JP2017502820A - 充電式バッテリを有する埋め込み可能医療デバイスに対する寿命末期の決定及び予想 - Google Patents

充電式バッテリを有する埋め込み可能医療デバイスに対する寿命末期の決定及び予想 Download PDF

Info

Publication number
JP2017502820A
JP2017502820A JP2016565098A JP2016565098A JP2017502820A JP 2017502820 A JP2017502820 A JP 2017502820A JP 2016565098 A JP2016565098 A JP 2016565098A JP 2016565098 A JP2016565098 A JP 2016565098A JP 2017502820 A JP2017502820 A JP 2017502820A
Authority
JP
Japan
Prior art keywords
battery
algorithm
capacity
circuit
medical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016565098A
Other languages
English (en)
Other versions
JP6373410B2 (ja
Inventor
ゴラン エヌ マルンフェルト
ゴラン エヌ マルンフェルト
ラファエル カーブナル
ラファエル カーブナル
ジョルディ パラモン
ジョルディ パラモン
Original Assignee
ボストン サイエンティフィック ニューロモデュレイション コーポレイション
ボストン サイエンティフィック ニューロモデュレイション コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボストン サイエンティフィック ニューロモデュレイション コーポレイション, ボストン サイエンティフィック ニューロモデュレイション コーポレイション filed Critical ボストン サイエンティフィック ニューロモデュレイション コーポレイション
Publication of JP2017502820A publication Critical patent/JP2017502820A/ja
Application granted granted Critical
Publication of JP6373410B2 publication Critical patent/JP6373410B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/378Electrical supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/37Monitoring; Protecting
    • A61N1/3706Pacemaker parameters
    • A61N1/3708Pacemaker parameters for power depletion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/20The network being internal to a load
    • H02J2310/23The load being a medical device, a medical implant, or a life supporting device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Medical Informatics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Electrotherapy Devices (AREA)

Abstract

早期交換インジケータ(tEOLi)及びIMD寿命末期(tEOL)のタイミングを定量的に予想かつ決定することができる充電式バッテリ「埋め込み可能医療デバイス(IMD)」の制御回路内にプログラムされたアルゴリズムを開示する。tEOLi及びtEOLのこれらの予想及び決定は、充電サイクルの回数、充電電流、放電深度、負荷電流、及びバッテリ暦年数のような充電式バッテリ容量に影響を及ぼす1又は2以上のパラメータに従って行われる。アルゴリズムは、バッテリ容量に及ぼすこれらのパラメータの影響を反映するバッテリ容量データベースと共に、パラメータログ内のIMDの作動の履歴にわたって格納されたそのようなパラメータを調べ、tEOLi及びtEOLを決定かつ予想する。そのような予想又は決定された値は、IMDの治療作動を中断するためにシャットダウンアルゴリズムによって使用することもできる。【選択図】図6D

Description

本出願は、共に2014年1月16日出願の米国仮特許出願第61/928,342号明細書及び第61/928,352号明細書に関連する。
本出願は、埋め込み可能医療デバイスの分野、特に、充電式バッテリ埋め込み可能医療デバイスに関する。
心不整脈を治療するペースメーカー、心臓細動を治療する除細動器、聴覚障害を治療する蝸牛刺激器、失明を治療する網膜刺激器、調節された四肢の動きを生成する筋刺激器、慢性的疼痛を治療する脊髄刺激器、運動疾患及び精神的疾患を治療する皮層及び脳深部刺激器、及び尿失禁、睡眠時無呼吸、肩部不全脱臼などを治療する他の神経刺激器のような埋め込み可能刺激デバイスは、様々な生物学的疾患の療法のための電気刺激を神経及び組織に送出する。以下の説明は、全体的に、米国特許第6,516,227号明細書に開示されているような「脊髄刺激(SCS)」システム内での本発明の使用に着目することになる。しかし、本発明は、あらゆる埋め込み可能医療デバイスとの又はあらゆる埋め込み可能医療デバイスシステムにおける適用可能性を見出すことができる。
SCSシステムは、典型的には、図1A及び図1Bの平面図及び断面図に示す「埋め込み可能パルス発生器(IPG)」10を含む。IPG10は、IPGが機能するのに必要な回路及びバッテリ36を保持する生体適合性デバイスケース30を含む。IPG10は、電極アレイ12を形成する1又は2以上の電極リード14を通じて電極16に結合される。電極16は、患者の組織に接触するように構成され、かつ可撓性本体18上に担持され、本体はまた、各電極16に結合された個々のリードワイヤ20を収容する。リードワイヤ20はまた、近位接点22に結合され、近位接点は、IPG10上のヘッダ28内に固定されたリードコネクタ24に挿入可能であり、このヘッダは、例えば、エポキシを含むことができる。挿入された状態で、近位接点22は、ヘッダ接点26に接続され、ヘッダ接点は、次に、貫通ピン34によってケース貫通部32を通じてケース30内の回路に結合される。
図示のIPG10において、4本のリード14間に分割された32本のリード電極(E1〜E32)があり、ヘッダ28は、リードコネクタ24の2x2アレイを含む。しかし、IPG内のリード及び電極の数は、特定用途向けであり、従って、変わる可能性がある。SCS用途において、典型的には、電極リード14は、患者の脊髄内の硬膜の近くに埋め込まれ、4本リードのIPG10が使用される時に、これらのリードは、通常は分割され、2本ずつ硬膜の右側と左側の各々にある。近位電極22は、IPGケース30が埋め込まれる臀部のような遠い位置に患者の組織を通じてトンネル接合され、そのポイントで、電極は、リードコネクタ24に結合される。4本リードIPG10はまた、別の例において、「脳深部刺激(DBS)」に対して使用することができる。刺激を必要とする部位に直接に埋め込むように設計された他のIPG例において、IPGは、リードなしとすることができ、電極16を患者の組織に接触するために代わりにIPGの本体上に現れさせる。
図1Bの断面に示すように、IPG10は、プリント回路基板(PCB)40を含む。PCB40に電気的に接続されるのは、この例において充電式であるバッテリ36、PCBの上面及び底面に結合された他の回路50a及び50b、テレメトリ変調/復調回路43(図2)を使用して外部コントローラ(図示せず)と無線通信するためのテレメトリコイル42、バッテリ36を再充電するために外部充電器90(図2)から磁気充電場を無線で受信するための充電コイル44、及び貫通ピン34(接続は図示せず)である。バッテリ36が永久的であり、かつ充電式ではない場合に、充電コイル44は不要であると考えられる。(コイル42及び44とそれらが通信するのに使用することができる外部デバイスの作動とに関する更なる詳細は、2013年9月13日出願の米国特許出願第61/877,871号明細書に見出すことができる。)
IPG10内の充電式バッテリ36のバッテリ管理回路84は、本出願人所有の米国特許出願公開第2013/0023943号明細書内の1つの例に説明されており、かつ図2に示している。充電式バッテリ36は、リチウムイオンポリマーバッテリを含むことができ、それは、完全充電された時に約4.2ボルトの電圧(Vbat=Vmax)を供給することができる。しかし、他の充電式バッテリ化学特性も、同様にバッテリ36に使用することができると考えられる。
外部充電器90、典型的には手持ち式バッテリ式デバイスは、磁気非データ変調式充電場98(例えば、80kHz)をコイル92から生成する。磁場98は、フロントエンド充電回路96によってIPG10に集まり、そこで、電流をコイルに誘導することによって充電コイル44を通電する。誘導電流は、整流器と任意的にフィルタリングコンデンサ及び電圧マグニチュード制限式ツェナーダイオード(例えば、5.5Vに)とを含む整流器回路46によって処理されて電圧V1(例えば、≦5.5V)を確立し、この電圧は、DC電圧Vdcを生成するために逆流防止ダイオード48を通過させられる。充電コイル44に結合されたトランジスタ102を含むLSK変調回路45は、公知のように、「負荷シフトキーイング(LSK)」を通じた磁場98の生成中に外部充電器90にデータを送信して戻すようにIPG10によって(制御信号LSKを通じて)制御することができる。
Vdcは、バッテリ管理回路84に供給され、バッテリ管理回路は、電流発生回路(指定の電流を電極16の選択された電極に供給するのに使用)、テレメトリ回路43、様々な測定及び発生器回路、システムメモリなどを含むIPG10作動に必要な他の回路と共に、特定用途向け集積回路(ASIC)上に位置することができる。フロントエンド充電回路96及びバッテリ36は、典型的には、テレメトリコイル42、電極16に結合された様々な直流阻止コンデンサ(図示せず)、デジタルバス88を通じてASIC(及びバッテリ管理回路84)と通信することができるマイクロコントローラ100、及びここでの関連性が劣る他の構成要素のようなIPG10内の他の電子機器と共に、オフチップ(オフASIC)構成要素を含む。マイクロコントローラ100は、1つの例において、部品番号MSP430(テキサスインストルメンツ社によって製造)を含むことができ、これは、http://www.ti.com/lsds/ti/microcontroller/16−bit_msp430/overview.page?DCMP=MCU_other&HQ=msp430でデータシートに説明されている。ASICは、米国特許出願公開第2012/0095529号明細書に説明されるようなものである場合がある。
図2のバッテリ管理回路84は、2つの回路ブロック、すなわち、バッテリ36を充電する電流を生成する充電回路80、及びバッテリ36がIPG10の通常作動中に給電する負荷75からバッテリ36を制御可能に接続又は分離する負荷隔離回路82から構成される。負荷75は、先に言及した電流発生回路及びテレメトリ回路43のようなオンチップ(オンASIC)回路ブロック、及びマイクロコントローラ100のようなオフチップ(オフASIC)構成要素の両方を含むことができる。
図示のように、充電回路80、負荷隔離回路82、及びバッテリ36は、一般的にT字形のトポロジーを有し、充電回路80は、フロントエンド充電回路96(Vdc)とバッテリ36の正端子(Vbat)の間に介在し、負荷隔離回路82は、Vbatと負荷75の間に介在する。
負荷隔離回路82は、バッテリ36(Vbat)がいくつかの条件に応じて通電して負荷(Vload)に給電するのを禁止することができる。例えば、負荷75が有意に高い電流を引き出している場合に(制御信号OIのアサーションを通じた過電流検出回路74によって示されるように)、又はVbatが低すぎる場合に(制御信号UVのアサーションを通じた不足電圧検出回路70によって示されるように)、又は外部磁場信号μがリード(Reed)スイッチ78によって示される場合に(例えば、外部遮断磁石の患者による呈示を正当化する緊急条件において)、負荷75は、ORゲート76によって補助される時にスイッチ62又は64を通じてVbatから切り離されることになる。Vbatが高すぎる場合にバッテリ36を意図的にドレインするために、放電回路68も設けられる。
充電回路80は、Vdcで始まり、そこでそれは、VdcとVbatの間に並列に接続された2つの経路、すなわち、トリクル充電経路及びアクティブ充電経路に分割され、そのいずれも、充電電流(Ibat)をバッテリ36(Vbat)に供給するのに使用することができる。
トリクル充電経路は、パッシブであり、すなわち、その作動は、制御信号によって制御されず、充電電流(Itrickle)をバッテリ36のために生成するVdcによって供給される電力以外の電力を必要としない。図示のように、トリクル充電経路は、Vdcを限流抵抗器50及び1又は2以上のダイオード52に提示し、かつ小さい充電電流(Itrickle)をバッテリ36に供給するのに使用される。小さいトリクル充電電流を使用することは、バッテリ36が有意に消耗した時、すなわち、例えば、2.7Vのような閾値Vt1よりもVbatが小さい場合に特に有用である。Itrickleは、通常10ミリアンペア程度である。
アクティブ充電経路は、図2においてVdcからバッテリ36まで電流/電圧ソース56を通じて進み、それは、充電電流Iactiveを生成するのに使用される。図2の例において、アクティブ充電経路はまた、充電電流検出器72に関連して使用される充電電流感知抵抗器58、及びバッテリ電圧(Vbat)が最大値(Vmax=4.2Vのような)を超えた場合にアクティブ充電経路を開路させるために過電圧検出器66に関連して使用される過電圧保護スイッチ60を含むバッテリ管理回路に向けて制御及び保護手段を通過する。
アクティブ充電経路内の電流/電圧ソース56のための回路を図3Aに示している。名称が示唆するように、ソース源56は、アクティブ充電中に定電流又は定電圧をバッテリ36に供給するように制御することができる。ソース源56は、Pチャネルトランジスタ104及び106で構成された電流ミラーを含み、電流ミラーは、Vdcによって給電され、かつ基準電流発生器回路113によって供給された基準電流Irefを受電する。電流ミラー制御トランジスタ104は、Irefのスケーリング(M)後の表現を電流ミラー出力トランジスタ106においてミラーリングしてアクティブ充電電流(Iactive=M*Iref)を生成する。
Irefを生成するのに使用される基準電流発生器回路113は、制御信号Itrim[2:0]を通じて調節可能であり、制御信号は、次に、Iactiveを調節するのに使用される。制御信号Itrimは、ソースコントローラ86によって出され、ソースコントローラは、命令をデジタルバス88(図2)によってマイクロコントローラ100から受信する。ソースコントローラ86は、同様に基準電流発生器回路113を有効/無効化する制御信号Ch_enを出す。
ソース56が充電電流を発生させるように作動するモードは、マイクロコントローラ100に既知であるバッテリ電圧Vbatの大きさに依存する。バッテリ36が有意に消耗した、すなわち、Vbat<Vt1(例えば、2.7)である場合に、マイクロコントローラ100は、ソースコントローラ86にソース56がIactiveを生成するのを防止するためにソース56を無効化する(Ch_en=‘0’)ように指令する。従って、この状況におけるバッテリ36は、トリクル充電経路を通じてのみ、かつ磁場98及びVdcが存在してかつ十分である場合に限り充電することができる。
Vbat>Vt1、但し、以下で更に説明する上側閾値Vt2よりも低い場合(すなわち、Vt1<Vbat<Vt2である場合)、ソース56は、定電流モードで作動する。このモードにおいて、ソース56は、有効にされ(Ch_en=‘1’)、Iactiveは、Itrim制御信号によって表された値に従って流れることができる。ソース56が定電流モードで作動する時に、Iactiveは、一般的に、50ミリアンペア程度である。
Vbat>Vt2(例えば、4.0V)である場合に、ソース56は、低電圧モードで作動する。Vt2閾値を横切ること及び充電モードのスイッチングは、Vbat測定回路111を通じて影響を受け、Vbat測定回路は、アクティブ充電経路内のトランジスタ114の電源切断を開始するように増幅器112を制御する。Vt2の値は、Vtrim制御信号によって設定される。定電圧充電モードになると、Iactiveは、従って、Vbatが最大値(Vmax(例えば、4.2V))に到達するまで指数的に落ち始め、この時点で、マイクロコントローラ100は、バッテリ36の充電が完了したと見なすことになる。図3Bは、全体的に、トリクルモード、定電流モード、及び低電圧モードを含む充電セッション中の時間の関数としてバッテリ36によって受電される充電電流(Ibat)を生成するための充電回路80の作動を示している。
図2のバッテリ管理回路84は、バッテリ36からの漏電を過電圧スイッチ60を通じて防止するトリクル受電経路及びアクティブ充電経路間に接続されたダイオード54のような追加の安全策を提供する。
図2を再び参照すると、IPG10内のマイクロコントローラ100は、シャットダウンレジスタ115を含み、シャットダウンレジスタには、IPG10の開始からの将来の使用時間又は時間間隔(tSD)が格納され、その時点で、IPGは、治療作動を中止することになり(ただし、テレメトリのような非治療作動は、可能であれば依然として機能することができる)、従って、患者への刺激治療はもはや行わないことになる。シャットダウンレジスタ115内のtSDは、典型的にはIPG製造業者によって設定され、かつ1つの例において12年を含むことができる。tSDに到達すると、IPG10は、患者から外植する必要があり、新しいIPGが体内に埋め込まれることになる。tSDは、IPGに投入することができ、又は12年の時間間隔が、例えば、製造業者又は移植実施臨床医の管理下で稼動し始めることができる。
tSDは、重要な目的に機能する。第1に、tSDは、この時間の後では製造業者が恐らくは製造業者での信頼性試験を通じて決定するようにIPG10が故障するか又は不確実な又は安全ではない作動を始めると信じられる時間を表すことができる。第2に、tSDは、その後ではIPG10に対する製造業者の責任又は債務が制限されるか又は中断される日付を設定する。例えば、製造業者は、tSDが過ぎた状態で満了するIPG10及びサポート対象の外部構成要素に関する保証及びサポートを提供することができる。すなわち、tSDは、IPG及び患者に対する自らの義務に関して確実性を製造業者に与える。
第3に、tSDは、患者又は臨床医に予めIPG10作動が間もなく中断されることになると警告するのに使用される。この点に関して、IPG10は、tSDが発生する前の設定済み期間(tGRACE)で発生するように計時することができるtSDからの早期交換インジケータ(tSDi)(すなわち、tSDi=tSD−tGRACE)を決定する。tSDiは、図示のように固有のレジスタ117に格納することができる。tSDiが到来した時に、表示は、テレメトリコイル42及びその関連のテレメトリ回路43を使用してIPG10からのテレメトリを通じて患者又は臨床医外部デバイスに供給される。IPG10は、そのような通信を開始するように試みることができ、又はIPG10は、外部デバイスがIPG10との通信セッションを開始する時に外部デバイスに送られるべき優先度データとしてtSDiインジケーションにフラグを付ける方式でtSDiインジケーションを保持することができる。外部デバイスに通信された状態で、tSDiインジケーションは、例えば、外部デバイスのディスプレイ上で見ることができ、患者は、IPG作動がまもなく中断されることになることが知らされ、恐らくは、患者は、tSDが発生する特定の日付又は時間を知らされる。この早期警告により、患者は、IPG10の説明及び新しいIPGとの交換を協議するために担当臨床医又は製造業者に連絡するように計画することができる。
米国仮特許出願第61/928,342号明細書 米国仮特許出願第61/928,352号明細書 米国特許第6,516,227号明細書 米国特許出願第61/877,871号明細書 米国特許出願公開第2013/0023943号明細書 米国特許出願公開第2012/0095529号明細書 米国特許出願第61/887,231号明細書 米国特許出願第61/873,314号明細書 米国特許出願第61/891,730号明細書
http://www.ti.com/lsds/ti/microcontroller/16−bit_msp430/overview.page?DCMP=MCU_other&HQ=msp430
しかし、本発明者は、tSD(及び拡張により、その早期のインジケータtSDi)がデバイスの使用開始時に製造業者により設定された固定期間を含むことは残念であると考えている。本発明者は、実際にIPG10が寿命末期に到達する時点は、少なくとも部分的にIPG10が各患者によってどの程度重度に使用されるかによって決定されることになると認識している。例えば、IPGが患者に比較的低い刺激を行う場合に、その患者のIPGは、tSDを通過した後でさえも依然として完全に機能している場合がある。そのような患者は、できるだけ長く外植手術を遅延させるためにこの時点以降も(たとえ製造業者によって保証又はサポートされていないとしても)IPG10を使用し続けることを望む場合があると考えられる。更に、製造業者は、tSDを超えても少なくとも何らかの期間にわたって保証及びサポートをそのような患者に延長したい場合がある。一方、より重度の刺激を必要とする別の患者は、tSDが満了する前にIPGの寿命を使い果たす場合がある。これは、患者及び製造業者にとって問題であり、患者は、少なくともtSDまで機能すると期待していたのでIPGの性能に関して憤慨し、かつ予想されたよりも早期に外植を受けなければならず、製造業者は、たとえIPGに欠陥がなく、それにも関わらず重度に(恐らくは異常に)使用されたとしても引き続きIPGを保証及びサポートする必要がある場合がある。
医療デバイスのための回路を開示し、それは、充電式バッテリと、バッテリの第1の容量を推定し、かつバッテリの少なくとも推定された第1の容量を使用して医療デバイスの寿命末期を予想及び/又は決定するように構成されたアルゴリズムを実施するように構成された制御回路とを含む。
アルゴリズムは、更に、以前に推定されたバッテリ容量を格納するように構成することができ、アルゴリズムは、推定された第1の容量及び以前に推定された容量を使用して寿命末期を予想及び/又は決定することができる。第1の及び以前に推定されたバッテリ容量の各々は、時間に関連付けることができ、アルゴリズムは、バッテリ容量対時間の関数を導出することによって寿命末期を予想及び/又は決定する。
アルゴリズムは、第1の容量閾値に従って寿命末期を予想及び/又は決定し、かつ寿命末期の早期インジケータを予想及び/又は決定するように構成することができる。早期インジケータは、予想寿命末期より前の設定時間を含むことができ、又はアルゴリズムは、第2の容量閾値に従って早期インジケータを予想及び/又は決定することができる。アルゴリズムは、更に、外部デバイスへの送信に向けて予想及び/又は決定された早期インジケータを格納するように構成することができる。
アルゴリズムは、寿命末期を決定する時に医療デバイスの治療作動を中断することができ、又は予想寿命末期を使用して、シャットダウン時間を超えて医療デバイスの治療作動を延長することができる。
制御回路は、更に、充電式バッテリの容量に影響を及ぼす少なくとも1つのパラメータを格納するように構成されたメモリを含むことができ、少なくとも1つのパラメータは、バッテリの以前の充電、治療を行う医療デバイスの以前の使用、及びバッテリの年数に関連する1又は2以上のパラメータから構成された群から選択され、アルゴリズムは、少なくとも1つのパラメータを使用してバッテリの第1の容量を推定するように構成される。少なくとも1つのパラメータは、時間の関数としてメモリに格納することができ、又はアルゴリズムによる使用に向けて現在値として格納することができる。少なくとも1つのパラメータはまた、バッテリの以前の充電又は医療デバイスの以前の使用中に測定された少なくとも1つの他のパラメータから計算された値を含むことができる。
充電式バッテリの以前の充電に関連するパラメータは、以前の充電セッションの回数と、以前の充電セッションの開始時のバッテリの電圧と、以前の充電セッションの終了時のバッテリの電圧と、以前の充電セッションの持続時間と、以前の充電セッション中にバッテリに供給された電荷と、以前の充電セッションの開始及び終了時のバッテリの電圧間の差を含む放電深度と、以前の充電セッション中にバッテリに供給されたバッテリ充電電流とを含むことができる。
治療を行う医療デバイスの以前の使用に関連するパラメータは、以前の使用中の充電式バッテリの電圧と、以前の使用中にバッテリから引き出された負荷電流と、以前の使用中にバッテリから引き出された電力と、使用の持続時間と、以前の使用中にバッテリから引き出された電荷を含むことができる。
回路は、バッテリ容量データベースを更に含むことができ、バッテリ容量データベースは、少なくとも1つのパラメータをバッテリの容量の変化に関連付け、アルゴリズムは、少なくとも1つのパラメータをバッテリ容量データベースにおける容量の変化と比較してバッテリの第1の容量を決定する。メモリは、更に、各々の少なくとも1つのパラメータの重み又は優先度を含むことができ、アルゴリズムは、少なくとも1つのパラメータの重み又は優先度、又は重み及び優先度の両方を使用することによってバッテリの第1の容量を決定するように構成される。
同じく開示するのは、充電式バッテリの第1の容量を推定する段階と、バッテリの推定された少なくとも第1の容量を使用して医療デバイスの寿命末期を予想及び/又は決定する段階とを含む充電式バッテリを有する医療デバイスを作動させる方法である。開示する方法は、上述のような回路の態様を使用することができる。
医療デバイスのための更に別の回路も開示し、それは、充電式バッテリと、医療デバイスの治療作動が中断されることになるシャットダウン時間を格納するように構成された第1のレジスタと、アルゴリズムを実施するように構成された制御回路とを含み、アルゴリズムは、少なくともバッテリの第1の推定容量を使用して医療デバイスの寿命末期を決定し、かつたとえシャットダウン時間に到達しなかったとしても医療デバイスの治療作動を中断するように構成される。アルゴリズムは、更に、オーバーライドの受信時に医療デバイスの治療作動を再開するように構成することができる。アルゴリズムは、更に、少なくともバッテリの第2の推定容量を使用して医療デバイスの寿命末期を予想し、シャットダウン時間に到達したと決定し、予想寿命末期がシャットダウン時間よりも遅い場合は医療デバイスの治療作動を継続し、かつ決定された寿命末期がシャットダウン時間よりも早い場合は医療デバイスの治療作動を中断するように構成することができる。アルゴリズムは、第1のレジスタ内でシャットダウン時間を後の時間に調節することによって医療デバイスの治療作動を継続するように構成することができ、後の時間は、シャットダウン時間と予想寿命末期の間である場合があり、又は固定持続時間のものである場合がある。
医療デバイスのための更に別の回路も開示し、それは、充電式バッテリと、医療デバイスの治療作動が中断されることになるシャットダウン時間を格納するように構成された第1のレジスタと、アルゴリズムを実施するように構成された制御回路とを含み、アルゴリズムは、少なくともバッテリの第1の推定容量を使用して医療デバイスの寿命末期を予想し、シャットダウン時間に到達したと決定し、予想寿命末期がシャットダウン時間よりも遅い場合は医療デバイスの治療作動を継続し、かつ決定された寿命末期がシャットダウン時間よりも早い場合は医療デバイスの治療作動を中断するように構成される。アルゴリズムは、第1のレジスタ内でシャットダウン時間を後の時間に調節することによって医療デバイスの治療作動を継続するように構成することができ、後の時間は、シャットダウン時間と予想寿命末期の間である場合があり、又は固定持続時間のものである場合がある。
従来技術による充電式バッテリを有する埋め込み可能パルス発生器(IPG)を示す平面図である。 従来技術による充電式バッテリを有する埋め込み可能パルス発生器(IPG)を示す断面図である。 従来技術によるトリクル及びアクティブ充電経路の両方を含む充電式バッテリIPGのためのバッテリ管理回路を示す図である。 アクティブ電流路における電流/電圧ソースのための回路を示す図である。 従来技術により時間の関数としてトリクル及びアクティブ充電経路の両方によって供給されるバッテリ充電電流のグラフを示す図である。 本発明の態様による充電式バッテリ容量に関連するログされた履歴パラメータに従ってtEOLi及びtEOLを予想かつ決定するのに使用されるアルゴリズムを含む充電式バッテリIPGのための改良型回路を示す図である。 容量関連パラメータログを示す図である。 ログから決定された現在の容量関連パラメータを示す図である。 本発明の態様によるEOLアルゴリズムに従って使用されるバッテリ容量データベースを示す図である。 本発明の態様によるEOLアルゴリズムの初期作動を示す図である。 本発明の態様によるEOLアルゴリズムの初期作動を示す図である。 本発明の態様によるEOLアルゴリズムの初期作動を示す図である。 本発明の態様によるEOLアルゴリズムの初期作動を示す図である。 本発明の態様によるEOLアルゴリズムの初期作動を示す図である。 本発明の態様によるEOLアルゴリズムのその後の作動を示す図である。 いつIPG治療作動を中断するかに関して決定するためにtEOL及びtSDに関連して使用可能なシャットダウンアルゴリズムを示す図である。
IPGのような埋め込み可能医療デバイス(IMD)を時間tEOLに寿命末期に到達させ得る多くの事象が発生する可能性がある。回路は、欠陥の結果として又は回路が単に磨耗して仕様に従ってもはや作動しないために故障する可能性があると考えられる。IMDの気密ケース30内のブリーチ、ケース30及びヘッダ28内の電気構成要素の機械的損傷のような機械的欠陥又は磨耗もIMDを故障させる可能性がある。
これに加えて、IMDの寿命末期は、充電式バッテリの消耗から生じる場合がある。本発明者は、充電式バッテリの消耗は充電式バッテリIMDの寿命を決定する際の顕著な要素であると考えている。バッテリ消耗、より具体的には、バッテリ容量の損失は、他の電気的又は機械的故障モードよりも非常に重要である可能性がある。不規則な電気的及び機械的欠陥がIMDに発生する可能性があるが、IMD内の回路及び機構は、そうでなければ磨耗するまで寿命をもたせるはずである。一方、バッテリ容量の損失は、あらゆる充電式バッテリIMDに発生することになり、バッテリのそのような消耗は、IMDを電気的又は機械的消耗よりも遙かに前に満足に作動するのを中断させることになることが多い。
本発明者は、バッテリ暦年数又は暦年齢(A)及び充電式バッテリに与えられるストレスに関連する様々なパラメータを含む特定のパラメータがIMDの寿命にわたって充電式バッテリの容量に影響を与える可能性があることを認識している。そのようなパラメータは、バッテリが再充電された回数(Nc)、バッテリを再充電するのに使用された充電電流(Ibat)、充電電流と共にバッテリが受電した全電荷(Cc)を決定するバッテリを再充電するのにどのくらい(Tc)かかったか(Cc=Ibat*Tc)、充電セッションの開始から終了までのバッテリ電圧間の差を示す放電深度(ΔVbat)のようなバッテリ充電に関連する可能性がある。そのようなパラメータはまた、バッテリ充電が発生していないと考えられる通常の流量作動期間中に負荷75によってバッテリから引き出された電流(Iload)又は電荷(Cu=Iload*Tu、ただし、Tuは、使用時間に等しい)のようなIMDに給電するためのバッテリの使用に関連する可能性がある。
これらのパラメータは、充電式バッテリの化学的及び物理的変化に寄与するので時間と共にバッテリの容量を低減する傾向がある。バッテリ容量が時間と共に減少するので、充電式バッテリは、最終的には、バッテリが有意な時間にわたってIMDを作動させるためにもはや充電することができない点まで消耗することになる。この点に関して、充電式バッテリがいつ寿命末期に到達したかを考察することは、解釈の問題である場合がある。例えば、バッテリを再充電するのに1時間かかる場合、かつその後に、IMDが1時間しか治療を行うことができない場合、殆どの人が、たとえ技術的にバッテリはまだ使用することができ、かつ突発故障が発生していないとしても充電式バッテリは実際問題としてその寿命末期に到達したと考えるであろう。すなわち、充電式バッテリの寿命末期は(時間tEOLでの)、主として定性的決定である。従来技術に使用されたシャットダウン時間tSDは、tEOLに近似することが望ましい場合があるが、2つは同じものではなく、tSDは、充電式バッテリが使用中に耐えることになる実ストレスが考慮されないので、患者間で変わる可能性がある。背景技術において示唆されたように、軽度使用IMD患者のtEOLは、tSDを十分に超える場合があり、重度使用IMD患者のtEOLは、tSDの十分に前とすることができる。いずれの場合にも、tSDは、充電式バッテリIMDが寿命末期に実際に到達したという実際の定量的な決定を含まず、これに代えて、高々、信頼性試験から導出された統計上の値であり、指摘したばかりであるが、全ての現実的なIPG使用状況に適合することができるというわけではない。
従来技術がtEOLを充電式バッテリIMDに対して定量的に決定することができない点は問題があり、なぜならば、容量が低減した充電式バッテリの方が容易に不適切に低いレベルに枯渇することになるか、又はバッテリ36が新しかった時よりも短期間に枯渇することになるからである。Vbatが大きく枯渇した場合に、すなわち、例えば、Vbat<2.0Vである場合に、バッテリ36を回復する(再充電する)ことが困難である場合がある。これは、先に参照した特許出願第61/928,342号明細書でより詳細に説明されており、この出願は、開示する技術に関連して使用することができる。すなわち、tEOLの定量的な対策がなければ、そのようなバッテリ減少の危険性が増大する。これは、特に重度使用IMD患者に当て嵌まり、患者は、そうでなければ従来技術によってtSD満了まで彼らのインプラントを使用することが許可され、満了時には、患者は、実際にインプラント使い果たし、IMDは外植されるべきであったものである。
充電式バッテリIMDとは対照的に、非充電式バッテリIMDのtEOLの方が決定しやすく、かつバッテリ電圧閾値、例えば、Vbat(EOL)を単に含むことができ、この閾値よりも小さい時に、非充電式バッテリは、もはやIMD内の回路を確実に作動させることができない。更に、tEOLはまた、非充電式バッテリIMDの場合は、より容易に予想することができる。例えば、IMDは、寿命にわたって減少した時に、Vbatを追跡することができ、かついつVbatがVbat(EOL)に到達する可能性があるかに関して推定することができ、その結果、tEOLを予想する定量的な手段が得られる。更に、非充電式IMDにおいてtEOLを容易に定量化することができることにより、tSDでのシャットダウンの予備通知がtSDiによって充電式バッテリIMD患者に供給される方法と同様の早期交換インジケータ(EOLi)の発行によってなどでtEOLが迫っていると予め患者に警告することができる。tEOLiが非充電式バッテリIPGに対して出すことができる時間は、tSDiと同様に、tEOLを基準とした一定の猶予期間(すなわち、tEOLi=tEOL−tGRACE)に従って設定することができ、又はこれに代えて、バッテリ電圧が僅かにVbat(EOL)よりも高い閾値Vbat(EOLi)を通過した時に発生することができる。2013年10月24日出願の米国特許出願第61/887,231号明細書を参照されたい。勿論、時間の関数としてVbatを使用する予想tEOLは、充電式バッテリIMDにおいて不可能であり、Vbatは、充電式バッテリIMDの寿命にわたって連続的に減少せず、これに代えて、バッテリが連続的に使用及び再充電されるので振動する。
本発明者は、充電式バッテリに向けていつtEOLi及びtEOLがIMDにおいて到達されたかを定量的に決定し、同様に、定量的に将来的にいつtEOLi及びtEOLを出すことができるかを予想することが望ましいと判断した。tEOLi及びtEOLのこれらの決定及び予想は、バッテリ充電に関連するパラメータ(例えば、Nc、Ibat、Tc、Cc、ΔVbat)、バッテリ使用(例えば、Iload)、及び/又はバッテリ年数(A)を含む上述の容量関連パラメータの1又は2以上に従って行われる。具体的には、IMDで作動可能なアルゴリズムは、パラメータログにIMDの作動の履歴にわたって格納されるようなパラメータを調べて、以下に説明するように、tEOLi及びtEOLを相応に決定及び予想する。
tEOLi及びtEOLを定量的に決定及び予想することは、充電式バッテリIMDにおいて有意かつ本発明者が知る限りでは新規である。tSDi及びtSDが単に充電式バッテリIMDに対して単にIPGの寿命の始めで製造業者によって予め定められる上述の従来技術と異なり、開示する技術は、これに代えて、上述のように、tEOL、従って、関連のtEOLiを駆動することができる充電式バッテリの容量に作用するストレスを反映するIMDにおけるパラメータを考慮する。そのようなパラメータは、例えば、上述のように、患者によって変わる可能性があるIMDにおける充電式バッテリの軽度使用又は重度使用を区別することができ、その結果、tEOLi及びtEOLをそのような使用に基づいて各IMD及び各患者に対して決定又は予想することができる。従って、特定の患者によるIMDの軽度使用により、tEOLi及びtEOLの値の増大が発生し、一方、特定の患者による重度使用により、tEOLi及びtEOLの値の減少が発生する。
すなわち、開示する技術は、充電式バッテリIMDの寿命末期を決定及び予想する定量的で現実的な方法を提供し、患者及び製造業者を補助する。製造業者は、例えば、予想又は決定されるtEOLに応じた条件付き保証及びサポート義務を使用してIMDを販売することができる。従って、重度使用IMD患者に対する製造業者の義務は、従来の予め設定時間(例えば、tSD)が保証すると考えられるよりも短い期間(例えば、<12年)で満了するか又はそれに限定することができる。逆に、製造業者は、軽度使用患者がtSDを超えてIMDを作動し続けることを可能にすることができ、及び/又は保証及びサポート義務を軽度使用IMD患者のtEOLがより遅く(例えば、>12年)発生すると決定又は予想された場合はtSDよりも長く延長させることを可能にすることができる。従って、以下で更に説明するように、IMDは、tSDの満了時に単に作動を中断しない。
図4は、tEOLi及びtEOLの決定及び予想を可能にする充電式バッテリ36を有するIMD10のような埋め込み可能医療デバイスの改良型回路を示している。構成要素の多くは、図2に示すように従来技術から変わっておらず、従って、簡潔さのために改めて説明はしない。
マイクロコントローラ100は、EOLアルゴリズム160を実施するようにプログラムされたものである。アルゴリズム160への入力は、2つのデータセット、すなわち、図5A〜図5Cに詳細に示す容量関連パラメータログ120及びバッテリ容量データベース122である。簡単には、容量関連パラメータログ120は、IMD10の過去の充電及び使用及びその年数に関するデータを含むバッテリ容量に影響を与える上述のような履歴パラメータを含む。バッテリ容量データベース122は、バッテリ容量にパラメータを相関させるデータを含む。このデータベース122は、手元の特定の充電式バッテリ36とのパラメータの関連性の理解に基づいて製造業者によってプログラムされることが好ましい。
従って、EOLアルゴリズム160は、ログ120内のバッテリ容量に関連する履歴パラメータを考慮し、データベース122内の相関に照らしてそのようなパラメータを考慮してtEOLi及びtEOLを決定及び予想する。図示のように、tEOLi及びtEOLを予想又は決定されたものとして格納する追加のレジスタ124及び126が設けられる。レジスタ124及び126に関連付けることができるインジケータビット125及び127は、tEOLi及びtEOLが決定されたか否か、すなわち、これらの時間に到達したか否かを示す単一ビット数を含むことができる。
シャットダウンレジスタ115も、その現在のシャットダウン時間tSDを含む従来技術において行われたようにIPG10内に設けることができる。しかし、以下で更に説明するように、tSDは、依然としてIMD10の作動をシャットダウンするように作動させることができ、必ずしもそうするというわけではなく、又は予想されるtEOLに相応するように調節することができる。
容量関連パラメータログ120の1つの例は、図5Aに示している。尚、ログ120内のデータの一部又は全部はIMD10の通常作動中に格納することができ、従って、ログ120は、単に簡単な形でそのようなデータの集合を示すだけである。見やすいように、容量関連パラメータログ120は、3つのセクション120c、120u、及び120aに分割済みである。
セクション120cは、以前の充電セッション中に取得又は計算された履歴パラメータを含み、充電セッションの回数(Nc)、充電セッションの開始及び終了でのバッテリ36の電圧(Vbat(i)、Vbat(f))(これらから放電深度(ΔVbat)を計算することができる)、及び、充電電流Ibatを含む。尚、Ibatは、ソース56が(Itrim制御信号によって)プログラムされたIactive値ではなく、アクティブ充電経路内のソース56によって供給された実電流の測定を含むことが好ましい。これは好ましく、その理由は、ソース56(図2)が特定のIactiveを供給するようにプログラムしても、そのような電流がバッテリ36に実際に供給されたことが保証されないからである。これは、特に、外部充電器90とIMD10との結合が不良である場合にあてはまり、設定電流を生成するには低すぎるソース56にVdcが供給される。ログ120内の実際のIbatは、充電電流検出器72を使用して充電電流感知抵抗器58全体を通じて電圧降下を感知することによって測定することができ、充電電流検出器は、デジタル化することができるアナログ信号CIを生成する(図2)。
尚、容量関連パラメータログ120内のIbatは、関連の充電セッション中のトリクル充電経路に関するデータ(Itrickle)を含まない。ItrickleはIactiveと比較して一般的に低いので、バッテリ容量及び従ってtEOLi/tEOLに関連するパラメータとしての寄与率は微々たるものであり、従って、無視することができる。これは、幸運であり、その理由は、Itrickleは、Vbatが低く、従って、有意なトリクル充電が発生している時には、IMD10回路の信頼性が低いので正確に測定することが困難である場合があるからである。
また、充電セッションの持続又は継続時間(Tc)をセクション120cに示している。これは、任意的にログ120に示されたタイムスタンプ値で反映されるにように、IMDの内部クロックを使用して決定することができる。充電時間Tcから、充電セッション中にバッテリに供給された全電荷(Cc)を計算することができる(Ibat*Tc)。
セクション120uは、例えば、患者に治療を行うためにIMD10の定期的な使用中のバッテリ容量に関連するパラメータを示している。上述のように、IMD10によって引き出される電力(例えば、Iload)は、バッテリ容量に影響を与え、従って、Iloadは120u内に含められる。図示していないが、バッテリ電圧Vbatも、120u内に示すことができ、120uは、電力引出し(P=I*V)のより真の表示を示すことになり、電力引出しも、120u内のパラメータとして含むことができる。使用持続時間(Tu)も示されており、使用持続時間から全電荷(Cu)を決定することができる(Iload*Tu)。尚、Iloadは、IMD10が作動する時の動的パラメータであり、IMD10がパルスを電極16に実際に供給している期間中に有意に高くなる。従って、そのようなパルスの周波数、持続時間、及び強度は、Iload及びCuに影響を与える(あるいは、主として決定する)ことになり、Iload及びCuは、スケール値又は平均値を表すことができる。2013年9月3日出願の米国特許出願第61/873,314号明細書を参照されたい。Iloadはまた、2013年10月16日出願の米国特許出願第61/891,730号明細書に開示された技術を使用して直接に測定することができる。セクション120c及び120u内のタイムスタンプは、簡潔さのために、充電及び使用が時間的に重畳しないことを示唆するが(交互配置のタイムスタンプtxに注意されたい)、これは、厳密に必要なものではなく、その理由は、IMD10は、一般的に充電セッション中に引き続き使用することができるからである。
セクション120aは、単に、現在のタイムスタンプによって反映されるようなIMDの年数又は年齢を示している。尚、バッテリ管理回路84において始まるログ120内のパラメータの一部(例えば、Ibat、Iload)は、ログ120における格納に向けてバス88を通じてマイクロプロセッサ100に通信することができる。
容量関連パラメータログ120の特定の構造は、変わる可能性もあり、かつEOLアルゴリズム160によって使用される一元化された単一構造又はファイルを含む必要はない。特にパラメータの一部が何らかの他の理由でIMD10に既にログされている場合に、パラメータは、IMD内の異なるデータ構造に位置することができ、異なるデータ構造は、アルゴリズム160によって単に問い合わされる。アルゴリズム160は、関連パラメータ(例えば、Ibat*Tcに等しい充電Cc)を計算する機能を更に含むことができ、従って、ログ120は、アルゴリズム160の便宜上そのような値を事前計算する必要はない。
尚、ログ120を含む示すパラメータは、製造業者優先事項、かつ恐らくは更にIMDに使用された特定の充電式バッテリ36の消耗での製造業者経験に従うものである。従って、製造業者は、図5Aに示すパラメータの一部はバッテリ容量に無関係(あるいは、小さい関連性しかない)と考える場合があり、それでログ120に含まれない場合がある。別の製造業者は、示されていない追加のパラメータがバッテリ容量によって関連があると考える場合があり、従って、そのような追加のパラメータを含む場合がある。すなわち、図5Aに示すような容量関連パラメータログ120に含められたパラメータは、tEOLi及びtEOL予想及び決定に有用なパラメータの1つの例に過ぎないことを理解しなければならない。
後で詳細に説明するように、EOLアルゴリズム160は、ログ120内のパラメータを調べて、随時tEOLi及びtEOLを調節することになる。図5Bは、ログ120内のデータが現在の容量関連パラメータ120’の形態でより使いやすいようにアルゴリズム160によってまとめられる方法を示し、アルゴリズムは、現在の時間でのアルゴリズムによる使用に向けてパラメータをまとめる。例えば、IMDの寿命にわたって充電中にバッテリ36に与えられた全電荷Cc(tot)が示されており、全電荷は、ログ120のセクション120cからの充電値Ccの和を含む。図5Bに示すように、この合計された電荷は、現在、時間と共に増加すると考えられる値Cc(tot)2によって表される。IMDの使用中に費やされる全電荷Cu(tot)が同様に示されており、全電荷は、現在値Cu(tot)2によって表される。また、IMDが充電された総回数Ncが、Nc4によって現在表されるように、現在のパラメータ120’に示されており、Ncは、ログ120のセクション120cのNcに対しては最終値を含むことになると考えられる。平均放電深度ΔVbat(avg)、及び平均充電及び使用電流(Ibat(avg)及びIload(avg)も、セクション120cの個々の値を平均化することによって示されている。
ログ120’内の現在の容量関連パラメータZは、使用中に費やされた電荷(Cu(tot)及び充電中にバッテリに与えられた電荷(Cc(tot)の比率を含む。このパラメータは関連があり、理想的には1に等しくあるべきであり、その理由は、バッテリへの電荷入力及びバッテリからの出力は、理論的には問題なく同じであるべきであるからである。勿論、この比率の精度は、全電荷をどの程度正確に計算することができるかに依存する。また、良好なバッテリ容量を有する適切に作動するIMD10のZの基礎値は、たとえ全電荷が不完全に測定されたとしても、まだ確立することができることに注意されたい。Zの値が時間と共に減少する場合に、これは、充電中にバッテリに与えられる充電の増加量が、IMD内の回路によって使用されておらず、従って、充電式バッテリ36の漏電のようなバッテリ容量の問題が存在する可能性があることを示唆している。
ちょうどログ120に含まれるパラメータが製造業者優先事項及び経験に従うように、現在のパラメータログ120’に含まれるデータ及びそのようなデータがログ120から要約される方法も製造業者優先事項及び経験に従う。一部の簡単な例を引用すると、製造業者は、小さい放電深度(ΔVbat)は、EOLアルゴリズム160のバッテリ容量及び作動に無関係であると考える可能性があり、従って、閾値よりも小さい値を120’の平均から除外する可能性がある。これに代えて、製造業者は、120’内の現在のパラメータとして、放電深度がこの閾値を超えていた時間の百分率を含むことを望む場合がある。
現在のパラメータ120’はまた、ログの履歴全体を通じて発生するデータを必ずしも反映するわけではない場合がある。例えば、Ibat(avg)、Iload(avg)、及び比率Zは、ログ120内のより最近のデータから決定された時の方が関連性があるとすることができ、従って、1ヵ月のような最近の期間にわたって発生するログ内のデータのみを使用して計算することができる。ログ120の最近の部分のみを使用することは、バッテリ容量に影響を与えると考えられるIMD10の作動の変更が行われた場合に特に有用とすることができる。例えば、開示する技術に関連して使用することができる先に参照した第61/928,352号出願において、充電電流Ibatは、バッテリ容量が減少している速度を低減するように時間と共に調節(例えば、低減)することができることが教示されている。万一これが発生した場合に、tEOLi及びtEOL予想及び決定がIMD及び充電式バッテリ36に作用する電流ストレスをもはや表さない古いデータによって歪曲されないように、そのような調節以来発生したログ120内の容量関連パラメータのみを評価することを保証することができる。
図5Bに示すパラメータは、単に、開示する技術の例示に有用な1つの例を示すものである。現在の容量関連パラメータ120’は、ログ120の一部を含むか、又は別々である場合がある。また、現在の容量関連パラメータ120’は、スケジュールによって自動的に更新されるか、又はEOLアルゴリズム160が実行されると計算又は更新することができる。
バッテリ容量データベース122の例を図5Cに示している。上述のように、バッテリ容量データベース122は、ログ120内のパラメータ(あるいは、好ましくは、ログ120’において要約されたパラメータ)をバッテリ容量に相関させるデータを含む。図示のように、データベース122は、パラメータの特定の値がどのようにバッテリ容量に影響を与えるかを示している。例えば、充電中にバッテリに供給される全電荷がCc(tot)2の値(あるいは、Cc(tot)2とCc(tot)3の間の値)を含む場合に、データベース122は、バッテリ容量が2%だけ低減されたことを反映する。尚、バッテリ容量の影響は、百分率以外の値を使用してもデータベース122において反映させることができるが、百分率は、本明細書では簡単な例示に向けて使用される。
示したように、データベース122内のデータは、バッテリ容量に及ぼすパラメータの各々の影響の理解に基づいてIMD又はバッテリ製造業者によって決定することが好ましい。例えば、パラメータCc(tot)に対して適切な百分率調節を決定する際に、製造業者は、Cc(tot)1、Cc(tot)2などに到達するとバッテリ容量を実験的に決定及び測定して、百分率をデータベース122において相応に設定することができる。
簡潔さのために図5Cに示すように、図5Cのパラメータ値と百分率の関係は、他のパラメータの考慮がなく、バッテリ容量に及ぼすそのパラメータだけの影響を反映する。これに代えて、図示しないが、より複雑な多重パラメータ関係を反映することができる。例えば、データベース122は、2又は3以上のパラメータに依存する百分率を反映することができ、例えば、Cc(tot)>A、ただしIload(avg)<Bである場合に、百分率はC%であり、又はΔVbat(avg)*Ibat(avg)=P(avg)>Xである場合に、百分率はYであるなどである。
尚、バッテリ容量データベース122内のパラメータの殆どは、パラメータの値が増加する時に、バッテリ容量が減少すること(従って、負の百分率)を反映する。しかし、これは、上述の比率Zに対してのように必ずしも当て嵌まらない。更に、パラメータの全てによって結果としてバッテリ容量の低減になるように示されているが、これは、必ずしも当て嵌まらないことがあり、一部のパラメータにより(特に、異なるバッテリ化学特性が使用されるか又は方法を与えられる場合に、様々なパラメータは数学的にどのように処理されるかを考慮すると)、結果として、時間と共に容量増大(正百分率)になることがある場合がある。
バッテリ容量データベース122は、更にパラメータの重みに関するデータ、又はtEOLi及びtEOLを決定又は予想する時にそのようなパラメータをEOLアルゴリズム160によって適用しなければならない優先度を含むことができる。例えば、製造業者は、充電中の全電荷(Cc(tot))をバッテリ容量に最も有意な影響を与えるパラメータであると考えることが見出されている。従って、このパラメータは、「1」の重みが与えられ(スケーリングなしにアルゴリズム160によって完全に考慮されることになることを示唆する)、かつ最高の優先度が与えられる。一方、平均放電深度(ΔVbat(avg))は、有意性が劣ると見なされ、従って、0.5の重みを担持し、優先度が4番目に高い。ここでもまた、データベース122内のこれらの重み及び優先度は、製造業者優先事項及び経験に従う。
図6Aは、1つの例においてEOLアルゴリズム160を示している。アルゴリズム160のこの部分は、tEOLi(かつ従ってその後に発生するtEOL)を決定する前に最初に使用される。すなわち、tEOLiにはまだ到達しておらず、EOLiインジケータビット125(従って、EOLインジケータビット127)は、アルゴリズム160の以前の実施においてまだ設定されていない。従って、図6Aに示すアルゴリズム160の部分は、tEOLi及びtEOLを予想(あるいは、その予想を更新)し、かつtEOLiが決定されたか否か、従って、EOLiインジケーションビット125を設定することができると評価しようとする。後に説明する図7は、tEOLiは決定された(インジケータビット125は設定)後であるが、tEOLは決定されていないEOLアルゴリズム160のその後の作動を示している。従って、図7に示すアルゴリズム160の部分は、tEOLを予想(あるいは、その予想を更新)し、かつtEOLが決定されたか否か、従って、EOLインジケーションビット127を設定することができると評価しようとする。tEOLi及びtEOLが決定された(インジケータビット125及び127は、設定された)後に、アルゴリズム160を実行する更なる必要性がなく、従って、マイクロコントローラ100は、その時に任意の形でアルゴリズム160の作動を中断することになることが好ましい。尚、図6AのEOLアルゴリズム160及び7は、予め設定されたシャットダウン時間(tSD)、又はIMD10内にまだ含まれている場合がある早期インジケータ(tSDi)(図4、レジスタ115及び117において)を考慮しない。IMDにおけるシャットダウン時間tSDの使用関連性の説明は、図8のシャットダウンアルゴリズム170を参照して説明する。
図示のように、EOLアルゴリズム160は、有意な量の新しい容量関連パラメータデータをログ120/120’に収集するのに十分長い周期性で(例えば、2週間毎)スケジュール通りに自動的に実行されるように設計することができる。しかし、これは、厳密に必要なものではなく、アルゴリズム160は、指令で(外部デバイスから無線で受信されるなど)又はIMD10内の特定の事象(充電セッション、特定の故障モードの完了など)の発生で自動的に実施することができると考えられる。
現在の容量関連パラメータ120’の値は、アルゴリズム160によって問い合わされ、アルゴリズムは、予め決定及び格納されていなかったとしてもこの時点でログ120からこの値を決定することができる。その後に、これらの値の各々に対して保証されるバッテリ容量の増加又は低減率は、バッテリ容量データベース122を使用して決定される。増加又は低減率の実際値をその後の処理の理解を容易にするために図6Aに示す。更に、パラメータの各々の重み及び優先度はまた、存在する場合はデータベース122から取得することができる。
この時点で、アルゴリズム160はバッテリ容量の総増加又は低減率を決定することになり、この総増加又は低減率を決定するデータの処理が、いくつかの異なる方法で行われる可能性もあり、その一部を図6Bに示している。例えば、アルゴリズム160は、この容量関連パラメータがバッテリ容量に最も大きい影響を与えていることに基づいて、最大百分率変化(−7%)のみを使用することができる。これに代えて、アルゴリズム160は、決定された百分率を加算するか(−28%)又は平均化する(−3.5%)ことができ、各パラメータの影響が部分的に考慮されるようになっている。
これに代えて、アルゴリズム160は、特定の数(例えば、X=3)の決定された最高百分率(−7%、−6%、−5%)のみを考慮して、全ての他のより低い百分率をバッテリ容量に及ぼす効果において小さすぎるとしてその後の解析から廃棄することができる。これらの残りの百分率は、その後に、以前と同様に、加算するか(−18%)又は平均化する(−6%)ことができる。これに代えて、これらの残りの百分率は、取得された重み(存在する場合)を使用して重み付けして追加することができる(−9.2%)。
これに代えて、アルゴリズム160は、そのようなデータが存在する場合に、最高の優先度(1、2、及び3)を有する決定された特定の数(例えば、X=3)の百分率(−2%、−7%、−5%)のみを考慮することができる。これらの百分率は、その後に、先行する段落で上述したように加算(−14%)、平均化(−4.7%)、又は重み付け及び追加(−10.6%)することができる。
更に別の例において、アルゴリズム160は、そのような重みデータが存在する場合は決定された百分率の全てを重み付けすることができる。これらの得られた重み付けされた百分率は、その後に、追加することができる(−14.1%)。これは、全てが考慮されるので百分率を処理する非常に好ましい方法を含むことができ、関連性が小さい容量関連パラメータほど、総増加又は低減率に及ぼす影響が小さい。これに代えて、重み付け百分率のうちで最も関連性がある重み付けされた百分率のみが、更に考慮(−5.6%、−3%、−2%)及び加算(−10.6%)することができる。
バッテリ容量の全体的な変化を示す総百分率変化で到達するために決定された百分率を処理するこれらの代替の全ては、何らかの適切な根拠を有する。容量関連パラメータを処理する依然として他の方法が、製造業者優先事項及び経験に応じて可能である。
総百分率は、バッテリ容量の推定を含み(又は少なくとも推定に相関し)、推定は、図6Cに示すように、推定がいつ行われたかを示すタイムスタンプtxと共に、EOLアルゴリズム160に関連付けられた推定容量ログ162(図4)に格納することができる。尚、それより以前に推定されたバッテリ容量及びタイムスタンプも、ログ162に含まれている。すなわち、推定容量ログ162は、時間の関数としてアルゴリズム160によって予想されるバッテリ容量を記録する。
EOLアルゴリズム160の次の段階において、予想/決定アルゴリズム164(図4)を実施し、アルゴリズム164は、好ましくは推定容量ログ162を入力として(ただし、必ずというわけではなく)使用する。アルゴリズム164は、推定容量ログ162において(例えば、最小二乗解析を使用して)エントリを曲線当て嵌めして、時間の関数としての推定バッテリ容量に外挿法を適用することができる。図4に示すように、アルゴリズム164はまた、入力として、閾値容量Cap(th)のような推定バッテリ容量の解析を補助する閾値を受信することができ、閾値容量は、tEOL及びtGRACEを予想(及び最終的に)決定するのに使用され、tGRACEは、以下で更に説明するように、早期交換インジケータ(tEOLi)を決定するtEOL前の猶予期間を表している。
予想/決定アルゴリズム164の作動及びこれらの閾値の関連性を図6Dにグラフにして示す。2人の患者A及びBの時間の関数として(例えば、ログ162からの)推定バッテリ容量が示されている。上述のように、これらのデータポイントを曲線当て嵌めすることができ、外挿された曲線がCap(th)と交差する点により、2人の患者のに対してtEOL(tEOL(A)、tEOL(B))が予想される。予想されると、tEOLは、それぞれの患者に対してEOLレジスタ126に格納することができる。tGRACEは、tEOLの予想された発行の前の6ヵ月のような固定期間を表すことができ、従って、予想されたtEOLi(すなわち、tEOLi=tEOL−tGRACE)を両方の患者に対してEOLiレジスタ124に格納することができる。図示のように、患者Aは、重度使用IMD患者を含み、従って、tEOLi及びtEOLの予想された値は、軽度使用IMD患者Bよりも小さい。
tEOLiは、他の方法で及びtEOLとは独立に予想することができる。例えば、図6Eに示すように、予想/決定アルゴリズム164は、tEOLを予想かつ決定するのに使用されるより高い閾値Cap(th)(EOL)と異なる固有の容量閾値Cap(th)(EOLi)を使用してtEOLiを予想かつ決定する。尚、この代替アルゴリズム164により、図6Eが示すように、固定間隔で離間しないtEOLi及びtEOLの予想が得られる。
閾値Cap(th)(図6D)、又は閾値Cap(th)(EOLi)及びCap(th)(EOL)(図6E)は、製造業者によってEOLアルゴリズム160の一部としてIMD10へプログラムされることが好ましく、そのような閾値は、製造業者優先事項及び経験に基づいて設定される。図6Dに示すように、EOL閾値は、−60%に設定され、充電式バッテリ36が容量の60%を失ったことを意味する。図6Eにおいて、EOLi閾値は、僅かに低い(約−56%)。ログ162内の推定容量自体と同様に、これらの容量閾値は、必ずしも実際のバッテリ容量に等しくない場合があるが、依然として実際のバッテリ容量に相関することになり、従って、充電式バッテリ性能が適切な作動にもはや十分でない時点に、例えば、バッテリを再充電するのに要求される時間がIMDが療法を行うために使用される時間に匹敵し始めた時に、経験的に設定することができる。尚、Cap(th)及びCap(th)(EOL)は、例えば、IMDがテレメトリを行う電源を必要とする場合に、たとえバッテリ容量が治療を行うにはIPGには低すぎるとしても少量の容量が残ることを保証するために保守的に設定することができる。
予想/決定アルゴリズム164が推定容量ログ162を使用してtEOLi又はtEOLを予想又は決定することは、厳格に必要なものではなく、実際に、それ以前に推定されたバッテリ容量をEOLアルゴリズム160に関連して格納していなければならないことは、全く必要ではないが、これは好ましくかつ便利である。これに代えて、アルゴリズム164は、容量関連パラメータログ120(図5A)及びバッテリ容量データベース122(図5C)に時間と共に格納されるようなパラメータの一部又は全部で直接に作動させることができる。その上で、ログ120のそのような直接解析には、有意な計算パワーを必要とする場合があり、かくして、現在の容量関連パラメータ120’(図5B)を決定する段階、推定容量ログ162(図6C)を投入する段階などの中間段階が好ましい。
図6Aを再び参照すると、tEOL及びtEOLiが予想されると、それらの値をレジスタ126及び124(図4)に格納することができる。尚、tEOL及びtEOLiは、アルゴリズム160のそれ以前の実施で予想されてレジスタ126及び124に格納されているかもしれない。必要に応じて、依然としてより古い値を保ちながら、tEOLi及びtEOLの新しく予想された(及びおそらくはより正確な)値をレジスタ124及び126に追加することができ、又はこれらのより古い値に上書きすることができる。
この時点で、アルゴリズムは、tEOLiが決定されたか否かを評価することができ、これは、現時刻が予想されたtEOLiの後であるか否かを決定する段階を伴う場合がある。tEOLiの後ではない場合に、アルゴリズムはこの時点で終了し、図6Aのアルゴリズムは、tEOLiが決定されるまで将来的に使用され続けることになる。tEOLiの後である場合、EOLiインジケータビット125が設定され、EOLiインジケータビットは、アルゴリズム160に、tEOLiの新しい値は、アルゴリズム160の将来的な実施中に改めて予想されず又はEOLiレジスタ124に格納されないことを通知する。レジスタ124は、従って、EOLiに到達した時点を保存する。
tEOLiが決定されて、基本的に「背景技術」においてtSDiインジケータに関して上述したのと同じ方法で外部デバイスがIPG10との通信セッションを開始すると、IPG10は、外部デバイスに送られるべき優先度データとしてフラグ付けしてtEOLi(124)、EOLiインジケータ(125)、及び/又は、予想されたtEOL(126)(及び好ましくはこれらの全て)を保持することができる。tEOLiを決定する前は、アルゴリズム160は、予想されたtEOLi又はtEOLを外部デバイスに送信するためのステップを必ずしも取るわけではなく、その理由は、バッテリ容量がまだ懸念されないからである。これらの予想された値は、依然として格納され(126、124)、かつ外部デバイスの指令でIMD10から読み取ることができることに注意されたい。
これらの表示(インジケーション)を受信して患者に中継する外部デバイスは、外部充電器90(図2)を含むことができ、その場合に、これらの表示は、LSK変調回路45(図2)を使用してLSKテレメトリによって送られる。このテレメトリ手段は比較的簡単なので、かつ外部充電器は簡単なユーザインタフェースのみを有するので、EOLiインジケータ(125)のみをテレメトリすることができる。EOLiインジケータを受信すると、外部充電器90は、外部充電器のケース上のLEDを一意的に点灯したり、外部充電器のスピーカから「警告音」を発したりすること等のあらゆる方法でユーザに警告することができる。
これに代えて、患者外部コントローラ又は臨床医のプログラマーのようなより高度なデバイスが、IMD10との通信セッションを開始することができる。そのような外部デバイスは、典型的にはディスプレイを有するグラフィカルユーザインタフェースを有し、従って、tEOLi、EOLiインジケータ及びtEOL予想の全ては、テレメトリされてディスプレイ上に表示されることが好ましい。上述のtSDiインジケータの場合と同様に、これは、IMDのテレメトリコイル42及び関連のテレメトリ回路43(図2)の使用を伴う可能性がある。テレメトリのそのような手段は、周波数シフトキーイング(FSK)を使用することができ、かつ磁気誘導を通じて又は無線周波数テレメトリ(IMD10がRFアンテナ(図示せず)を有する場合)によって発生させることができる。
これらの表示を受信する外部デバイスがインターネットとのようなより広域の接続性を有する場合に、又はIMD10自体がそのような接続性を有する場合に、そのような表示はまた、患者の臨床医又は製造業者に送ることができる。上述のように、製造業者はそのようなデータを使用して、保証及びサポート義務をより良好に理解することができ、保証及びサポート義務は、デフォルト(例えば、12年の保証)として他の方法で指定されたものから変わっている場合がある。例えば、保証及びサポートがtEOL次第である場合、いつtEOLが決定されたか又は出すと予想されるかの理解は、製造業者及び/又はそのサービス担当者にとって知るのに有益である。
tEOLiが決定(例えば、ビット125が設定)されると、図6Aのアルゴリズムは、将来的には使用されない。これに代えて、アルゴリズム160の将来的な実施は、図7に説明するように行われることになる。上述のように、図7に説明するアルゴリズムの一部は、tEOLを予想(あるいは、その予想を更新)し、かつtEOLが決定されたか否か、従って、EOLインジケーションビット127を設定することができるか否かを評価しようとする。
図7は、図6Aと類似のものであるが、EOLのみを重点的に取り扱い、EOLiは既に決定されている。従って、図示のように、アルゴリズム160は、以前と同様に容量関連パラメータログ120/120’を検索して、バッテリ容量データベース122を調べ、各パラメータに対して百分率変化を決定し、各パラメータについて存在し使用される重み/優先度を取得し、それらの百分率を処理し、推定容量ログ162に格納されるバッテリ容量に対する推定総百分率変化を決定する。予想/決定アルゴリズム164は、再び、レジスタ126に格納されるtEOLを予想するように作動する。(尚、アルゴリズム164は、この時点では、tGRACE(図6D)又はCap(th)(EOLi)(図6E)のようなEOLiに関連付けられた閾値を考慮する必要はない。すなわち、Cap(th)(図6D)又はCap(th)(EOL)(図6E)のみが使用される。)tEOLが決定されなかった場合に、アルゴリズム160は終了し、図7のアルゴリズムは、tEOL決定が行われるまで再び使用される。tEOLが将来的に決定される時に、EOLインジケータビット127が設定され、tEOL(126)及び/又はそのインジケーション(127)は、1又は2以上の将来的な通信又は充電セッションでテレメトリされる。tEOLを決定すると、アルゴリズム160は、主としてその目的に機能したわけであり、その使用は中断することができる。
上述のように、シャットダウン時間tSD及び早期インジケータtSDiは、依然として、EOLアルゴリズム160によって行われたtEOLi及びtEOL予想及び決定に関連してIMD10に含まれ、かつ使用することができる。これに代えて、tEOLi及びtEOLは、tSDi及びtSDの機能に取って代わり、従って、IMD10の作動を示し、かつシャットダウンするのに使用することができ、その場合に、tSDi及びtSDは不要である。
EOLアルゴリズム160を使用する改良型IMDにシャットダウン時間tSDの使用を含めることは依然として可能かつ恐らくは好ましい。これが行われる可能性がある1つの方法は、図8に示されており、これは、IMD10の治療作動を中断するシャットダウンアルゴリズム170の使用を示している。図4に示すように、シャットダウンアルゴリズム170は、tSD及びtEOLを入力としてレジスタ115及び126から受信する。tSDi及びtEOLiのようなこれらの値の以前のインジケータは、考慮する必要はないが、他の実施形態において必要である可能性があると考えられる。
図示のように、シャットダウンアルゴリズム170は、tSD又はtEOLが発生したと決定された時に作動し始める。tEOLが最初にアサートされていた場合に、tSDは、時間的にtEOLより後になる(図6Dの重度使用IMD患者Aを参照されたい)。これに応答して、シャットダウンアルゴリズム170は、IMD10の治療作動を中断することが好ましい。実質的に、tEOLの決定(すなわち、バッテリ容量が今や許すことのできない程度まで劣化し、従って、真に寿命末期に到達したというインジケーション)は、tSDの事前設定値に打ち勝つ。上述のように、製造業者に無線で送信することができるこの情報は、製造業者の保証及びサポート義務を制限するように作用することができる。
このシナリオにおいて、特にtSDに到達していない場合に、IMDの治療作動をシャットダウンするためにtEOLを使用するシャットダウンアルゴリズム170の機能を無効にするもっともな理由がある。例えば、IPG患者が外植手順を経るには病状が悪すぎる場合に、特に適切に効いていると考えられる場合に(tEOLを超えるにもかかわらず)、患者にこのIMDを使用させ続けることは合理的である。この場合に、臨床医又は製造業者は、EOLアルゴリズム160が無効にされること(すなわち、tEOLをシャットダウンアルゴリズム170によって無視すべきこと)を決定することができる。臨床医又は製造業者は、従って、自らのより高度な外部デバイスを使用してtEOLを無効にすることができ、これは、患者の外部コントローラと異なり、EOLアルゴリズム160の作動にアクセス及び変更する権限を有する。tEOLの無効化は、特にtEOLの計算が仮定に基づいており、従って、tEOLはIMD寿命の末期を完全には予知しないことに注目しているような特別な場合に特に適切とすることができる。
tSDが、シャットダウンアルゴリズム170の開始時に最初にアサートされていた場合に、tEOLはまだ決定されておらず、この時点では、レジスタ126に格納されるように単に予想される(図6Dの軽度使用IPG患者Bを参照されたい)。この場合に、tEOLは、IMDがこの患者にきちんと機能していること(少なくともバッテリ容量の観点から)、従って、患者がより長い時間にわたってIMDを使用し続けることは適切とすることができることを示唆することができる。
もしそうである場合に、tSDは、レジスタ115にtSDを上書きすることによって後の時間に調節することができる。図示していない1つの簡単なオプションにおいて、tSDは、IPGによって自動的に又は臨床医又は製造業者により、tEOLの予想された値に単に調節することができる。しかし、tEOLは、単に仮定に基づく予想であるので、tSDを調節してIMD寿命を延ばすそのような戦略は、IMDの寿命が実際に終了する時間を超えた将来の時点に遠くtSDを置くおそれがある。
従って、このシナリオのより保守的なオプションを図8に示す。1つのオプションにおいて、IPG10自体が、シャットダウンアルゴリズム170を通じてtSDを調節することができる。このオプションは、予想されるtEOLがtSDを十分に超える状況(図示例では7年を超える状況)だけに使用されることが好ましい。仮にこの基準を満たす場合に、シャットダウンアルゴリズム170は、IMDの治療使用を続行することを可能にするために何らかの追加の量でtSDを増大させることができる。1つの例において、tSDは、予想されるtEOLとtSDとの間の完全な差で増大させることができる。これは、tSDを予想されたtEOLに設定することに類似し、これは、上述のように問題がある場合がある。従って、より好ましいオプションは、シャットダウンアルゴリズム170が、図示される2年のようなより小さい量により、又は完全な差の部分(例えば、k*(tEOL予想−tSD)、ここで0<k<1)により、tSDを自動的に増大させることを可能にする。上述のように、tSDがこのようにして上方に調節された場合に、製造業者は、保証及びサポート義務を延ばすことができる。これに代えて、製造業者は、依然としてIMDを最大tSDまで保証及びサポートするに過ぎない場合がある。実質的には、患者は、自分のIMDを使用し続けることができるであろうが、製造業者は、その後の責任の継続なしとすることができる。
tSDには到達したがtEOLには到達していないシナリオに示す別の保守的なオプションは、単にIMDの作動を中断することである。実質的に、tSDは、安全又は債務上の理由からtEOLに打ち勝つものである。しかし、作動のそのような中断は、永久ではないかもしれず、治療作動は、臨床医又は製造業者の自由裁量に従ってそれ以後に開始することができる。たとえIMDが例えば刺激をこの時点で行っていないとしても、依然としてテレメトリのような通常機能に給電することができることが好ましい。臨床医又は製造業者は、従って、レジスタ126内の予想されたtEOLを含む精査のためのデータをIMDからダウンロードすることができる。患者の履歴及びニーズの理解を含むそのようなデータの定性的精査すると、臨床医又は製造業者は、図示例における1.5年のような違和感のない量によってレジスタ115内のtSDを調節する(外部臨床医のプログラマーを使用して)ように判断することができる。そのような増加は、上述の理由から、ここでもまた、tEOLによって完全に示唆される量(この例に示すように5年)を保守的に下回ることが予想されるであろう。かつここでもまた、tSD延長は、保証及びサポート上の意味合いを有する場合がある。
示していないが、tSDは、一部の場合により短い時間に下方に調節可能とすることができる(すなわち、レジスタ115内のtSDの上書き)。これは、予想されるtEOLが重度使用IPG患者Bの場合のようにTSDの前に発生する場合に有用である。
EOLアルゴリズム160及びシャットダウンアルゴリズム170で実施される段階の図示された順番は単に例示であり、全体的な結果に影響を与えないように開示する順番に対して変更を行うことができることに注意されたい。更に、全ての段階が厳密に必要であるというわけではなく、また、他の段階を含んでもよい。
アルゴリズム160は、tEOLi及びtEOLの両方を予想かつ決定すると開示してきたが、アルゴリズム160は、これに代えて、これらの値のうちの一方を予想かつ決定するのに使用することができることに留意されたい。同様に、アルゴリズム160はまた、これらの値をそれらが到達する時を決定することなく単に予想し、又は予想することなくそれらが到達する時を決定することのみに使用することができる。
tEOLi及びtEOLの予想及び決定は、重み付けする、数学的に結合するなどが可能ないくつかの異なる容量関連パラメータの解析を潜在的に伴うような完全性に関して示したが、IMDの寿命の何らかの部分にわたって精査した単一の容量関連パラメータの使用でさえも、開示したEOLアルゴリズムを実施し、かつ充電式バッテリIMD内のtEOLi及びtEOLを決定及び予想するのに十分であることに注意しなければならない。
図4の様々なログ、データベース、レジスタ、及びアルゴリズムは、マイクロコントローラ100のメモリ内にプログラムされるように示したが、それらは、その代わりにマイクロコントローラ100の外側に位置し、典型的にマイクロコントローラ100内で作動すると考えられるEOLアルゴリズム160及びシャットダウンアルゴリズム170にアクセス可能にすることができると考えられる。
164 予想/決定アルゴリズム
Cap(th) 閾値容量
tEOL IMD寿命末期
tEOLi 早期交換インジケータ
tSD IPGの使用開始からの将来の使用時間又は時間間隔

Claims (26)

  1. 医療デバイスのための回路であって、
    充電式バッテリと、
    アルゴリズムを実施するように構成された制御回路と、を含み、
    前記アルゴリズムは、
    前記バッテリの第1の容量を推定し、
    少なくとも前記バッテリの推定された第1の容量を使用して前記医療デバイスの寿命末期を予想及び/又は決定するように構成されている、回路。
  2. 前記アルゴリズムは、以前に推定されたバッテリ容量を格納するように更に構成され、
    前記アルゴリズムは、前記推定された第1の容量と前記以前に推定された容量とを使用して前記寿命末期を予想及び/又は決定する、請求項1に記載の回路。
  3. 前記第1のバッテリ容量及び前記以前に推定されたバッテリ容量は、各々時間に関連付けられ、
    前記アルゴリズムは、バッテリ容量対時間の関数を導出することによって寿命末期を予想及び/又は決定する、請求項2に記載の回路。
  4. 前記アルゴリズムは、第1の容量閾値に従って前記寿命末期を予想及び/又は決定する、請求項1〜3の何れか1項に記載の回路。
  5. 前記アルゴリズムは、前記寿命末期の早期インジケータを予想及び/又は決定するように更に構成されている、請求項1〜4の何れか1項に記載の回路。
  6. 前記早期インジケータは、予想された寿命末期よりも前の設定時間を含む、請求項5に記載の回路。
  7. 前記アルゴリズムは、第2の容量閾値に従って前記寿命末期の前記早期インジケータを予想及び/又は決定する、請求項5に記載の回路。
  8. 前記アルゴリズムは、外部デバイスへの送信のために予想及び/又は決定された早期インジケータを格納するように更に構成されている、請求項5〜7の何れか1項に記載の回路。
  9. 前記アルゴリズムは、前記寿命末期が決定された時に前記医療デバイスの治療作動を中断する、請求項1〜8の何れか1項に記載の回路。
  10. 前記アルゴリズムは、予想された寿命末期を使用してシャットダウン時間を超えて前記医療デバイスの治療作動を延長するように更に構成されている、請求項1〜9の何れか1項に記載の回路。
  11. 前記制御回路は、前記充電式バッテリの容量に影響を及ぼす少なくとも1つのパラメータを格納するように構成されたメモリを更に含み、
    前記少なくとも1つのパラメータは、前記バッテリの以前の充電、治療を行うための前記医療デバイスの以前の使用、及び該バッテリの年齢に関連する1又は2以上のパラメータから構成された群から選択され、
    前記アルゴリズムは、前記少なくとも1つのパラメータを使用して前記バッテリの第1の容量を推定するように構成されている、請求項1〜10の何れか1項に記載の回路。
  12. 前記充電式バッテリの以前の充電に関連するパラメータが、
    以前の充電セッションの回数、
    以前の充電セッションの開始時の該バッテリの電圧、
    以前の充電セッションの終了時の該バッテリの電圧、
    以前の充電セッションの持続時間、
    以前の充電セッション中に該バッテリに供給された電荷、
    以前の充電セッションの開始時及び終了時の該バッテリの電圧差を含む放電深度、
    以前の充電セッション中に該バッテリに供給されたバッテリ充電電流、を含む、請求項11に記載の回路。
  13. 前記治療を行うための前記医療デバイスの以前の使用に関連するパラメータが、
    以前の使用中の前記充電式バッテリの電圧、
    以前の使用中に該バッテリから引き出された負荷電流、
    以前の使用中に該バッテリから引き出された電力、
    使用の継続時間、
    以前の使用中に該バッテリから引き出された電荷、を含む、請求項11又は12に記載の回路。
  14. バッテリ容量データベースを更に含み、
    前記バッテリ容量データベースは、前記少なくとも1つのパラメータを前記バッテリの容量の変化に関連付けており、
    前記アルゴリズムは、前記少なくとも1つのパラメータを前記バッテリ容量データベース内の前記容量の変化と比較して、前記バッテリの第1の容量を決定する、請求項11〜13の何れか1項に記載の回路。
  15. 前記メモリは、前記少なくとも1つのパラメータの各々の重み又は優先度を更に備え、
    前記アルゴリズムは、前記少なくとも1つのパラメータの前記重み又は優先度、又は該重み及び優先度の両方を使用することによって前記バッテリの第1の容量を決定するように構成されている、請求項11〜14の何れか1項に記載の回路。
  16. 充電式バッテリを有する医療デバイスを作動させる方法であって、
    前記充電式バッテリの第1の容量を推定する段階と、
    少なくとも前記バッテリの推定された第1の容量を使用して前記医療デバイスの寿命末期を予想及び/又は決定する段階と、
    を含むことを特徴とする方法。
  17. 医療デバイスのための回路であって、
    充電式バッテリと、
    前記医療デバイスの治療作動が中断されることになるシャットダウン時間を格納するように構成された第1のレジスタと、
    アルゴリズムを実施するように構成された制御回路と、を含み、
    前記アルゴリズムは、少なくとも前記バッテリの第1の推定容量を使用して前記医療デバイスの寿命末期を決定し、前記シャットダウン時間に到達していないとしても前記医療デバイスの治療作動を中断するように構成されている、回路。
  18. 前記アルゴリズムは、オーバーライドの受信時に前記医療デバイスの治療作動を再開するように更に構成されている、請求項17に記載の回路。
  19. 前記アルゴリズムは、
    少なくとも前記バッテリの第2の推定容量を使用して前記医療デバイスの寿命末期を予想し、
    前記シャットダウン時間に到達したことを決定し、
    予想された寿命末期が前記シャットダウン時間よりも遅い場合に前記医療デバイスの治療作動を継続し、
    決定された寿命末期が前記シャットダウン時間よりも遅くない場合に前記医療デバイスの治療作動を中断する、ように更に構成されている、請求項17又は18に記載の回路。
  20. 前記アルゴリズムは、前記第1のレジスタ内の前記シャットダウン時間をより遅い時間に調節することによって前記医療デバイスの治療作動を継続するように構成されている、請求項19に記載の回路。
  21. 前記より遅い時間は、前記シャットダウン時間と前記予想された寿命末期の間であることを特徴とする請求項20に記載の回路。
  22. 前記より遅い時間は、固定継続時間である、請求項20に記載の回路。
  23. 医療デバイスのための回路であって、
    充電式バッテリと、
    前記医療デバイスの治療作動が中断されることになるシャットダウン時間を格納するように構成された第1のレジスタと、
    アルゴリズムを実施するように構成された制御回路と、を含み、
    前記アルゴリズムは、
    少なくとも前記バッテリの第1の推定容量を使用して前記医療デバイスの寿命末期を予想し、
    前記シャットダウン時間に到達したことを決定し、
    予想された寿命末期が前記シャットダウン時間よりも遅い場合に前記医療デバイスの治療作動を継続し、
    決定された寿命末期が前記シャットダウン時間よりも遅くない場合に前記医療デバイスの治療作動を中断する、ように構成されている、回路。
  24. 前記アルゴリズムは、前記第1のレジスタ内の前記シャットダウン時間をより遅い時間に調節することによって前記医療デバイスの治療作動を継続するように構成されている、請求項23に記載の回路。
  25. 前記より遅い時間は、前記シャットダウン時間と前記予想された寿命末期の間である、請求項24に記載の回路。
  26. 前記より遅い時間は、固定継続時間である、請求項24に記載の回路。
JP2016565098A 2014-01-16 2015-01-12 充電式バッテリを有する埋め込み可能医療デバイスに対する寿命末期の決定及び予想 Expired - Fee Related JP6373410B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201461928391P 2014-01-16 2014-01-16
US61/928,391 2014-01-16
US14/593,742 US9446244B2 (en) 2014-01-16 2015-01-09 Determining and forecasting end of life for an implantable medical device having a rechargeable battery
US14/593,742 2015-01-09
PCT/US2015/011006 WO2015108815A1 (en) 2014-01-16 2015-01-12 Determining and forecasting end of life for an implantable medical device having a rechargeable battery

Publications (2)

Publication Number Publication Date
JP2017502820A true JP2017502820A (ja) 2017-01-26
JP6373410B2 JP6373410B2 (ja) 2018-08-15

Family

ID=53520444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016565098A Expired - Fee Related JP6373410B2 (ja) 2014-01-16 2015-01-12 充電式バッテリを有する埋め込み可能医療デバイスに対する寿命末期の決定及び予想

Country Status (6)

Country Link
US (3) US9446244B2 (ja)
EP (1) EP3094367A1 (ja)
JP (1) JP6373410B2 (ja)
CN (1) CN105916545A (ja)
AU (1) AU2015206703B2 (ja)
WO (1) WO2015108815A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406522A (zh) * 2021-06-18 2021-09-17 合肥国轩高科动力能源有限公司 一种电动车锂电池系统寿命预测评估方法及系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL243231B (en) * 2014-12-22 2019-05-30 Newpace Ltd System and method for wireless recharging of a flexible subcutaneously implanted medical device
CN111587510A (zh) * 2017-12-27 2020-08-25 F.S.R 株式会社 二次电池管理装置、二次电池以及二次电池管理程序
CN108307071A (zh) * 2018-01-30 2018-07-20 维沃移动通信有限公司 一种终端控制方法及终端
CN109142913B (zh) * 2018-07-23 2020-09-11 清华大学 用于检测植入医疗设备整机的自动测试系统
US20230269545A1 (en) * 2020-06-16 2023-08-24 Cochlear Limited Auditory prosthesis battery autonomy configuration
US20230420959A1 (en) * 2020-11-18 2023-12-28 Cochlear Limited Implantable battery disconnection
TWI758136B (zh) * 2021-03-22 2022-03-11 新普科技股份有限公司 狀態估計方法及電池組
US20230369996A1 (en) * 2022-05-15 2023-11-16 Timm A. Vanderelli Implantable Power Generator
CN115050460B (zh) * 2022-08-17 2022-11-15 深圳市三维医疗设备有限公司 一种基于大数据的医疗设备全生命周期监管系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070179549A1 (en) * 2004-08-10 2007-08-02 Cardiac Pacemakers, Inc. Systems and methods for managing the longevity of an implantable medical device battery
JP2008518711A (ja) * 2004-11-08 2008-06-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 医療機器の無線バッテリー状態管理
JP2011508871A (ja) * 2007-12-13 2011-03-17 カーディアック ペースメイカーズ, インコーポレイテッド 埋込装置におけるバッテリ消耗検出システムと、バッテリ消耗検出方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391193A (en) 1993-02-05 1995-02-21 Medtronic, Inc. Method and apparatus for battery depletion monitoring
JP3258930B2 (ja) 1997-04-24 2002-02-18 東芝マイクロエレクトロニクス株式会社 トランスミッション・ゲート
US6016448A (en) 1998-10-27 2000-01-18 Medtronic, Inc. Multilevel ERI for implantable medical devices
US7177690B2 (en) * 1999-07-27 2007-02-13 Advanced Bionics Corporation Implantable system having rechargeable battery indicator
US6516227B1 (en) 1999-07-27 2003-02-04 Advanced Bionics Corporation Rechargeable spinal cord stimulator system
US8155752B2 (en) 2000-03-17 2012-04-10 Boston Scientific Neuromodulation Corporation Implantable medical device with single coil for charging and communicating
CA2762938C (en) 2002-06-28 2015-05-05 Boston Scientific Neuromodulation Corporation Microstimulator having self-contained power source and bi-directional telemetry system
US7123964B2 (en) 2003-02-15 2006-10-17 Medtronic, Inc. Replacement indicator timer for implantable medical devices
US7450991B2 (en) * 2004-05-28 2008-11-11 Advanced Neuromodulation Systems, Inc. Systems and methods used to reserve a constant battery capacity
US20060004431A1 (en) 2004-07-01 2006-01-05 Fuller Thomas A Prophylactic bactericidal implant
CN101389377A (zh) * 2005-07-29 2009-03-18 捷通心脏系统公司 确定去纤维颤动器中电池容量的方法和装置
US9026211B2 (en) 2005-08-30 2015-05-05 Boston Scientific Neuromodulation Corporation Battery charger circuit for battery powered implantable neurostimulation systems
CA2632755C (en) 2005-12-07 2014-06-17 Boston Scientific Neuromodulation Corporation Battery protection and zero-volt battery recovery system for an implantable medical device
US8055343B2 (en) 2006-10-20 2011-11-08 Cardiac Pacemakers, Inc. Dynamic battery management in an implantable device
US7941220B2 (en) * 2007-06-07 2011-05-10 Cardiac Pacemakers, Inc. Method and apparatus for monitoring battery status of implantable medical device
US8649858B2 (en) 2007-06-25 2014-02-11 Boston Scientific Neuromodulation Corporation Architectures for an implantable medical device system
US8612167B2 (en) 2008-01-18 2013-12-17 Medtronic , Inc. Estimating remaining battery service life in an implantable medical device
US8193766B2 (en) 2008-04-30 2012-06-05 Medtronic, Inc. Time remaining to charge an implantable medical device, charger indicator, system and method therefore
US8744592B2 (en) 2009-10-08 2014-06-03 Boston Scientific Neuromodulation Corporation Efficient external charger for an implantable medical device optimized for fast charging and constrained by an implant power dissipation limit
US8450978B2 (en) 2010-08-27 2013-05-28 Texas Instruments Incorporated Monitoring a rechargeable battery with multiple parameter update rates
WO2012050998A1 (en) 2010-10-13 2012-04-19 Boston Scientific Neuromodulation Corporation Architectures for an implantable medical device system having daisy-chained electrode-drive integrated circuits
US8577459B2 (en) * 2011-01-28 2013-11-05 Cyberonics, Inc. System and method for estimating battery capacity
US8761885B2 (en) * 2011-04-29 2014-06-24 Cyberonics, Inc. Battery life estimation based on voltage depletion rate
US9393433B2 (en) 2011-07-20 2016-07-19 Boston Scientific Neuromodulation Corporation Battery management for an implantable medical device
US9446254B2 (en) 2011-10-13 2016-09-20 Boston Scientific Neuromodulation Corporation Charger alignment in an implantable medical device system employing reflected impedance modulation
US8666504B2 (en) 2011-10-24 2014-03-04 Boston Scientific Neuromodulation Corporation Communication and charging circuitry for a single-coil implantable medical device
US9362774B2 (en) * 2012-01-27 2016-06-07 Medtronic, Inc. Battery charging top-off
US9433796B2 (en) 2013-09-03 2016-09-06 Boston Scientific Neuromodulation Corporation Medical device application for an external device using data logged at an implantable medical device
US20150080982A1 (en) 2013-09-13 2015-03-19 Boston Scientific Neuromodulation Corporation Window in a Case of an Implantable Medical Device to Facilitate Optical Communications With External Devices
US9364673B2 (en) 2013-10-16 2016-06-14 Boston Scientific Neuromodulation Corporation Power supply disconnect current measurement for an implantable medical device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070179549A1 (en) * 2004-08-10 2007-08-02 Cardiac Pacemakers, Inc. Systems and methods for managing the longevity of an implantable medical device battery
JP2008518711A (ja) * 2004-11-08 2008-06-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 医療機器の無線バッテリー状態管理
JP2011508871A (ja) * 2007-12-13 2011-03-17 カーディアック ペースメイカーズ, インコーポレイテッド 埋込装置におけるバッテリ消耗検出システムと、バッテリ消耗検出方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406522A (zh) * 2021-06-18 2021-09-17 合肥国轩高科动力能源有限公司 一种电动车锂电池系统寿命预测评估方法及系统
CN113406522B (zh) * 2021-06-18 2022-05-03 合肥国轩高科动力能源有限公司 一种电动车锂电池系统寿命预测评估方法及系统

Also Published As

Publication number Publication date
AU2015206703A1 (en) 2016-07-21
US20170005486A1 (en) 2017-01-05
EP3094367A1 (en) 2016-11-23
CN105916545A (zh) 2016-08-31
AU2015206703B2 (en) 2017-05-04
US20150196765A1 (en) 2015-07-16
US9887573B2 (en) 2018-02-06
US9446244B2 (en) 2016-09-20
JP6373410B2 (ja) 2018-08-15
US20180152025A1 (en) 2018-05-31
US10806930B2 (en) 2020-10-20
WO2015108815A1 (en) 2015-07-23

Similar Documents

Publication Publication Date Title
JP6373410B2 (ja) 充電式バッテリを有する埋め込み可能医療デバイスに対する寿命末期の決定及び予想
US9789322B2 (en) External device for determining an optimal implantable medical device for a patient using information determined during an external trial stimulation phase
US9776006B2 (en) Systems and methods for adjusting electrical therapy based on impedance changes
US9358399B2 (en) Efficient external charger for an implantable medical device optimized for fast charging and constrained by an implant power dissipation limit
JP6069363B2 (ja) 埋め込み可能な医療デバイスのための再充電電力の管理
US11202910B2 (en) Circuitry for charging a battery in an implantable medical device in accordance with historical parameters impacting battery capacity
US20220266016A1 (en) Recharge system for implantable battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160719

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160719

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180717

R150 Certificate of patent or registration of utility model

Ref document number: 6373410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees