a sequential iterative algorithm by correcting the phase map value of the object voxel with the two candidate phase maps;
Claim 1 Symbol mounting a magnetic resonance imaging system.
前記逐次反復式アルゴリズムは:
・前記選別位相候補マップにおける位相マップ値に最も近い前記二つの位相候補マップからの位相マップ値を選ぶことによって、前記内部ボクセルの集合の各ボクセルについての暫定位相マップ値を選択し;
・各オブジェクト・ボクセルについての位相マップ値を前記暫定位相マップ値で置き換え;
・空間的平滑化フィルタを使って前記オブジェクト・ボクセルの位相マップ値を平滑化し;
・前記オブジェクト・ボクセルの集合の各ボクセルについての位相マップ値が所定の基準に収束するまで、該逐次反復式アルゴリズムを繰り返すことを含む、
請求項6記載の磁気共鳴撮像システム。
The sequential iterative algorithm is:
Selecting a provisional phase map value for each voxel of the set of internal voxels by selecting a phase map value from the two phase candidate maps closest to the phase map value in the selected phase candidate map;
Replace the phase map value for each object voxel with the provisional phase map value;
Smoothing the phase map value of the object voxel using a spatial smoothing filter;
Repeating the iterative algorithm until the phase map value for each voxel of the set of object voxels converges to a predetermined criterion;
The magnetic resonance imaging system according to claim 6.
前記オブジェクト・ボクセルの位相マップ値は前記空間的平滑化フィルタを使って補間される、請求項7記載の磁気共鳴撮像システム。   The magnetic resonance imaging system of claim 7, wherein the phase map value of the object voxel is interpolated using the spatial smoothing filter. 前記逐次反復式アルゴリズムは:
・前記選別位相候補マップにおける局所ボクセルの値に最も近い前記二つの位相候補マップからの位相マップ値を選ぶことによって、局所ボクセルについての選別位相マップ値を選択する段階であって、前記局所ボクセルは、前記内部ボクセルの集合から選ばれ、前記境界ボクセルの集合から所定の距離以内である、段階を実行し;
・前記局所ボクセルを前記内部ボクセルの集合から前記境界ボクセルの集合に移し;
・前記境界ボクセルの集合の各ボクセルについての選別位相マップ値を使って前記オブジェクト・ボクセルの集合内の内部ボクセルの値を補間し;
・前記内部ボクセルの集合全部が前記境界ボクセルの集合の要素になるまで該逐次反復式アルゴリズムを繰り返すことを含む、
請求項6記載の磁気共鳴撮像システム。
The sequential iterative algorithm is:
Selecting a phase map value for the local voxel by selecting a phase map value from the two phase candidate maps that is closest to the value of the local voxel in the selected phase candidate map, the local voxel being Performing a step selected from the set of internal voxels and within a predetermined distance from the set of boundary voxels;
Moving the local voxels from the set of internal voxels to the set of boundary voxels;
Interpolating the values of internal voxels within the set of object voxels using a sorted phase map value for each voxel of the set of boundary voxels;
Repeating the iterative algorithm until the entire set of inner voxels is an element of the set of boundary voxels;
The magnetic resonance imaging system according to claim 6.
前記メモリはさらに事前の位相マップを有しており、前記位相候補選択アルゴリズムは前記プロセッサに、最小化アルゴリズムを解くことによってオブジェクト・ボクセルの位相マップ値を計算させ、前記最小化アルゴリズムは、前記境界ボクセルの位相マップ値の、前記事前の位相マップにおける対応するボクセルからの逸脱を測る第一のペナルティー項を有し、前記最小化アルゴリズムは、前記オブジェクト・ボクセルの位相マップ値の空間変動を測る第二のペナルティー項を有する、請求項6記載の磁気共鳴撮像システム。   The memory further includes a prior phase map, wherein the phase candidate selection algorithm causes the processor to calculate a phase map value of an object voxel by solving a minimization algorithm, and the minimization algorithm includes the boundary A first penalty term that measures a deviation of a voxel phase map value from a corresponding voxel in the prior phase map, and the minimization algorithm measures a spatial variation in the phase map value of the object voxel The magnetic resonance imaging system of claim 6, having a second penalty term. 前記位相候補選択アルゴリズムは、前記プロセッサに、TRWSアルゴリズムに従って前記内部ボクセルの位相マップ値を計算させる、請求項6記載の磁気共鳴撮像システム。 The phase candidate selection algorithm, the processor to calculate the phase map values of the interior voxels according TRWS algorithm, according to claim 6 Symbol mounting a magnetic resonance imaging system. 前記機械実行可能命令は、前記プロセッサにさらに、前記磁気共鳴データおよび前記選別位相マップを用いて磁気共鳴画像を再構成させる、請求項1記載の磁気共鳴撮像システム。 The machine-executable instructions further cause the processor, the magnetic resonance data and the sorting is reconstructed magnetic resonance image using the phase map, claim 1 Symbol mounting a magnetic resonance imaging system. 撮像ゾーン内の被験体から磁気共鳴データを収集するために磁気共鳴撮像システムを制御するプロセッサによる実行のための機械実行可能命令を有するコンピュータ・プログラムであって、前記磁気共鳴撮像システムは、パルス・シーケンス・データを記憶するためのメモリを有し、前記パルス・シーケンス・データは、n点ディクソン磁気共鳴撮像法を使って磁気共鳴データを収集するためのコマンドを含み、nは2以上であり、前記命令の実行は、前記プロセッサに:
・磁気共鳴データを収集するよう前記パルス・シーケンス・データをもって前記磁気共鳴撮像システムを制御する段階と;
・n点ディクソン磁気共鳴撮像法に従って前記磁気共鳴データを使って二つの位相候補マップを構築する段階であって、前記二つの位相候補マップのそれぞれは画像空間にあり、前記二つの位相候補マップのそれぞれはボクセルの集合を含み、各ボクセルは位相マップ値をもつ、段階と;
・オブジェクト識別アルゴリズムを使って前記ボクセルの集合においてオブジェクト・ボクセルの集合を識別する段階と;
・境界識別アルゴリズムを使って前記オブジェクト・ボクセルの集合内で境界ボクセルの集合および内部ボクセルを識別する段階と;
・選別位相候補マップを前記メモリにおいて生成する段階であって、前記選別位相候補マップは前記ボクセルの集合を含む、段階と;
・前記選別位相マップにおける前記境界ボクセルの集合の少なくとも一部についての選別位相マップ値を、前記二つの位相候補マップから選択する段階であって、該位相マップ値は、前記二つの位相候補マップのそれぞれにおける前記境界ボクセルの集合の各ボクセルについての候補位相マップ値を比較することによって、最低の脂肪対水比を示す候補位相マップ値を選択することによって、選ばれる、段階と;
・位相候補選択アルゴリズムに従って前記オブジェクト・ボクセルの位相マップ値を計算する段階であって、前記位相候補選択アルゴリズムのための入力は、前記二つの位相候補マップと、前記選別位相マップにおける前記境界ボクセルの集合の前記少なくとも一部についての前記選別位相マップ値とを含む、段階とを実行させる、
コンピュータ・プログラム。
A computer program having machine-executable instructions for execution by a processor that controls a magnetic resonance imaging system to collect magnetic resonance data from a subject in an imaging zone, the magnetic resonance imaging system comprising: A memory for storing sequence data, wherein the pulse sequence data includes commands for collecting magnetic resonance data using n-point Dickson magnetic resonance imaging, wherein n is 2 or more; Execution of the instructions is to the processor:
Controlling the magnetic resonance imaging system with the pulse sequence data to collect magnetic resonance data;
Constructing two phase candidate maps using the magnetic resonance data according to the n-point Dixon magnetic resonance imaging method, each of the two phase candidate maps being in an image space, of the two phase candidate maps Each contains a set of voxels, each voxel having a phase map value; and
Identifying a set of object voxels in the set of voxels using an object identification algorithm;
Identifying a set of boundary voxels and internal voxels within the set of object voxels using a boundary identification algorithm;
Generating a selection phase candidate map in the memory, wherein the selection phase candidate map includes the set of voxels;
Selecting a selected phase map value for at least a portion of the set of boundary voxels in the selected phase map from the two phase candidate maps, wherein the phase map value is a value of the two phase candidate maps; Selected by selecting a candidate phase map value indicating the lowest fat-to-water ratio by comparing the candidate phase map values for each voxel of the set of boundary voxels at each;
Calculating a phase map value of the object voxel according to a phase candidate selection algorithm, wherein the input for the phase candidate selection algorithm is the two phase candidate maps and the boundary voxels of the selected phase map Including the screening phase map values for the at least part of the set,
Computer program.
撮像ゾーン内の被験体から磁気共鳴データを収集するよう磁気共鳴撮像システムを動作させる方法であって、当該方法は:
・磁気共鳴データを収集するようパルス・シーケンス・データをもって前記磁気共鳴撮像システムを制御する段階であって、前記パルス・シーケンス・データは、n点ディクソン磁気共鳴撮像法を使って磁気共鳴データを収集するためのコマンドを含み、nは2以上である、段階と;
・n点ディクソン磁気共鳴撮像法に従って前記磁気共鳴データを使って二つの位相候補マップを構築する段階であって、前記二つの位相候補マップのそれぞれは画像空間にあり、前記二つの位相候補マップのそれぞれはボクセルの集合を含み、各ボクセルは位相マップ値をもつ、段階と;
・オブジェクト識別アルゴリズムを使って前記ボクセルの集合においてオブジェクト・ボクセルの集合を識別する段階と;
・境界識別アルゴリズムを使って前記オブジェクト・ボクセルの集合内で境界ボクセルの集合および内部ボクセルの集合を識別する段階と;
・前記ボクセルの集合を含む選別位相候補マップを生成する段階と;
・前記選別位相マップにおける前記境界ボクセルの集合の少なくとも一部についての選別位相マップ値を、前記二つの位相候補マップから選択する段階であって、該位相マップ値は、前記二つの位相候補マップのそれぞれにおける前記境界ボクセルの集合の各ボクセルについての候補位相マップ値を比較し、最低の脂肪対水比を示す候補位相マップ値を選択することによって、選ばれる、段階と;
・位相候補選択アルゴリズムに従って前記オブジェクト・ボクセルの位相マップ値を計算する段階であって、前記位相候補選択アルゴリズムのための入力は、前記二つの位相候補マップと、前記選別位相マップにおける前記境界ボクセルの集合の前記少なくとも一部についての前記選別位相マップ値とを含む、段階とを含む、
方法。
A method of operating a magnetic resonance imaging system to collect magnetic resonance data from a subject in an imaging zone, the method comprising:
Controlling the magnetic resonance imaging system with pulse sequence data to collect magnetic resonance data, wherein the pulse sequence data is collected using n-point Dickson magnetic resonance imaging Including a command to do, n is 2 or more, and a stage;
Constructing two phase candidate maps using the magnetic resonance data according to the n-point Dixon magnetic resonance imaging method, each of the two phase candidate maps being in an image space, of the two phase candidate maps Each contains a set of voxels, each voxel having a phase map value; and
Identifying a set of object voxels in the set of voxels using an object identification algorithm;
Identifying a set of boundary voxels and a set of internal voxels within the set of object voxels using a boundary identification algorithm;
Generating a selection phase candidate map including the set of voxels;
Selecting a selected phase map value for at least a portion of the set of boundary voxels in the selected phase map from the two phase candidate maps, wherein the phase map value is a value of the two phase candidate maps; Selected by comparing the candidate phase map values for each voxel of the set of boundary voxels at each and selecting the candidate phase map value indicating the lowest fat to water ratio;
Calculating a phase map value of the object voxel according to a phase candidate selection algorithm, wherein the input for the phase candidate selection algorithm is the two phase candidate maps and the boundary voxels of the selected phase map Including the sorted phase map values for the at least part of the set.
Method.
JP2017529823A 2014-12-04 2015-11-30 Dickson magnetic resonance imaging using prior knowledge Expired - Fee Related JP6626507B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14196357 2014-12-04
EP14196357.9 2014-12-04
PCT/EP2015/077993 WO2016087336A1 (en) 2014-12-04 2015-11-30 Dixon magnetic resonance imaging using prior knowledge

Publications (3)

Publication Number Publication Date
JP2017536209A JP2017536209A (en) 2017-12-07
JP2017536209A5 true JP2017536209A5 (en) 2019-03-22
JP6626507B2 JP6626507B2 (en) 2019-12-25

Family

ID=52002858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017529823A Expired - Fee Related JP6626507B2 (en) 2014-12-04 2015-11-30 Dickson magnetic resonance imaging using prior knowledge

Country Status (5)

Country Link
US (1) US10295633B2 (en)
EP (1) EP3227701A1 (en)
JP (1) JP6626507B2 (en)
CN (1) CN107209237B (en)
WO (1) WO2016087336A1 (en)

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1063625C (en) * 1994-08-04 2001-03-28 深圳安科高技术有限公司 Technology of reforming magnetic resonance presentation
JP4251763B2 (en) * 2000-08-11 2009-04-08 株式会社日立メディコ Magnetic resonance imaging system
DE10122874B4 (en) * 2001-05-11 2004-09-23 Siemens Ag Process for extracting spin collectives with different chemical shifts from phase-coded individual images, taking into account field inhomogeneities, and device therefor
US7151370B1 (en) * 2005-12-28 2006-12-19 The Trustees Of The Leland Stanford Junior University Quadratic species separation using balanced SSFP MRI
DE102008044844B4 (en) * 2008-08-28 2018-08-30 Siemens Healthcare Gmbh A method of determining a depletion map for use in positron emission tomography and homogeneity information of the magnetic resonance magnetic field
DE102008057294B4 (en) * 2008-11-14 2010-10-07 Siemens Aktiengesellschaft Separation of fat and water images according to the two-point Dixon method, taking into account the T * 2 decay
US7952353B2 (en) * 2009-05-06 2011-05-31 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for field map estimation
US20110140696A1 (en) * 2009-12-15 2011-06-16 Huanzhou Yu System and method for quantitative species signal separation using mr imaging
JP5683987B2 (en) * 2010-02-12 2015-03-11 株式会社東芝 Magnetic resonance imaging system
US8373415B2 (en) * 2010-04-15 2013-02-12 Wisconsin Alumni Research Foundation Method for separating magnetic resonance imaging signals using spectral distinction of species
EP2461175A1 (en) * 2010-12-02 2012-06-06 Koninklijke Philips Electronics N.V. MR imaging using a multi-point Dixon technique
CN102525460B (en) * 2010-12-29 2013-11-06 西门子(深圳)磁共振有限公司 Method and device for analyzing magnetic resonance imaging water-fat images
BR112013031869B1 (en) * 2011-06-16 2021-05-18 Koninklijke Philips N.V. system and method for generating an image recording map, therapy planning system, one or more processors, and, non-transient, computer-readable medium
CN102488497B (en) * 2011-12-12 2014-07-02 中国科学院深圳先进技术研究院 Magnetic resonance temperature measurement method and magnetic resonance temperature measurement system
EP2624004A1 (en) * 2012-02-06 2013-08-07 Koninklijke Philips Electronics N.V. Temperature determination using magnetic resonance B1 field mapping
US8957681B2 (en) 2012-02-20 2015-02-17 Wisconsin Alumni Research Foundation System and method for magnetic resonance imaging water-fat separation with full dynamic range using in-phase images
DE102012204625B4 (en) * 2012-03-22 2013-11-28 Siemens Aktiengesellschaft Determining an overall parameter of a pulse sequence based on a tree structure
WO2015161386A1 (en) * 2014-04-24 2015-10-29 Liu Junmin Systems and methods for field mapping in magnetic resonance imaging
DE102014225299A1 (en) * 2014-12-09 2016-03-03 Siemens Aktiengesellschaft Method for the reconstruction of magnetic resonance image data
CN107407714B (en) * 2015-01-21 2020-04-14 皇家飞利浦有限公司 MRI method for calculating derived values from B0 and B1 maps
US10534057B2 (en) * 2017-03-10 2020-01-14 Maria Drangova Method for dixon MRI, multi-contrast imaging and multi-parametric mapping with a single multi-echo gradient-recalled echo acquisition

Similar Documents

Publication Publication Date Title
CN105096310B (en) Divide the method and system of liver in magnetic resonance image using multi-channel feature
KR101909544B1 (en) Apparatus and method for plane detection
JP5889265B2 (en) Image processing method, apparatus, and program
JP2017532131A5 (en)
Zhan et al. An improved variational level set method for MR image segmentation and bias field correction
RU2016129155A (en) MR-VISUALIZATION WITH SEPARATION OF WATER AND FAT BY THE DIXON METHOD
CN105659289A (en) Vessel segmentation method
Masci et al. A patient-specific computational fluid dynamics model of the left atrium in atrial fibrillation: Development and initial evaluation
WO2015075718A1 (en) Method and system for tracking a region in a video image
JP2014211718A5 (en)
JP2020536690A5 (en)
JP2015226711A5 (en) Medical image processing apparatus and medical image diagnostic apparatus
RU2018146944A (en) DETECTION OF BIOLOGICAL OBJECT
WO2014203192A3 (en) Cortical bone segmentation from mr dixon data
JP2017504890A5 (en)
JP2017536209A5 (en)
JP2017533064A5 (en)
US8730235B2 (en) Method for determining point connectivity on a two manifold in 3D space
Bolton et al. Structurally-informed deconvolution of functional magnetic resonance imaging data
van Rikxoort et al. Adaptive local multi-atlas segmentation: Application to heart segmentation in chest CT scans
EP3494544B1 (en) Robust pulmonary lobe segmentation
KR101600183B1 (en) Method and apparatus for extracting depth information from image
EP2926244B1 (en) Method and apparatus for creating 3d model
Giovannelli et al. Element stiffness matrix integration in image-based cartesian grid finite element method
Bolochko et al. Medical image region extraction and 3D modeling based on approximating curves