JP2017527399A - 疾患検出のための装置及び方法 - Google Patents
疾患検出のための装置及び方法 Download PDFInfo
- Publication number
- JP2017527399A JP2017527399A JP2017514559A JP2017514559A JP2017527399A JP 2017527399 A JP2017527399 A JP 2017527399A JP 2017514559 A JP2017514559 A JP 2017514559A JP 2017514559 A JP2017514559 A JP 2017514559A JP 2017527399 A JP2017527399 A JP 2017527399A
- Authority
- JP
- Japan
- Prior art keywords
- disease
- model
- disease detection
- data
- patient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
本特許出願は、2014年9月9日に提出された米国仮特許出願第62/047,988号「敗血症検出アルゴリズム」の利益を主張するものであり、参照によりその全体が本明細書に援用される。
ファイル変換等の任意の適切な動作を実行して、入力データを再フォーマットすることができる。
Claims (16)
- 疾患検出のために時系列でサンプリングされた患者に関連するデータ事象を受信するように構成されたインターフェース回路と、
前記疾患の有無を診断された患者からの時系列データ事象に基づいて機械学習された疾患を検出するためのモデルの構成を記憶するように構成されたメモリ回路と、
前記疾患の発生を検出するために前記モデルを前記データ事象に適用するように構成された疾患検出回路と、
を備える疾患検出のためのシステム。 - 前記メモリ回路は、敗血症、市中肺炎(CAP)、クロストリジウム・ディフィシル(CDF)感染、及び羊水内感染(IAI)の少なくとも1つを検出するための前記モデルの構成を記憶するように構成される、請求項1に記載のシステム。
- 前記疾患検出回路は、前記疾患の有無を診断された前記患者の前記時系列データ事象を取り込み、前記取り込まれた時系列データ事象に基づいて前記モデルを構築するように構成される、請求項1に記載のシステム。
- 前記疾患検出回路は、前記疾患を有すると診断された患者の、前記疾患が診断された時刻の前の第1の時間期間、及び前記疾患が診断された時刻の後の第2の時間期間の前記時系列データ事象を選択するように構成される 、請求項3に記載のシステム。
- 前記疾患検出回路は、前記時系列データ事象から特徴を抽出し、前記抽出された特徴を使用して前記モデルを構築するように構成される、請求項3に記載のシステム。
- 前記疾患検出回路は、ランダムフォレスト法を用いて前記モデルを構築するように構成される、請求項3に記載のシステム。
- 前記疾患検出回路は、前記時系列データ事象を訓練集合及び検証集合に分割し、前記訓練集合に基づいて前記モデルを構築し、前記検証集合に基づいて前記モデルを検証するように構成される、請求項3に記載のシステム。
- 前記患者に関連する前記データ事象が疾患検出に十分であるか否かを判定し、前記データ事象が不十分である場合に、より多くのデータ事象を待つために前記データ事象を前記メモリ回路に記憶するように構成される、請求項1に記載のシステム。
- 疾患の有無を診断された患者の時系列データ事象に基づいて機械学習された疾患を検出するためのモデルの構成を記憶し、
疾患検出のために異なる時間にサンプリングされた患者に関連するデータ事象を受信し、
前記患者の前記疾患の発生を検出するために前記モデルを前記データ事象に適用する、
を有する疾患検出のための方法。 - 前記疾患を検出するための前記モデルの構成を記憶することは、
敗血症、市中肺炎(CAP)、クロストリジウム・ディフィシル(CDF)感染、及び羊水内感染(IAI)の少なくとも1つを検出するための前記モデルの構成を記憶すること、
をさらに有する、請求項9に記載の方法。 - 前記疾患の有無を診断された前記患者の前記時系列データ事象を取り込み、
前記取り込まれた時系列データ事象に基づいて前記モデルを構築すること、
をさらに有する、請求項9に記載の方法。 - 前記疾患を有すると診断された患者の、前記疾患が診断された時刻の前の第1の時間期間、及び前記疾患が診断された時刻の後の第2の時間期間の前記時系列データ事象を選択すること、
をさらに有する、請求項11に記載の方法。 - 前記時系列データ事象から特徴を抽出し、
前記抽出された特徴を使用して前記モデルを構築すること、
をさらに有する、請求項11に記載の方法。 - ランダムフォレスト法を用いて前記モデルを構築すること、
をさらに有する、請求項11に記載の方法。 - 前記時系列データ事象を訓練集合及び検証集合に分割し、
前記訓練集合に基づいて前記モデルを構築し、
前記検証集合に基づいて前記モデルを検証すること、
をさらに有する、請求項11に記載の方法。 - 前記患者に関連する前記データ事象が疾患検出に十分であるか否かを判定し、
前記データ事象が不十分である場合に、より多くのデータ事象を待つために前記データ事象を前記メモリ回路に記憶すること、
をさらに有する、請求項9に記載の方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462047988P | 2014-09-09 | 2014-09-09 | |
US62/047,988 | 2014-09-09 | ||
PCT/US2015/048900 WO2016040295A1 (en) | 2014-09-09 | 2015-09-08 | Method and apparatus for disease detection |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017527399A true JP2017527399A (ja) | 2017-09-21 |
Family
ID=54186291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017514559A Pending JP2017527399A (ja) | 2014-09-09 | 2015-09-08 | 疾患検出のための装置及び方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20160070879A1 (ja) |
EP (1) | EP3191988A1 (ja) |
JP (1) | JP2017527399A (ja) |
KR (1) | KR20170053693A (ja) |
AU (1) | AU2015315397A1 (ja) |
CA (1) | CA2960815A1 (ja) |
WO (1) | WO2016040295A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020175892A3 (ko) * | 2019-02-26 | 2020-12-10 | 사회복지법인 삼성생명공익재단 | 확률 모델을 이용한 관상동맥 석회화 수치의 예측장치, 이의 예측방법 및 기록매체 |
US11682491B2 (en) | 2019-06-18 | 2023-06-20 | Canon Medical Systems Corporation | Medical information processing apparatus and medical information processing method |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017015234A1 (en) * | 2015-07-17 | 2017-01-26 | Albert Joseph Swiston | Methods and systems for pre-symptomatic detection of exposure to an agent |
WO2017201323A1 (en) * | 2016-05-18 | 2017-11-23 | Massachusetts Institute Of Technology | Methods and systems for pre-symptomatic detection of exposure to an agent |
US20180261330A1 (en) * | 2017-03-10 | 2018-09-13 | Roundglass Llc | Analytic and learning framework for quantifying value in value based care |
WO2019025901A1 (en) * | 2017-08-02 | 2019-02-07 | Mor Research Applications Ltd. | SYSTEMS AND METHODS FOR PREDICTING THE APPEARANCE OF A SEPSIE |
KR101886374B1 (ko) * | 2017-08-16 | 2018-08-07 | 재단법인 아산사회복지재단 | 딥러닝 기반의 패혈증 조기 감지방법 및 프로그램 |
US20210249136A1 (en) * | 2018-08-17 | 2021-08-12 | The Regents Of The University Of California | Diagnosing hypoadrenocorticism from hematologic and serum chemistry parameters using machine learning algorithm |
CN111696682A (zh) * | 2020-05-26 | 2020-09-22 | 平安科技(深圳)有限公司 | 数据处理方法、装置、电子设备及可读存储介质 |
CN113017572B (zh) * | 2021-03-17 | 2023-11-28 | 上海交通大学医学院附属瑞金医院 | 一种重症预警方法、装置、电子设备及存储介质 |
DE102022201630A1 (de) * | 2021-03-30 | 2022-10-06 | Siemens Healthcare Gmbh | Verfahren und System zu einer Bereitstellung einer Information über einen Gesundheitszustand eines Patienten |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030100841A1 (en) * | 1998-03-17 | 2003-05-29 | Griffin M. Pamela | Method for the early diagnosis of subacute, potentially catastrophic illness |
US6658287B1 (en) * | 1998-08-24 | 2003-12-02 | Georgia Tech Research Corporation | Method and apparatus for predicting the onset of seizures based on features derived from signals indicative of brain activity |
US20040122790A1 (en) * | 2002-12-18 | 2004-06-24 | Walker Matthew J. | Computer-assisted data processing system and method incorporating automated learning |
WO2007010521A2 (en) * | 2005-07-18 | 2007-01-25 | Integralis Ltd. | Apparatus, method and computer readable code for forecasting the onset of potentially life-threatening disease |
JP2007052774A (ja) * | 1995-07-25 | 2007-03-01 | Ortho-Clinical Diagnostics Inc | コンピュータ援用疾病診断方法 |
US20120290319A1 (en) * | 2010-11-11 | 2012-11-15 | The Board Of Trustees Of The Leland Stanford Junior University | Automatic coding of patient outcomes |
WO2013003787A2 (en) * | 2011-06-30 | 2013-01-03 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | A system and method of determining a susceptibility to cardiorespiratory insufficiency |
WO2013036677A1 (en) * | 2011-09-06 | 2013-03-14 | The Regents Of The University Of California | Medical informatics compute cluster |
CN103150611A (zh) * | 2013-03-08 | 2013-06-12 | 北京理工大学 | Ii型糖尿病发病概率分层预测方法 |
EP2713293A2 (en) * | 2012-09-27 | 2014-04-02 | Siemens Medical Solutions USA, Inc. | Rapid community learning for predictive models of medical knowledge |
WO2014063256A1 (en) * | 2012-10-26 | 2014-05-01 | Ottawa Hospital Research Institute | System and method for providing multi-organ variability decision support for extubation management |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4643445B2 (ja) * | 2002-11-12 | 2011-03-02 | ベクトン,ディッキンソン アンド カンパニー | バイオマーカープロフィールを使用した敗血症またはsirsの診断 |
US8956292B2 (en) * | 2005-03-02 | 2015-02-17 | Spacelabs Healthcare Llc | Trending display of patient wellness |
US20090104605A1 (en) * | 2006-12-14 | 2009-04-23 | Gary Siuzdak | Diagnosis of sepsis |
WO2013009890A2 (en) * | 2011-07-13 | 2013-01-17 | The Multiple Myeloma Research Foundation, Inc. | Methods for data collection and distribution |
US10188302B2 (en) * | 2011-12-31 | 2019-01-29 | The University Of Vermont And State Agriculture College | Methods for dynamic visualization of clinical parameters over time |
US20130281871A1 (en) * | 2012-04-18 | 2013-10-24 | Professional Beef Services, Llc | System and method for classifying the respiratory health status of an animal |
CN105163659B (zh) * | 2013-05-01 | 2018-10-23 | 株式会社国际电气通信基础技术研究所 | 脑活动分析装置、脑活动分析方法以及生物标记物装置 |
-
2015
- 2015-09-08 US US14/847,337 patent/US20160070879A1/en not_active Abandoned
- 2015-09-08 JP JP2017514559A patent/JP2017527399A/ja active Pending
- 2015-09-08 WO PCT/US2015/048900 patent/WO2016040295A1/en active Application Filing
- 2015-09-08 AU AU2015315397A patent/AU2015315397A1/en not_active Abandoned
- 2015-09-08 CA CA2960815A patent/CA2960815A1/en not_active Abandoned
- 2015-09-08 KR KR1020177009556A patent/KR20170053693A/ko unknown
- 2015-09-08 EP EP15767644.6A patent/EP3191988A1/en not_active Withdrawn
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007052774A (ja) * | 1995-07-25 | 2007-03-01 | Ortho-Clinical Diagnostics Inc | コンピュータ援用疾病診断方法 |
US20030100841A1 (en) * | 1998-03-17 | 2003-05-29 | Griffin M. Pamela | Method for the early diagnosis of subacute, potentially catastrophic illness |
US6658287B1 (en) * | 1998-08-24 | 2003-12-02 | Georgia Tech Research Corporation | Method and apparatus for predicting the onset of seizures based on features derived from signals indicative of brain activity |
US20040122790A1 (en) * | 2002-12-18 | 2004-06-24 | Walker Matthew J. | Computer-assisted data processing system and method incorporating automated learning |
WO2007010521A2 (en) * | 2005-07-18 | 2007-01-25 | Integralis Ltd. | Apparatus, method and computer readable code for forecasting the onset of potentially life-threatening disease |
US20120290319A1 (en) * | 2010-11-11 | 2012-11-15 | The Board Of Trustees Of The Leland Stanford Junior University | Automatic coding of patient outcomes |
WO2013003787A2 (en) * | 2011-06-30 | 2013-01-03 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | A system and method of determining a susceptibility to cardiorespiratory insufficiency |
WO2013036677A1 (en) * | 2011-09-06 | 2013-03-14 | The Regents Of The University Of California | Medical informatics compute cluster |
EP2713293A2 (en) * | 2012-09-27 | 2014-04-02 | Siemens Medical Solutions USA, Inc. | Rapid community learning for predictive models of medical knowledge |
WO2014063256A1 (en) * | 2012-10-26 | 2014-05-01 | Ottawa Hospital Research Institute | System and method for providing multi-organ variability decision support for extubation management |
CN103150611A (zh) * | 2013-03-08 | 2013-06-12 | 北京理工大学 | Ii型糖尿病发病概率分层预测方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020175892A3 (ko) * | 2019-02-26 | 2020-12-10 | 사회복지법인 삼성생명공익재단 | 확률 모델을 이용한 관상동맥 석회화 수치의 예측장치, 이의 예측방법 및 기록매체 |
US11682491B2 (en) | 2019-06-18 | 2023-06-20 | Canon Medical Systems Corporation | Medical information processing apparatus and medical information processing method |
Also Published As
Publication number | Publication date |
---|---|
KR20170053693A (ko) | 2017-05-16 |
AU2015315397A1 (en) | 2017-04-06 |
EP3191988A1 (en) | 2017-07-19 |
WO2016040295A1 (en) | 2016-03-17 |
CA2960815A1 (en) | 2016-03-17 |
US20160070879A1 (en) | 2016-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2017527399A (ja) | 疾患検出のための装置及び方法 | |
Ghosh et al. | Septic shock prediction for ICU patients via coupled HMM walking on sequential contrast patterns | |
US10332638B2 (en) | Methods and systems for pre-symptomatic detection of exposure to an agent | |
Pathak et al. | STQS: Interpretable multi-modal Spatial-Temporal-seQuential model for automatic Sleep scoring | |
Forkan et al. | A probabilistic model for early prediction of abnormal clinical events using vital sign correlations in home-based monitoring | |
Tsien et al. | Multiple signal integration by decision tree induction to detect artifacts in the neonatal intensive care unit | |
Sunitha et al. | A comparative analysis of deep neural network architectures for the dynamic diagnosis of COVID‐19 based on acoustic cough features | |
KR20190070430A (ko) | 빅데이터 분석 기반 질병 진단명 추정 방법 및 추정 장치 | |
TWI469764B (zh) | 生理參數指標運算系統、方法、記錄媒體及電腦程式產品 | |
Merone et al. | A decision support system for tele-monitoring COPD-related worrisome events | |
Singh et al. | [Retracted] A Machine Learning Model for Early Prediction and Detection of Sepsis in Intensive Care Unit Patients | |
Al-Mualemi et al. | A deep learning-based sepsis estimation scheme | |
CN116098595B (zh) | 一种心源性及脑源性猝死监测预防系统和方法 | |
Kristinsson et al. | Prediction of serious outcomes based on continuous vital sign monitoring of high-risk patients | |
Oei et al. | Towards early sepsis detection from measurements at the general ward through deep learning | |
Zaman et al. | A review on the significance of body temperature interpretation for early infectious disease diagnosis | |
Vispute et al. | An empirical comparison by data mining classification techniques for diabetes data set | |
Campero-Jurado et al. | Problems in pregnancy, modeling fetal mortality through the Naïve Bayes classifier. | |
Jadhav et al. | Monitoring and Predicting of Heart Diseases Using Machine Learning Techniques | |
Sekar et al. | Function formula oriented construction of bayesian inference nets for diagnosis of cardiovascular disease | |
Schmidt et al. | Clustering Emergency Department patients-an assessment of group normality | |
KR102544813B1 (ko) | 진료 행위를 위한 통합 중개 시스템 및 이를 이용한 중개 방법 | |
Addanke et al. | Original Research Article Secure IoT based smart system for monitoring health care for ambulatory and fetal | |
Tjahaja et al. | IoT cloud data warehouse management for telehealth purpose | |
D’Silva et al. | Prediction of Hypertension using Machine Learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180820 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190611 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190910 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200218 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200929 |