JP2017501390A5 - - Google Patents

Download PDF

Info

Publication number
JP2017501390A5
JP2017501390A5 JP2016532006A JP2016532006A JP2017501390A5 JP 2017501390 A5 JP2017501390 A5 JP 2017501390A5 JP 2016532006 A JP2016532006 A JP 2016532006A JP 2016532006 A JP2016532006 A JP 2016532006A JP 2017501390 A5 JP2017501390 A5 JP 2017501390A5
Authority
JP
Japan
Prior art keywords
nuclear reactor
fuel source
reactor according
emitter device
nuclear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016532006A
Other languages
Japanese (ja)
Other versions
JP6653650B2 (en
JP2017501390A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2014/066803 external-priority patent/WO2015077554A1/en
Publication of JP2017501390A publication Critical patent/JP2017501390A/en
Publication of JP2017501390A5 publication Critical patent/JP2017501390A5/ja
Application granted granted Critical
Publication of JP6653650B2 publication Critical patent/JP6653650B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (20)

原子炉であって、
放射性燃料供給源と、
前記放射性燃料供給源において核反応を引き起こし、前記放射性燃料供給源において中性子により駆動される核分裂反応を支持するための中性子を生成するために、前記放射性燃料供給源に向かって誘導されるガンマ線を生成するように構成された放出器装置と、
前記放射性燃料供給源および前記放出器装置を格納するための格納システムと、
前記原子炉の外部への伝達のために前記原子炉から熱を抽出するように構成された熱抽出システムと、
を備える、原子炉。
A nuclear reactor,
A radioactive fuel source;
Generate gamma rays that are directed towards the radioactive fuel source to cause nuclear reactions in the radioactive fuel source and to generate neutrons to support fission reactions driven by neutrons in the radioactive fuel source An emitter device configured to:
A storage system for storing the radioactive fuel source and the emitter device;
A heat extraction system configured to extract heat from the reactor for transmission to the exterior of the reactor;
A nuclear reactor.
前記放出器装置は、荷電粒子を加速するためのキャパシタ要素をさらに備え、前記キャパシタ要素は一対の電極を含み、前記電極のうちの少なくとも1つは、ダイヤモンドまたはダイヤモンド状物質で少なくとも部分的にコーティングされている、請求項1に記載の原子炉。   The emitter device further comprises a capacitor element for accelerating charged particles, the capacitor element including a pair of electrodes, at least one of the electrodes being at least partially coated with diamond or diamond-like material. The nuclear reactor according to claim 1, wherein 前記荷電粒子の供給源は高密度プラズマ束陽子入射器装置である、請求項2に記載の原子炉。   The nuclear reactor according to claim 2, wherein the source of charged particles is a high density plasma flux proton injector device. 前記核反応を支持するための中性子を作るために前記原子炉内で提供または循環される物質と相互作用するための陽子の供給源をさらに備える、請求項1〜3のいずれかに記載の原子炉。   The atom according to any of claims 1 to 3, further comprising a source of protons for interacting with materials provided or circulated in the reactor to produce neutrons to support the nuclear reaction. Furnace. 放電の間に均一な電流フローを提供するために前記キャパシタ要素の周囲に配列された複数の光スイッチをさらに備える、請求項2または3に記載の原子炉。   The nuclear reactor according to claim 2, further comprising a plurality of optical switches arranged around the capacitor element to provide uniform current flow during discharge. 前記光スイッチの一つ一つはダイヤモンド結晶からなる、請求項5に記載の原子炉。   The nuclear reactor according to claim 5, wherein each of the optical switches is made of a diamond crystal. 前記光スイッチは、前記放射性燃料供給源の放射性崩壊の速度を少なくとも部分的に制御するために、前記放出器装置の動作の間に均一な電流フローを促進する制御された様式で活性化される、請求項5に記載の原子炉。   The optical switch is activated in a controlled manner that facilitates uniform current flow during operation of the emitter device to at least partially control the rate of radioactive decay of the radioactive fuel source. The nuclear reactor according to claim 5. 前記放出器装置において冷却液を循環させるための少なくとも1つの冷却システムをさらに備える、請求項1〜7のいずれかに記載の原子炉。   The nuclear reactor according to claim 1, further comprising at least one cooling system for circulating a coolant in the emitter device. 前記原子炉は複数の前記放出器装置を備え、前記放出器装置の全部が、前記放射性燃料供給源に向かって誘導されるガンマ線を生成するように構成されている、請求項1〜8のいずれかに記載の原子炉。   9. The reactor of any one of claims 1 to 8, wherein the nuclear reactor comprises a plurality of the emitter devices, all of the emitter devices being configured to generate gamma rays that are directed toward the radioactive fuel source. The nuclear reactor described in the above. 前記放出器装置は多角形形状容器内に提供され、前記多角形状容器は、前記放射性燃料供給源の一部および熱交換器を前記多角形状容器の各壁内に備える、請求項1〜9のいずれかに記載の原子炉。   10. The emitter device of claim 1-9, wherein the emitter device is provided in a polygonal container, the polygonal container comprising a portion of the radioactive fuel source and a heat exchanger in each wall of the polygonal container. A nuclear reactor according to any one of the above. 前記放出器装置は、荷電粒子を加速するためのキャパシタ要素をさらに備える、前記キャパシタ要素は一対の電極を含み、前記電極のうちの少なくとも1つは、ダイヤモンド状炭素物質で少なくとも部分的にコーティングされている、請求項1〜10のいずれかに記載の原子炉。   The emitter device further comprises a capacitor element for accelerating charged particles, the capacitor element including a pair of electrodes, at least one of the electrodes being at least partially coated with a diamond-like carbon material. The nuclear reactor according to claim 1. 前記原子炉は未臨界状態で動作され、前記放射性燃料供給源の放射性崩壊速度は、前記放出器装置からのガンマ線の放出を制御する制御システムにより少なくとも部分的に制御される、請求項1〜11のいずれかに記載の原子炉。   12. The reactor is operated in a subcritical state, and the radioactive decay rate of the radioactive fuel source is at least partially controlled by a control system that controls the emission of gamma rays from the emitter device. A nuclear reactor according to any one of the above. 原子炉であって、
放射性燃料供給源と、
前記放射性燃料供給源において核反応を引き起こすために前記放射性燃料供給源に向かって誘導されるエネルギービームを生成するように構成された放出器装置であって、前記放出器装置は、
荷電粒子の供給源と、
前記荷電粒子を加速するための複数のキャパシタ要素であって、前記キャパシタ要素のそれぞれは一対の電極を含み、前記キャパシタ要素の電極のうちの少なくとも1つは、ダイヤモンドまたはダイヤモンド状炭素で少なくとも部分的にコーティングされている、キャパシタ要素と、
前記荷電粒子を伝達するために前記キャパシタ要素を通して形成された導管と、
を備える、放出器装置と、
前記放出器装置を冷却するための冷却システムと、
前記原子炉の外部への伝達のために前記原子炉から熱を抽出するように構成された熱抽出システムと、
を備える、原子炉。
A nuclear reactor,
A radioactive fuel source;
An emitter device configured to generate an energy beam directed toward the radioactive fuel source to cause a nuclear reaction in the radioactive fuel source, the emitter device comprising:
A source of charged particles;
A plurality of capacitor elements for accelerating the charged particles, each of the capacitor elements including a pair of electrodes, at least one of the electrodes of the capacitor element being at least partially of diamond or diamond-like carbon A capacitor element coated on the
A conduit formed through the capacitor element to transmit the charged particles;
An emitter device comprising:
A cooling system for cooling the emitter device;
A heat extraction system configured to extract heat from the reactor for transmission to the exterior of the reactor;
A nuclear reactor.
前記荷電粒子の供給源は高密度プラズマ束陽子入射器装置である、請求項13に記載の原子炉。   The nuclear reactor according to claim 13, wherein the source of charged particles is a high density plasma flux proton injector device. 前記核反応を支持するための中性子を作るために前記原子炉内で提供または循環される物質と相互作用するための陽子の供給源をさらに備える、請求項13または14に記載の原子炉。   15. A nuclear reactor according to claim 13 or 14, further comprising a source of protons for interacting with materials provided or circulated within the reactor to produce neutrons to support the nuclear reaction. 放電の間に均一な電流フローを提供するために前記キャパシタ要素の周囲に配列された複数の光スイッチをさらに備える、請求項13〜15のいずれかに記載の原子炉。   The nuclear reactor according to any of claims 13 to 15, further comprising a plurality of optical switches arranged around the capacitor element to provide uniform current flow during discharge. 前記光スイッチの一つ一つはダイヤモンド結晶からなる、請求項16に記載の原子炉。   The nuclear reactor according to claim 16, wherein each of the optical switches is made of a diamond crystal. 前記光スイッチは、前記放射性燃料供給源の放射性崩壊の速度を少なくとも部分的に制御するために、前記放出器装置の動作の間に均一な電流フローを促進する制御された様式で活性化される、請求項16に記載の原子炉。   The optical switch is activated in a controlled manner that facilitates uniform current flow during operation of the emitter device to at least partially control the rate of radioactive decay of the radioactive fuel source. The nuclear reactor according to claim 16. 前記原子炉は複数の前記放出器装置を備え、前記放出器装置の全部が、前記放射性燃料供給源に向かって誘導されるエネルギービームを生成するように構成されている、請求項13〜18のいずれかに記載の原子炉。   19. The reactor of claims 13-18, wherein the nuclear reactor comprises a plurality of the emitter devices, all of the emitter devices being configured to generate an energy beam directed toward the radioactive fuel source. A nuclear reactor according to any one of the above. 前記複数のキャパシタ要素はキャパシタ・アレイを形成するためにスタックされ、前記キャパシタ・アレイは、前記キャパシタ・アレイを通して形成される導管を通って前記荷電粒子を加速するように構成され、前記キャパシタ要素の一つ一つは、ダイヤモンドまたはダイヤモンド状炭素を含む少なくとも1つの電極、および前記キャパシタ要素の放電の間における活性化のために構成された少なくとも1つの光スイッチを備える、請求項13〜19のいずれかに記載の原子炉。   The plurality of capacitor elements are stacked to form a capacitor array, the capacitor array configured to accelerate the charged particles through a conduit formed through the capacitor array; 20. Each of claims 13-19, each comprising at least one electrode comprising diamond or diamond-like carbon and at least one optical switch configured for activation during discharge of the capacitor element. The nuclear reactor described in the above.
JP2016532006A 2013-11-21 2014-11-21 Reactor Expired - Fee Related JP6653650B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361907169P 2013-11-21 2013-11-21
US61/907,169 2013-11-21
PCT/US2014/066803 WO2015077554A1 (en) 2013-11-21 2014-11-21 Dielectric wall accelerator and applications and methods of use

Publications (3)

Publication Number Publication Date
JP2017501390A JP2017501390A (en) 2017-01-12
JP2017501390A5 true JP2017501390A5 (en) 2017-12-28
JP6653650B2 JP6653650B2 (en) 2020-02-26

Family

ID=53180178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016532006A Expired - Fee Related JP6653650B2 (en) 2013-11-21 2014-11-21 Reactor

Country Status (3)

Country Link
EP (1) EP3072369B1 (en)
JP (1) JP6653650B2 (en)
WO (1) WO2015077554A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108359937B (en) * 2018-02-27 2023-08-22 温州驰诚真空机械有限公司 Conversion type physical vapor deposition particle source

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309249A (en) * 1979-10-04 1982-01-05 The United States Of America As Represented By The United States Department Of Energy Neutron source, linear-accelerator fuel enricher and regenerator and associated methods
JPS58155700A (en) * 1982-03-12 1983-09-16 三菱重工業株式会社 Accelerating electrode for particle accelerator
DE3817897A1 (en) * 1988-01-06 1989-07-20 Jupiter Toy Co THE GENERATION AND HANDLING OF CHARGED FORMS OF HIGH CHARGE DENSITY
US5054046A (en) * 1988-01-06 1991-10-01 Jupiter Toy Company Method of and apparatus for production and manipulation of high density charge
US4993033A (en) * 1989-12-18 1991-02-12 Thermo Electron Technologies Corp. High power fast switch
US5811944A (en) * 1996-06-25 1998-09-22 The United States Of America As Represented By The Department Of Energy Enhanced dielectric-wall linear accelerator
EA200101225A1 (en) * 1999-05-21 2003-06-26 Пол М. Браун METHOD OF OBTAINING ENERGY BY DIVIDING FROM RADIOACTIVE WASTE
JP4585718B2 (en) * 2001-08-17 2010-11-24 財団法人レーザー技術総合研究所 High energy generator
JP2004191190A (en) * 2002-12-11 2004-07-08 Laser Gijutsu Sogo Kenkyusho High-temperature generating method and system by nuclear transformation processing
US7596197B1 (en) * 2005-08-05 2009-09-29 The Regents Of The University Of California Gamma source for active interrogation
US20100059665A1 (en) * 2005-11-01 2010-03-11 The Regents Of The Universtiy Of California Contraband detection system
US7862856B1 (en) * 2006-03-10 2011-01-04 The United States Of America As Represented By The Secretary Of The Air Force Method for making high temperature polymer dielectric compositions incorporating diamond-like hydrocarbon units for capactive energy storage applications
US8575868B2 (en) * 2009-04-16 2013-11-05 Lawrence Livermore National Security, Llc Virtual gap dielectric wall accelerator
DE102009023305B4 (en) * 2009-05-29 2019-05-16 Siemens Aktiengesellschaft cascade accelerator

Similar Documents

Publication Publication Date Title
RU2016144012A (en) EFFICIENT COMPACT THERMONUCLEAR REACTOR
JP6261919B2 (en) Neutron irradiation equipment
RU2015127438A (en) Neutron capture therapy irradiator
WO2009135163A3 (en) Device and method for producing medical isotopes
JP2015082376A (en) Neutron generator, and accelerator system for medical treatment
US10504630B2 (en) Method and system for generating electricity using waste nuclear fuel
Norreys et al. Preparations for a European R&D roadmap for an inertial fusion demo reactor
JP2017501390A5 (en)
JP2016526261A5 (en)
RU74735U1 (en) DEVICE FOR IRRADIATION OF SAMPLES IN A SOLID REDUCER REACTOR
CN102226950A (en) Reactor start-up neutron source
JP2020519892A5 (en)
CN110580967A (en) Controllable210Production method and controllable Po-Be isotope neutron source210Po-Be isotope neutron source
Shimada et al. TPE upgrade for enhancing operational safety and improving in-vessel tritium inventory assessment in fusion nuclear environment
US20110170646A1 (en) Nuclear Energy Converter
CN102568635A (en) Particle revolving acceleration-type atomic pile
JP6653650B2 (en) Reactor
Haynes Addressing common technical challenges in inertial confinement fusion
KR20190106188A (en) Fuel assembly for a pressurized water reactor and method thereof
Dewald Status of Indirect Drive ICF Experiments on the National Ignition Facility
Berninger et al. Improving DARHT High-Energy 20 MeV Gamma Ray Sources with the LAO Cluster
Azizi et al. Study of antiprotons as drivers in inertial confinement fusion by fast ignition method
Kanareykin et al. Photocathode Laser Shaping for High Transformer Ratio Collinear Wakefield Acceleration
WO2022263827A1 (en) Particle generating apparatus
Lafon et al. First inertial confinement fusion implosions using low gas-filled hohlraums on the Laser Mega Joule facility