JP2017532192A - Titania-doped zirconia as a platinum group metal support in catalysts for treating exhaust gas streams of combustion engines - Google Patents

Titania-doped zirconia as a platinum group metal support in catalysts for treating exhaust gas streams of combustion engines Download PDF

Info

Publication number
JP2017532192A
JP2017532192A JP2017512699A JP2017512699A JP2017532192A JP 2017532192 A JP2017532192 A JP 2017532192A JP 2017512699 A JP2017512699 A JP 2017512699A JP 2017512699 A JP2017512699 A JP 2017512699A JP 2017532192 A JP2017532192 A JP 2017532192A
Authority
JP
Japan
Prior art keywords
composite
catalyst
range
titania
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017512699A
Other languages
Japanese (ja)
Other versions
JP6805129B2 (en
Inventor
ワン シャオミン
ワン シャオミン
ディーバ マイケル
ディーバ マイケル
ヂェン シャオライ
ヂェン シャオライ
ティトルバッハ スヴェン
ティトルバッハ スヴェン
ズンダーマン アンドレアス
ズンダーマン アンドレアス
アンドレアス シュンク シュテファン
アンドレアス シュンク シュテファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Corp
Original Assignee
BASF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Corp filed Critical BASF Corp
Publication of JP2017532192A publication Critical patent/JP2017532192A/en
Application granted granted Critical
Publication of JP6805129B2 publication Critical patent/JP6805129B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2061Yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2066Praseodymium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2068Neodymium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/30Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J35/613
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

排ガス浄化触媒のための混合金属酸化物の複合材は、以下の複合材の共沈した材料を含む:55〜99質量%の範囲の量のジルコニア、1〜25質量%の範囲の量のチタニア、0〜20質量%の範囲の量の助触媒及び/又は安定剤。これらの複合材は白金族金属(PGM)、特にロジウムのための支持体として有効である。Mixed metal oxide composites for exhaust gas purification catalysts include co-precipitated materials of the following composites: zirconia in amounts ranging from 55 to 99% by weight, titania in amounts ranging from 1 to 25% by weight. , Promoters and / or stabilizers in amounts ranging from 0 to 20% by weight. These composites are useful as supports for platinum group metals (PGM), particularly rhodium.

Description

発明の属する技術分野
本発明は、排ガス浄化触媒のための混合金属酸化物支持体及びその使用方法に関する。更に詳細には、白金族金属(PGM)のための、チタニアがドープされたジルコニア支持体が提供される。具体的には、ランタナなどの助触媒、又は安定剤を任意に添加したチタニア−ジルコニア支持体は、低温(例えば、350℃未満又は400℃未満)で優れた三元変換(TWC:Three Way Conversion)触媒活性をもたらすロジウムを担持する。
TECHNICAL FIELD The present invention relates to a mixed metal oxide support for an exhaust gas purification catalyst and a method for using the same. More particularly, a titania-doped zirconia support for platinum group metals (PGM) is provided. Specifically, a titania-zirconia support optionally added with a co-catalyst such as Lantana or a stabilizer is excellent in three-way conversion (TWC: Three Way Conversion) ) Supports rhodium which provides catalytic activity.

背景
未燃炭化水素、一酸化炭素及び窒素酸化物の汚染物質に対する排出基準はますます厳しくなっている。このような基準を満たすために、内燃機関の排気ガスラインには、三元変換(TWC)触媒を含む触媒コンバータが配置されている。このような触媒は、排ガス流中の酸素によって未燃炭化水素と一酸化炭素の酸化を促進させるだけでなく、窒素酸化物の窒素への還元をも促進させる。政府規制(例えば、米国のLEVIIIや欧州のEuro 6&7)は、コールドスタートから触媒が完全に温まるまでの間の排出量を対象にしている。これに対処するための戦略は、低温で白金族金属(PGM)の妨げにならない支持体であって、その性能を向上させる支持体によってPGMが確実に供給されるようにすることである。
Background Emission standards for pollutants of unburned hydrocarbons, carbon monoxide and nitrogen oxides are becoming stricter. In order to satisfy these standards, a catalytic converter including a three-way conversion (TWC) catalyst is arranged in the exhaust gas line of the internal combustion engine. Such catalysts not only promote the oxidation of unburned hydrocarbons and carbon monoxide with oxygen in the exhaust gas stream, but also promote the reduction of nitrogen oxides to nitrogen. Government regulations (eg, LEVIII in the US and Euro 6 & 7 in Europe) cover emissions from the cold start until the catalyst is fully warmed. A strategy to address this is to ensure that the PGM is supplied by a support that does not interfere with the platinum group metal (PGM) at low temperatures and that improves its performance.

ランタニドがドープされたジルコニアを、TWC用途のための支持体として有する触媒が、米国特許出願公開第2013/0115144号(U.S. Patent Appln. Pub. No. 2013/0115144)に示されている。国際公開第9205861号(WO9205861)は、ロジウムを担持するために使用されるべき共生成セリア−ジルコニア複合材について説明しており、ここでロジウムを助触媒として有する支持体上に卑金属酸化物が共分散され得る。   A catalyst having lanthanide-doped zirconia as a support for TWC applications is shown in US Patent Application Publication No. 2013/0115144 (U.S. Patent Appln. Pub. No. 2013/0115144). WO 9205861 (WO9205861) describes a co-generated ceria-zirconia composite to be used to support rhodium, where a base metal oxide is co-deposited on a support having rhodium as a cocatalyst. Can be distributed.

規制された排出量を達成するために優れた触媒活性及び/又はライトオフ性能及び/又は成分の効率的な使用をもたらす触媒製品を提供することが、当該技術分野において引き続き求められている。   There is a continuing need in the art to provide catalyst products that provide superior catalytic activity and / or light-off performance and / or efficient use of components to achieve regulated emissions.

発明の概要
排ガス浄化触媒のための混合金属酸化物の複合材、及びその製造方法及びその使用が提供される。これらの複合材は、白金族金属(PGM)、特にロジウムのための支持体として有効である。
SUMMARY OF THE INVENTION A mixed metal oxide composite for an exhaust gas purification catalyst, a method for its production and its use are provided. These composites are useful as supports for platinum group metals (PGM), particularly rhodium.

第1の態様は、55〜99質量%の範囲の量のジルコニア、1〜25質量%の範囲の量のチタニア、0〜20質量%の範囲の量の助触媒及び/又は安定剤を含む、排ガス浄化用触媒のための混合金属酸化物の複合材を提供する。助触媒は、希土類金属酸化物を含み、且つ0.1〜20%の範囲の量で存在する。助触媒は、ランタナ、タングスタ、セリア、ネオジミア、ガドリニア、イットリア、プラセオジミア、サマリア、ハフニア、又はそれらの組み合わせを含み得る。安定剤は、0.1〜5%の範囲の量で存在し且つ酸化ケイ素を含み得る。安定剤は、0.1〜10%の範囲の量で存在し且つアルカリ土類金属酸化物を含み得る。複合材のセリア含有率は、20質量%以下、又は10質量%以下、又は5質量%以下、又は1質量%以下、又は0.1質量%以下、又は更に0質量%であり得る。   A first embodiment comprises zirconia in an amount in the range of 55-99% by weight, titania in an amount in the range of 1-25% by weight, co-catalyst and / or stabilizer in an amount in the range of 0-20% by weight, A mixed metal oxide composite for an exhaust gas purifying catalyst is provided. The cocatalyst comprises a rare earth metal oxide and is present in an amount ranging from 0.1 to 20%. The cocatalyst may include lantana, tungsta, ceria, neodymia, gadolinia, yttria, praseodymia, samaria, hafnia, or combinations thereof. The stabilizer is present in an amount ranging from 0.1 to 5% and may include silicon oxide. Stabilizers are present in amounts ranging from 0.1 to 10% and may include alkaline earth metal oxides. The ceria content of the composite may be 20% by weight or less, or 10% by weight or less, or 5% by weight or less, or 1% by weight or less, or 0.1% by weight or less, or even 0% by weight.

複合材は、ジルコニア、チタニア、及び助触媒及び/又は安定剤を共沈状態で含み得る。あるいは、複合材はジルコニア及び助触媒及び/又は安定剤を共沈状態で含んでもよく、チタニアはチタニア前駆体から含浸される。チタニア前駆体は、チタン塩、チタン含有有機錯体、チタニアゾル、又はコロイド状チタニアを含み得る。   The composite may include co-precipitated zirconia, titania, and cocatalyst and / or stabilizer. Alternatively, the composite may include zirconia and a cocatalyst and / or stabilizer in a co-precipitated state, where the titania is impregnated from the titania precursor. The titania precursor may comprise a titanium salt, a titanium-containing organic complex, a titania sol, or a colloidal titania.

複合材は1000℃で12時間、炉でエージングした後に10〜40m/gの範囲の表面積を有し得る。 The composite may have a surface area in the range of 10-40 m 2 / g after aging in a furnace at 1000 ° C. for 12 hours.

別の態様は、担体上に触媒材料を含み、前記触媒材料が本明細書に開示された混合金属酸化物の複合体のいずれかに担持された白金族金属(PGM)を含む、燃焼機関の排ガス流を処理するための触媒複合材を提供する。触媒複合材は0.1〜5質量%の範囲の量のロジウムを含み得る。触媒複合材は、5〜250の範囲というロジウムに対するチタニアの質量比を有することができる。触媒複合材は、0.25質量%のロジウムを含んでよく、このことは950℃でのエージング後に50%以上という一酸化炭素と窒素酸化物の転化率;及び300℃での希薄過濃ラムダスイープ試験中に0.98〜1.02の範囲のラムダで10%以上という炭化水素の転化率をもたらすのに有効である。   Another aspect of a combustion engine includes a catalytic material on a support, the catalytic material comprising a platinum group metal (PGM) supported on any of the mixed metal oxide composites disclosed herein. A catalyst composite for treating an exhaust gas stream is provided. The catalyst composite may contain rhodium in an amount ranging from 0.1 to 5% by weight. The catalyst composite can have a mass ratio of titania to rhodium in the range of 5 to 250. The catalyst composite may contain 0.25% by weight rhodium, which is a conversion of carbon monoxide and nitrogen oxides of 50% or more after aging at 950 ° C .; and dilute overconcentrated lambda at 300 ° C. It is effective to provide a hydrocarbon conversion of 10% or more with a lambda in the range of 0.98 to 1.02 during the sweep test.

更なる態様では、内燃機関の炭化水素、一酸化炭素及び窒素酸化物を含む排ガス流を処理するためのシステムは、排気マニホールドを介して内燃機関と流体連通する排気管;及び本明細書に開示された任意の触媒複合材を含む。   In a further aspect, a system for treating an exhaust gas stream comprising hydrocarbons, carbon monoxide and nitrogen oxides of an internal combustion engine includes an exhaust pipe in fluid communication with the internal combustion engine via an exhaust manifold; and disclosed herein. Optional catalyst composites.

別の態様では、排ガスの処理方法は、炭化水素、一酸化炭素、及び窒素酸化物を含む気体流を、本明細書に開示された任意の触媒複合材と接触させることを含む。混合金属酸化物の複合材は、55〜90質量%の範囲の量のジルコニア;5〜25質量%の範囲の量のチタニア;5〜20質量%の範囲の量のランタン酸化物を含有する助触媒を含んでよく且つ白金族金属は、0.25質量%の量のロジウムを含み;且つ950℃でエージングした後に、触媒複合材は、50%以上という一酸化炭素と窒素酸化物の転化率;及び300℃での希薄過濃ラムダスイープ試験中に0.98〜1.02の範囲のラムダで10%以上という炭化水素の転化率をもたらすのに有効であり得る。   In another aspect, a method for treating exhaust gas includes contacting a gas stream comprising hydrocarbons, carbon monoxide, and nitrogen oxides with any of the catalyst composites disclosed herein. The mixed metal oxide composite comprises zirconia in an amount in the range of 55-90% by weight; titania in an amount in the range of 5-25% by weight; lanthanum oxide in an amount in the range of 5-20% by weight. The platinum group metal may contain a catalyst and the rhodium in an amount of 0.25% by weight; and after aging at 950 ° C., the catalyst composite has a carbon monoxide and nitrogen oxide conversion of 50% or more. And can be effective to provide hydrocarbon conversions of 10% or more at lambda in the range of 0.98 to 1.02 during a lean overconcentrated lambda sweep test at 300 ° C.

また、ジルコニウムの塩、金属助触媒の塩、及び任意に安定剤の塩の第1水溶液を得る又は形成すること;チタンの塩の第2水溶液を得る又は形成すること;第1水溶液と第2水溶液とを混合すること;並びにジルコニア、任意の助触媒又は安定剤の金属、及びチタニアを塩基性条件下で共沈させること、それによって共沈した混合金属酸化物の複合材を形成することを含む、混合金属酸化物の複合材の製造方法も提供される。この方法は更に共沈した混合金属酸化物の複合材を乾燥させること及び焼成することを含み得る。   Also, obtaining or forming a first aqueous solution of a salt of zirconium, a salt of a metal promoter, and optionally a stabilizer salt; obtaining or forming a second aqueous solution of a salt of titanium; first aqueous solution and second Mixing with aqueous solution; and coprecipitation of zirconia, optional promoter or stabilizer metal, and titania under basic conditions, thereby forming a coprecipitated mixed metal oxide composite. A method of manufacturing a mixed metal oxide composite is also provided. The method may further include drying and calcining the co-precipitated mixed metal oxide composite.

また、共沈したジルコニア及び金属助触媒及び任意の安定剤を得ること;チタンの前駆体の水溶液を得ること;共沈したジルコニア及び金属助触媒にチタンの前駆体を含浸させること;それによって混合金属酸化物の複合材を形成することを含む、混合金属酸化物の複合材の製造方法も提供される。   Also obtain co-precipitated zirconia and metal promoter and optional stabilizer; obtain an aqueous solution of titanium precursor; impregnate titanium precursor with co-precipitated zirconia and metal promoter; There is also provided a method of making a mixed metal oxide composite comprising forming a metal oxide composite.

本開示は、添付の図面に関連して本開示の様々な実施形態の以下の詳細な説明を考慮することにより、より完全に理解され得る。   The present disclosure may be more fully understood in view of the following detailed description of various embodiments of the disclosure in connection with the accompanying drawings.

図1は、300℃におけるラムダに対する一酸化炭素(CO)の転化率のグラフを示す。FIG. 1 shows a graph of carbon monoxide (CO) conversion to lambda at 300 ° C. 図2は、300℃におけるラムダに対する炭化水素(HC)の転化率のグラフを示す。FIG. 2 shows a graph of hydrocarbon (HC) conversion to lambda at 300 ° C. 図3は、300℃におけるラムダに対する窒素酸化物(NO)の転化率のグラフを示す。FIG. 3 shows a graph of nitrogen oxide (NO) conversion to lambda at 300 ° C. 図4は、350℃におけるラムダに対する炭化水素(HC)の転化率のグラフを示す。FIG. 4 shows a graph of hydrocarbon (HC) conversion to lambda at 350 ° C. 図5は、350℃におけるラムダに対する一酸化炭素(CO)の転化率のグラフを示す。FIG. 5 shows a graph of carbon monoxide (CO) conversion to lambda at 350 ° C.

発明の詳細な説明
混合金属酸化物の複合材は、55〜99質量%の範囲の量のジルコニア;1〜25質量%の範囲の量のチタニア;白金族金属(PGM)のための支持体として有効な0〜20%の範囲の量の助触媒及び/又は安定剤を含む。ウォッシュコートは燃焼機関、例えば、自動車エンジンの下流の処理用の触媒複合材又は物品として使用される担体の上に被覆され、その上に、PGM、特にロジウムが担持される。
DETAILED DESCRIPTION OF THE INVENTION Mixed metal oxide composites are used as a support for zirconia in amounts ranging from 55 to 99% by weight; titania in amounts ranging from 1 to 25% by weight; platinum group metals (PGM). An effective amount of co-catalyst and / or stabilizer in the range of 0-20%. The washcoat is coated on a carrier used as a catalyst composite or article for processing downstream of a combustion engine, eg, an automobile engine, on which PGM, particularly rhodium, is supported.

本明細書では以下の定義が使用される。   The following definitions are used herein.

白金族金属(PGM)成分は、PGMを含む任意の化合物を指す。例えば、PGMは金属の形、即ち、ゼロ価(zero valance)であるか、又は酸化物の形であってもよい。PGM成分について言及すると、任意の価電子状態のPGMが存在することが可能である。例えば、ロジウムはRh及び/又はRh3+、又は他の酸化状態で存在し得る。 A platinum group metal (PGM) component refers to any compound comprising PGM. For example, the PGM may be in metal form, i.e., zero valance, or in the form of an oxide. Referring to the PGM component, any valence state PGM can exist. For example, rhodium can be present in Rh 0 and / or Rh 3+ , or other oxidation states.

「BET表面積」は、N吸着測定により表面積を測定する比表面積測定法(Brunauer−Emmett−Teller法)を指す通常の意味を有する。特に記載のない限り、「表面積」はBET表面積を指す。 “BET surface area” has the usual meaning of referring to a specific surface area measurement method (Brunauer-Emmett-Teller method) in which the surface area is measured by N 2 adsorption measurement. Unless otherwise stated, “surface area” refers to BET surface area.

触媒材料又は触媒ウォッシュコートにおける「支持体」とは、貴金属、安定剤、助触媒、結合剤等を、沈殿、会合、分散、含浸、又は他の適切な方法を通して受け取る材料を指す。ジルコニア、チタニア、及び必要に応じて助触媒及び/又は安定剤を含む混合金属酸化物の複合材は、支持体として有効である。他の支持体の例として、高表面積耐火性金属酸化物、酸素貯蔵成分を含有する複合材、及び本明細書に開示される混合金属酸化物を含む、耐火性金属酸化物が挙げられるが、これらに限定されない。   “Support” in a catalyst material or catalyst washcoat refers to a material that receives noble metals, stabilizers, cocatalysts, binders, etc., through precipitation, association, dispersion, impregnation, or other suitable method. A composite of zirconia, titania, and optionally mixed metal oxides including cocatalysts and / or stabilizers is useful as a support. Examples of other supports include refractory metal oxides, including high surface area refractory metal oxides, composites containing oxygen storage components, and mixed metal oxides disclosed herein, It is not limited to these.

「遷移金属酸化物」(TMO)は、元素の周期律表の第3族〜第12族の金属の1つ以上の酸化物を指す。   “Transition metal oxide” (TMO) refers to one or more oxides of metals of Groups 3-12 of the Periodic Table of Elements.

「耐火性金属酸化物支持体」はバルクアルミナを含み、セリア、ジルコニア、チタニア、シリカ、マグネシア、ネオジミア、及び他の材料はこのような使用について知られている。このような材料は、得られる触媒に耐久性を与えると考えられている。   “Refractory metal oxide supports” include bulk alumina, ceria, zirconia, titania, silica, magnesia, neodymia, and other materials are known for such use. Such materials are believed to impart durability to the resulting catalyst.

「高表面積耐火性金属酸化物支持体」とは、具体的には、20Åよりも大きな細孔と広い細孔分布を有する支持体粒子を意味する。高表面積の耐火性金属酸化物支持体、例えば、「ガンマアルミナ」又は「活性アルミナ」とも呼ばれるアルミナ支持体材料は、典型的には、1グラム当たり60平方メートル(「m/g」)を超える、しばしば約200m/g以上の新しい材料のBET表面積を示す。このような活性アルミナは、通常、アルミナのγ相とδ相の混合物であるが、かなりの量のイータ、カッパ、及びシータアルミナ相も含有し得る。 The “high surface area refractory metal oxide support” specifically means support particles having pores larger than 20 mm and a wide pore distribution. High surface area refractory metal oxide supports, such as alumina support materials, also referred to as “gamma alumina” or “activated alumina”, typically exceed 60 square meters per gram (“m 2 / g”). Often exhibit a BET surface area of the new material of about 200 m 2 / g or more. Such activated alumina is usually a mixture of alumina γ and δ phases, but may also contain significant amounts of eta, kappa, and theta alumina phases.

「希土類金属酸化物」とは、元素の周期律表で定義されているスカンジウム、イットリウム、及びランタン系列の1つ以上の酸化物を指す。希土類金属酸化物は、例示的な酸素貯蔵成分と促進材料の両方になり得る。適切な酸素貯蔵成分の例としては、セリア、プラセオジミア、又はそれらの組み合わせが挙げられる。セリアの送達は、例えばセリア、セリウムとジルコニウムの混合酸化物、及び/又はセリウム、ジルコニウム、及び他の希土類元素の混合酸化物を使用することで達成され得る。適切な助触媒としては、ランタン、タングステン、セリウム、ネオジム、ガドリニウム、イットリウム、プラセオジム、サマリウム、ハフニウム、及びそれらの混合物からなる群から選択される1種以上の希土類金属の1種以上の非還元性酸化物が挙げられる。   “Rare earth metal oxide” refers to one or more oxides of the scandium, yttrium, and lanthanum series as defined in the periodic table of elements. The rare earth metal oxide can be both an exemplary oxygen storage component and a promoter material. Examples of suitable oxygen storage components include ceria, praseodymia, or combinations thereof. Delivery of ceria can be achieved, for example, by using ceria, mixed oxides of cerium and zirconium, and / or mixed oxides of cerium, zirconium, and other rare earth elements. Suitable cocatalysts include one or more non-reducing properties of one or more rare earth metals selected from the group consisting of lanthanum, tungsten, cerium, neodymium, gadolinium, yttrium, praseodymium, samarium, hafnium, and mixtures thereof. An oxide is mentioned.

「アルカリ土類金属酸化物」は、例示的な安定剤材料である第II族金属酸化物を指す。適切な安定剤としては、金属がバリウム、カルシウム、マグネシウム、ストロンチウム及びこれらの混合物からなる群から選択される1種以上の非還元性金属酸化物が挙げられる。好ましくは、安定剤はバリウム及び/又はストロンチウムの1つ以上の酸化物を含む。   “Alkaline earth metal oxide” refers to a Group II metal oxide which is an exemplary stabilizer material. Suitable stabilizers include one or more non-reducing metal oxides wherein the metal is selected from the group consisting of barium, calcium, magnesium, strontium and mixtures thereof. Preferably, the stabilizer comprises one or more oxides of barium and / or strontium.

「ウォッシュコート」は、モノリス基材又はフィルター基材を通るハニカムフローなどの耐火性基材に適用される触媒又は他の材料の薄くて付着性のコーティングであり、これは処理されるガス流の通過を可能にするのに十分に多孔性である。従って、「ウォッシュコート層」は、支持体粒子からなるコーティングと定義されている。「触媒付きウォッシュコート層」は、触媒成分が含浸された支持体粒子からなるコーティングである。   A “washcoat” is a thin, adherent coating of a catalyst or other material applied to a refractory substrate, such as a honeycomb flow through a monolith substrate or filter substrate, which is the gas stream being processed. It is sufficiently porous to allow passage. Accordingly, a “wash coat layer” is defined as a coating consisting of support particles. The “catalyzed washcoat layer” is a coating composed of support particles impregnated with a catalyst component.

混合金属酸化物の支持体材料
Ti−La−ZrO支持体材料は、以下のように調製される。1つの例示的な方法は、望ましい成分:チタン及びジルコニウム並びに任意の所望の助触媒を共沈させることである。別の例示的な方法は、共沈したジルコニア複合材(Ce−Zr、例えばLa−ZrOを除く)を用意し、次にチタン前駆体を含浸させることである。
Mixed Metal Oxide Support Material Ti-La-ZrO 2 support material is prepared as follows. One exemplary method is to co-precipitate the desired components: titanium and zirconium and any desired promoter. Another exemplary method includes providing a co-precipitated zirconia composite (excluding Ce-Zr, for example, a La-ZrO 2), is then be impregnated with a titanium precursor.

全ての所望の材料の共沈物を、2つの溶液を調製することによって調製する。第1の水溶液は、ジルコニウム塩の塩(例えば、硝酸ジルコニウム)を含む。第2の水溶液は、ランタンの塩(例えば、硝酸ランタン)及びチタニア前駆体を含む。溶液をアンモニア(NH)の水溶液に加え、その混合物を約9.0のpHで保持した。ろ液は、乾燥し、ラウリン酸などの酸で処理することによって得られる。更に、ろ液の洗浄、乾燥、及び焼成を行って、所望の複合材を得る。ジルコニアは一般的に55〜99質量%の範囲の量で存在し、チタニアは1〜25質量%の範囲の量で存在し;場合により助触媒及び/又は安定剤が0〜20質量%の範囲の量で存在することになるであろう。 A coprecipitate of all desired materials is prepared by preparing two solutions. The first aqueous solution contains a salt of a zirconium salt (for example, zirconium nitrate). The second aqueous solution includes a lanthanum salt (eg, lanthanum nitrate) and a titania precursor. The solution was added to an aqueous solution of ammonia (NH 3 ) and the mixture was kept at a pH of about 9.0. The filtrate is obtained by drying and treating with an acid such as lauric acid. Further, the filtrate is washed, dried, and fired to obtain a desired composite material. Zirconia is generally present in an amount in the range of 55-99% by weight and titania is present in an amount in the range of 1-25% by weight; optionally in the range of 0-20% by weight of promoter and / or stabilizer. Will be present in the amount of.

別の方法では、複合材料は、高表面積の共沈したLa安定化ジルコニア複合材上にチタニア前駆体(チタン化合物又はチタニアゾル)を含浸させることによっても製造され得る。   Alternatively, the composite material can also be made by impregnating a titania precursor (titanium compound or titania sol) onto a high surface area co-precipitated La stabilized zirconia composite.

支持体材料は多くの方法で特性決定され得る。例えば、チタンの結晶形はX線回折(XRD)によって決定され得る。新しい支持体材料の表面積は、60〜90m/gの範囲内にあり得る。エージング済み支持体材料は、1000℃で12時間、炉でエージングした後、10〜40m/gの範囲の表面積を有し得る。ロジウムに対するチタニアの質量比は、5〜250の範囲内にあり得る。 The support material can be characterized in a number of ways. For example, the crystalline form of titanium can be determined by X-ray diffraction (XRD). The surface area of the new support material can be in the range of 60-90 m 2 / g. The aged support material may have a surface area in the range of 10-40 m 2 / g after aging in a furnace at 1000 ° C. for 12 hours. The mass ratio of titania to rhodium can be in the range of 5-250.

触媒材料
触媒材料は以下のように調製される。所望の白金族金属(PGM)は、当技術分野で公知の方法、例えば、含浸初期湿潤法によってTi−La−ZrO支持体上に担持される。
Catalyst Material The catalyst material is prepared as follows. Desired platinum group metal (PGM) are prepared by methods known in the art, for example, it is carried on the Ti-La-ZrO 2 support by impregnation incipient wetness.

触媒複合材
触媒材料が調製されると、触媒複合材が担体上の1つ以上の層に調製され得る。本明細書に記載される触媒材料のいずれかの分散液を用いて、ウォッシュコート用のスラリーを形成することができる。
Catalyst Composite Once the catalyst material is prepared, the catalyst composite can be prepared in one or more layers on a support. A dispersion for any of the catalyst materials described herein can be used to form a slurry for a washcoat.

スラリーには、他の白金族金属、他の支持体、他の安定剤及び助触媒、並びに1つ以上の酸素貯蔵成分などの任意の所望の追加成分が添加され得る。   Any desired additional components may be added to the slurry, such as other platinum group metals, other supports, other stabilizers and cocatalysts, and one or more oxygen storage components.

1つ以上の実施形態では、スラリーは酸性であり、約2〜約7未満のpHを有する。スラリーのpHは、スラリーに適量の無機酸又は有機酸を加えることによって下げられてもよい。両者の組み合わせは、酸と原材料の相溶性を考慮した際に使用することができる。無機酸としては、硝酸が挙げられるが、これに限定されない。有機酸としては、酢酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、グルタミン酸、アジピン酸、マレイン酸、フマル酸、フタル酸、酒石酸、クエン酸等が挙げられるが、これらに限定されない。その後、必要に応じて、酸素貯蔵成分の水溶性又は水分散性化合物、例えば、セリウム−ジルコニウム複合材、安定剤、例えば、酢酸バリウム、及び助触媒、例えば、硝酸ランタンがスラリーに添加され得る。その後、スラリーが粉砕されると、平均直径で約20ミクロン未満、即ち、約0.1ミクロン〜15ミクロンの粒径を有する実質的に全ての固形物が得られる。粉砕は、ボールミル又は他の同様の装置で行われてよく、スラリーの固形分は、例えば約10〜50質量%、更に具体的には約10〜40質量%であり得る。次に、担体が、そのようなスラリー中に1回以上浸漬されるか又はスラリーが、所望の充填量、例えば、約0.5〜約3.0g/inのウォッシュコート/金属酸化物複合材が担体上に堆積されるように担体上に被覆され得る。 In one or more embodiments, the slurry is acidic and has a pH of about 2 to less than about 7. The pH of the slurry may be lowered by adding a suitable amount of an inorganic or organic acid to the slurry. The combination of both can be used when the compatibility of the acid and the raw material is taken into consideration. Inorganic acids include, but are not limited to nitric acid. Examples of organic acids include, but are not limited to, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, glutamic acid, adipic acid, maleic acid, fumaric acid, phthalic acid, tartaric acid, citric acid, and the like. Thereafter, water-soluble or water-dispersible compounds of oxygen storage components such as cerium-zirconium composites, stabilizers such as barium acetate, and promoters such as lanthanum nitrate can be added to the slurry as needed. Thereafter, when the slurry is pulverized, substantially all solids having an average diameter of less than about 20 microns, ie, a particle size of about 0.1 to 15 microns, are obtained. Grinding may be performed in a ball mill or other similar equipment, and the solids content of the slurry may be, for example, about 10-50% by weight, more specifically about 10-40% by weight. The support is then dipped one or more times in such a slurry, or the slurry is a washcoat / metal oxide composite having a desired loading, eg, about 0.5 to about 3.0 g / in 3. It can be coated on the support such that the material is deposited on the support.

その後、被覆された担体が、例えば、500℃〜600℃で約1時間〜約3時間加熱することによって焼成される。   The coated carrier is then calcined, for example, by heating at 500 ° C. to 600 ° C. for about 1 hour to about 3 hours.

典型的には、白金族金属が望ましい場合、金属成分は、耐火性金属酸化物の支持体上の成分、例えば、活性アルミナ又はセリア−ジルコニア複合材の分散を達成するために、化合物又は錯体の形で利用される。本明細書での目的のために、「金属成分」という用語は、焼成又はその使用の際に、触媒活性形態、通常は金属又は金属酸化物に分解又は変換する任意の化合物、錯体などを意味する。触媒組成物中に存在してよく且つ加熱時及び/又は真空の適用時に揮発又は分解によって金属成分から除去することができる金属又はその化合物又はその錯体又はその他の成分と、耐火性金属酸化物支持体粒子上に金属成分を含浸又は堆積させるために用いられる液体媒体が不利に反応しない限り、水溶性化合物又は水分散性化合物又は金属成分の錯体が使用されてもよい。場合によっては、触媒が使用され、運転中に直面する高温に曝されるまで、液体の除去が完了しないことがある。一般的に、経済性と環境面の両方の観点から、可溶性化合物又は貴金属錯体の水溶液が利用される。か焼工程の間、又は少なくとも複合材の使用の初期段階の間に、このような化合物は、金属又はその化合物の触媒的に活性な形に変換される。   Typically, where a platinum group metal is desired, the metal component is a compound or complex to achieve dispersion of components on the refractory metal oxide support, such as activated alumina or ceria-zirconia composite. Used in form. For purposes herein, the term “metal component” means any compound, complex, etc. that decomposes or converts to a catalytically active form, usually a metal or metal oxide, upon calcination or use thereof. To do. A metal or compound thereof or a complex thereof or other component that may be present in the catalyst composition and that can be removed from the metal component by volatilization or decomposition upon heating and / or application of vacuum, and a refractory metal oxide support Water soluble compounds or water dispersible compounds or metal component complexes may be used as long as the liquid medium used to impregnate or deposit the metal component on the body particles does not react adversely. In some cases, the removal of liquid may not be completed until the catalyst is used and exposed to the high temperatures encountered during operation. Generally, an aqueous solution of a soluble compound or a noble metal complex is used from the viewpoints of both economy and environment. During the calcination process, or at least during the initial stages of use of the composite, such compounds are converted to the metal or a catalytically active form of the compound.

担体上に任意の層を堆積させるために上記の方法と同じ方法で、追加の層が調製され、前の層に堆積され得る。   Additional layers can be prepared and deposited on the previous layer in the same manner as described above to deposit any layer on the support.

担体
1つ以上の実施形態では、触媒材料が担体上に配置される。
Support In one or more embodiments, the catalyst material is disposed on the support.

担体は、触媒複合材を調製するために典型的に使用されるそれらの材料のいずれであってもよく、好ましくはセラミック又は金属ハニカム構造を含むであろう。流路が流体流通するように、基材の流入口面又は流出口面から細かくて平行なガス流路が貫通しているタイプのモノリシック基材などの任意の適切な担体(ハニカムフロースルー基材と呼ぶ)が使用され得る。流入口から流出口まで実質的に直線的な経路である流路は、触媒材料がウォッシュコートとして被覆される壁によって画定され、その流路を流れるガスが触媒材料に接触する。モノリシック基材の流路は、台形、長方形、正方形、正弦波、六角形、楕円形、円形等の任意の適切な断面形状とサイズであり得る薄壁のチャンネルである。このような構造は、断面1平方インチ当たり約60個から約900個まで又はそれ以上のガス入口開口部(即ち、セル)を含有し得る。   The support may be any of those materials typically used to prepare catalyst composites and preferably will include a ceramic or metal honeycomb structure. Any suitable carrier (honeycomb flow-through substrate, such as a monolithic substrate of the type in which a fine and parallel gas channel passes through from the inlet or outlet surface of the substrate so that the channel flows in fluid. Can be used). A flow path that is a substantially straight path from the inlet to the outlet is defined by a wall that is coated with the catalytic material as a washcoat, and the gas flowing through the flow path contacts the catalytic material. The flow path of the monolithic substrate is a thin-walled channel that can be any suitable cross-sectional shape and size, such as trapezoidal, rectangular, square, sinusoidal, hexagonal, elliptical, circular, and the like. Such a structure may contain from about 60 to about 900 or more gas inlet openings (ie, cells) per square inch of cross section.

担体は、チャンネルが交互に遮断されるウォールフローフィルター基材であってもよく、これは、ガス流が一方向(入口方向)からチャンネルに入って、チャンネル壁を流れ、他の方向(出口方向)からチャンネルを出るようにする。二重酸化触媒組成物が、ウォールフローフィルター上にコーティングされ得る。このような担体が利用される場合、得られるシステムは、ガス状の汚染物質とともに粒子状物質を除去することができるであろう。ウォールフローフィルター担体は、コージェライト又はシリコンカーバイドなどの、当業界で一般に知られている材料から作られ得る。   The carrier may be a wall flow filter substrate in which the channels are alternately blocked, where the gas flow enters the channel from one direction (inlet direction) and flows through the channel wall in the other direction (outlet direction). ) To leave the channel. The dual oxidation catalyst composition can be coated on a wall flow filter. If such a carrier is utilized, the resulting system will be able to remove particulate matter along with gaseous contaminants. The wall flow filter carrier can be made from materials commonly known in the art, such as cordierite or silicon carbide.

担体は、任意の適切な耐火材料、例えば、コージェライト、コージェライト−アルミナ、窒化ケイ素、ジルコンムライト、スポジュメン、アルミナ−シリカマグネシア、ケイ酸ジルコン、シリマナイト、ケイ酸マグネシウム、ジルコン、ペタライト、アルミナ、及びアルミノケイ酸塩等で作られ得る。   The carrier can be any suitable refractory material such as cordierite, cordierite-alumina, silicon nitride, zircon mullite, spojumen, alumina-silica magnesia, zircon silicate, sillimanite, magnesium silicate, zircon, petalite, alumina, and It can be made of aluminosilicate or the like.

本発明の触媒に有用な担体は、本質的に金属性であってもよく、1種以上の金属又は金属合金で構成されてもよい。金属性の担体は、波形板又はモノリシック形などの様々な形で使用され得る。好ましい金属支持体としては、耐熱金属及びチタンやステンレス鋼などの金属合金だけでなく、鉄が実質的な成分又は主要成分である他の合金も挙げられる。そのような合金は、ニッケル、クロム及び/又はアルミニウムのうち1つ以上を含有してよく、これらの金属の総量は、有利には、少なくとも15質量%の合金、例えば、10〜25質量%のクロム、3〜8質量%のアルミニウム、20質量%までのニッケルを含み得る。合金は、少量又は微量の、マンガン、銅、バナジウム、チタンなどのうち1つ以上の他の金属を含んでもよい。金属性担体の表面は高温、例えば、1000℃以上で酸化されて、酸化物層を担体の表面に形成することによって合金の耐腐食性を改善し得る。このような高温誘導性酸化は、耐火性金属酸化物支持体と触媒的促進金属成分の担体への付着性を高め得る。   Supports useful for the catalysts of the present invention may be metallic in nature or may be composed of one or more metals or metal alloys. Metallic carriers can be used in various forms such as corrugated plates or monolithic forms. Preferred metal supports include not only refractory metals and metal alloys such as titanium and stainless steel, but also other alloys in which iron is a substantial or major component. Such alloys may contain one or more of nickel, chromium and / or aluminum, and the total amount of these metals is advantageously at least 15% by weight of alloy, for example 10-25% by weight. It may contain chromium, 3-8% aluminum, up to 20% nickel. The alloy may include one or more other metals, such as manganese, copper, vanadium, titanium, etc., in small or trace amounts. The surface of the metallic support can be oxidized at high temperatures, eg, 1000 ° C. or higher, to improve the corrosion resistance of the alloy by forming an oxide layer on the surface of the support. Such high temperature induced oxidation can enhance the adhesion of the refractory metal oxide support and the catalytically promoted metal component to the support.

別の実施形態では、1つ以上の触媒組成物が、連続気泡フォーム基材上に堆積され得る。このような基材は、当該技術分野において周知であり、典型的には、耐火性セラミック又は金属材料で形成される。   In another embodiment, one or more catalyst compositions may be deposited on an open cell foam substrate. Such substrates are well known in the art and are typically formed of a refractory ceramic or metallic material.

本発明の幾つかの例示的な実施形態を説明する前に、本発明は、以下の説明に記載される構成又は工程段階の詳細に限定されないことが理解されるべきである。本発明は、他の実施形態が可能であり、様々な方法で実施することができる。以下では、単独で又は無制限の組み合わせで使用される記載されるような組み合わせを含む好ましい設計が提供され、その使用は、本発明の他の態様の触媒、システム、及び方法を含む。   Before describing some exemplary embodiments of the present invention, it is to be understood that the present invention is not limited to the details of construction or process steps set forth in the following description. The invention is capable of other embodiments and of being practiced in various ways. In the following, preferred designs are provided comprising combinations as described, used alone or in unlimited combinations, the use comprising catalysts, systems and methods of other aspects of the invention.

実施形態
様々な実施形態を以下に列挙する。以下に列挙する実施形態が、本発明の範囲に従う全ての態様及び他の実施形態と組み合わされ得ることが理解されるであろう。
Embodiments Various embodiments are listed below. It will be understood that the embodiments listed below can be combined with all aspects and other embodiments according to the scope of the present invention.

実施形態1は、ジルコニア、チタニア、及び助触媒及び/又は安定剤を含む、排ガス浄化触媒用の混合金属酸化物の複合材である。   Embodiment 1 is a mixed metal oxide composite for an exhaust gas purification catalyst comprising zirconia, titania, and a cocatalyst and / or stabilizer.

実施形態2は、触媒材料が本明細書に開示された混合金属複合材のいずれかに担持された白金族金属(PGM)を含む、担体上に前記触媒材料を含む、燃焼機関の排ガス流を処理するための触媒複合材である。   Embodiment 2 provides a combustion engine exhaust gas stream comprising a catalytic material on a support, wherein the catalytic material comprises a platinum group metal (PGM) supported on any of the mixed metal composites disclosed herein. It is a catalyst composite for processing.

実施形態3は、排気マニホールドを介して前記内燃機関と流体連通する排気管;及び本明細書に開示された任意の触媒複合材を含む、内燃機関の炭化水素、一酸化炭素、及び窒素酸化物を含む排ガス流を処理するためのシステムである。   Embodiment 3 includes hydrocarbons, carbon monoxide, and nitrogen oxides of an internal combustion engine, including an exhaust pipe in fluid communication with the internal combustion engine via an exhaust manifold; and any catalyst composite disclosed herein Is a system for treating an exhaust gas stream comprising

実施形態4は、炭化水素、一酸化炭素、及び窒素酸化物を含む気体流を本明細書に開示された触媒複合材のいずれかと接触させることを含む排ガスの処理方法である。   Embodiment 4 is an exhaust gas treatment method comprising contacting a gas stream comprising hydrocarbons, carbon monoxide, and nitrogen oxides with any of the catalyst composites disclosed herein.

実施形態5は、ジルコニウムの塩、金属助触媒の塩、及び任意に安定剤の塩の第1水溶液を得る又は形成すること;チタンの塩の第2水溶液を得る又は形成すること;第1水溶液と第2水溶液とを混合すること;並びに前記ジルコニウム、前記任意の助触媒又は安定剤の金属、及び前記チタンを塩基性条件下で共沈させること;それによって共沈した混合金属酸化物の複合材を形成することを含む、混合金属酸化物の複合材の製造方法である。   Embodiment 5 provides or forms a first aqueous solution of a salt of zirconium, a salt of a metal promoter, and optionally a stabilizer salt; obtains or forms a second aqueous solution of a salt of titanium; And the second aqueous solution; and co-precipitating the zirconium, the optional promoter or stabilizer metal, and the titanium under basic conditions; thereby a composite metal oxide co-precipitated A method of producing a mixed metal oxide composite comprising forming a material.

実施形態6は、共沈したジルコニア及び金属助触媒及び任意の安定剤を得ること;チタンの前駆体の水溶液を得ること;前記共沈したジルコニア及び前記金属助触媒に前記チタンの前駆体を含浸させること;それによって共沈した混合金属酸化物の複合材を形成することを含む、混合金属酸化物の複合材の製造方法である。   Embodiment 6 provides co-precipitated zirconia and metal promoter and optional stabilizer; obtaining an aqueous solution of titanium precursor; impregnating the co-precipitated zirconia and metal promoter with the titanium precursor A method for producing a mixed metal oxide composite comprising forming a co-precipitated mixed metal oxide composite.

本明細書の実施形態1〜6はそれぞれ以下の設計の特徴を単独で又は組み合わせて有し得る。   Embodiments 1-6 herein may each have the following design features alone or in combination.

混合金属酸化物の複合材は、55〜99質量%の範囲の量のジルコニア;1〜25質量%の範囲の量のチタニア;0〜20質量%の範囲の量の助触媒及び/又は安定剤を含み得る。   The mixed metal oxide composite comprises zirconia in an amount ranging from 55 to 99% by weight; titania in an amount ranging from 1 to 25% by weight; a co-catalyst and / or stabilizer in an amount ranging from 0 to 20% by weight. Can be included.

助触媒は、希土類金属酸化物を含み且つ0.1〜20%の範囲の量で存在する。   The cocatalyst contains the rare earth metal oxide and is present in an amount ranging from 0.1 to 20%.

助触媒は、ランタナ、タングスタ、セリア、ネオジミア、ガドリニア、イットリア、プラセオジミア、サマリア、ハフニア、又はそれらの組み合わせを含み得る。   The cocatalyst may include lantana, tungsta, ceria, neodymia, gadolinia, yttria, praseodymia, samaria, hafnia, or combinations thereof.

安定剤は、0.1〜5%の範囲の量で存在し且つ酸化ケイ素を含み得る。   The stabilizer is present in an amount ranging from 0.1 to 5% and may include silicon oxide.

安定剤は、0.1〜10%の範囲の量で存在し且つアルカリ土類金属酸化物を含み得る。   Stabilizers are present in amounts ranging from 0.1 to 10% and may include alkaline earth metal oxides.

混合金属酸化物の複合材のセリア含有率は、20質量%以下、又は10質量%以下、又は5質量%以下、又は1質量%以下、又は0.1質量%以下、又はさらには0質量%であり得る。   The ceria content of the mixed metal oxide composite is 20% by weight or less, or 10% by weight or less, or 5% by weight or less, or 1% by weight or less, or 0.1% by weight or less, or even 0% by weight. It can be.

混合金属酸化物の複合材は、ジルコニア、チタニア、及び助触媒及び/又は安定剤を全て共沈状態で含み得る。   The mixed metal oxide composite may include zirconia, titania, and promoters and / or stabilizers, all in a co-precipitated state.

混合金属酸化物の複合材は、ジルコニア及び助触媒及び/又は安定剤を共沈状態で含んでよく、チタニアはチタニア前駆体から含浸される。   The mixed metal oxide composite may include zirconia and a co-catalyst and / or stabilizer in a co-precipitated state, where the titania is impregnated from the titania precursor.

チタニア前駆体は、チタン塩、チタン含有有機錯体、チタニアゾル、又はコロイド状チタニアを含み得る。   The titania precursor may comprise a titanium salt, a titanium-containing organic complex, a titania sol, or a colloidal titania.

混合金属酸化物の複合材は、1000℃で12時間、炉でエージングした後、10〜40m/gの範囲の表面積を有し得る。 The mixed metal oxide composite may have a surface area in the range of 10-40 m 2 / g after aging in a furnace at 1000 ° C. for 12 hours.

触媒複合材は、0.1〜5質量%の範囲の量のロジウムを含み、質量%は複合材の総質量を基準とする。   The catalyst composite contains rhodium in an amount in the range of 0.1 to 5% by weight, and the weight% is based on the total weight of the composite.

触媒複合材は、5〜250の範囲というロジウムに対するチタニアの質量比を有することができる;   The catalyst composite can have a mass ratio of titania to rhodium in the range of 5 to 250;

触媒複合材は、0.1質量%〜5質量%のロジウム、例えば0.25質量%のロジウムを含んでよく、これは950℃でエージングした後に50%以上という一酸化炭素、窒素酸化物、及び水素の転化率;及び300℃での希薄過濃ラムダスイープ試験中に0.98〜1.02の範囲のラムダで10%以上という炭化水素の転化率をもたらすのに有効である。   The catalyst composite may contain 0.1 wt% to 5 wt% rhodium, such as 0.25 wt% rhodium, which is 50% or more of carbon monoxide, nitrogen oxides after aging at 950C, And hydrogen conversion; and effective in providing a hydrocarbon conversion of greater than 10% at lambda in the range of 0.98 to 1.02 during the lean overconcentrated lambda sweep test at 300 ° C.

混合金属酸化物の複合材は、55〜90質量%の範囲の量のジルコニア;5〜25質量%の範囲の量のチタニア;5〜20質量%の範囲の量のランタン酸化物を含有する助触媒を含んでよく且つ白金族金属は、0.25質量%の量のロジウムを含み;且つ950℃でエージングした後に、触媒複合材は、50%以上という一酸化炭素、窒素酸化物及び水素の転化率;及び300℃での希薄過濃ラムダスイープ試験中に0.98〜1.02の範囲のラムダで10%以上という炭化水素の転化率をもたらすのに有効であり得る。   The mixed metal oxide composite comprises zirconia in an amount in the range of 55-90% by weight; titania in an amount in the range of 5-25% by weight; lanthanum oxide in an amount in the range of 5-20% by weight. The catalyst may include a platinum group metal containing rhodium in an amount of 0.25% by weight; and after aging at 950 ° C., the catalyst composite may contain 50% or more of carbon monoxide, nitrogen oxides and hydrogen. Conversion; and can be effective in providing a hydrocarbon conversion of greater than 10% with a lambda in the range of 0.98 to 1.02 during a lean overconcentrated lambda sweep test at 300 ° C.

本方法は、共沈した混合金属酸化物の複合材を乾燥させ且つ焼成することを更に含み得る。   The method may further include drying and calcining the co-precipitated mixed metal oxide composite.

実施例
以下の非限定的な実施例は、本発明の様々な実施形態を説明する役割を果たすであろう。各実施例では、担体はコージェライトであった。
Examples The following non-limiting examples will serve to illustrate various embodiments of the present invention. In each example, the carrier was cordierite.

実施例1
遷移金属酸化物(TMO)として5%のチタニア(TiO)及び安定剤/ドーパントとして5%のランタナを含み、且つ残分はジルコニア(主成分)である例示的な混合金属酸化物(Ti−La−ZrO)を以下のように調製した。硝酸ジルコニウムの水溶液を調製し、溶液1を作った。硝酸ランタン水溶液を調製し、これにチタニアの前駆体(Ti−(V)−エトキシド)を加えて溶液2とした。溶液1と2をアンモニア(NH)水溶液に加え、混合物をpH約9.0で15分間混合条件で保持した。混合物を分割し、オートクレーブ内で150℃で12時間乾燥させた。ラウリン酸を加えて最終生成物の表面積を増やした。フィルターを用いてろ液を得て、これを次にアンモニア(25%溶液)で洗浄して硝酸塩を除去した。次にろ液を40℃で乾燥させ、700℃で焼成した。
Example 1
Transition metal oxides include 5% lanthana as a 5% titania (TiO 2) and stabilizer / dopant as (TMO), and Zanbun exemplary mixed metal oxide is zirconia (main component) (Ti- la-ZrO 2) was prepared as follows. An aqueous solution of zirconium nitrate was prepared and Solution 1 was made. A lanthanum nitrate aqueous solution was prepared, and a titania precursor (Ti- (V) -ethoxide) was added thereto to obtain a solution 2. Solutions 1 and 2 were added to aqueous ammonia (NH 3 ) solution and the mixture was held at mixing conditions for 15 minutes at a pH of about 9.0. The mixture was divided and dried at 150 ° C. for 12 hours in an autoclave. Lauric acid was added to increase the surface area of the final product. A filtrate was obtained using a filter, which was then washed with ammonia (25% solution) to remove nitrate. The filtrate was then dried at 40 ° C. and calcined at 700 ° C.

複合材を、BET法を用いて表面積について試験した。新しい複合材の表面積は70m/gであり、エージング済み複合材(1000℃で12時間、炉でエージング)の表面積は15m/gであった。 The composite was tested for surface area using the BET method. The surface area of the new composite was 70 m 2 / g, and the surface area of the aged composite (12 hours at 1000 ° C., aged in the furnace) was 15 m 2 / g.

実施例2
比較例
比較のために、10質量%のランタナ及び90質量%のジルコニアの複合材(La−ZrO)を、実施例1のTi−La−ZrO複合材と同じように作った。比較の複合材の表面積を、実施例1で使用された同じ試験方法を用いて試験した。比較の複合材は83m/gの新しい表面積を有し、エージング済み複合材(1000℃で12時間、炉でエージング)は25m/gの表面積を有していた。
Example 2
For Comparative Example Comparative composite of 10% by weight of lanthana and 90% by weight of zirconia (La-ZrO 2), it was prepared in the same way as Ti-La-ZrO 2 composite material of Example 1. The surface area of the comparative composite was tested using the same test method used in Example 1. The comparative composite had a new surface area of 83 m 2 / g, and the aged composite (12 hours at 1000 ° C., aged in the furnace) had a surface area of 25 m 2 / g.

実施例3
実施例1のTi−La−ZrO複合材上に担持されたロジウム(Rh)を含む触媒材料を調製した。具体的には、0.25質量%の硝酸Rh溶液を、標準的な初期湿潤法を用いて複合材上に含浸させた。この材料を120℃で乾燥させ、次に空気中で550℃で1時間焼成した。試験のために、触媒材料を、酢酸ジルコニウム(複合材基準で5質量%)でスラリー化し、撹拌下で乾燥させ、空気中で550℃で2時間焼成し、250〜500μmまで粉砕/篩分けすることによって成形した。成形された触媒材料を、希薄過濃サイクル下で10%の水中で950℃で5時間エージングした。
Example 3
A catalyst material comprising rhodium (Rh) supported on the Ti—La—ZrO 2 composite of Example 1 was prepared. Specifically, a 0.25 wt% nitric acid Rh solution was impregnated on the composite using a standard incipient wetness method. This material was dried at 120 ° C. and then calcined in air at 550 ° C. for 1 hour. For the test, the catalyst material is slurried with zirconium acetate (5% by weight based on composite), dried under stirring, calcined in air at 550 ° C. for 2 hours, and crushed / sieved to 250-500 μm. Was molded by. The molded catalyst material was aged at 950 ° C. for 5 hours in 10% water under a dilute overconcentration cycle.

実施例4
比較例
比較例2のLa−ZrO複合材に担持されたロジウム(Rh)を含む比較の触媒材料を調製した。具体的には、0.25質量%の硝酸Rh溶液を、標準的な初期湿潤法を用いて複合材上に含浸させた。この材料を120℃で乾燥させ、次に空気中で550℃で1時間焼成した。試験のために、触媒材料を、酢酸ジルコニウム(複合材基準で5質量%)でスラリー化し、撹拌下で乾燥させ、空気中で550℃で2時間焼成し、そして250〜500μmまで粉砕/篩分けすることによって成形した。成形された触媒材料を、希薄過濃サイクル下で10%の水中で950℃で5時間エージングした。
Example 4
Comparative Example A comparative catalyst material containing rhodium (Rh) supported on the La—ZrO 2 composite of Comparative Example 2 was prepared. Specifically, a 0.25 wt% nitric acid Rh solution was impregnated on the composite using a standard incipient wetness method. This material was dried at 120 ° C. and then calcined in air at 550 ° C. for 1 hour. For the test, the catalyst material was slurried with zirconium acetate (5% by weight based on composite), dried under stirring, calcined in air at 550 ° C. for 2 hours, and ground / sieved to 250-500 μm Molded by doing. The molded catalyst material was aged at 950 ° C. for 5 hours in 10% water under a dilute overconcentration cycle.

実施例5
試験
実施例3及び比較例4のエージング済み触媒材料を、ラムダスイーププロトコル下で異なる温度(250℃、300℃、350℃及び450℃)で試験した。条件は次の通りであった:GHSV=70000h−1(1mLの被覆触媒まで標準化)及び振動フィード(λavg±0.05、1秒希薄、1秒過濃、180秒/位置)。
Example 5
Testing The aged catalyst materials of Example 3 and Comparative Example 4 were tested at different temperatures (250 ° C, 300 ° C, 350 ° C and 450 ° C) under a lambda sweep protocol. The conditions were as follows: GHSV = 70000 h −1 (standardized to 1 mL of coated catalyst) and vibration feed (λavg ± 0.05, 1 second dilute, 1 second overdense, 180 seconds / position).

300℃では、実施例1のTi−La−ZrO複合材を使用する触媒材料は、市販のLa−Zr複合材を使用する触媒材料に比べて優れた性能を示した。より高い温度では、様々な触媒材料の性能は顕著ではなかった。コールドスタート中の排出を低減し且つライトオフ性能を向上させるためには、350℃〜400℃未満の実行性能が望ましい。図1〜3は、300℃における実施例3及び比較例4の触媒材料の排出物(一酸化炭素(CO)、炭化水素(HC)、及び窒素酸化物(NO))の転化率を示す。 At 300 ° C., the catalyst material using the Ti—La—ZrO 2 composite of Example 1 exhibited superior performance compared to the catalyst material using the commercially available La—Zr composite. At higher temperatures, the performance of the various catalyst materials was not significant. In order to reduce emissions during cold start and improve light-off performance, an execution performance of 350 ° C. to less than 400 ° C. is desirable. 1 to 3 show the conversion rates of the catalyst material emissions (carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NO)) of Example 3 and Comparative Example 4 at 300 ° C.

実施例6
担体上に2つの層を有する触媒材料を含む配合済み自動車触媒複合材を調製した。総貴金属負荷量は60g/ftであり、Pt/Pd/Rh比は0/55/5であった。基材のセル密度は600セル/平方インチであり、壁厚は約4ミル(又は101.6μm)であった。基材のサイズは4.66×3インチであり、体積は51.17inであった。
Example 6
A formulated autocatalyst composite comprising a catalyst material having two layers on a support was prepared. The total noble metal loading was 60 g / ft 3 and the Pt / Pd / Rh ratio was 0/55/5. The cell density of the substrate was 600 cells / in 2 and the wall thickness was about 4 mils (or 101.6 μm). The size of the substrate is 4.66 × 3 inches, volume was 51.17in 3.

担体上に堆積した下層はパラジウム(Pd)を含み、その一部はセリア−ジルコニア酸素貯蔵成分(OSC)によって担持され、別の部分は高表面積のガンマ−アルミナ支持体によって担持された。下層はバリアとジルコニアも含有していた。下層の負荷量は2.332g/inであった。 The lower layer deposited on the support contained palladium (Pd), a portion of which was supported by a ceria-zirconia oxygen storage component (OSC) and another portion supported by a high surface area gamma-alumina support. The lower layer also contained a barrier and zirconia. The load of the lower layer was 2.332 g / in 3 .

下層の上に堆積した上層は、支持体上にロジウム(Rh)を含み、この支持体は、9質量%のランタナ含有率を有する市販のLa−ZrOの上に含浸された5%のTiOを含んでいた。上層の負荷量は1.403g/inであった。 The upper layer deposited on the lower layer contains rhodium (Rh) on the support, which is 5% TiO impregnated on commercially available La-ZrO 2 having a Lantana content of 9% by weight. 2 was included. The load on the upper layer was 1.403 g / in 3 .

実施例7
比較例
担体上に2つの層を有する触媒材料を含む比較の配合済み自動車触媒複合材を調製した。総貴金属負荷量は60g/ftであり、Pt/Pd/Rh比は0/55/5であった。基材のセル密度は600セル/平方インチであり、壁厚は約4ミル(又は101.6μm)であった。基材のサイズは4.66×3インチであり、体積は51.17inであった。
Example 7
Comparative Example A comparative formulated autocatalyst composite comprising a catalyst material having two layers on a support was prepared. The total noble metal loading was 60 g / ft 3 and the Pt / Pd / Rh ratio was 0/55/5. The cell density of the substrate was 600 cells / in 2 and the wall thickness was about 4 mils (or 101.6 μm). The size of the substrate is 4.66 × 3 inches, volume was 51.17in 3.

担体上に堆積された下層は、パラジウム(Pd)を含み、その一部はセリア−ジルコニア酸素貯蔵成分(OSC)によって担持され、別の部分は高表面積ガンマ−アルミナ支持体によって担持された。下層はバリアとジルコニアも含有していた。下層の負荷量は2.332g/inであった。 The lower layer deposited on the support contained palladium (Pd), a portion of which was supported by the ceria-zirconia oxygen storage component (OSC) and another portion supported by the high surface area gamma-alumina support. The lower layer also contained a barrier and zirconia. The load of the lower layer was 2.332 g / in 3 .

下層に堆積された上層は、9質量%のランタナ含有率を有する市販のLa−ZrO支持体上にロジウム(Rh)を含んでいた。上層の負荷量は1.403g/inであった。 The upper layer deposited in the lower layer contained rhodium (Rh) on a commercially available La-ZrO 2 support having a Lantana content of 9% by weight. The load on the upper layer was 1.403 g / in 3 .

実施例8
試験
実施例6及び比較例7の配合済み触媒複合材を、希薄/過濃サイクル下にて10%の水中で950℃で5時間エージングした。エージング済み複合材を、異なる温度(300℃、350℃及び450℃)でラムダスイーププロトコルで試験した。条件は次の通りであった:GHSV=125000h−1(1mLの被覆触媒まで標準化)及び振動フィード(λavg±0.025、0.5秒希薄、0.5秒過濃、50秒/位置)。
Example 8
Test The formulated catalyst composites of Example 6 and Comparative Example 7 were aged at 950 ° C. for 5 hours in 10% water under a lean / overconcentrated cycle. Aged composites were tested with lambda sweep protocol at different temperatures (300 ° C, 350 ° C and 450 ° C). Conditions were as follows: GHSV = 15000 h −1 (standardized to 1 mL of coated catalyst) and vibration feed (λavg ± 0.025, 0.5 s dilute, 0.5 s overdense, 50 s / position) .

実施例6の触媒複合材は、300℃〜350℃での炭化水素(HC)の転化率について利点を示した。図4は、300℃〜350℃、特に過濃条件下での実施例6及び比較例7の配合済み触媒複合材の場合について炭化水素(HC)の排出物の転化率を示す。400℃以上では、大きな利点はなかった。図5に示すように、一酸化炭素(CO)の転化率の場合、実施例6の触媒複合材は300℃〜350℃での改善を示した。窒素酸化物(NO)の転化率の場合、大きな違いはなかったが、触媒の試験方法自体が要因となり得る、即ち、NOx転化率が高すぎるために、2つの触媒間の違い(支持体材料の違いではない)を区別することができないことに留意するべきである。   The catalyst composite of Example 6 showed advantages for hydrocarbon (HC) conversion at 300 ° C to 350 ° C. FIG. 4 shows the conversion of hydrocarbon (HC) emissions for the blended catalyst composites of Example 6 and Comparative Example 7 under conditions of 300 ° C. to 350 ° C., particularly overrich conditions. There was no significant advantage above 400 ° C. As shown in FIG. 5, in the case of the conversion of carbon monoxide (CO), the catalyst composite of Example 6 showed an improvement at 300 ° C. to 350 ° C. In the case of nitrogen oxide (NO) conversion, there was no significant difference, but the test method of the catalyst itself could be a factor, i.e. the NOx conversion was too high, so the difference between the two catalysts (support material) It should be noted that it is not possible to distinguish between them.

本明細書を通して、「一実施形態」、「ある実施形態」、「1つ以上の実施形態」又は「実施形態」への言及は、実施形態に関連して記載された特定の特徴、構造、材料又は特性が本発明の少なくとも1つの実施形態に含まれることを意味する。従って、本明細書を通して様々な箇所における「1つ以上の実施形態では」、「ある実施形態では」、「一実施形態では」、又は「実施形態では」などの表現の出現は、必ずしも本発明の同じ実施形態を意味していない。さらには、特定の特徴、構造、材料、又は特性は、1つ以上の実施形態で任意の適切な方法で組み合わされ得る。   Throughout this specification, references to “one embodiment,” “an embodiment,” “one or more embodiments,” or “embodiments” refer to particular features, structures, It means that a material or property is included in at least one embodiment of the invention. Thus, the appearances of the phrases “in one or more embodiments”, “in one embodiment”, “in one embodiment”, or “in an embodiment” in various places throughout this specification are not necessarily the invention. Does not imply the same embodiment. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments.

本発明を好ましい実施形態に重点を置いて説明してきたが、好ましい装置及び方法のバリエーションを使用してよく、本発明を本明細書に具体的に記載されている以外の方法で実施してもよいことが意図されていることは当業者には明らかであろう。従って、本発明は、以下の特許請求の範囲によって定義される本発明の趣旨及び範囲内に包含される全ての変更を含む。   Although the present invention has been described with emphasis on preferred embodiments, preferred apparatus and method variations may be used, and the invention may be practiced otherwise than as specifically described herein. It will be apparent to those skilled in the art that it is intended to be good. Accordingly, this invention includes all modifications encompassed within the spirit and scope of the invention as defined by the following claims.

Claims (23)

排ガス浄化触媒用の混合金属酸化物の複合材であって、前記複合材は、
55〜99質量%の範囲の量のジルコニア;
1〜25質量%の範囲の量のチタニア;
0〜20質量%の範囲の量の助触媒及び/又は安定剤
を含み、前記複合材は、白金族金属(PGM)のための支持体として有効である、前記複合材。
A mixed metal oxide composite for exhaust gas purification catalyst, wherein the composite is
Zirconia in an amount ranging from 55 to 99% by weight;
Titania in an amount ranging from 1 to 25% by weight;
Said composite comprising an amount of cocatalyst and / or stabilizer in the range of 0-20% by weight, said composite being effective as a support for platinum group metals (PGM).
前記助触媒が希土類金属酸化物を含み且つ0.1%〜20%の範囲の量で存在する、請求項1に記載の複合材。   The composite of claim 1, wherein the promoter comprises a rare earth metal oxide and is present in an amount ranging from 0.1% to 20%. 前記助触媒がランタナ、タングスタ、セリア、ネオジミア、ガドリニア、イットリア、プラセオジミア、サマリア、ハフニア、又はそれらの組み合わせを含む、請求項1に記載の複合材。   The composite of claim 1, wherein the promoter comprises lantana, tungsta, ceria, neodymia, gadolinia, yttria, praseodymia, samaria, hafnia, or combinations thereof. 前記安定剤が0.1%〜5%の範囲の量で存在し且つ酸化ケイ素を含む、請求項1に記載の複合材。   The composite of claim 1, wherein the stabilizer is present in an amount ranging from 0.1% to 5% and comprises silicon oxide. 前記安定剤が0.1%〜10%の範囲の量で存在し且つアルカリ土類金属酸化物を含む、請求項1に記載の複合材。   The composite of claim 1, wherein the stabilizer is present in an amount ranging from 0.1% to 10% and comprises an alkaline earth metal oxide. セリア含有率が20質量%以下である、請求項1に記載の複合材。   The composite material of Claim 1 whose ceria content rate is 20 mass% or less. 前記ジルコニア、前記チタニア、及び前記助触媒及び/又は前記安定剤が共沈されている、請求項1に記載の複合材。   The composite according to claim 1, wherein the zirconia, the titania, and the promoter and / or the stabilizer are co-precipitated. 前記ジルコニア及び前記助触媒及び/又は前記安定剤が共沈されており、前記チタニアがチタニア前駆体から含浸されている、請求項1に記載の複合材。   The composite according to claim 1, wherein the zirconia and the promoter and / or the stabilizer are co-precipitated and the titania is impregnated from a titania precursor. 前記チタニア前駆体が、チタン塩、チタン含有有機錯体、チタニアゾル、又はコロイド状チタニアを含む、請求項8に記載の複合材。   The composite of claim 8, wherein the titania precursor comprises a titanium salt, a titanium-containing organic complex, a titania sol, or a colloidal titania. 1000℃で12時間、炉でエージングした後、10〜40m/gの範囲の表面積を有する、請求項1に記載の複合材。 12 hours at 1000 ° C., after aging in a furnace, having a surface area in the range of 10 to 40 m 2 / g, the composite material according to claim 1. 燃焼機関の排ガス流を処理するための触媒複合材であって、前記触媒複合材は、担体上に触媒材料を含み、前記触媒材料が、請求項1に記載の混合金属酸化物の複合材の上に担持された白金族金属(PGM)を含む、前記触媒複合材。   A catalyst composite for treating an exhaust gas flow of a combustion engine, wherein the catalyst composite includes a catalyst material on a support, and the catalyst material is a composite metal oxide composite according to claim 1. The catalyst composite comprising platinum group metal (PGM) supported thereon. 前記混合金属酸化物の複合材が55〜90質量%の範囲の量のジルコニア;5〜25質量%の範囲の量のチタニア;5〜20質量%の範囲の量のランタン酸化物を含有する助触媒を含み;且つ
前記白金族金属がロジウムを含む、請求項11に記載の触媒複合材。
The mixed metal oxide composite contains zirconia in an amount in the range of 55-90% by weight; titania in an amount in the range of 5-25% by weight; lanthanum oxide in an amount in the range of 5-20% by weight. The catalyst composite of claim 11, comprising a catalyst; and the platinum group metal comprises rhodium.
0.1質量%〜5質量%の範囲の量のロジウムを含む、請求項11に記載の触媒複合材。   12. The catalyst composite of claim 11 comprising rhodium in an amount ranging from 0.1% to 5% by weight. 5〜250の範囲というロジウムに対するチタニアの質量比を有する、請求項11に記載の触媒複合材。   12. The catalyst composite of claim 11 having a mass ratio of titania to rhodium in the range of 5 to 250. 950℃でエージングした後に、50%以上という一酸化炭素、窒素酸化物及び水素の転化率;及び300℃での希薄過濃ラムダスイープ試験中に0.98〜1.02の範囲のラムダで10%以上という炭化水素の転化率をもたらすのに有効である0.25質量%のロジウムを含む、請求項13に記載の触媒複合材。   After aging at 950 ° C., conversion of carbon monoxide, nitrogen oxides and hydrogen of 50% or more; and 10 for lambda in the range of 0.98 to 1.02 during a lean overconcentrated lambda sweep test at 300 ° C. 14. The catalyst composite of claim 13 comprising 0.25 wt% rhodium effective to provide a hydrocarbon conversion of greater than or equal to 100%. 内燃機関の炭化水素、一酸化炭素、及び窒素酸化物を含む排ガス流を処理するためのシステムであって、
この排ガス処理システムは、
排気マニホールドを介して内燃機関と流体連通する排気管;及び
請求項11に記載の触媒複合材
を含む、前記システム。
A system for treating an exhaust gas stream comprising hydrocarbons, carbon monoxide, and nitrogen oxides of an internal combustion engine,
This exhaust gas treatment system
12. An exhaust pipe in fluid communication with an internal combustion engine via an exhaust manifold; and the system comprising the catalyst composite of claim 11.
炭化水素、一酸化炭素、及び窒素酸化物を含む気体流を請求項11に記載の触媒複合材と接触させることを含む排ガスの処理方法。   A method for treating exhaust gas comprising contacting a gas stream comprising hydrocarbons, carbon monoxide, and nitrogen oxides with the catalyst composite of claim 11. 前記混合金属酸化物の複合材が、55〜90質量%の範囲の量のジルコニア;5〜25質量%の範囲の量のチタニア;5〜20質量%の範囲の量のランタン酸化物を含有する助触媒を含み且つ前記白金族金属が、0.1〜5質量%の範囲の量の、例えば0.25質量%のロジウムを含み;且つ
950℃でエージングした後、前記触媒複合材が50%以上という一酸化炭素、窒素酸化物、及び水素の転化率;及び300℃での希薄過濃ラムダスイープ試験中に0.98〜1.02の範囲のラムダで10%以上という炭化水素の転化率をもたらすのに有効である、請求項17に記載の方法。
The mixed metal oxide composite contains zirconia in an amount in the range of 55-90% by weight; titania in an amount in the range of 5-25% by weight; lanthanum oxide in an amount in the range of 5-20% by weight. Containing a cocatalyst and the platinum group metal in an amount ranging from 0.1 to 5% by weight, for example 0.25% by weight rhodium; and after aging at 950 ° C., the catalyst composite is 50% Carbon monoxide, nitrogen oxides, and hydrogen conversion rates as described above; and hydrocarbon conversion rates of 10% or more with lambda in the range of 0.98 to 1.02 during the lean overconcentrated lambda sweep test at 300 ° C. The method of claim 17, wherein the method is effective to provide
混合金属酸化物の複合材の製造方法であって、
ジルコニウムの塩、金属助触媒の塩、及び任意に安定剤の塩の第1水溶液を得る又は形成すること;
チタンの塩の第2水溶液を得る又は形成すること;
前記第1水溶液と前記第2水溶液とを混合すること;並びに
ジルコニウム、任意の助触媒又は安定剤の金属、及びチタンを塩基性条件下で共沈させること;それによって共沈した混合金属酸化物の複合材を形成すること
を含む、前記製造方法。
A method for producing a mixed metal oxide composite,
Obtaining or forming a first aqueous solution of a salt of zirconium, a salt of a metal promoter, and optionally a stabilizer;
Obtaining or forming a second aqueous solution of a salt of titanium;
Mixing the first aqueous solution with the second aqueous solution; and coprecipitating zirconium, an optional promoter or stabilizer metal, and titanium under basic conditions; thereby the mixed metal oxide coprecipitated Forming said composite material.
前記共沈した混合金属酸化物の複合材が、
55〜99%の範囲の量のジルコニア;1〜25%の範囲の量のチタニア;0〜20%の範囲の量の助触媒及び/又は安定剤
を含む、請求項19に記載の方法。
The co-precipitated mixed metal oxide composite is
20. A process according to claim 19, comprising an amount of zirconia in the range of 55-99%; an amount of titania in the range of 1-25%; an amount of promoter and / or stabilizer in the range of 0-20%.
前記共沈した混合金属酸化物の複合材を乾燥及び焼成することを更に含む、請求項19に記載の方法。   20. The method of claim 19, further comprising drying and firing the co-precipitated mixed metal oxide composite. 混合金属酸化物の複合材の製造方法であって、
共沈したジルコニア及び金属助触媒及び任意の安定剤を得ること;
チタンの前駆体の水溶液を得ること;
前記共沈したジルコニア及び金属助触媒にチタンの前駆体を含浸させること;
それによって混合金属酸化物の複合材を形成すること
を含む、前記製造方法。
A method for producing a mixed metal oxide composite,
Obtaining co-precipitated zirconia and metal promoters and optional stabilizers;
Obtaining an aqueous solution of a precursor of titanium;
Impregnating the coprecipitated zirconia and metal promoter with a precursor of titanium;
Forming said mixed metal oxide composite.
前記混合金属酸化物の複合材が55〜99%の範囲の量のジルコニア;1〜25%の範囲の量のチタニア;0〜20%の範囲の量の助触媒及び/又は安定剤を含む、請求項22に記載の方法。   The mixed metal oxide composite comprises an amount of zirconia in the range of 55-99%; an amount of titania in the range of 1-25%; an amount of promoter and / or stabilizer in the range of 0-20%; The method of claim 22.
JP2017512699A 2014-09-05 2015-08-28 Titania-doped zirconia as a platinum group metal support in catalysts for treating combustion engine exhaust streams Active JP6805129B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462046465P 2014-09-05 2014-09-05
US62/046,465 2014-09-05
PCT/US2015/047386 WO2016036592A1 (en) 2014-09-05 2015-08-28 Titania-doped zirconia as platinum group metal support in catalysts for treatment of combustion engine exhausts streams

Publications (2)

Publication Number Publication Date
JP2017532192A true JP2017532192A (en) 2017-11-02
JP6805129B2 JP6805129B2 (en) 2020-12-23

Family

ID=55440280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017512699A Active JP6805129B2 (en) 2014-09-05 2015-08-28 Titania-doped zirconia as a platinum group metal support in catalysts for treating combustion engine exhaust streams

Country Status (6)

Country Link
US (2) US10247071B2 (en)
EP (1) EP3188833A4 (en)
JP (1) JP6805129B2 (en)
KR (1) KR20170047378A (en)
CN (1) CN106999921B (en)
WO (1) WO2016036592A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017012842A1 (en) 2015-07-22 2017-01-26 Basf Se Process for preparing furan-2,5-dicarboxylic acid
KR20180080260A (en) 2015-11-04 2018-07-11 바스프 에스이 Method for producing furan-2,5-dicarboxylic acid
JP2018536656A (en) 2015-11-04 2018-12-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Process for preparing a mixture comprising 5- (hydroxymethyl) furfural and certain HMF esters
KR20200067216A (en) * 2017-11-02 2020-06-11 바스프 코포레이션 Niobium oxide-doped material as rhodium support for three-way catalyst application
KR102651643B1 (en) * 2018-08-27 2024-03-27 바스프 코포레이션 Base metal doped zirconium oxide catalyst support material
GB201901560D0 (en) * 2019-02-05 2019-03-27 Magnesium Elektron Ltd Zirconium based dispersion for use in coating filters

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156545A (en) * 1986-12-18 1988-06-29 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas
JPH04330940A (en) * 1991-05-01 1992-11-18 Mitsubishi Heavy Ind Ltd Oxidation catalyst
JPH08192051A (en) * 1995-01-13 1996-07-30 Toyota Central Res & Dev Lab Inc Catalyst for purification of exhaust gas
JP2000327329A (en) * 1999-03-15 2000-11-28 Toyota Central Res & Dev Lab Inc Titania-zirconia-based powder and its production
WO2002066155A1 (en) * 2001-02-19 2002-08-29 Toyota Jidosha Kabushiki Kaisha Exhaust gas clarification catalyst
JP2004513771A (en) * 2001-05-16 2004-05-13 ケイエイチ ケミカルズ カンパニー、リミテッド Catalyst for purification of diesel engine exhaust gas
JP2010506713A (en) * 2006-10-20 2010-03-04 ロデイア・オペラシヨン High acidity composition containing zirconium oxide, titanium oxide and tungsten oxide, process for its preparation, and its use in the treatment of exhaust gases
JP2011136257A (en) * 2009-12-25 2011-07-14 Toyota Motor Corp Catalyst carrier for purifying exhaust gas and catalyst for purifying exhaust gas using the catalyst carrier
CN103130755A (en) * 2013-01-23 2013-06-05 华南理工大学 Method for preparing furfural through catalytic conversion of xylose by acid photocatalyst under ultraviolet light
JP2014517765A (en) * 2011-04-29 2014-07-24 上海浦景化工技術有限公司 Composite support catalyst for synthesizing ethylene glycol by hydrogenation of alkyl oxalate and method for producing the same

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904633A (en) 1986-12-18 1990-02-27 Nippon Shokubai Kagaku Kogyo Co., Ltd. Catalyst for purifying exhaust gas and method for production thereof
JPH0724774B2 (en) * 1988-11-25 1995-03-22 株式会社日本触媒 Exhaust gas treatment catalyst carrier, method for producing the same, and exhaust gas treatment catalyst containing the carrier
JPH04166228A (en) 1990-09-28 1992-06-12 Mitsubishi Heavy Ind Ltd Oxidation catalyst
US5580536A (en) * 1993-06-21 1996-12-03 Santoku Metal Industry Co., Ltd. Composite oxide having oxygen absorbing and desorbing capability and method for preparing same
DE4400300A1 (en) * 1994-01-07 1995-07-13 Akzo Nobel Nv Process for the production of film- and fiber-forming polyesters and copolyesters
EP0707882A1 (en) * 1994-10-21 1996-04-24 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gases
US6117814A (en) * 1998-02-10 2000-09-12 Exxon Research And Engineering Co. Titania catalysts their preparation and use in fischer-tropsch synthesis
JP4329185B2 (en) 1998-10-19 2009-09-09 日産自動車株式会社 Exhaust gas purification system
DK1129764T3 (en) * 2000-03-01 2006-01-23 Umicore Ag & Co Kg Catalyst for exhaust gas purification from diesel engines and process for its manufacture
JP3858625B2 (en) * 2000-07-27 2006-12-20 株式会社豊田中央研究所 Composite oxide and its production method, exhaust gas purification catalyst and its production method
US7871957B2 (en) * 2002-03-28 2011-01-18 Utc Power Corporation Catalyst support of mixed cerium zirconium titanium oxide, including use and method of making
US7037875B2 (en) * 2003-04-04 2006-05-02 Engelhard Corporation Catalyst support
KR100935065B1 (en) * 2005-09-29 2009-12-31 수미도모 메탈 인더스트리즈, 리미티드 Titanium oxide photocatalyst, its manufacturing method and use
US7521394B2 (en) * 2005-12-29 2009-04-21 The Board Of Trustees Of The University Of Illinois Nanoparticles containing titanium oxide
US7820583B2 (en) * 2006-08-24 2010-10-26 Millennium Inorganic Chemicals, Inc. Nanocomposite particle and process of preparing the same
US7802420B2 (en) 2007-07-26 2010-09-28 Eaton Corporation Catalyst composition and structure for a diesel-fueled autothermal reformer placed in and exhaust stream
FR2928094B1 (en) * 2008-03-03 2014-07-11 Rhodia Operations COMPOSITION BASED ON ZIRCONIUM OXIDE, TITANIUM OXIDE OR MIXED ZIRCONIUM AND TITANIUM OXIDE ON SILICA SUPPORT, METHODS OF PREPARATION AND USE AS CATALYST
FR2928364B1 (en) * 2008-03-05 2011-10-14 Rhodia Operations COMPOSITION BASED ON A ZIRCONIUM OXIDE, A TITANIUM OXIDE OR A MIXED OXIDE OF ZIRCONIUM AND TITANIUM ON AN ALUMINUM SUPPORT, METHODS OF PREPARATION AND USE AS A CATALYST
CN101385973B (en) * 2008-11-05 2011-04-27 中国海洋石油总公司 Preparation method of cleaning catalyst capable of increasing low-temperature initiation performance
US8148295B2 (en) * 2009-02-16 2012-04-03 Millennium Inorganic Chemicals, Inc. Catalyst promoters in vanadium-free mobile catalyst
CN102050942A (en) * 2009-11-02 2011-05-11 远东新世纪股份有限公司 Titaniferous composition and method for catalyzing polyesterification reaction by same
US8617502B2 (en) * 2011-02-07 2013-12-31 Cristal Usa Inc. Ce containing, V-free mobile denox catalyst
US9011784B2 (en) 2011-08-10 2015-04-21 Clean Diesel Technologies, Inc. Catalyst with lanthanide-doped zirconia and methods of making

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156545A (en) * 1986-12-18 1988-06-29 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas
JPH04330940A (en) * 1991-05-01 1992-11-18 Mitsubishi Heavy Ind Ltd Oxidation catalyst
JPH08192051A (en) * 1995-01-13 1996-07-30 Toyota Central Res & Dev Lab Inc Catalyst for purification of exhaust gas
JP2000327329A (en) * 1999-03-15 2000-11-28 Toyota Central Res & Dev Lab Inc Titania-zirconia-based powder and its production
WO2002066155A1 (en) * 2001-02-19 2002-08-29 Toyota Jidosha Kabushiki Kaisha Exhaust gas clarification catalyst
JP2004513771A (en) * 2001-05-16 2004-05-13 ケイエイチ ケミカルズ カンパニー、リミテッド Catalyst for purification of diesel engine exhaust gas
JP2010506713A (en) * 2006-10-20 2010-03-04 ロデイア・オペラシヨン High acidity composition containing zirconium oxide, titanium oxide and tungsten oxide, process for its preparation, and its use in the treatment of exhaust gases
JP2011136257A (en) * 2009-12-25 2011-07-14 Toyota Motor Corp Catalyst carrier for purifying exhaust gas and catalyst for purifying exhaust gas using the catalyst carrier
JP2014517765A (en) * 2011-04-29 2014-07-24 上海浦景化工技術有限公司 Composite support catalyst for synthesizing ethylene glycol by hydrogenation of alkyl oxalate and method for producing the same
CN103130755A (en) * 2013-01-23 2013-06-05 华南理工大学 Method for preparing furfural through catalytic conversion of xylose by acid photocatalyst under ultraviolet light

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAHASHI, N. ET AL.: "Sulfur durability of NOx storage and reduction catalyst with supports of TiO2, ZrO2 and ZrO2-TiO2 mi", APPLIED CATALYSIS B:ENVIRONMENTAL, vol. 72, JPN6019020939, 28 November 2006 (2006-11-28), NL, pages 187 - 195, ISSN: 0004235671 *

Also Published As

Publication number Publication date
US20170284251A1 (en) 2017-10-05
US20190178128A1 (en) 2019-06-13
EP3188833A1 (en) 2017-07-12
CN106999921B (en) 2021-03-23
JP6805129B2 (en) 2020-12-23
US10247071B2 (en) 2019-04-02
WO2016036592A1 (en) 2016-03-10
EP3188833A4 (en) 2018-05-16
KR20170047378A (en) 2017-05-04
CN106999921A (en) 2017-08-01
US10883402B2 (en) 2021-01-05

Similar Documents

Publication Publication Date Title
KR102536415B1 (en) Layered Automotive Catalyst Complex
KR102483435B1 (en) Nitrous oxide removal catalysts for exhaust systems
US20140369912A1 (en) Integrated Supports for Emission Control Catalysts
US10883402B2 (en) Titania-doped zirconia as platinum group metal support in catalysts for treatment of combustion engine exhausts streams
US8007750B2 (en) Multilayered catalyst compositions
JP5651685B2 (en) Improved lean HC conversion of TWC for lean burn gasoline engine
US11260372B2 (en) Catalyst system for lean gasoline direct injection engines
WO2012029050A1 (en) Catalyst for gasoline lean burn engines with improved no oxidation activity
US20180071679A1 (en) Automotive Catalysts With Palladium Supported In An Alumina-Free Layer
JP2019520974A (en) Catalyst article comprising a combination of PGM and OSC
US20220001370A1 (en) Layered catalysts composition and catalytic article and methods of manufacturing and using the same
US20230330653A1 (en) Three-way conversion catalytic article
WO2023041407A1 (en) Zoned three-way conversion catalysts comprising platinum, palladium, and rhodium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190610

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190909

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200323

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201203

R150 Certificate of patent or registration of utility model

Ref document number: 6805129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150