JP2017527399A - 疾患検出のための装置及び方法 - Google Patents

疾患検出のための装置及び方法 Download PDF

Info

Publication number
JP2017527399A
JP2017527399A JP2017514559A JP2017514559A JP2017527399A JP 2017527399 A JP2017527399 A JP 2017527399A JP 2017514559 A JP2017514559 A JP 2017514559A JP 2017514559 A JP2017514559 A JP 2017514559A JP 2017527399 A JP2017527399 A JP 2017527399A
Authority
JP
Japan
Prior art keywords
disease
model
disease detection
data
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017514559A
Other languages
English (en)
Inventor
ハットレリッド ジョン
ハットレリッド ジョン
アール.ルドウィック,ジュニア ジョン
アール.ルドウィック,ジュニア ジョン
ウィリアム オニール,ジュニア スティーブン
ウィリアム オニール,ジュニア スティーブン
ドラウゲリス マイク
ドラウゲリス マイク
Original Assignee
レイドス イノベイションズ テクノロジー,インコーポレイティド
レイドス イノベイションズ テクノロジー,インコーポレイティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レイドス イノベイションズ テクノロジー,インコーポレイティド, レイドス イノベイションズ テクノロジー,インコーポレイティド filed Critical レイドス イノベイションズ テクノロジー,インコーポレイティド
Publication of JP2017527399A publication Critical patent/JP2017527399A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

本開示の一側面は、疾患検出のためのシステムを提供する。システムは、インターフェース回路、メモリ回路、及び疾患検出回路を備える。インターフェース回路は、疾患検出のために異なる時間にサンプリングされた患者に関連するデータ事象を受信するように構成される。メモリ回路は、疾患を検出するためのモデルの構成を記憶するように構成される。モデルは、疾患の有無を診断された患者の時系列データ事象に基づく機械学習技術を用いて生成される。疾患検出回路は、疾患の発生を検出するためにモデルをデータ事象に適用するように構成される。

Description

関連出願の参照
本特許出願は、2014年9月9日に提出された米国仮特許出願第62/047,988号「敗血症検出アルゴリズム」の利益を主張するものであり、参照によりその全体が本明細書に援用される。
敗血症検出、市中肺炎(CAP:community acquired pneumonia)検出、クロストリジウム・ディフィシル(CDF:clostridium difficile)感染検出、羊水内感染(IAI:intra・amniotic infection)検出等では、早期疾患検出が重要とされる。例えば、敗血症は、感染に起因する全身性反応を示す。米国では、毎年0.8〜2百万人の患者が敗血症になり、敗血症患者の病院死亡率は18%から60%に及ぶ。死亡率が減少したにもかかわらず、敗血症の症例数の増加により敗血症関連の死亡者数は過去20年間で3倍に増加した。治療の遅延は死亡率に関連する。
本開示の一側面は、疾患検出のためのシステムを提供する。システムは、インターフェース回路、メモリ回路、及び疾患検出回路を備える。インターフェース回路は、疾患検出のために異なる時間にサンプリングされた患者に関連するデータ事象を受信するように構成される。メモリ回路は、疾患を検出するためのモデルの構成を記憶するように構成される。モデルは、疾患の有無を診断された患者からの時系列データ事象に基づく機械学習技術を用いて生成される。疾患検出回路は、疾患の発生を検出するためにモデルをデータ事象に適用するように構成される。
本開示の一側面において、メモリ回路は、敗血症、市中肺炎(CAP)、クロストリジウム・ディフィシル(CDF)感染、及び羊水内感染(IAI)の少なくとも1つを検出するためのモデルの構成を記憶するように構成される。
一実施形態では、疾患検出回路は、疾患の有無を診断された患者の時系列データ事象を取得し、取得された時系列データ事象に基づいてモデルを構築するように構成される。一例では、疾患検出回路は、疾患を有すると診断された患者の、疾患が診断された時刻の前の第1の時間期間、及び疾患が診断された時刻の後の第2の時間期間の時系列データ事象を選択する。さらに、疾患検出回路は、時系列データ事象から特徴を抽出し、抽出された特徴を使用してモデルを構築するように構成される。
一例では、疾患検出回路は、ランダムフォレスト(random forest)法を用いてモデルを構築するように構成される。さらに、疾患検出回路は、時系列データ事象を訓練集合及び検証集合に分割し、訓練集合に基づいてモデルを構築し、検証集合に基づいてモデルを検証するように構成される。
一例では、疾患検出回路は、患者に関連するデータ事象が疾患検出に十分であるか否かを判定し、データ事象が不十分な場合には、より多くのデータ事象を待つために、データ事象をメモリ回路に記憶するように構成される。
本開示の一側面は、疾患検出のための方法を提供する。この方法は、疾患を検出するためのモデルの構成を記憶することを備える。このモデルは、疾患の有無を診断された患者からの時系列データ事象に基づく機械学習技術を用いて構築される。さらに、この方法は、疾患検出のために異なる時間にサンプリングされた患者に関連するデータ事象を受信すし、モデルをデータ事象に適用して、患者の疾患の発生を検出すること、を有する。
実施例として提案される本開示の様々な実施形態は、以下の図を参照して詳細に説明され、同一の参照番号は同一の要素を示す。
本開示の一実施形態による疾患検出プラットフォーム100の概要を示す図である。 本開示の一実施形態による疾患検出システム220のブロック図を示す図である。 本開示の一実施形態による疾病検出のためのモデルを構築するためのプロセス例300を概説するフローチャートを示す図である。 本開示の一実施形態による疾患検出のためのプロセス例400を概説するフローチャートを示す図である。
以下に開示される方法及びシステムは、一般に記載され得るし、同様に、特定の実施例及び/又は特定の実施形態に関して記載され得る。詳細な実施例及び/又は実施形態を示す場合、記載されている基本的な原理のいずれも単一の実施形態に限定されるものではなく、特に明記しない限り、当業者に理解されるように、本明細書に記載された他の方法及びシステムのいずれかを使用するために拡大され得ることに留意されたい。
図1は、本開示の一実施形態による疾患検出プラットフォーム100の一例を示す概略図である。疾患検出プラットフォーム100は、疾患検出システム120、病院、診療所、ラボ等の複数の医療サービス提供者102〜105、及び、疾患検出システム120と複数の医療サービス提供者102〜105との間の通信を可能にするネットワークインフラストラクチャ101(例えば、インターネット、イーサネット(登録商標)、無線ネットワーク等)を含む。一実施形態では、疾患検出システム120は、時系列データ事象に基づいて生成される機械学習モデルに基づいて、リアルタイムでの疾患検出を実行するように構成される。
疾患検出プラットフォーム100は、様々な疾患検出サービスに使用することができる。一実施形態では、疾患検出プラットフォーム100は、敗血症検出に使用される。敗血症は、感染に起因する全身性反応を示す。米国では、毎年0.8〜2百万の患者が敗血症になり、敗血症患者の病院死亡率は18%から60%に及ぶ。死亡率が減少したにもかかわらず、敗血症の症例数の増加により敗血症関連の死亡者数は過去20年間で3倍に増加した。治療の遅延は死亡率に関連する。したがって、敗血症のタイムリーな予測が重要となる。
本実施形態では、疾患検出システム120は、医療サービス提供者102〜105からリアルタイムの患者情報を受信し、機械学習技術に基づいて構築されたモデルに基づいてリアルタイムで敗血症を予測する。リアルタイムの患者情報には、医療サービス提供者102〜105によって時間の経過とともに収集された患者に関する臨床検査、バイタル(vital)等が含まれる。本開示の一態様によれば、機械学習技術は、人間が分析することが困難な多数の変数間の隠れた相関を抽出することができる。一例では、機械学習モデルに基づく予測は、1分未満のような短時間で、初期段階での敗血症を予測することができ、早期の敗血症治療を診断された患者に提供することができる。
他の実施形態では、疾患検出プラットフォーム100は、市中肺炎(CAP)検出に使用される。CAPは、病原性生物の吸入に起因する肺感染症である。CAPは、特に高齢者及び免疫抑制患者において、高い死亡率を有する。これらの患者グループにとって、CAPは重大なリスクをもたらす。3つの病原体がCAP全体の85%を占める。これらの病原体は、肺炎連鎖球菌、ヘモフィルス・インフルエンザ(haemophilus influenzae)、及びモラクセラ・カタラーリスである(moraxella catarrhalis)。手作業での集中的なプロセスに依存する診断技術は、患者が肺炎を発症したかどうかを判断するのに比較的長い時間を要することがある。
本実施形態では、疾患検出システム120は、医療サービス提供者102〜105から、時間の経過とともに収集された患者に関する臨床検査やバイタル等のリアルタイム情報を受信し、機械学習技術に基づいて構築されたモデルに基づいてCAPを予測する。一例では、機械学習ベースのCAP予測は、1分未満のような短い時間で、初期段階でのCAPを予測することができ、早期の治療を診断された患者に提供することができる。
他の実施形態では、疾患検出プラットフォーム100は、クロストリジウム・ディフィシル(CDF:clostridium difficile)感染の検出に使用される。CDFは、病院で罹患する感染の一般的な原因であるグラム陽性菌である。CDFは、手術後に長期間入院している患者の一般的な感染症である。治療を受けなければ、これらの患者はCDF感染による重大な結果を直ちに被る可能性がある。
本実施形態では、疾患検出システム120は、医療サービス提供者102〜105から、時間の経過とともに収集された患者に関する臨床検査やバイタル等のリアルタイム情報を受信し、機械学習技術に基づいて構築されたモデルに基づいてCDFを予測する。一例では、機械学習ベースのCDF予測は、1分未満のような短い時間で、初期段階でのCDFを予測することができ、早期の治療を診断された患者に提供することができる。
他の実施形態では、疾患検出プラットフォーム100は、羊水内感染(IAI)検出に使用される。IAIは、羊膜及び羊水の感染である。IAIは、新生児敗血症のリスクを大幅に増加させる。IAIは、熱性罹患(10〜40%)及び新生児敗血症/肺炎(20〜40%)の主要因である。個々のバイタル/検査の値と比較して閾値を使用する診断方法は、誤検出率が比較的高く、検出のために長い遅延を有することがある。
本実施形態では、疾患検出システム120は、医療サービス提供者102〜105から、時間の経過とともに収集された患者に関する臨床検査やバイタル等のリアルタイム情報を受信し、機械学習技術に基づいて構築されたモデルに基づいてIAIを予測する。機械学習に基づく技術は、バイタル/検査の値への依存を緩和し、検出時間を短縮し、精度を向上させ、病院にコスト節約の利益をもたらす。
図1の例示では、疾患検出システム120は、疾患検出回路150と、処理回路125と、通信インターフェース130と、メモリ140とを含む。図1に示すように、これらの要素は共に結合されている。
一実施形態では、処理回路125は、システム100の他の構成要素に制御信号を提供して、受信データセットの処理、機械学習モデルの構築、疾患の検出等のような所望の機能を実行するように他の構成要素に指示するように構成される。
通信インターフェース130は、疾患検出システム120がリアルタイムで複数の医療サービス提供者102〜105と通信することを可能にするように構成された適切な構成要素及び/又は回路を含む。
メモリ140は、様々な記憶ニーズのためのメモリ空間を提供する1つ又は複数の記憶媒体を含むことができる。一例では、メモリ140は、疾患検出回路150によって実行されるコード命令を記憶し、疾患検出回路150によって処理されるデータを記憶する。例えば、メモリ140は、1人又は複数の患者の時系列データ事象を記憶するためのメモリ空間145を含む。他の例では、メモリ140は、機械学習技術に基づいて構築されたモデルの構成を記憶するためのメモリ空間(図示せず)を含む。
記憶媒体は、ハードディスクドライブ、光ディスク、ソリッドステートドライブ、リードオンリメモリ(ROM)、ダイナミックランダムアクセスメモリ(DRAM)、スタティックランダムアクセスメモリ(SRAM)、及びフラッシュメモリ等を含むが、それらに限定されるものではない。
本開示の一側面によれば、ユーザ/医療インターフェース170は、ディスプレイパネル上で疾患検出を視覚化するように構成される。一例では、各患者は、時間軸でX軸に沿って移動するドットによって表され、各事象は、疾患判定に基づく色によって特徴付けられる。例えば、緑色は非敗血症に使用され、黄色はおそらく敗血症に使用され、赤はたいてい敗血症に使用される。時間内に患者に対する敗血症事象が多く持続する場合、ユーザ/医療インターフェース170は、警報信号を提供する。
疾患検出回路150は、患者の疾患の発生を検出するために、患者の時系列データ事象に疾患を検出するためのモデルを適用するように構成される。一例では、モデルは、疾患の有無を診断された患者からの時系列データ事象に関する機械学習技術を用いて構築される。
本開示の一側面によれば、疾患検出回路150は、機械学習技術を使用してモデルを構築するように構成された機械学習モデル生成器160を含む。一例では、機械学習モデル生成器160は、ランダムフォレスト法を使用してモデルを構築する。例えば、機械学習モデル生成器160は、疾患の有無を事前に診断された患者からの時系列データ事象を適切に処理して、データの訓練データ集合を生成する。機械学習モデル生成器160は、訓練データ集合に基づいて、複数の決定木を構築する。一実施形態では、単一の決定木を訓練するため訓練集合のランダムなサブ集合が使用される。例えば、訓練集合は、ランダムなサブ集合を形成するブートストラップ(bootstrap)サンプルを生成するために置換によって均一にサンプリングされる。例えば、決定木の残りの未使用データは、例えば、「ブートストラップから外れた」エラー推定値を生成するのに後で使用するため、保存することができる。
さらに、本例では、一旦ブートストラップサンプルが生成されると、決定木のすべてのノードにおいて、特徴(例えば、変数)のランダムなサブ集合が選択され、最適な(軸平行)分割(split)が、特徴(変数)のサブ集合上でスキャン(scan)される。最適な分割がノードで見つかると、エラーが計算され、記録される。次に、次のノードで、特徴が再サンプリングされ、次のノードのための最適な分割が決定される。木が完成した後、ブートストラップサンプルにない未使用のデータを使用して、決定木に対して「ブートストラップから外れた」エラーを生成することができる。本例では、ランダムフォレスト全体のブートストラップから外れたエラーの平均が、ランダムフォレストの一般化エラーの指標であることが数学的に示される。
複数の決定木がランダムフォレストを形成し、ランダムフォレストが疾患検出のモデルとして使用される。ランダムフォレストを使用する一例では、各決定木は患者のデータを検査し、それ自体の分類又は回帰を決定する。次に、決定は、ランダムフォレスト全体にわたって平均化され、単一の分類又は回帰をもたらす。
ランダムフォレスト法には多くの利点がある。一例では、決定木は、決定木を生成するためにデータに過剰適合(over−fit)することがある。ランダムフォレスト法は、複数の決定木からの決定を平均し、したがって、データの過剰適合に対する固有のとなる利益を提供する。
本開示の一側面によれば、決定木は、直列及び/又は並列に生成することができる。一例では、疾患検出回路120は、独立して動作することができる複数の処理ユニットを含む。本例では、複数の処理ユニットは、複数の決定木を生成するために並列に動作することができる。一例では、複数の処理ユニットは、例えば、集積回路(IC)チップに組み込まれることに留意されたい。他の例では、複数の処理ユニットは、例えば、複数のコンピュータに分散され、適切に共に結合されて並列に動作する。
さらに、本開示の一側面によれば、機械学習モデルの性能を適切に調整することができる。敗血症を検出する例では、機械学習モデルを生成するための訓練集合内の非敗血性患者の数が増加すると、誤警報率が低下する。
図1の例ではバス121が示されているが、他の例では、様々な構成要素を共に結合するために他の適切なアーキテクチャを使用することができる。一例では、疾患検出回路150は、1つ又は複数の特定用途向け集積回路(ASIC)に埋め込まれた別個の制御及び/又はデータバスによって相互接続された専用処理電子回路を使用して実現することができる。他の例では、疾患検出回路150は、処理回路125と統合される。
図2は、本開示の一実施形態による疾患検出システム220のブロック図を示す。一例では、疾患検出システム220は、疾患検出システム120の代わりに疾患検出プラットフォーム100で使用される。
疾患検出システム220は、データ取り込みコンポーネント252、正規化コンポーネント254、特徴抽出コンポーネント256、データ選択コンポーネント258、モデル生成コンポーネント260、検出コンポーネント262、真理モジュール264、及びデータベース240等を含む。図2に示すように、これらの構成要素は、共に結合される。
一実施形態では、モデル生成コンポーネント260、検出コンポーネント262等の1つ又は複数のコンポーネントは、特定用途向け集積回路(ASIC)等の回路を使用して実装される。他の実施形態では、コンポーネントは、ソフトウェア命令を実行する中央処理装置(CPU)等の処理回路を使用して実装される。
データベース240は、情報を適切なフォーマットで適切に記憶するように構成される。図2の例では、データベース240は、患者に対する時系列データ事象242、モデルに対する構成244及び予測結果246を記憶する。
データ取り込みコンポーネント252は、入力データを適切に処理し構成するように構成される。入力データは、任意の適切なフォーマットを有することができることに留意されたい。一実施形態では、入力データユニットは、患者識別情報、タイムスタンプ、バイタル又は検査カテゴリ、及びバイタル又は検査カテゴリに関連する値を含む。一例では、患者が集中治療室(ICU)に移される前に、各データユニットは、患者識別情報、データが取得されたときのタイムスタンプ、及びバイタル及び検査カテゴリの両方、例えば、年齢、血液状態、検査結果、 呼吸数(RR)、心拍数(HR)、収縮期血圧(SBP)、体温等、を含み、患者がICUに移された後、各データユニットは、患者識別情報、タイムスタンプ、及び検査カテゴリを含む。
一実施形態では、データ取り込みコンポーネント252が患者のデータユニットを受信すると、データ取り込みコンポーネント252は、データユニットから、患者を識別する患者識別情報、患者からデータが取得されたときのタイムスタンプ、及びバイタル又は検査カテゴリの値を抽出する。データユニットが患者の最初のデータユニットである場合、データ取り込みコンポーネント252は、抽出された情報を用いてデータベース240に記録を作成する。患者のデータベース240に記録が存在する場合、データ取り込みコンポーネント252は、抽出された情報で記録を更新する。
さらに、一実施形態では、データ取り込みコンポーネント252は、記録情報が疾患検出に不十分であるか否かを判定するように構成される。一例では、データ取り込みコンポーネント252は、記録の完全性尺度を計算する。完全性尺度が所定の閾値、例えば30%等より低い場合、データ取り込みコンポーネント252は、記録情報が疾患検出に不十分であると判定する。
一実施形態では、データ取り込みコンポーネント252は、患者の重複記録を識別し、重複記録を削除するように構成される。
正規化コンポーネント254は、さらなる処理を支援するために入力データを再フォーマットするように構成される。一例では、病院は標準化されたデータフォーマットを使用しないことがあり、正規化コンポーネント254は入力データを同じフォーマットに再フォーマットする。正規化コンポーネント254は、データ棄却、データ削減、単位換算、
ファイル変換等の任意の適切な動作を実行して、入力データを再フォーマットすることができる。
一例では、正規化コンポーネント254は、疾患検出に使用するために完全ではないとみなされるデータを棄却するデータ棄却を実行することができる。完全ではないデータを使用すると、プラットフォームのパフォーマンスと信頼性に悪影響を与える可能性があり、したがって、適切な操作を保証するためデータ棄却が必要となる。正規化コンポーネント254は、不要なデータ又は未使用のデータを除去し、記憶するためにデータを圧縮するデータ削減を実行することができる。正規化コンポーネント254は、単位を統一する単位換算を実行することができる。正規化コンポーネント254は、データを1つのデジタルフォーマットからデータベース240で使用するために選択されたデジタルフォーマットに変換するファイル変換を実行することができる。さらに、正規化コンポーネント254は、統計的正規化又はレンジマッピングを実行することができる。
特徴抽出コンポーネント256は、受信したデータから重要な情報を抽出するように構成される。本開示の一側面によれば、データは、無関係な情報、重複情報、有用でないノイズ、又は単に利用可能な時間制約において処理するにはあまりにも多い情報、を含むかもしれない。特徴抽出コンポーネント256は、重要な情報を抽出し、正確なモデルを訓練するのに必要な関係を保持しながら全体のデータサイズを縮小することができる。したがって、モデルの訓練はより少ないメモリ空間と時間で済む。
一例では、特徴抽出コンポーネント256は、特徴を抽出するためにスペクトルマニホールド(spectral manifold)学習を使用する。スペクトルマニホールド学習技術は、高次元データから低次元構造を抽出するためにスペクトル分解を用いる。スペクトルマニホールドモデルは、原則的にデータから重要な成分を抽出することによって、データの視覚的表現の利点を提供する。例えば、構造又は距離の関係は、スペクトルマニホールドモデルを使用してほとんど保存される。データは、人間が視認できる空間であって、データの鮮明な関係を示すために使用することができる空間にマッピングされてもよい。
他の例では、特徴抽出コンポーネント256は、主成分分析(PCA:principal component analysis)を使用する。例えば、より高い分散を有する特徴が機械学習に基づく予測にとってより重要であるという考えに基づいて、PCAは、高次元空間から低次元空間への線形マッピングを導出するために使用される。一例では、データの共分散行列の固有値解析を使用して線形マッピングを導出する。PCAは、データの重複した相関をなくす上で非常に有効である。
本例では、PCAを使用して、例えば、最初の2つ又は3つの主成分方向をマッピングすることによってデータを視覚化することもできる。
一例では、データ選択コンポーネント258は、訓練及びテスト目的のための適切なデータ事象を選択するように構成される。敗血症の検出のためのモデルを構築する例では、患者の敗血症を宣告する時間が重要である。この例では、敗血症であると宣告された患者について、医師によって敗血症が宣告される前の6時間及び宣告後48時間までを含む期間が、敗血症事象を決定するために使用される。敗血症と診断された患者のこの期間内の各データ点は、敗血症事象である。非敗血症であると宣言された患者からの他のデータポイントは、非敗血症事象である。
さらに、一例では、敗血症事象及び非敗血症事象は、訓練集合及び試験集合に分離するためにランダムにサンプリングされる。したがって、両方の集合は、同一患者からの事象を有してもよい。
モデル生成コンポーネント260は、訓練集合に基づいて機械学習モデルを生成するように構成される。一例では、モデル生成コンポーネント260は、ランダムフォレスト法を使用して機械学習モデルを生成するように構成される。一例では、ランダムフォレスト法によれば、複数の決定木が訓練集合に基づいて訓練される。各決定木は、訓練集合のサブ集合に基づいて生成される。例えば、単一の決定木を訓練する場合、訓練集合のランダムなサブ集合が使用される。一例では、訓練集合は、置換を用いて一様にサンプリングされ、ランダムサブ集合を形成するブートストラップサンプルを生成する。決定木の残りの未使用データは、後で「ブートストラップから外れた」エラー推定を生成するのに使用するため保存することができる。
さらに、本例では、一旦ブートストラップサンプルが生成されると、決定木の各ノードにおいて、特徴(例えば変数)のランダムなサブ集合(例えば変数)が選択され、その最適な(軸平行)分割がその特徴(変数)のサブ集合についてスキャンされる。最適な分割がノードで見つかると、エラーが計算され、記録される。次に、次のノードで、特徴が再サンプリングされ、次のノードのための最適な分割が決定される。木が完成した後、ブートストラップサンプルにない未使用のデータを使用して、その決定木に対して「ブートストラップから外れた」エラーを生成することができる。本例では、ランダムフォレスト全体のブートストラップから外れたエラーの平均が、ランダムフォレストの一般化エラーの指標であることが数学的に示される。
複数の決定木がランダムフォレストを形成し、ランダムフォレストが疾患検出のモデルとして使用される。ランダムフォレストを使用する例では、各決定木は患者のデータを検査し、それ自体の分類又は回帰を決定する。次に、ランダムフォレスト全体にわたって平均をとって、単一の分類又は回帰をもたらす。
一例では、モデル生成コンポーネント260は、独立して動作することができる複数の処理コア等の複数の処理ユニットを含む。本例では、複数の決定木を生成するために複数の処理コアが並列に動作することができる。
さらに、ランダムフォレスト法がモデル生成コンポーネント260で使用される場合、ランダムフォレストを使用して、他の適切な動作を実行することができる。一例では、データ内のデータポイントの各ペアについて、ランダムフォレスト法は近接カウンタを割り当てる。2つの点が終点ノードで終わる各決定木について、それらの近接カウンタは1増加する。より近接したデータは、他のデータと「近い」又は「類似する」と考えることができる。一例では、近接カウンタによって提供される情報を使用して、クラスタリング、外れ値検出、欠落データ補完等の動作を実行することができる。
例えば、欠落値は、近接カウンタでより高い値を有する近くのデータに基づき補完できる。一例では、反復プロセスを使用して、欠落値を反復的に補完し、決定木が終了条件を満たすまで決定木を再成長させることができる。
モデル生成コンポーネント260は、ロジスティック(logistic)回帰法、混合モデルアンサンブル(mix model ensemble method)法、サポートベクトルマシン(support vector machine)法、K最近傍(nearest neighbors)法等の他の適切な方法を使用できることに留意されたい。
さらに、また、一例では、モデル生成コンポーネント260は、生成されたモデルを検証する。例えば、モデル生成コンポーネント260は、K倍交差検証(K−fold cross−validation)を使用する。一例では、10倍交差検証では、データのランダムな1/10がモデルの訓練プロセス中に省略される。訓練プロセスの完了後、データの1/10がモデルの精度を決定するためのテスト集合として提供でき、このプロセスを10回繰り返すことができる。省略されたデータの部分は、1/Kである必要はないが、データの可用性を反映することができることに留意されたい。この手法を使用すると、実際のデータに対してモデルがどのように実行されるかについての良い見積が決定できる。
さらに、一例では、モデル生成コンポーネント260は、モデルの変数に対する感度解析を行うように構成される。例えば、モデルの精度が訓練データの与えられた変数の摂動に非常に敏感である場合、モデルはその変数に対する感度が比較的高く、その変数はモデルを使用する予測に対して比較的重要である可能性が高い。
検出コンポーネント262は、疾患を検出するために患者の入力されたデータに、生成されたモデルを適用するように構成される。一例では、検出結果は、例えば、医療提供者へのユーザ/医療インターフェース170を介して視覚化される。例えば、検出結果が、患者の敗血症の可能性が高いことを警告するとき、医療提供者は、検出を確認するために検査結果を出すことができる。一例では、検査結果は、疾患検出システム220に送り返すことができる。
真理モジュール264は、検査結果を受け取り、確認情報に基づいてデータを更新するように構成される。一例では、更新されたモデルを使用してモデルを再構築することができる。
図3は、本開示の一実施形態による疾患検出のためのモデルを構築するためのプロセス300の概要を示すフローチャートである。一例ではプロセスは、疾患検出システム120、疾患検出システム220等の疾患検出システムによって実行される。処理はS301から開始され、S310に進む。
S310では、データが疾患検出システムに取り込まれる。一例では、入力データは、病院、診療所、研究所等の様々なソースから来ることができ、異なるフォーマットを有することができる。疾患検出システムは、入力データを適切に処理し整理する。一例では、疾患検出システムは、入力データから、患者を識別する患者識別情報、患者からデータが取得されたときを識別するタイムスタンプ、及び生体又は検査カテゴリの値を抽出する。データユニットが患者の第1データユニットである場合、疾患検出システムは、抽出された情報でデータベースに記録を作成する。データベースに患者の記録が存在する場合、疾患検出システムは抽出された情報で記録を更新する。
さらに、一例では、疾患検出システムは、記録情報が疾患検出に不十分であるか否かを判定する。一例では、疾患検出システムは、記録の完全性測度を計算する。完全性測度が所定の閾値、例えば30%等よりも低い場合、疾患検出システムは、記録情報が疾患検出に不十分であると判定する。
S320では、データは疾患検出システムにおいて正規化される。一例では、疾患検出システムは、さらなる処理を支援するため入力データを再フォーマットする。一例では、病院は標準化されたデータフォーマットを使用しないことがあり、疾患検出システムは入力データを同一フォーマットに再フォーマットする。
さらに、本例では、疾患検出システムは、疾患検出に使用するのに十分に完了していないと思われるデータを棄却するデータ棄却を行うことができる。疾患検出システムは、単位を統一する単位換算を実行することができる。疾患検出システムは、1つのデジタルフォーマットのデータをデータベースで使用するために選択されたデジタルフォーマットに変換するファイル変換を実行することができる。さらに、疾患検出システムは、統計的な正規化又はレンジマッピングを実行することができる。
S330では、特徴がデータベースから抽出される。一例では、疾患検出システムは、重要な情報(特徴)を抽出し、正確なモデルを訓練するのに必要な関係を維持しながら全体のデータサイズを縮小する。したがって、モデル訓練は、より少ないメモリ空間と時間で済む。
一例では、疾患検出システムは、スペクトルマニホールドモデルを使用する。他の例では、疾患検出システムは主成分分析(PCA)を使用する。
S340において、訓練及び検査のためのデータ集合が選択される。一例では、疾患検出システムは、訓練及び検査目的に適したデータ集合を選択する。敗血症の検出のためのモデルを構築する例では、患者の敗血症を宣告する時間が重要である。本例では、敗血症であると宣告された患者については、医師によって敗血症が宣告される前の6時間及び宣告後48時間までを含む期間が、敗血症事象を定義するために使用される。敗血症と診断された患者期間内の各データ点は、敗血症事象である。敗血症であると宣言されていない患者からの他のデータポイントは、非敗血症事象である。
さらに、一例では、敗血症事象及び非敗血症事象は、訓練集合および検査集合に分離するためにランダムにサンプリングされる、したがって、両方の集合は、同一患者からの事象を有することができる。
S350では、訓練集合に基づいて機械学習モデルが生成される。一例では、疾患検出システムは、ランダムフォレスト法を用いて機械学習モデルを生成する。ランダムフォレスト法は、訓練データ集合に基づいて複数の決定木を構築する。
一実施形態では、訓練集合のランダムなサブ集合を使用して、単一の決定木を訓練する。例えば、訓練集合は、ランダムにサブ集合を形成するブートストラップサンプルを生成するために置換によって一様にサンプリングされる。決定木の残りの未使用データは、後で使用するために保存することができる。例えば、「ブートストラップから外れた」エラー推定値を生成することができる。
さらに、本例では、いったんブートストラップサンプルが生成されると、決定木の各ノードにおいて、特徴(例えば変数)のランダムなサブ集合が選択され、その最適な(軸平行)分割がその特徴(変数)のサブ集合についてスキャンされる。最適な分割がノードで見つかると、エラーが計算され、記録される。次に、次のノードで、特徴が再サンプリングされ、次のノードのための最適な分割が決定される。決定木が完了した後、ブートストラップサンプルにない未使用のデータを使用して、その決定木の「ブートストラップから外れた」エラーを生成することができる。本例では、ランダムフォレスト全体のブートストラップから外れたエラーの平均が、ランダムフォレストの一般化エラーの指標であることが数学的に示される。
複数の決定木がランダムフォレストを形成し、ランダムフォレストが疾患検出のモデルとして使用される。ランダムフォレストを使用する例では、各決定木は患者のデータを検査し、それ自体のカテゴリ又は回帰を決定する。次に、ランダムフォレスト全体にわたって平均をとって、単一のカテゴリ又は回帰をもたらす。
一例では、疾患検出システムは、独立して動作することができる複数の処理コア等の複数の処理ユニットを含む。本例では、複数の処理コアが並列に動作して複数の決定木を生成することができる。
S360では、モデルが検証される。一例では、疾患検出システムは、K倍交差検証を使用する。例えば、10倍の交差検証では、モデルの訓練プロセス中にデータのランダム1/10が省略される。訓練プロセスの完了後、データの1/10がモデルの精度を決定するためのテスト集合となり、このプロセスを10回繰り返すことができる。省略されたデータの部分は、1/Kである必要はないが、データの可用性を反映することができることに留意されたい。この手法を使用すると、実際のデータに対してモデルがどのように実行されるかについての良い見積が決定できる。
さらに、一例では、疾患検出システムは、モデルに対する変数の感度分析を行うように構成される。例えば、モデルの精度が訓練データの与えられた変数の摂動に非常に敏感である場合、そのモデルはその変数に対する感度が比較的高く、その変数はモデルを使用する予測に対して比較的重要である可能性が高い。
S370では、モデル及び構成がデータベースに格納される。記憶されたモデル及び構成は、疾患検出のために使用される。その後、処理はS399に進み、終了する。
図4は、本開示の一実施形態による疾患検出のためのプロセス400の概要を示すフローチャートである。一例では、プロセスは、疾患検出システム120、疾患検出システム220等の疾患検出システムによって実行される。処理はS401から開始し、S410に進む。
S410では、患者データがリアルタイムで受信される。一例では、患者のバイタルデータが測定されるか、又は検査結果が利用可能になるたびに、患者のバイタルデータ及び検査結果が、ネットワークを介して疾患検出システムに送信される。
S420では、データがクリーニングされる。一例では、患者データが再フォーマットされる。別の例では、患者データ内の単位が変換される。別の例では、患者データ内の無効な値が識別され、除去される。以前に受信した患者のデータを含む記録にデータを編成することができる。
S430では、疾患検出システムは、患者データが疾患検出に十分であるか否かを判定する。一例では、疾患検出システムは、記録の完全性尺度を決定し、完全性尺度に基づいて患者データが十分であるか否かであるか否かを決定する。患者データが疾患検出に十分である場合、プロセスはS440に進む。そうでなければ、患者のより多くのデータを受信するため、プロセスはS410に戻る。
S440では、疾患検出システムは、所定の機械学習モデルを検索する。一例では、機械学習モデルの構成がメモリに記憶される。疾患検出システムは、機械学習モデルを検索するためメモリを読み取る。
S450では、疾患検出システムは、患者を分類するために、患者データに機械学習モデルを適用する。一例では、機械学習モデルは、複数の決定木を含むランダムなフォレストモデルである。複数の決定木は、患者のそれぞれの分類を生成するために使用される。次に、一例では、患者の統一された分類がなされるようにそれぞれの分類が適切に平均化される。
S460では、分類が疾患の発生の可能性を示す場合、プロセスはS470に進む。そうでなければ、プロセスはS499に進み終了する。
S470では、疾患検出システムは警報報告を生成する。一例では、疾病検出システムは、医療サービス提供者に警告するためにディスプレイパネル上に視覚的警報を提供する。医療サービス提供者は、疾患の治療に適切な措置を講じることができる。そして、プロセスはS499に進み終了する。
ハードウェアで実装される場合、ハードウェアは、1つ以上のディスクリート部品、集積回路、特定用途向け集積回路(ASIC)等を含んでもよい。
本開示の一側面は、実施例として提案された特定の実施形態と関連して記載されているが、実施例に対する代替、変更及び変形がなされてもよい。したがって、本明細書に記載の実施形態は、例示的なものであり、限定的なものではない。以下に述べる特許請求の範囲から逸脱することなく、され得る変更が存在する。

Claims (16)

  1. 疾患検出のために時系列でサンプリングされた患者に関連するデータ事象を受信するように構成されたインターフェース回路と、
    前記疾患の有無を診断された患者からの時系列データ事象に基づいて機械学習された疾患を検出するためのモデルの構成を記憶するように構成されたメモリ回路と、
    前記疾患の発生を検出するために前記モデルを前記データ事象に適用するように構成された疾患検出回路と、
    を備える疾患検出のためのシステム。
  2. 前記メモリ回路は、敗血症、市中肺炎(CAP)、クロストリジウム・ディフィシル(CDF)感染、及び羊水内感染(IAI)の少なくとも1つを検出するための前記モデルの構成を記憶するように構成される、請求項1に記載のシステム。
  3. 前記疾患検出回路は、前記疾患の有無を診断された前記患者の前記時系列データ事象を取り込み、前記取り込まれた時系列データ事象に基づいて前記モデルを構築するように構成される、請求項1に記載のシステム。
  4. 前記疾患検出回路は、前記疾患を有すると診断された患者の、前記疾患が診断された時刻の前の第1の時間期間、及び前記疾患が診断された時刻の後の第2の時間期間の前記時系列データ事象を選択するように構成される 、請求項3に記載のシステム。
  5. 前記疾患検出回路は、前記時系列データ事象から特徴を抽出し、前記抽出された特徴を使用して前記モデルを構築するように構成される、請求項3に記載のシステム。
  6. 前記疾患検出回路は、ランダムフォレスト法を用いて前記モデルを構築するように構成される、請求項3に記載のシステム。
  7. 前記疾患検出回路は、前記時系列データ事象を訓練集合及び検証集合に分割し、前記訓練集合に基づいて前記モデルを構築し、前記検証集合に基づいて前記モデルを検証するように構成される、請求項3に記載のシステム。
  8. 前記患者に関連する前記データ事象が疾患検出に十分であるか否かを判定し、前記データ事象が不十分である場合に、より多くのデータ事象を待つために前記データ事象を前記メモリ回路に記憶するように構成される、請求項1に記載のシステム。
  9. 疾患の有無を診断された患者の時系列データ事象に基づいて機械学習された疾患を検出するためのモデルの構成を記憶し、
    疾患検出のために異なる時間にサンプリングされた患者に関連するデータ事象を受信し、
    前記患者の前記疾患の発生を検出するために前記モデルを前記データ事象に適用する、
    を有する疾患検出のための方法。
  10. 前記疾患を検出するための前記モデルの構成を記憶することは、
    敗血症、市中肺炎(CAP)、クロストリジウム・ディフィシル(CDF)感染、及び羊水内感染(IAI)の少なくとも1つを検出するための前記モデルの構成を記憶すること、
    をさらに有する、請求項9に記載の方法。
  11. 前記疾患の有無を診断された前記患者の前記時系列データ事象を取り込み、
    前記取り込まれた時系列データ事象に基づいて前記モデルを構築すること、
    をさらに有する、請求項9に記載の方法。
  12. 前記疾患を有すると診断された患者の、前記疾患が診断された時刻の前の第1の時間期間、及び前記疾患が診断された時刻の後の第2の時間期間の前記時系列データ事象を選択すること、
    をさらに有する、請求項11に記載の方法。
  13. 前記時系列データ事象から特徴を抽出し、
    前記抽出された特徴を使用して前記モデルを構築すること、
    をさらに有する、請求項11に記載の方法。
  14. ランダムフォレスト法を用いて前記モデルを構築すること、
    をさらに有する、請求項11に記載の方法。
  15. 前記時系列データ事象を訓練集合及び検証集合に分割し、
    前記訓練集合に基づいて前記モデルを構築し、
    前記検証集合に基づいて前記モデルを検証すること、
    をさらに有する、請求項11に記載の方法。
  16. 前記患者に関連する前記データ事象が疾患検出に十分であるか否かを判定し、
    前記データ事象が不十分である場合に、より多くのデータ事象を待つために前記データ事象を前記メモリ回路に記憶すること、
    をさらに有する、請求項9に記載の方法。
JP2017514559A 2014-09-09 2015-09-08 疾患検出のための装置及び方法 Pending JP2017527399A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462047988P 2014-09-09 2014-09-09
US62/047,988 2014-09-09
PCT/US2015/048900 WO2016040295A1 (en) 2014-09-09 2015-09-08 Method and apparatus for disease detection

Publications (1)

Publication Number Publication Date
JP2017527399A true JP2017527399A (ja) 2017-09-21

Family

ID=54186291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017514559A Pending JP2017527399A (ja) 2014-09-09 2015-09-08 疾患検出のための装置及び方法

Country Status (7)

Country Link
US (1) US20160070879A1 (ja)
EP (1) EP3191988A1 (ja)
JP (1) JP2017527399A (ja)
KR (1) KR20170053693A (ja)
AU (1) AU2015315397A1 (ja)
CA (1) CA2960815A1 (ja)
WO (1) WO2016040295A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175892A3 (ko) * 2019-02-26 2020-12-10 사회복지법인 삼성생명공익재단 확률 모델을 이용한 관상동맥 석회화 수치의 예측장치, 이의 예측방법 및 기록매체
US11682491B2 (en) 2019-06-18 2023-06-20 Canon Medical Systems Corporation Medical information processing apparatus and medical information processing method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017015234A1 (en) * 2015-07-17 2017-01-26 Albert Joseph Swiston Methods and systems for pre-symptomatic detection of exposure to an agent
WO2017201323A1 (en) * 2016-05-18 2017-11-23 Massachusetts Institute Of Technology Methods and systems for pre-symptomatic detection of exposure to an agent
US20180261330A1 (en) * 2017-03-10 2018-09-13 Roundglass Llc Analytic and learning framework for quantifying value in value based care
WO2019025901A1 (en) * 2017-08-02 2019-02-07 Mor Research Applications Ltd. SYSTEMS AND METHODS FOR PREDICTING THE APPEARANCE OF A SEPSIE
KR101886374B1 (ko) * 2017-08-16 2018-08-07 재단법인 아산사회복지재단 딥러닝 기반의 패혈증 조기 감지방법 및 프로그램
US20210249136A1 (en) * 2018-08-17 2021-08-12 The Regents Of The University Of California Diagnosing hypoadrenocorticism from hematologic and serum chemistry parameters using machine learning algorithm
CN111696682A (zh) * 2020-05-26 2020-09-22 平安科技(深圳)有限公司 数据处理方法、装置、电子设备及可读存储介质
CN113017572B (zh) * 2021-03-17 2023-11-28 上海交通大学医学院附属瑞金医院 一种重症预警方法、装置、电子设备及存储介质
DE102022201630A1 (de) * 2021-03-30 2022-10-06 Siemens Healthcare Gmbh Verfahren und System zu einer Bereitstellung einer Information über einen Gesundheitszustand eines Patienten

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030100841A1 (en) * 1998-03-17 2003-05-29 Griffin M. Pamela Method for the early diagnosis of subacute, potentially catastrophic illness
US6658287B1 (en) * 1998-08-24 2003-12-02 Georgia Tech Research Corporation Method and apparatus for predicting the onset of seizures based on features derived from signals indicative of brain activity
US20040122790A1 (en) * 2002-12-18 2004-06-24 Walker Matthew J. Computer-assisted data processing system and method incorporating automated learning
WO2007010521A2 (en) * 2005-07-18 2007-01-25 Integralis Ltd. Apparatus, method and computer readable code for forecasting the onset of potentially life-threatening disease
JP2007052774A (ja) * 1995-07-25 2007-03-01 Ortho-Clinical Diagnostics Inc コンピュータ援用疾病診断方法
US20120290319A1 (en) * 2010-11-11 2012-11-15 The Board Of Trustees Of The Leland Stanford Junior University Automatic coding of patient outcomes
WO2013003787A2 (en) * 2011-06-30 2013-01-03 University Of Pittsburgh - Of The Commonwealth System Of Higher Education A system and method of determining a susceptibility to cardiorespiratory insufficiency
WO2013036677A1 (en) * 2011-09-06 2013-03-14 The Regents Of The University Of California Medical informatics compute cluster
CN103150611A (zh) * 2013-03-08 2013-06-12 北京理工大学 Ii型糖尿病发病概率分层预测方法
EP2713293A2 (en) * 2012-09-27 2014-04-02 Siemens Medical Solutions USA, Inc. Rapid community learning for predictive models of medical knowledge
WO2014063256A1 (en) * 2012-10-26 2014-05-01 Ottawa Hospital Research Institute System and method for providing multi-organ variability decision support for extubation management

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4643445B2 (ja) * 2002-11-12 2011-03-02 ベクトン,ディッキンソン アンド カンパニー バイオマーカープロフィールを使用した敗血症またはsirsの診断
US8956292B2 (en) * 2005-03-02 2015-02-17 Spacelabs Healthcare Llc Trending display of patient wellness
US20090104605A1 (en) * 2006-12-14 2009-04-23 Gary Siuzdak Diagnosis of sepsis
WO2013009890A2 (en) * 2011-07-13 2013-01-17 The Multiple Myeloma Research Foundation, Inc. Methods for data collection and distribution
US10188302B2 (en) * 2011-12-31 2019-01-29 The University Of Vermont And State Agriculture College Methods for dynamic visualization of clinical parameters over time
US20130281871A1 (en) * 2012-04-18 2013-10-24 Professional Beef Services, Llc System and method for classifying the respiratory health status of an animal
CN105163659B (zh) * 2013-05-01 2018-10-23 株式会社国际电气通信基础技术研究所 脑活动分析装置、脑活动分析方法以及生物标记物装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052774A (ja) * 1995-07-25 2007-03-01 Ortho-Clinical Diagnostics Inc コンピュータ援用疾病診断方法
US20030100841A1 (en) * 1998-03-17 2003-05-29 Griffin M. Pamela Method for the early diagnosis of subacute, potentially catastrophic illness
US6658287B1 (en) * 1998-08-24 2003-12-02 Georgia Tech Research Corporation Method and apparatus for predicting the onset of seizures based on features derived from signals indicative of brain activity
US20040122790A1 (en) * 2002-12-18 2004-06-24 Walker Matthew J. Computer-assisted data processing system and method incorporating automated learning
WO2007010521A2 (en) * 2005-07-18 2007-01-25 Integralis Ltd. Apparatus, method and computer readable code for forecasting the onset of potentially life-threatening disease
US20120290319A1 (en) * 2010-11-11 2012-11-15 The Board Of Trustees Of The Leland Stanford Junior University Automatic coding of patient outcomes
WO2013003787A2 (en) * 2011-06-30 2013-01-03 University Of Pittsburgh - Of The Commonwealth System Of Higher Education A system and method of determining a susceptibility to cardiorespiratory insufficiency
WO2013036677A1 (en) * 2011-09-06 2013-03-14 The Regents Of The University Of California Medical informatics compute cluster
EP2713293A2 (en) * 2012-09-27 2014-04-02 Siemens Medical Solutions USA, Inc. Rapid community learning for predictive models of medical knowledge
WO2014063256A1 (en) * 2012-10-26 2014-05-01 Ottawa Hospital Research Institute System and method for providing multi-organ variability decision support for extubation management
CN103150611A (zh) * 2013-03-08 2013-06-12 北京理工大学 Ii型糖尿病发病概率分层预测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175892A3 (ko) * 2019-02-26 2020-12-10 사회복지법인 삼성생명공익재단 확률 모델을 이용한 관상동맥 석회화 수치의 예측장치, 이의 예측방법 및 기록매체
US11682491B2 (en) 2019-06-18 2023-06-20 Canon Medical Systems Corporation Medical information processing apparatus and medical information processing method

Also Published As

Publication number Publication date
KR20170053693A (ko) 2017-05-16
AU2015315397A1 (en) 2017-04-06
EP3191988A1 (en) 2017-07-19
WO2016040295A1 (en) 2016-03-17
CA2960815A1 (en) 2016-03-17
US20160070879A1 (en) 2016-03-10

Similar Documents

Publication Publication Date Title
JP2017527399A (ja) 疾患検出のための装置及び方法
Ghosh et al. Septic shock prediction for ICU patients via coupled HMM walking on sequential contrast patterns
US10332638B2 (en) Methods and systems for pre-symptomatic detection of exposure to an agent
Pathak et al. STQS: Interpretable multi-modal Spatial-Temporal-seQuential model for automatic Sleep scoring
Forkan et al. A probabilistic model for early prediction of abnormal clinical events using vital sign correlations in home-based monitoring
Tsien et al. Multiple signal integration by decision tree induction to detect artifacts in the neonatal intensive care unit
Sunitha et al. A comparative analysis of deep neural network architectures for the dynamic diagnosis of COVID‐19 based on acoustic cough features
KR20190070430A (ko) 빅데이터 분석 기반 질병 진단명 추정 방법 및 추정 장치
TWI469764B (zh) 生理參數指標運算系統、方法、記錄媒體及電腦程式產品
Merone et al. A decision support system for tele-monitoring COPD-related worrisome events
Singh et al. [Retracted] A Machine Learning Model for Early Prediction and Detection of Sepsis in Intensive Care Unit Patients
Al-Mualemi et al. A deep learning-based sepsis estimation scheme
CN116098595B (zh) 一种心源性及脑源性猝死监测预防系统和方法
Kristinsson et al. Prediction of serious outcomes based on continuous vital sign monitoring of high-risk patients
Oei et al. Towards early sepsis detection from measurements at the general ward through deep learning
Zaman et al. A review on the significance of body temperature interpretation for early infectious disease diagnosis
Vispute et al. An empirical comparison by data mining classification techniques for diabetes data set
Campero-Jurado et al. Problems in pregnancy, modeling fetal mortality through the Naïve Bayes classifier.
Jadhav et al. Monitoring and Predicting of Heart Diseases Using Machine Learning Techniques
Sekar et al. Function formula oriented construction of bayesian inference nets for diagnosis of cardiovascular disease
Schmidt et al. Clustering Emergency Department patients-an assessment of group normality
KR102544813B1 (ko) 진료 행위를 위한 통합 중개 시스템 및 이를 이용한 중개 방법
Addanke et al. Original Research Article Secure IoT based smart system for monitoring health care for ambulatory and fetal
Tjahaja et al. IoT cloud data warehouse management for telehealth purpose
D’Silva et al. Prediction of Hypertension using Machine Learning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200929