JP2017500577A - フィールド使用分光装置の適応 - Google Patents

フィールド使用分光装置の適応 Download PDF

Info

Publication number
JP2017500577A
JP2017500577A JP2016542661A JP2016542661A JP2017500577A JP 2017500577 A JP2017500577 A JP 2017500577A JP 2016542661 A JP2016542661 A JP 2016542661A JP 2016542661 A JP2016542661 A JP 2016542661A JP 2017500577 A JP2017500577 A JP 2017500577A
Authority
JP
Japan
Prior art keywords
library
sample
representation
candidates
subset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016542661A
Other languages
English (en)
Inventor
マイケル デレク ハーグリーヴス
マイケル デレク ハーグリーヴス
ティモシー エム パストーレ
ティモシー エム パストーレ
ローズ グレゴリー エイチ ヴァンダー
ローズ グレゴリー エイチ ヴァンダー
ブレンドン ディー タワー
ブレンドン ディー タワー
Original Assignee
サーモ サイエンティフィック ポータブル アナリティカル インスツルメンツ インコーポレイテッド
サーモ サイエンティフィック ポータブル アナリティカル インスツルメンツ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サーモ サイエンティフィック ポータブル アナリティカル インスツルメンツ インコーポレイテッド, サーモ サイエンティフィック ポータブル アナリティカル インスツルメンツ インコーポレイテッド filed Critical サーモ サイエンティフィック ポータブル アナリティカル インスツルメンツ インコーポレイテッド
Publication of JP2017500577A publication Critical patent/JP2017500577A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4412Scattering spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0264Electrical interface; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0272Handheld
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0283Details using a charging unit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0286Constructional arrangements for compensating for fluctuations caused by temperature, humidity or pressure, or using cooling or temperature stabilization of parts of the device; Controlling the atmosphere inside a spectrometer, e.g. vacuum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/283Investigating the spectrum computer-interfaced
    • G01J2003/2833Investigating the spectrum computer-interfaced and memorised spectra collection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/022Casings
    • G01N2201/0221Portable; cableless; compact; hand-held

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

材料の化学特性をフィールド分析するように構成可能な分光計を提供する。分光計は、フーリエ変換赤外分光法(FTIR)を監視するように構成された少なくとも1個のセンサとラマン分光法を監視するように構成された少なくとも別のセンサを含む。分光計は、ユーザがアクセス可能な、分光計のサンプリング構成を変更するための指示セットを備えていてもよい。分光計を使って、少なくとも2つの技術によりサンプルの最有力な組成を判定する方法も提供する。【選択図】図1

Description

本発明は、分光装置のフィールド使用に関するものであり、特に、放射線物質及び/または光検出及び/または識別装置の適応に関する。
優先権の主張
本出願は、2013年12月23日提出の、米国の仮特許出願No.61/920,230の利益を主張するものである。本出願の内容全体は、参照することによって本願に組み込まれる。
政府支援
本発明は、海軍爆発物処理技術部(NAVEODTECHDIV)より与えられた契約番号N00174−13−C−0032の下、政府支援に基づいて行われた。政府は、本発明において一定の権利を有する。
危険評価及び制御をアシストするため、様々な機器がフィールドで使用される。それが、初動要員であれ、兵士であれ、ユーザがある状況に対して応答するように呼び出される時には、その状態について、ある程度の情報を持っていることが多い。初動要員の場合は、誰かが緊急事態サービスへ何が起こっているかについてすでに説明しているので、その通報から得た情報を有していることになる。兵士の場合、領地を偵察する歩兵隊は、疑わしいものを識別し、適当な要員に通報する。これらユーザがフィールドに到着してから、自身のツールを準備し、応答するまでに時間制限を課されることも多い。兵士の場合、射撃される可能性もある。初動要員の場合、救助が必要な犠牲者、あるいは避難してきた建物を再び開けなければならないというプレッシャーがあるかもしれない。これらのツールは複雑性が増しているため、こうした機器を使って適した判定を下すことは、非常に複雑である。よって、応答者が時間制限下にいようと、あるいは、機器を十分使い慣れていなかろうと、様々なパラメータの設定を行うことが課題といえる。
これら機器の中には、機器構成が可能で、性能を最適化することができるものもある。この最適化とは、その機器に、特殊な化学物質、または化学薬品の一覧を検出/識別、または警報を発せさせることを含む。最適化とは、性能、ユーザの安全を改善すること、あるいは、機器を、標準操作手順(SOP)に従って作用させることを含む。ユーザが構成できる現存の機器は、一度に一つの設定を編集できる手動工程を可能とするものである。手動構成には時間がかかり、ユーザが時間制限下にあるときには、機器を最適な性能に構成できないことも多い。これにより、ユーザが危険にさらされ、応答が遅延する結果となる。
フィールド機器の適応または再構成のための方法と装置が必要とされている。解決法としては、ユーザが構成制御できるようにアシストするためのフィールドインテリジェンスを利用することが好ましい。さらに、解決法は、目的にかなった、より高い性能を有する機器類を提供しなければならない。
さらに、未知の材料を確実に識別できるフィールドポータブルな分析器の需要がますます高まっている。救急隊や警察は、毒性のある工業化学物質(TIC)、麻薬、爆発性の前駆体、簡易爆発装置(IED)などを含む未知の潜在的な危険物質に遭遇することが多い。これらの物質に加え、従来の爆発物、生物兵器、及び化学兵器も未だ国土安全保障と軍事ユーザにとっての脅威である。研究所環境では、中赤外域及びラマン分光法は、こうした材料を識別するのに非常に有効であることが証明されている。振動分光法を、研究所レベルの分析技術からフィールドで利用可能なツールに移行させようとする努力が10年以上も続けられており、近年では手持ち式分光計が多くの適用方法にて広く成功を収めている。
手持ち式分光計のフィールドユーザは、一般的に科学または分光法について高度な訓練を受けていない。よって、それらの装置の重要な設計として、未処理のスペクトルデータを答えに変換できるオンボードインテリジェンスを組み込むことが考えられる。定性的適用方法で、エンドユーザからしばしば投げかけられる疑問は、3つのカテゴリーのうちの一つに当てはまる。
1)認証:測定したテスト材料は、本物の物質Xと一致するか?
2)スクリーニング:測定したテスト材料は、物質Xを含有しているか?
3)識別:どの材料が測定されたか?
認証に伴うこの問題は、非常に有界である(例えば、「測定スペクトルは、保存した材料Xの参照スペクトルと一致するか?」)。認証アルゴリズムは、一般的に原料の確認と、偽造防止用途に使用するものであり、ここではそれ以上考察しない。
スクリーニングアルゴリズムは、未知の測定の少なくとも1つの特徴のサブセットが、着目した1つ以上の特殊な物質に相当するかどうかを評価する。そのようなアルゴリズムは、(例えば、検索しているテスト対象はなにか、どのような障害に遭遇する可能性があるか、など)潜在的な材料の存在に関して入力するようにユーザに要求する。よって、認証ほどではないが、スクリーニング法も有界である。このように、スクリーニングアルゴリズムは、機器の操作員が、潜在的な特定の検査対象の存在に関する知識を有しているという状況下では、最も魅力的である。
識別または自由検索のアルゴリズムは、周知の材料のライブラリを徹底的に調べ、未知のスペクトルが、データベースから保存された応答のいずれかと一致するかどうかを判定するように構成されている。下位装置が純粋な材料評価にとどまる一方、より高度な識別装置は、未知の測定がライブラリのスペクトルのいずれとも一致しない場合に誘起される自動混合物解析を組み込んでいる。混合物解析は、測定したデータの大部分を説明できる、保存された応答の組み合わせを見つけることができるかどうかを判定するために行われる。フィールドで遭遇するサンプルは純粋でないことが多いので、この分析は実用性が高い。識別アルゴリズムは、数千もの可能な候補の中から未知の材料を識別できるという意味では非常にフレキシブルである。しかし、スクリーニングアルゴリズムと同じように潜在的な特定の分析対象物の存在に関する情報を組み込むことはできない。よってスクリーニングアルゴリズムは、化学兵器や麻薬検出のような特定の適用方法に対して魅力的な高度な検出能力を提供することが多い。
現在は、赤外分光法、ラマン分光法、X線蛍光分光法、質量分析法などに基づく可搬分析装置が広く利用可能であり、世界的に展開されている。しかし、フーリエ変換赤外分光法(FTIR)検査を提供するように構成されたセンサとラマン分光法検査を提供するように構成されたセンサを組み合わせた分光計が依然必要とされている。
一実施形態では、材料の化学特性をフィールド分析するように構成可能な手持ち式分光計を提供する。分光計は、フーリエ変換赤外分光法(FTIR)検査を提供するように構成された少なくとも1個のセンサとラマン分光法検査を提供するように構成された少なくとも別のセンサを含む。実施形態によっては、分光計は、ユーザがアクセス可能な、分光計のサンプリング構成を変更できる指示セットを備えていてもよい。一部の実施形態では、分光計は、ユーザがアクセス可能な、分光計を構成できる指示セットを備えていてもよい。実施形態によっては、分光計は、ユーザがアクセス可能な複数の応答プロファイルを設けてもよく、それぞれの応答プロファイルは、分光計のサンプリング構成を変更できる指示セットを提供する。
別の実施形態において、分光計を使用する少なくとも2つの技術によってサンプルの最有力な組成を判定する方法は、分光計を使用する第1の技術によってサンプルからデータを取得することを含み、前記データは、前記第1の技術によって得た、正確さの状態を判定する測定スペクトルの第1の表記を含む。前記方法は、さらに、各ライブラリ候補に対してライブラリ候補の第1のセットを提供することと、各ライブラリ候補を表すデータを提供することとを含み、データは、前記第1の技術によって得られるライブラリスペクトルの表記を含むことを特徴とする。前記方法は、さらに、(i)前記測定スペクトルの前記第1の表記、(ii)前記測定スペクトルの前記第1の表記の前記正確さの状態、(iii)そのライブラリ候補の前記ライブラリスペクトルの前記表記、及び任意で(iv)そのライブラリ候補に対する前記ライブラリスペクトルの前記表記の前記正確さの状態を使用して、ライブラリ候補の第1のセットにおける前記サンプルの各ライブラリ候補との類似性の第1の表記を判定することによってライブラリ候補の第1のサブセットを選択することを含む。そして、前記方法は、前記サンプルの第1の最有力な組成を前記選択したライブラリ候補の第1のサブセットに基づいて判定することを含む。
前記方法は、さらに、第2の技術によって分光計を使って前記サンプルからデータを取得することを含み、前記データは、前記第2の技術によって得た測定スペクトルの第2の表記を含み、前記測定スペクトルの前記第2の表記の正確さの状態を判定し、ライブラリ候補の第2のセットを提供し、さらに各ライブラリ候補には、各ライブラリ候補を表すデータを提供する、測定スペクトルの第2の表記を含み、前記データは、前記第2の技術によって取得するライブラリスペクトルの表記を含む。前記方法は、さらに、(i)前記測定スペクトル第2の表記、(ii)前記測定スペクトルの前記第2の表記の前記正確さの状態、(iii)そのライブラリ候補の前記ライブラリスペクトルの前記表記、及び任意で(iv)そのライブラリ候補に対する前記ライブラリスペクトルの前記表記の前記正確さの状態を使用して、ライブラリ候補の第2のセットにおける前記サンプルの各ライブラリ候補との類似性の第2の表記を判定することによってライブラリ候補の第2のサブセットを選択することを含む。また、前記方法は、前記選択されたライブラリ候補の第2のサブセットに基づいた前記サンプルの第2の最有力な組成を判定することと、前記サンプルの前記第1と第2の最有力な組成に基づいて、結果として得られる前記サンプルの最有力な組成を判定することと、前記結果として得られる前記サンプルの最有力な組成をユーザに表示することとを含む。
実施形態によっては、前記方法は、さらに、ライブラリ候補の第1の監視対象リストを前記ライブラリ候補の第1のサブセットに追加することと、任意で、ライブラリ候補の第2の監視対象リストを前記ライブラリ候補の第2のサブセットに追加することと、一部の実施形態では、前記方法は、さらに、前記サンプルの前記第1の最有力な組成を前記ライブラリ候補の前記第2のサブセットに追加することを含む。実施形態によっては、前記サンプルからの前記データは、さらに、前記サンプルで観察された少なくとも1つの特性を含む。一部の実施形態では、前記方法は、さらに、前記ライブラリ候補の第1のサブセットを選択する前に、前記ライブラリ候補の第2のサブセットを選択することと、前記サンプルの前記第2の最有力な組成を前記ライブラリ候補の第1のサブセットに追加することとを含む。
実施形態によっては、前記サンプルの他の単一のライブラリ候補との類似性は、レポート閾値より低く、前記方法は、さらに、(i)前記測定スペクトルの前記正確さの状態、(ii)前記測定スペクトルの前記第1の表記、(iii)そのライブラリ候補の前記ライブラリスペクトルの前記表記、及び任意で(iv)そのライブラリ候補に対する前記ライブラリスペクトルの前記表記の前記正確さの状態を使用して、前記サンプルの、ライブラリ候補の第1のサブセットにおけるライブラリ候補の混合物との類似性の第3の表記を判定することによってライブラリ候補の第3のサブセットを選択することを含み、前記結果として得られる前記サンプルの最有力な組成の判定は、前記サンプルのライブラリ候補の混合物との類似性の判定された表記に基づく。前記レポート閾値は、0.05以上でよい。前記方法は、さらに、(i)前記測定スペクトルの前記第2の表記、(ii)前記測定スペクトルの前記第2の表記の前記正確さの状態、(iii)そのライブラリ候補の前記ライブラリスペクトルの前記表記、及び任意で(iv)そのライブラリ候補に対する前記ライブラリスペクトルの前記表記の前記正確さの状態を使用して、前記サンプルの、ライブラリ候補の第2のセットにおけるライブラリ候補の混合物との類似性の第4の表記を判定することによってライブラリ候補の第4のサブセットを選択することを含む。
一部の実施形態では、前記方法は、前記サンプルの前記第1の最有力な組成を前記ライブラリ候補の第4のサブセットに追加することを含む。あるいは、前記方法は、前記ライブラリ候補の第3のサブセットを選択する前に前記ライブラリ候補の第4のサブセットを選択することと、前記サンプルの前記第2の最有力な組成を前記ライブラリ候補の第3のサブセットに追加すること、あるいは、任意で、前記サンプルの前記第2の最有力な組成を前記ライブラリ候補の第1のサブセットに追加することとを含んでいてもよい。
また、実施形態は、プログラマブルプロセッサによって実施されると、ここで説明する方法のいずれか一つまたは複数の方法、または、ここで説明するいずれかの装置で実行可能な一つまたは複数の方法を実施することができるコンピュータプログラムの形態のソフトウェア(ソフトウェア)を含む。このようなコンピュータプログラムは、磁性または光学保存装置、固体メモリ、または他の保存媒体のような、適した媒体に、持続性形態で保持されることが多い。
実施形態によっては、コンピュータプログラム製品は、材料の化学特性をフィールド分析する方法を実施することができる持続的コンピュータプログラムを保持し、プロセスによって実施されると、前記方法は、フーリエ変換赤外分光法(FTIR)検査を提供するように構成された少なくとも1個のセンサとラマン分光法検査を提供するように構成された少なくとも別のセンサを含む手持ち式機器を提供することを含む。
別の実施形態では、コンピュータプログラム製品は、持続的コンピュータプログラムを保持し、プロセスによって実施されると、分光計を使用する少なくとも2つの技術によってサンプルの前記最有力な組成を判定する方法を実施することができ、前記方法は、上記のステップを含む。
本発明の特徴と利点は、添付の図面に関連した下記の説明から明らかとなろう。
図1は、ここでの教義を実施するのに適した機器の略図である。 図2は、図1の機器を設定し、管理するための構成要素を示す図である。 図3は、図1の機器の使用を段階的に示した図である。 図4は、図1の機器の設定と使用に関する項目の例を示す表である。 図5は、図1の機器を構成するための応答プロファイルの特徴を示す表である。 図6は、分光計で使用する高レベルな論理の概要(データを融合させない、2つの異なる技術)を示すフローチャートである。 図7A〜図7Bは、タグ付けした品目の表示を強調表示した、結果画面の例を示す図であり、ここでは2−プロパノールを、純成分の一致(図7A)と混合の一致(図7B)で示す図である。 図8は、2つの異なる技術において、分光計で使用する高レベルな論理の概要を示すフローチャートであり、データの融合を含むものである。 図9は、2つの異なる技術において、分光計で使用する高レベルな論理の概要を示すフローチャートであり、サンプルで観察された少なくとも1つの特性のような他の外部データを含み、さらにデータ融合を含むものである。 図10は、ラマン及びFTIR波長域を示す機能グループの図である。 図10は、ラマン及びFTIR波長域を示す機能グループの図である。 図11は、他の着目した化学物質を作るのに使用できる化学物質のパターンを強調表示している結果画面の例を示す図である。
ここで示す実施形態の説明では、特に暗示的、または明示的に明白である限り、または説明しない限り、単数で示す単語には、複数も含まれるとし、複数で示す単語は、単数も含まれるものとする。さらに、ここで説明する任意の所与の成分または実施形態に関し、可能な候補、またはその成分に対して示した代替品は、特に暗示的、または明示的に明白である限り、または説明しない限り、一般的に個々に使用されても、あるいは、互いに組み合わせて使用してもよいことは理解できよう。さらに、ここで示す図面の縮尺は必ずしも正確なものではなく、その一部の要素は、単に本発明をわかりやすくするために描いただけのものである。また、参照番号は、各図面で繰り返すこともあるが、それは、対応する、または同一の要素を示すものである。さらに、上記の候補または代替品の一覧は、特に暗示的、または明示的に明白である限り、または説明しない限り、例示にすぎず、限定を意図したものではないことは理解できよう。さらに、明示しない限り、本明細書及び特許請求の範囲で述べる内容物、構成要素、反応状態の量を表す数字は、「約」と変更可能であるものとする。
よって、逆を示さない限り、本明細書及び特許請求の範囲で述べる数字のパラメータは、ここで示す内容によって取得できると考えられる所望の特性に応じて変化するおよその数である。少なくとも、そして、特許請求の範囲と同等物の原理の適用を制限することを意図せず、各数値のパラメータは、少なくともレポートされた多くの数字を考慮して、通常の丸み付け技術を適用したものであると解釈するものとする。ここで述べる数字の範囲及びパラメータに関わらず、ここで示す主題は、広い範囲に亘り近似値を示すものであり、特定の例で示す数値は、できるだけ正確にレポートしている。しかし、数値は、それぞれのテスト測定で標準的に見つかる偏差により、本質的にある程度の誤差は含むものとする。
ここで開示するのは、フィールド使用機器類を迅速に適応させるための方法と装置である。特に、ここで提供する解決法により、ユーザは、フィールド使用を目的として構成されたフーリエ変換赤外線(FTIR)及び/またはラマン分光計の組み合わせを迅速に調整することができるようになる。これら解決法は、有利なことに、所与のタイプの脅威(分析プロファイル)に対応する文脈ベースの構成を提供している。これら解決法や深さについて論議する前に、機器類の特徴について詳解する。
図1に、例示の機器10を示す。この非限定的例では、機器10は、ユーザにフィールドベースのサンプル分析の拡張機能を提供するものである。通常、サンプル分析は、分光法の技法または技術で行う。これら分光法の技法または技術(テクノロジー)は、フーリエ変換赤外線(FTIR)分光法及び/またはラマン分光法が含まれる。すなわち、機器10は、吸収、放出の赤外線スペクトル、または固体、液体、または気体のサンプルからのラマン散乱を収集するためのものである。機器10は、本書では、分光計とも呼ぶ。
機器10のFTIR部は、サンプルに多くの周波数の光を一度に照射し、サンプルがその光線をどの位吸収するかを測定する。次に、その光線が、異なる組み合わせの周波数を含むように変更し、第2のデータポイントを与える。このプロセスを何度も繰り返す。その後、機器10に搭載されたプロセッサが収集したデータを用いて各波長での吸収を推定する。その後、吸収データと周知の材料の特徴との間の相関関係をユーザに出力する。
機器10のラマン散乱部も、サンプルに光線を照射する。サンプル内の原子や分子から光子が散乱すると、ほとんどの光子は、弾性的に散乱し(レイリー散乱)、散乱した光子は、入射光子と同じエネルギー(周波数と波長)を有する。しかし、散乱した光子のほんのわずかな部分は励起によって散乱する。これらラマン散乱光子は入射光子のそれとは異なる、そして、通常それより低い周波数を有する。サンプルでは、ラマン散乱は、転移により分子のエネルギーが変わると起きる場合がある。機器10は、ラマン散乱に伴う光学信号を収集、光学信号をデータ表と比較して、ユーザに相関関係を出力するための資源を提供する。
図1に示す例示の実施形態では、機器10は手持ち式装置として提供する。機器10は、筐体9に収容される。本実施形態では、筐体9は、「高耐久性」である。すなわち、筐体9は、過酷な環境でのサバイバル用の特徴を有して構成される。サバイバル用の特徴の例として、機器10の外側を保護する材料でできたカバーを含む。その材料のカバーは、さらに交換可能(例えば、機器10の衛生を保つため)でもよい。さらに、筐体9内の構成要素は、ショックマウント、表面実装、あるいは耐衝撃構成である。筐体9は、さらに耐湿、防水及び/または化学的劣化に対する耐性(耐酸性もしくは耐アルカリ性など)を有するように構成されている。例えば、この機器は、耐久性についてMIL−STD810Gに準拠するものでもよい。
機器10は、サンプリング、処理、及び適したデータ及び/または結果の出力用として様々な構成要素を備える。例えばユーザは、各種のユーザコントローラ11を与えられる。一般的に、ユーザコントローラ11により、機器10を制御してサンプリング、処理、及び通信などを開始することができる。さらに、ユーザコントローラ11により、ユーザは、機器10を構成し、機器10の健全性を監視し、他の類似したタスクを行うことができるようになる。実施形態によっては、ユーザコントローラ11は特殊なサンプリングルーチンなどを行うように構成してもよい。一般的に、筐体9とユーザコントローラ11は、機器がサンプルの材料に汚染されたり、所与のサンプルに伴う危険にさらされたりすることがないように環境から密閉されている。
機器10は、少なくとも1つの画面12を有していてもよい。一般的に、ユーザは、画面12で動的な出力ができる。出力は構成情報、機器10の状態、意味情報(日時、位置情報など)とともに、サンプル分析情報及び他の適当と思われる情報を含む。実施形態によっては、画面12は、タッチ画面とし、ユーザが画面12を通して入力できるようにしてもよい。例示の実施形態では、画面12は、容量性の重層によりタッチ機能が可能な液晶ディスプレイ(LCD)でもよい。
例示の実施形態では、機器10は、アンビル22と同様にサンプリングプローブ20を備える。一般的にサンプリングプローブ20は、可撓性のシャフト23と少なくとも1つのセンサ21を備える。しかしながら、プローブ20とセンサ21は、シャフト23を有さない実施形態においては、筐体9の中に組み込んでもよく、よって、オートフォーカス型のサンプル分析が可能である。少なくとも1つの狭帯域の照明源(図示せず)及び少なくとも1つの広帯域の照明源(図示せず)は機器10に組み込んでもよく、また、プローブ20及びアンビル22とともに使用してもよい。実施形態によっては、アンビル22を電動としてもよい。実施形態によっては、アンビル22に付属の集光装置と接触させながらプローブ20がサンプルを精査することができる位置にくるようにシャフト23を配設する。このように、ラマン分光計とフーリエ変換赤外線分光計の両方によって同時に、及び/または一ヶ所でサンプルを精査することができる。
少なくとも1つの狭帯域の照明源は、例えば、少なくとも1つの発光ダイオード(LED)及び/またはレーザを含んでいてもよい。少なくとも1つの広帯域の照明源は、例えば、少なくとも1つの電気抵抗フィラメント及び/または膜を含んでいてもよい。照明源は、さらに、任意で光学フィルタ及び他の構成要素を含み、光学的効果を生み出すように構成してもよい。機器10は、さらに、外部の(独立した)照明源とともに操作するように構成することもできる。さらに、機器10は、サンプリングに対して照明を制御するように構成してもよい。例えば、機器10は、照明源を変更して所与のサンプルを照明するために使用する波長を調整するように構成してもよい。一般的に、サンプリングに関連する照明源の制御は、システムソフトウェアを介して行う。
一般的に、機器類は、少なくとも1個のポート14を有する。ポート14は、イーサネット(登録商標)、シリアル、パラレル802.11、USB、Bluetooth(登録商標)または他のタイプのインターフェース(図示せず)などのネットワークインターフェースを含んでいてもよい。ポート14は、遠隔制御、データ通信、出力受信、共有の処理、システムバックアップ、他の類似したタスクを行うために使用することができる。実施形態によっては、ポート14は、外部コンピュータ(パーソナルコンピュータ(PC)など)へのインターフェースとなる。機器10がPC(図示せず)に接続されると、そのPCにインストールされたソフトウェアを使って機器10を制御し、迅速な構成を可能とすることができる。慣習では、外部装置(ユーザが機器へのアクセス及び/または制御をしやすいように構成されたPCなど)にインストールされたソフトウェアは、一般的に「プロファイルマネージャ」と呼ぶ。
一般的に、機器10は、内部電源(例えばバッテリ)、メモリ、プロセッサ、クロック、データストレージ、及び他の類似した構成要素(図示せず)を備える。他の出力装置は、さらに、アラームのような可聴出力を提供するスピーカ(図示せず)を備えていてもよい。追加の入力装置は、ユーザからのボイスコマンドを受信するように構成されたもののように、マイクロフォン(図示せず)を備えていてもよい。
一般的に、プロセッサは、ユーザコントローラ11から入力を受信し、放射源、検出装置、及び分析コンポーネントを制御するように構成されている。よって、プロセッサは、出力に適した情報を載せることもできる。機器10は、ロバストな処理能力を活かすように構成してもよく、よって、データライブラリ、データストレージ用の実在メモリ、校正ライブラリなどを備えていてもよい。ユーザコントローラ11は、トリガまたは他の装置を備え、分光計10でのサンプリングや分析の開始を促すように構成してもよい。出力は、未処理データ、スペクトルデータ、濃度データ、他の適した形態のデータを提供するものでよい。
一般的に、プロセッサは、アプリケーションに特化したソフトウェアを実行するように構成される。すなわち、プロセッサは、コンピュータが解読できる媒体(メモリまたはデータストレージ内など)に保存されたコンピュータが実行可能な命令を読み出し、機器10が選択した操作方法を実行できるように構成される。機器10に設けたソフトウェアはすべて、必要に応じて、あるいは、操作を可能にするために適していると思われるときには、データ表、サブルーチン、外部リソースへのリンク、及び他の構成要素をさらに含んでいてもよい。一例として、機器10は、少なくとも1つのライブラリを含んでいてもよい。少なくとも1つのライブラリは、実質的な化学的データを含んでいてもよい。さらに詳しくは、いかなる所与の化学物質、成分、要素、または他のタイプの材料においても、ライブラリは、スペクトル特性、固有性、危険物分類(NFPAラベリング)情報、化学物質安全データシート位(MSDS)情報などを含んでいてもよい。また別の例として、機器10は、ユーザの言語によって、ユーザインターフェースを構成する言語ライブラリを備えていてもよい。
また、機器10は、多目的システムを有していてもよい。多用途性の一部は、機器10の複雑性によって実現する。機器10が複雑性を有していることにより、機器10の性能を改善することができるように構成することができる。すなわち、分析時間、分析の順、パワーレベルなどの局面は、工業化学物質の分析、手製爆弾、麻薬製造所、路上で密売される麻薬、化学兵器などのような分析のタイプにより特定の応答プロファイルに構成することができる。さらに詳しくは、機器10の多数のシステムパラメータを適切に調整することによって、所与のタイプの分析の精度と正確さが増す。
分光計10を構成するための例示の装置の外観面を図2に示す。図2に、分光計10を構成するためのシステムの外観を示す。この例示の実施形態では、システムマネージャ26は、機器10と通信し、制御するように構成されている。システムマネージャ26は、ネットワーク27を介して機器10と通信する。ネットワーク27は、上記の通信タイプのような、適切と思われるあらゆるタイプの通信プロトコルを利用することができる。
一般的にシステムマネージャ26は、コンピュータが解読できる媒体(すなわち、パーソナルコンピュータ(PC)のようなコンピュータ上で実行可能な「ソフトウェア」)に保存された、コンピュータが実行可能な命令として提供される。実施形態によっては、システムマネージャ26は、ユーザに機器10の実質的な情報を提供する。例えば、システムマネージャ26は、機器10の内部パラメータ全体のうちの少なくとも一部を表示するように構成することができる。システムマネージャ26は、さらに、ユーザが機器10の内部パラメータの少なくとも一部を編集することができるように構成できる。パラメータの編集は、様々な異なる方法で行うことができる。例えば、機器10は、コンフィギュレーションデータファイル、読み取り専用メモリ(ROM)、及び他の類似した従来から周知の技術を利用することができる。実施形態によっては、システムマネージャ26は、コンピュータが解読できる媒体、すなわち、機器10上で実行可能なソフトウェアとして、機器10が実行可能な「ソフトウェア」として提供してもよい。
システムマネージャ26(並びに機器10のオン・スクリーンユーザインターフェース)を様々な異なる方法で提供することができる。例えば、ユーザインターフェースのスキームには、グラフィカル・ユーザインターフェース(GUI)、テキストベースのインターフェースが含まれていてもよく、また、別のアプリケーションに移行するように構成されたファイルを含んでいてもよい。
実施形態によっては、ある一部のパラメータは、一面では所与のユーザまたは状況に対して、また別の面では、異なるユーザまたは状況に対して設定される。よって、機器10は、様々なプロファイル及び/またはアカウントを持つように構成することができる。システムマネージャ26を利用するシステム管理者は、多様なユーザ、アカウント、及びシステム設定を有効に、そして便利に管理するためのリソースを有する。
例えば、機器10を利用又は相互作用するための様々な段階があると認識される。さらに詳しくは、第1の段階では、機器10のグローバルな設定を構成する。第2のフェーズでは、ユーザは機器10を、所与の検査を行うように構成する。第3のフェーズでは、ユーザは、サンプルを分析することにより検査を開始する。最後のフェーズでは、ユーザ(及び/または別の関係者)は、サンプル検査からのデータを見直し及び/または分析する。図3を参照する。
図3は、機器10の使用を段階的に示した図である。さらに、図4は、機器10を検査用に構成した場合に、ユーザが評価すべき事項を示す表である。
機器10の設定を有効に管理するため、システムマネージャ26は、文脈ベースの構成を提供するソフトウェアを含む。すなわち、機器10の実施形態は、所与の状況に最も適した構成を選択するためのインターフェースをユーザに提供する。
ここで説明するように、文脈ベースの構成は、「応答プロファイル」と称することができる。応答プロファイルを利用すれば、様々なユーザが比較的短時間で機器を設定し、メンテナンスをして機器10を使用することができる。これは、緊急事態中、機器10を使用するユーザが次々に変わる場合に特に有利である。
一般的に、機器10は、データストレージ及び/またはメモリに複数の応答プロファイルを保存している。各応答プロファイルは、使用の前に、制御された条件下で首尾よく構成することができる。例えば、機器の設定及び/または校正中、機器の技術者(またはエンジニア、または他の類似した状態の関係者)は、任意の所与のタイプの分析に対して適切なパラメータの設定を決定することができる。上述のように、システムマネージャ26は、機器10に保存される応答プロファイルを確立及び/または維持するために使用することができる。
よって、ユーザは、再構成可能な「オンザフライ」タイプの機器を得ることができる。つまり、爆弾処理班が、ある日、機器10を使い、次の日には危険物質取り扱いチームがこの機器10を使用することができるのである。場合によっては、これらは同じチームのこともある。いずれの場合でも、この製品により、彼らは自分たちの呼び出しのタイプに関連づけた構成を選択でき、これにより機器の準備が整う。
機器上で、またプロファイルマネージャを介して同様に各応答プロファイルを編集することができる。ユーザは、プロファイルを外部データストレージ媒体にエクスポートし、それを別の機器にインポートすることもできる。ユーザは、プロファイル上の設定を追加、削除及び編集できるとともに、プロファイルボタンのアイコンを変更することもできる。管理者は、安全または手続き方針の部門に合わせて、プロファイル設定の一部を禁止する権限を有する。
図5は、複数の応答プロファイル31の特徴を示す。この例で示すように、各応答プロファイル31は、ユーザが機器10を構成するために、都合よく選択ができるように、適した名前をつけることができる。この例では、応答プロファイルは、工業化学物質、手製爆弾、麻薬製造所、路上で密売される麻薬、及び化学兵器のプロファイルを含む。さらに、ユーザは、カスタム応答プロファイル31を追加して、このオプションを取得することができる。実施形態によっては、ユーザは、現存の応答プロファイル31をコピーし、それぞれの応答プロファイル31をわずかに変更して、変更した応答プロファイル31を新しい応答プロファイル31として保存することができる。例えば、ユーザは、フィールドで遭遇する化合物の濃度に基づいて、分析の長さを変更するよう、決定できる。
各応答プロファイル31は、複数のパラメータ32を含む。各パラメータ32には、特殊設定33または「値」が割り振られる。パラメータ32は、例えば、非限定的に、タグリスト(所与のサンプルに割り振られる特別な名称など)、セッション名(次のデータ見直しの際に、見直し者は各パラメータ32に対する設定を識別できるように)、技術の順(処理の優先順位。例えば、処理やサンプル分析を制御する順番)、機器の圧力(アンビル22用など)、ラマンレーザパワー(感温または爆発性物質をサンプリングする場合など)、及び複数の時間パラメータ(走査時間、走査の遅延、走査タイムアウトなど)を含んでいてもよい。
推測できるように、多数のパラメータ32を調整して各応答プロファイル31に提供してもよい。図5に示す応答プロファイル31及びパラメータ32は、単なる例示であり、ここに示す内容を限定するものではない。
有利なことに、ここに示す内容は、手持ち式FTIR分光法を手持ち式ラマン分光法と組み合わせた機能性を提供する。これには、二つのユニットの組み合わせの中の単一のユニットの寸法や重量(及びコスト)の縮小も含まれる。さらなる利点は、ソフトウェアのワークフローを調整することができる機会を有することである。さらに、サンプル検査を実質的に迅速に処理することができる。例えば、ラマンプローブは、そのサンプルを精査することができるような位置にくるように設計することができる一方、FTIRサンプリングにおいても同じ位置にする。これにより、両方法を使用する機器の遠隔操作が容易であり、これは、サンプルが爆発性のものである場合、あるいは、そうでなくても非常に危険なものである場合にフィールドでの適用で特に重要である。
これらのツールは、軍隊、緊急時応答、及び法律の施行を含む様々なユーザによるフィールドベースの評価への適応が増えつつある。
頻繁に、可搬式装置のエンドユーザは、埋め込まれたソフトウェアと付随するアルゴリズムを信用し、収集したデータを明確で、すぐに実施可能な情報に変換する非科学者である。
フィールドでの適用で共通して遭遇するある種の問題は、識別である。識別アルゴリズムは、周知の材料のライブラリを取り出し、その未知の測定値が保存された応答または保存された応答の組み合わせと一致するかどうかを判断するように設計されている。このアルゴリズムは、何千もの可能な候補から一つの材料を識別するのに使用することができる。
第2の問題はスクリーニングである。スクリーニングアルゴリズムは、未知の測定の少なくとも1つの特徴のサブセットが、着目した1つ以上の特殊な物質に相当するかどうかを評価するものであり、一般的には、潜在的な検査対象の小さいリストから候補を評価するように構成されている。このように、スクリーニングアルゴリズムは、識別アルゴリズムに比べると適用範囲が狭いものの、一般的に検出速度が早いので、化学兵器または麻薬検出などの特殊な適用範囲において非常に魅力的である。
最近、タグ付けとよばれる新しい取り組みが開発されており、これは、スクリーニング能力を識別アルゴリズムのフレームワークに融合するものである。タグ付けは、フィールドユーザが必要とする広い識別能力(数千の可能な純粋な材料、及び膨大な数の潜在的混合物の候補を識別する能力)を維持するとともに、同時に、ユーザが対象となる物質の検出能力を高めるために、自身のタグリスト(例えば、ユーザ定義のテスト対象のセット。監視対象リストとも称する)を構成できる拡張機能を提供する。リストは、フィールドで迅速に構成できれば、タグ付けでユーザは、装置によって提供されるサンプル評価に、その状況認識を組み込むことができるようになる。ここで論じているように、品目がタグ付けされれば、検出速度が速くなり、検出の制限が低くなる。さらに、識別されると、タグ付けされた品目がグラフィカル・ユーザインターフェース(GUI)に優先的に表示され、着目した物質が検出されたことがユーザに明確に示される。
ここで説明するいくつかの実施形態は、一般的に識別/スクリーニングアルゴリズムの組み合わせの概要と性能の特徴に向けたものである。組み合わせのアルゴリズムは、スクリーニングアルゴリズムでより一般的な高い検出能力を提供すると共に、広い識別能力を維持するものである。さらに、この取り組みにより、ユーザは、応答中に状況認識を組み込むことができる。
アルゴリズムの概要
演算の考察
上述のように、現代の手持ち式分析器は、純粋な材料と混合物の両方を自動で識別する能力が益々高くなっている。未知の混合物の分析は、無視できない特殊な演算の課題である。現代の参照データベースは、10000を超えるライブラリのスペクトルを含むことが多く、手持ち式装置で展開される混合アルゴリズムは、5つまでの混合成分に同時にフィットするように試みる。所与のライブラリを評価できる可能な混合溶液の候補の数は、下記の式を使って計算することができる。
ここで、Nが可能な混合物の候補の数であり、nがライブラリ参照スペクトルの数であり、kは、同時にフィットされる混合成分の最大数である。上記の式に基づいて、特に、大きい参照ライブラリデータベースについては、可能な混合物の組み合わせの数は、同時にフィットされる成分の数とともに迅速に拡大縮小する。この点を説明するため、表1は、2〜5成分溶液を考えたときに、10,000品目を含む参照ライブラリについての潜在的な混合物の候補の数を示している。
表1 10000品目のライブラリでフィットされる混合成分数(k)の関数としての潜在的な混合物候補数(N)
表1から、10000品目のライブラリでは、2成分混合物の候補だけでもほとんど5千万個の可能性がある。さらに、問題を複雑にするのは、一般的に手持ち式の装置は、オンボード演算力に限りがあるということである。今日の可搬式装置でオンボード処理能力では、大型の現代的な参照データベースから生成できるすべての潜在的な混合溶液を評価するのに数日かかる。混合物の問題に伴う演算の費用の結果として、手持ち式識別装置にとっては、ライブラリをダウンセレクトするのに使用できる高速計算を組み込み、管理可能な項目の数を減らしてより管理しやすくするのが常である。ダウンセレクションは、より正確な純成分及び混合物解析アルゴリズムによる最終分析の前に行う予備ステップである。
図6は、データ融合を行わないで、すなわち、異なる技術のスペクトル情報を統合しないで、手持ち式識別装置で使用する識別アルゴリズムの高レベルな概要の一例を示すフローチャートである。識別アルゴリズムについてのさらなる説明は、Brown他に発行され、本出願の譲受人に割り当てられた“SPECTRUM SEARCHING METHOD THAT USES NON−CHEMICAL QUALITIES OF THE MEASUREMENT”(測定の非化学的性質を使用するスペクトル検索方法)と題する米国特許第7,254,501号にも記載されており、この開示をここに参照することにより本願に組み込まれる。しかしながら、組み込まれた参照が本出願の説明と矛盾する場合には、本発明の記載が優先するものとする。フローチャートに示すように、純粋成分評価と混合物解析の前にダウンセレクションを行う。この取り組みの意図は、エンドユーザにとって高速な分析時間を可能とすることと、演算時間の大部分を、着目した、選択されたライブラリ品目に対して未知のサンプルを詳細に評価するために割り当てられるようにすることである。
演算効率を最適化する一方で、ダウンセレクション手順もまた、未知のスペクトル内に存在する最有力な参照ライブラリ候補を保持するように設計してある。しかし、ダウンセレクション戦略は無損失ではないため、未知のサンプルに存在する品目が最終アルゴリズムによって分析される前に考察により除外される可能性がある。純粋な材料に関しては、問題になることはまれであるが、未知のスペクトルの中で特徴が主要な混合成分にほとんど隠れてしまっている微量混合成分に関してはより難しい。タグ付けによる高いスクリーニング能力の一局面は、タグ付けされた物質(すなわち、監視対象リストに含まれる物質)が、最終分析アルゴリズムの前に考察から誤って却下される可能性を低減することである。タグ付けについてのさらなる説明はGreen他に発行され、本出願の譲受人に割り当てられた“METHOD FOR TAGGING REFERENCE MATERIALS OF INTEREST INSPECTROSCOPIC SEARCHING APPLICATIONS”(分光の検索アプリケーションにおける着目した参照材料にタグ付けする方法)と題する米国特許出願第13/540,152号にも記載されており、この開示をここに参照することにより本願に組み込まれる。しかしながら、組み込まれた参照が本出願の説明と矛盾する場合には、本発明の記載が優先するものとする。
図6に示すフローチャートにおいて、少なくとも2つの技術(例えば、テクノロジー1としてFTIR、そしてテクノロジー2としてラマン)によって、分光計を使用してサンプルの最有力な組成を判定する二つの方法601及び602は、ステップ610−1では、第1の技術(テクノロジー1)によって、分光計を使ってサンプルからデータを取得することを含み、データは、第1の技術で得た測定スペクトルの第1の表記を含み、ステップ610−2では、第2の技術(テクノロジー2)によって、分光計を使ってサンプルからデータを取得することを含み、データは第2の技術によって取得した測定スペクトルの第2の表記を含む。そして、この方法は、ステップ620−1または620−2(それぞれ第1の方法601または第2の方法602)では、測定スペクトルの第1または第2の表記(presentation)の正確さの状態(precision state)を判定することと、ライブラリ候補の第1または第2のセットを提供することと、各ライブラリの候補には、各ライブラリの候補を表すデータを提供すること(このデータは第1または第2の技術によって取得するライブラリスペクトルの表記を含む)と、(i)測定スペクトルの第1または第2の表記、(ii)測定スペクトルの第1または第2の表記の正確さの状態、(iii)そのライブラリ候補のライブラリスペクトルの表記、及び(iv)そのライブラリ候補に対するライブラリスペクトルの表記の正確さの状態を使用して、ライブラリ候補の第1または第2のセットにおける各ライブラリ候補に対するサンプルの類似性の第1または第2の表記を判定することによってライブラリ候補の第1または第2のサブセットを選択することと、選択されたライブラリ候補の第1または第2のサブセットに基づいてサンプルの第1または第2の最有力な組成を判定することとを含む。方法601及び602は、任意で、ステップ615−1または615−2において、ライブラリ候補の第1または第2の監視対象リストをライブラリ候補の第1または第2のサブセットに追加することを含んでいてもよい。
スペクトルライブラリ検索機器が回答すべき重大な問題は、被検査物の機器測定とそれが測定された条件を考慮して、(1)「ライブラリレコードのいずれかが一致する可能性があるか?」及び(2)「測定材料が実際にA,B等である可能性PA,PB...はどれぐらいか?」である。これらの可能性は、測定データとその品質に直接依存すべきである。一般的には、測定の質とは、測定の精度とその正確さ(あるいはそのばらつき)の関数である。機器が適切に設計されていれば、さらに/あるいは適切な信号調整方法を使用していれば、測定は当然正確であるが、その測定条件によってある程度の不正確さは避けられないことは予測できる。
この方法は、データを収集し、不確実性をもたらす原因を測定する。電荷結合素子(CCD)検出を使った分散型ラマン分光測定に関しては、例として、多くの明らかなばらつきの原因が、測定の正確さ(精度)の状態Σmeasの一因となる。
Σmeas=f(IRal,IRam,Ifl,Iambient,Idark,σread,Q,DCCD,GCCD,C,T,H,t,L) (2)
ここで、IRalはレイリー散乱強度、IRamはラマン散乱強度、Iflは蛍光強度、Iambientは周辺光強度である。
式2に示した項はすべて、光子ショットノイズの一因となるため、分析測定の不確実性に影響する。IdarkはCCD内の暗電流強度であり、衝突光子なしでの検出器のカウントの自然な蓄積であり、これもショットノイズの一因となる。σreadは、読み込みノイズ(CCDの応答を読み出す際の不正確さ)であり、Qは量子化誤差(アナログからデジタルへの変換ADCの結果)であり、DCCDはCCDの構成の不具合の結果であるばらつきに関する項であり、GCCDはCCD(カウントする電子からの変換係数)上のゲインであり、TとHは測定の温度と湿度条件であり、tは信号を結合するのにかかった時間であり、Cはサンプルの正確なラマン強度を変更できる物理化学効果(これら効果はそれぞれ、潜在的な波長依存性を有する)であり、Lは任意の個々のサンプル測定より長い時間にわたるシステム性能の変化を反映する「長期」ばらつきの項である(例えば、校正に関するばらつき)。上述の内容から明らかなように、不正確さの原因は、測定条件によって決まり(例えば、光子ショットノイズ、暗ノイズ)、一部は、測定を行う装置によって決定され(例えば、装置のゲイン、読み込みノイズ、量子化ノイズ)、また一部は、プラットフォームの全体的な設計(例えば、波長軸とライン幅の安定性、温度/湿度の感度)によって決定される。
走査データが、この化学識別に十分と思われる信号−ノイズ比(SNR)閾値に到達すると、結果、化学物質Xの識別ということになる。測定の不確実性を考えると、測定スペクトルが参照ライブラリスペクトルの群に属するという仮説はない。別の仮説は、測定スペクトルは、参照ライブラリスペクトルの群に属さないと唱えている。
統計では、帰無仮説が実際に当てはまるとき、p値は、観察されたサンプルの結果(あるいは、さらに極端な結果)を取得する確率である。このp値が非常に小さい場合、通常は有意水準(伝統的には95%)と称する予め選択されたレポート閾値以下の場合、観察されたデータが帰無仮説が当てはまるとの仮定と整合せず、よって、この仮説は却下されなければならないことが示唆される。よって、p値(ここでは、レポート閾値とも称する)は、0.05以上である場合、測定値は、参照スペクトルと一致すると考え、装置は、(例えば、緑の画面を表示することによって)肯定的な整合をレポートする。そうでない場合、装置は、混合物解析を行うか、あるいは、下記に説明するように類似した品目をレポートするか、もしくは、ユニットの構成に応じて不一致をレポートする。
ステップ625−1または625−2において、さらに下記に説明するようにサンプルが純粋なサンプルであると判定されると、ステップ640−1または640−2で、純粋な一致を表示する、あるいは、純粋に一致する化学物質が1つ以上の名称で知られている場合には、ステップ640−1あるいは640−2で複数の純粋な一致を表示する。ステップ625−1または625−2でサンプルが純粋なサンプルでない場合、すなわち、任意の単一のライブラリ候補に対するサンプルの類似性が、上述のように0.05以上となり得るレポート閾値より低い場合、方法601及び602は、さらに、ステップ650−1または650−2において、(i)測定スペクトルの第1と第2の表記、(ii)測定スペクトルの第1または第2の表記の正確さの状態、(iii)そのライブラリ候補のライブラリスペクトルの表記、及び任意で(iv)そのライブラリ候補に対するライブラリスペクトルの表記の正確さの状態を使用して、ライブラリ候補の第1または第2のサブセットそれぞれにおけるライブラリ候補の混合物に対するサンプルの類似性の第3または第4の表記を判定することによってライブラリ候補の第3または第4のサブセットを選択することを含む。その結果得られるサンプルの最有力な組成の判定は、ライブラリ候補の混合物に対するサンプルの類似性の判定された表記に基づく、すなわち、ライブラリ候補の混合物に対するサンプルの類似性が、上記のように0.05以上となりうるレポート閾値より大きいという判断に基づく。方法601及び602は、任意で、ステップ645−1または645−2において、ライブラリ候補の第3または第4の監視対象リストをライブラリ候補の第3または第4のサブセットに追加することを含んでいてもよい。ステップ655−1または655−2で、混合物が認識されると(p値が0.05以上)、ステップ670−1または670−2で混合物の結果を表示する。混合物が認識されない場合は、ステップ675−1または675−2で類似した品目がある場合には、すなわち、p値が1x10-4より大きく、0.05より小さい品目がある場合には、ステップ680−1または680−2で類似した品目を表示する。類似した品目がない場合には、690−1または690−2で、一致が見つからなかったことをレポートする。
レポートの考察
図6に明示的に示していない最後の主題は、自動化された混合物アルゴリズムに関連付けられたレポート判定基準である。実際に自動的に行われる分析については、適合(フィット)閾値の有益な部分をアルゴリズムに設定して、もしあれば、どの成分をレポートするかを決定する。レポート閾値を設定する必要性は、全称的であり、使用する解析アルゴリズムのタイプに依存するものではない。
レポート閾値の選択は、検索器具の真陽性率(TPR)と偽陽性率(FPR)の間のトレードオフに直接影響を及ぼす。危険材料識別(例えば、危険物処理の呼び出し)のような一般的な未知の識別シナリオでは、FPRを低く抑えるように特殊な考察を行う。これにより、ユーザは、曖昧となりうる情報に対して行動しないように防ぐとともに、時間と、より明確な情報を提供できる可能性の有る他の評価に対する努力に焦点を当てさせるようにする。一方、スクリーニングシナリオでは、より高いFPRを犠牲にしても、レポート閾値はTPRを最大とするように設定されることが多い。これは、医療診断テストのようなスクリーニングシナリオにおいて、しばしば偽陽性を軽減するために行う第2の確認テストがあるためである。
これらの考察に基づくと、スクリーニングアルゴリズムが標準的な識別アルゴリズムよりよい検出率を提供できる別の理由は、レポート閾値が着目した物質に対して最適化されているからである。タグ付けされた品目のレポート閾値の最適化により、よりよい検出能力をもたらすことが期待されるが、誤警報確率もわずかに上がると思われる。
フィールドの考察
識別装置のエンドユーザは、様々な情報源から情報を得ることができる。一般的な応答中は、他の外部データ情報の形態の情報は、製品ラベル、サンプル観察(固体、液体、または気体、色、臭い)、pH測定値、及び様々な分析器からのテスト結果の形態で入手可能である。ユーザは入手可能なすべての情報を評価し始めると、どんな材料が未知のサンプル内に存在しそうであるかについて評価する。伝統的な識別装置及びアルゴリズムは、リアルタイム情報や状況認識を装置が提供する識別評価に統合することはできない。上述のように、タグ付けアプローチは、典型的な「ブラインド」の識別アルゴリズムに比べて高い検出率と、低い検出制限を提供する。機器は、タグリスト(すなわち監視対象リスト)がいつでも適応、変更、編集できるように設計されているので、タグ付け法は、機器の操作員に新しい能力を提供し、応答の間に取得した知識をよりよく統合できる。
タグ付けの別の利点は、タグ付けされた品目が識別されると、タグ付けされた品目が、それらの隣のアイコンと共にユーザに表示され、着目した物質が識別されたことをエンドユーザに明確に示すことができるという点である。タグアイコンがエンドユーザにとって明らかであることを確実にするため、その物質のスペクトルの寄与(例えば重み)に関係なく、トップに表示されるタグ付けされた物質とともに混合物を表示することができる。図7A及び図7Bは、純成分の一致(図7A)と混合物の一致(図7B)の結果表示の例を示す。それぞれの一致は、異なる色の画面を使うなど、様々な方法で強調表示することができる。
ここで最も重要視しているのは、タグ付けが提供する高度な検出能力であるが、ここで説明するGUI要素は、他に依存せず、実質的な利益を提供する。多くの適用方法にとって、脅威の状況は常に拡大または変化している。結果として、エンドユーザは、着目した新しい物質の情報にいつも通じている状態を保つのは難しくなり、どの物質が最大の関心事であるかは不確実である。適所にタグ付けすれば、ユーザは監視すべき脅威の材料の長い一覧を覚える必要はない。その代わりに、赤いフラグを示す結果は、すべて深刻化するであろうと判断できるように訓練される。
データ融合
上述のように、「タグ付け」と呼ばれるスクリーニングアルゴリズムが、分光計のような手持ち式識別装置上で展開されている。この概念は、二つ以上の技術を結合した分光計上で展開することもできる。第1の場合は、プロファイルは、装置上で設定可能である。
プロファイルは、いくつかの設定を含むことができる。
ラマンレーザパワー、
ラマン走査遅延、
ラマン走査タイムアウト、
FTIRアンビル力、
FTIR走査遅延、
FTIR走査タイムアウト、および
プロファイルに関する品目のタグリスト。
品目のタグリスト(ここでは、監視対象リストとも呼ぶ)は、いずれの技術でもよく、ここで説明したケースでは、2つの技術とは、ラマンとFTIR分光法である。ライブラリの化学物質を選択することによって、その化学物質は、ラマンのみであろうと、FTIRのみであろうと、あるいは、両技術であろうと、その技術の走査が行われたときに検索される。純粋な化学物質の例としては、過酸化アセトン(TATP)、RDX、及びヘキサメチレントリペルオキシドジアミン(HMTD)のような爆発性の材料、アクロレイン、クロロスルホン酸、イソプロピルイソシアネート、及びトルエン2,4ジイソシアネートなどの毒性物質、及びヘロインHCl、純化コカイン、メタンフェタミンHCl及びJWH−018のような麻薬材料が挙げられる。化学物質の混合物の例としては、コカインHCl/ベンゾカイン、ヘロインHCl/アセトアミノフェン(一般の麻薬混合物)、2−プロパノール/メタノール、エタノール/水、メチルエチルケトン/イソプロパノール/エタノール、及びアセトアミノフェン/αラクトース一水和物などが挙げられる。図6は、2つの別の技術のデータフローを示しており、これらは、2つの完全に分離した装置または技術であり、いずれかの技術に対して決定エンジンに演繹的知識を送ることなく、両者とも完全に別々に作用する。
2つの技術が組み合わさって一つの装置になったときは、互いに情報を共有するという大きな可能性が期待できる。下記の2つの可能性は、1)情報を前もって、そして2)測定の後に情報を渡すことである。
前(プレデータ収集)
最初のケースでは、第2の技術によって走査が始まる前に第1の技術から取得した情報を渡す時に遭遇する可能性が考えられる。図8では、一方の技術を使ってデータ収集するフローについて説明する。テクノロジー1が結果を出すと、その識別がデータのサブセットに渡されてテクノロジー2で考察される。すなわち、これらの品目は、タグ付けと同様に考えられるが、テクノロジー1による識別の結果得られるものである。
図8に示すフローチャートにおいて、少なくとも2つの技術(例えば、テクノロジー1としてFTIR、そしてテクノロジー2としてラマン)によって、分光計を使用してサンプルの最有力な組成を判定する、データ融合を含む二つの方法801及び802は、ステップ810−1では、第1の技術(テクノロジー1)によって、分光計を使ってサンプルからデータを取得することを含み、データは、第1の技術で得た測定スペクトルの第1の表記を含み、ステップ810−2では、第2の技術(テクノロジー2)によって、分光計を使ってサンプルからデータを取得することを含み、データは第2の技術によって取得した、測定スペクトルの第2の表記を含む。そして、この方法は、(それぞれ第1または第2の方法801または802の)ステップ820−1または820−2では、測定スペクトルの第1または第2の表記の正確さの状態を判定することと、ライブラリ候補の第1または第2のセットを提供することと、各ライブラリの候補に、各ライブラリの候補を表すデータを提供すること(データは、第1または第2の技術によって取得されるライブラリスペクトルの表記を含む)、(i)測定スペクトルの第1または第2の表記、(ii)測定スペクトルの第1または第2の表記の正確さの状態、(iii)そのライブラリ候補のライブラリスペクトルの表記、及び任意で(iv)そのライブラリ候補に対するライブラリスペクトルの表記の正確さの状態を使用して、ライブラリ候補の第1または第2のセットにおける各ライブラリ候補に対するサンプルの類似性の第1または第2の表記を判定することによってライブラリ候補の第1または第2のサブセットを選択することと、ライブラリ候補の選択された第1または第2のサブセットに基づいてサンプルの第1または第2の最有力な組成を判定することと、を含む。方法801及び802は、任意で、ステップ815−1または815−2において、ライブラリ候補の第1または第2の監視対象リストをライブラリ候補の第1または第2のサブセットに追加することを含んでもよい。
ステップ825−1または825−2において、さらに下記に説明するようにサンプルが純粋なサンプルであると判定されると、ステップ840−1または840−2で、純粋な一致を表示する、あるいは、純粋に一致する化学物質が1つ以上の名称で知られている場合には、ステップ840−1あるいは840−2で複数の純粋な一致を表示する。しかし、方法601及び602とは対照的に、純粋な一致、あるいは、ステップ840−1で表示されたサンプルの第1の最有力な組成が、ステップ820−2で取得したライブラリ候補の第2のサブセットに追加される。あるいは、ステップ840−2で表示されたサンプルの第2の最有力な組成は、ステップ820−1で得られたライブラリ候補の第1のサブセットに追加される。
ステップ825−1または825−2でサンプルが純粋なサンプルでない場合、すなわち、任意の単一のライブラリ候補に対するサンプルの類似性が、上述のように、0.05以上となり得るレポート閾値より低い場合は、方法801及び802は、さらに、ステップ850−1または850−2において、(i)測定スペクトルの第1または第2の表記、(ii)測定スペクトルの第1または第2の表記の正確さの状態、(iii)そのライブラリ候補のライブラリスペクトルの表記、及び任意で(iv)そのライブラリ候補に対するライブラリスペクトルの表記の正確さの状態を使用して、ライブラリ候補の第1または第2のサブセットそれぞれにおけるライブラリ候補の混合物に対するサンプルの類似性の第3または第4の表記を判定することによってライブラリ候補の第3または第4のサブセットを選択することを含む。その結果得られるサンプルの最有力な組成の判定は、ライブラリ候補の混合物に対する判定したサンプルの類似性の表記に基づく、すなわち、ライブラリ候補の混合物に対するサンプルの類似性が、上記のように、0.05以上となりうるレポート閾値より大きいという判断に基づく。方法801及び802は、任意で、ステップ845−1または845−2において、ライブラリ候補の第3または第4の監視対象リストをライブラリ候補の第3または第4のサブセットに追加することを含んでもよい。しかし、図6に示す方法601及び602とは対照的に、純粋な一致、あるいは、ステップ840−1で表示されたサンプルの第1の最有力な組成が、ステップ850−2でのライブラリ候補の第4のサブセットに追加される。
ステップ855−1または855−2で、混合物が認識されると(p値が0.05以上)、ステップ870−1または870−2で混合物の結果を表示する。混合物が認識されない場合は、ステップ875−1または875−2で類似した品目がある場合には、すなわち、p値が1×10-4より大きく、0.05より小さい品目がある場合には、ステップ880−1または880−2で類似した品目を表示する。類似した品目がない場合には、890−1または890−2で、一致が見つからなかったことをレポートする。しかし、方法601及び602とは対照的に、ステップ870−1で表示された混合物の結果、あるいは、ステップ880−1で表示された類似した品目が、ステップ815−2で第2の監視対象リストに、そしてステップ845−2で第4の監視対象リストに追加される。あるいは、ステップ870−2で表示された混合物の結果あるいは、ステップ880−2で表示された類似した品目が、ステップ820−1で取得されるライブラリ候補の第1のサブセットに、あるいは、ステップ850−1で取得されるライブラリ候補の第3のサブセットに追加される。
さらにこのコンセプトでは、サンプルに関する情報がアルゴリズムに渡され、アルゴリズム内でどのデータを渡すかについての決定を行う。ユーザは、その形態(固体、液体、気体(例えばコンテナの中など)、あるいは、その色など、サンプルの物理的状態についての情報を提供できる。これらの属性を使って、アルゴリズムで考察される品目を含む、または除外することができる。
図9に示すフローチャートにおいて、少なくとも2つの技術(例えば、テクノロジー1としてFTIR、そしてテクノロジー2としてラマン)によって、分光計を使用してサンプルの最有力な組成を判定する、データ融合を含む二つの方法901及び902は、ステップ910−1では、第1の技術(テクノロジー1)によって、分光計を使ってサンプルからデータを取得することを含み、データは、第1の技術で得た測定スペクトルの第1の表記を含み、ステップ910−2では、第2の技術(テクノロジー2)によって、分光計を使ってサンプルからデータを取得することを含み、データは第2の技術によって取得した、測定スペクトルの第2の表記を含む。そして、この方法は、(それぞれ第1または第2の方法901または902の)ステップ920−1または920−2では、測定スペクトルの第1または第2の表記の正確さの状態を判定することと、ライブラリ候補の第1または第2のセットを提供することと、各ライブラリの候補には、各ライブラリの候補を表すデータを提供すること(データは、第1または第2の技術によって取得するライブラリスペクトルの表記を含む)と、(i)測定スペクトルの第1または第2の表記、(ii)測定スペクトルの第1または第2の表記の正確さの状態、(iii)そのライブラリ候補のライブラリスペクトルの表記、及び任意で(iv)そのライブラリ候補に対するライブラリスペクトルの表記の正確さの状態を使用して、ライブラリ候補の第1または第2のセットにおける各ライブラリ候補に対するサンプルの類似性の第1または第2の表記を判定することによってライブラリ候補の第1または第2のサブセットを選択することと、ライブラリ候補の選択された第1または第2のサブセットに基づいて、サンプルの第1または第2の最有力な組成を判定することと、を含む。方法901及び902は、任意で、ステップ915−1または915−2において、ライブラリ候補の第1または第2の監視対象リストをライブラリ候補の第1または第2のサブセットに追加することを含んでもよい。
ステップ925−1または925−2において、さらに下記に説明するようにサンプルが純粋なサンプルであると判定されると、ステップ940−1または940−2で、純粋な一致を表示する、あるいは、純粋に一致する化学物質が1つ以上の名称で知られている場合には、ステップ940−1あるいは940−2で複数の純粋な一致を表示する。
ステップ925−1またはステップ925−2において、サンプルが純粋なサンプルでない場合、すなわち、任意の単一のライブラリ候補に対するサンプルの類似度が、上記のように、0.05以上となりうるレポート閾値より小さい場合は、方法901及び902は、さらに、ステップ950−1または950−2において、(i)測定スペクトルの第1または第2の表記、(ii)測定スペクトルの第1または第2の表記の正確さの状態、(iii)そのライブラリ候補のライブラリスペクトルの表記、及び任意で(iv)そのライブラリ候補に対するライブラリスペクトルの表記の正確さの状態を使用して、ライブラリ候補の第1または第2のサブセットそれぞれにおけるライブラリ候補の混合物に対するサンプルの類似性の第3または第4の表記を判定することによってライブラリ候補の第3または4のサブセットを選択することを含む。その結果得られるサンプルの最有力な組成の判定は、ライブラリ候補の混合物に対する判定したサンプルの類似性の表記に基づく、すなわち、ライブラリ候補の混合物に対するサンプルの類似性が、上記のように、0.05以上となりうるレポート閾値より大きいという判断に基づく。方法901及び902は、それぞれ、任意で、ステップ945−1または945−2において、ライブラリ候補の第3または第4の監視対象リストをライブラリ候補の第3または第4のサブセットに追加することを含んでもよい。
ステップ955−1または955−2で、混合物が認識されると(p値が0.05以上)、ステップ970−1または970−2で混合物の結果を表示する。混合物が認識されない場合は、ステップ975−1または975−2で類似した品目がある場合には、すなわち、p値が1×10-4より大きく、0.05より小さい品目がある場合には、ステップ980−1または980−2で類似した品目を表示する。類似した品目がない場合には、990−1または990−2で、一致が見つからなかったことをレポートする。
しかし、方法601及び602とは対照的に、純粋な一致、あるいはステップ940−1で表示されたサンプルの第1の最有力な組成、及び/またはステップ940−2で表示したサンプルの第2の最有力な組成、及び/またはステップ970−1で表示された混合物の結果、及び/またはステップ970−2で表示される混合物の結果、及び/またはステップ980−1で表示された類似品目、及び/またはステップ980−2で表示された類似品目がデータ融合ステップ992で、ステップ991の他の外部データ情報と結合される。データがステップ995で認識されると、認識したデータがステップ996にて表示され、それ以外の場合には、ステップ997で一致が見つからなかった旨がレポートされる。
さらに、または代替的に、サンプルの画像をキャプチャし、画像アルゴリズムによって分析し、ユーザが入力せず完全に独立してその物理的状態を上記のように決定する。画像分析がサンプルの物理的状態を判定できるならば、データ分析を管理できるので、サンプル状態と一致しないサンプルの識別はエンドユーザには表示されない。
後(データ収集後)
データ収集後のデータ分析は、多数の異なるルートで行うことができる。下記に示すように、可能なオプションとしては、よりよい識別性能を発揮するための、結合した結果を利用したデータの再分析と、外部データ/サンプル情報と、鍵となるスペクトル特性のスペクトルの分析(機能グループ分析)、及び化学パターン用の前回の走査識別結果の分析を含む。
よりよい識別性能を発揮するための、結合した結果を利用したデータの分析及び再分析
それが純粋な化学物質か、あるいは混合した化学物質かに関わらず、一つ以上の技術で得たデータを結合して一つの結果を提供することができる。2つの技術を、図6に示すように完全に別々に操作することができる。あるいは、結果をユーザに示した後または示す前に、図8及び図9に示すように結果を結合することができる。様々な状況の例を表2に示す。
外部データ/サンプル情報
さらに前分析段階まで、サンプルについての情報を、一つ以上の走査データスペクトルを分析するアルゴリズムに渡すことができる。ユーザは、その形態(固体、液体、気体(例えばコンテナの中など))、あるいは、その色など、サンプルの物理的状態についての情報を図9に示す他の外部データ情報の形態で提供できる。これらの属性を使って、アルゴリズムで考察される候補を含む、または除外することができる。
さらに、またはあるいは、サンプルの画像をキャプチャし、画像アルゴリズムによって分析し、ユーザが入力せず完全に独立してその物理的状態を上記のように決定する。画像分析がサンプルの状態を判定できるならば、データ分析を管理できるので、サンプル状態と一致しないサンプルの識別がエンドユーザに表示されることはない。
キーとなるスペクトルの特性に対するスペクトルの分析(機能グループ分析)
分析後データ収集は、ラマン、中赤外域(FTIR)及びNIR分光法によって取得したスペクトル特性を分析することもできる。スペクトルの分析により、追加の、あるいは二次情報を知ることができる。スペクトルを分析し2つの相補的な技術の間の識別結果を確証できることは有益である。
スペクトルは、測定される化学物質独自のものである。この属性を利用して、分光計が化学物質を決定的に識別することが出来ない場合には、スペクトルの分析及び機能グループが提供する分析を使って、図10に例として示すように、分析後データ収集により、分光計が示した識別を確認または否定すること、あるいは、別のサンプル情報を提供することができる。
前回の化学パターンの走査識別結果の分析
手持ち式識別装置は、同じ走査プロファイルを使用して同じデータセッション(フォルダ)で収集されてきたであろう走査データ情報を分析することができる。この装置は、あるセッション内の走査識別結果を分析して、違法な化学物質を生成可能な化学物質のパターンを探すことができる(例えば、密売薬物製造所の捜査など)。例えば、この装置は、同じ技術を使って、あるいは2つの異なる技術を使って過酸化水素、硫酸、及びアセトンを識別することもできる。図11に示すように、この装置は、手製の爆発性(HME)化学物質である、過酸化アセトン(TATP)を製造するのにこれら3つの化学物質が使われているということを認識することができる。このような装置及び能力、非限定的ではあるが、次の化学兵器製造所、爆発物密造所、あるいは麻薬密造所などのような環境で使うことができる。このような装置は、エンドユーザの指示によって、選択した化学物質のグループで可能性を分析することも、あるいはエンドユーザの入力なしで独立して作業することができる。
本発明の局面を紹介してきたが、これより、さらなる特徴と実施形態を示す。
ある実施形態では、機器10は、約4ポンド(約1.814kg)の重さである。寸法は、約8インチ(約20.32cm)×約4インチ(約10.16cm)×約2.5インチ(約6.35cm)である。プローブ20は、手持ち式モード、バイアルモード、あるいは、ロボットなどの他の装置に搭載して使用することができる。プローブ20は、100cm-1〜3000cm-1、例えば、250cm-1〜2850cm-1のスペクトル範囲にわたって、約5cm-1〜11cm-1、例えば、約7cm-1〜10.5cm-1の範囲のスペクトル解像度で操作できる。パワー調整可能なレーザ出力は、約50mW〜約300mWの間の範囲、例えば、約75mW〜約250mWの間の範囲で可能である。アンビル22は、約650cm-1〜約4000cm-1の間のスペクトル範囲にわたって、約4cm-1のスペクトル解像度で操作可能である。アンビル22に対する集光光学には、固体ダイヤモンド結晶ATRを含んでいてもよい。
機器10は、MIL−STD−810G及びIP67基準の要件に適合するサバイバル性を示すものでもよい。サンプリングの露出は、手動または自動モードでよい。走査遅延は、例えば、約120秒までの遅延でユーザが構成可能である。電源には、リチウムイオン電池のような、着脱式及び再充電可能なバッテリが含まれていてもよい。外部電源を機器10に接続して約1.25Aで約12Vを供給してもよい。機器は、常に約−4°F(−20℃)〜約122°F(50℃)までの温度範囲で操作可能である。
様々な周知のプログラミング及びインターフェース技術を使って応答プロファイル31の生成及び/または適応を行ってもよい。例えば、応答プロファイルビルダを設けてもよい。応答プロファイルビルダを使って、ユーザに対して、希望の設定に関して複数のパラメータ32についての質問をしてもよい。実施形態によっては、応答プロファイルビルダは、機器10に保持され、さらに、PCに搭載された応答プロファイルマネージャによって構成してもよい。このように、ユーザは、現存の応答プロファイル31を迅速に選択及びコピーすることができ、一連のメニューを介して共通で使われているパラメータ32を調整することができる。
本発明の実施形態は、いずれもここに述べたものにさらに機能を追加することができるものとする。「少なくとも」という表記は、特徴に関して強調するために使用している。しかし、「少なくとも」が使用されていなくても、参照した特徴の数またはタイプが追加できるということは理解できよう。本出願で述べた方法の事象のシーケンスの順番は、説明した順番に限定されない。代わりに、事象は、論理的に可能であれば、同時を含みどのような順でもよい。
ここでの教示の局面に対して提供するために様々な他の構成要素を含んでいても要求してもよい。例えば、ここでの教示の範囲から逸脱することなく、ソフトウェアならびに電子部品を追加したり、ソフトウェアならびに電子部品の組み合わせを追加したり、さらに/またはそれを省略したりして追加の実施形態を提供することもできる。
ここで説明したように、用語「ソフトウェア」は、一般的に、コンピュータが解読できる媒体上に保存されたものなど、持続性信号として提供されるコンピュータが実行可能な命令として設けた命令セットを意味する。一般的にソフトウェアは、機器10の高度な機能性を提供する。しかし、そのようなソフトウェアを機器10のメモリ内部に置くことは必須要件ではない。例えば、ここに示す教示によって、ロバストな演算プラットフォームを使用することによってPCなどのような外部コンピュータに使用して機器10の構成を提供するソフトウェアが考えられる。ここで説明しているように、「ソフトウェア」は、機器にダウンロードし、機器に保存することができるものであり、そうでない場合には機器に備えられている。例えば、ソフトウェアは、通常「ファームウェア」と呼ばれるような、読み取り専用メモリ(ROM)に備えられているものでもよい。
少なくともここで開示するソフトウェアの一部を提供するツールの例として、フィンランドのDIGIA製のLINUXQTがある。LinuxQTはグラフィカルユーザインターフェース(GUI)でアプリケーションソフトウェアを開発するために広く使用される、プラットフォーム間共通のアプリケーションフレームワークである。他の同等もしくは望ましいツールを使用することもできる。
ここで論議したように、この機器は、一般的には「手持ち式」の機器である。これはこの機器が手の中にフィットしなければいけないということを暗示するものではない。すなわち、この機器は、フィールド使用に適した形態要素を有していればよい。よって、ここに示す教義によって、共通の処理及び他の技術を使用して寸法を制限すること、あるいは機器を構成することが考えられる。一般的に、ここに示す機器は、単に、ユーザ、設計者、製造業者、あるいは他の同等の関係者が適切と判断するように、フィールドの作業員が行うサンプリング及び分析のニーズを適切にサポートできるように決定すればよい。
本発明及びその実施形態(複数可)の要素を紹介する際の冠詞「1つの(a)」、「1つの(an)」、及び「その(the)」は、1つもしくは複数の要素が存在することを意味する。同様に、要素を紹介する際の形容詞「別の(another)」も1つもしくは複数の要素を意味するために使用している。要素「含む(including)」及び「有する(having)」は、包含的意味で使用しており、列挙した要素以外の要素も含むものである。
本発明を例示の実施形態と共に説明してきたが、本発明の範囲を逸脱することなく、様々な変更が可能であり、その要素は同等物によって置き換えられるということは当業者にとって明らかであろう。さらに、特殊な機器、状況、材料を、本発明の本質的な範囲を逸脱することなく、その教義に適応させるために様々な変更が可能であることは当業者とって明らかである。よって、本発明は、本発明を実施するための最良の形態として開示した特定の実施形態に限定することを意図するものではなく、本発明は、添付の特許請求の範囲に含まれるすべての実施形態を含むものである。

Claims (24)

  1. 材料の化学特性をフィールド分析するように構成可能な分光計であって、
    フーリエ変換赤外分光法(FTIR)検査を提供するように構成された少なくとも1個のセンサとラマン分光法検査を提供するように構成された少なくとも別のセンサとを含む手持ち式機器を備えた分光計。
  2. 前記分光計のサンプリング構成を変更するための、ユーザがアクセス可能な指示セットをさらに含む、請求項1に記載の分光計。
  3. 前記分光計のサンプリング構成を変更するための指示セットを各々が提供する、ユーザがアクセス可能な複数の応答プロファイルをさらに含む、請求項1に記載の分光計。
  4. 分光計を使って、少なくとも2つの技術によりサンプルの最有力な組成を判定する方法であって、
    a.前記分光計を使って第1の技術により前記サンプルから、前記第1の技術によって取得される測定スペクトルの第1の表記を含むデータを取得するステップと、
    b.前記測定スペクトルの第1の表記の正確さの状態を判定するステップと、
    c.ライブラリ候補の第1のセットを提供し、各ライブラリ候補に対して、各ライブラリ候補を表すデータを提供するステップであって、前記データが前記第1の技術によって取得されるライブラリスペクトルの表記を含む、提供するステップと、
    d.(i)前記測定スペクトルの第1の表記、(ii)前記測定スペクトルの第1の表記の正確さの状態、及び(iii)ライブラリ候補についてのライブラリスペクトルの表記、を使用して、前記ライブラリ候補の第1のセットにおける各ライブラリ候補に対する前記サンプルの類似性の第1の表記を判定することによってライブラリ候補の第1のサブセットを選択するステップと、
    e.選択した前記ライブラリ候補の第1のサブセットに基づいて、前記サンプルの第1の最有力な組成を判定するステップと、
    f.前記分光計を使って第2の技術により前記サンプルから、前記第2の技術によって取得される測定スペクトルの第2の表記を含むデータを取得するステップと、
    g.前記測定スペクトルの第2の表記の正確さの状態を判定するステップと、
    h.ライブラリ候補の第2のセットを提供し、各ライブラリ候補に対して、各ライブラリ候補を表すデータを提供するステップであって、前記データが前記第2の技術によって取得されるライブラリスペクトルの表記を含む、提供するステップと、
    i.(i)前記測定スペクトルの第2の表記、(ii)前記測定スペクトルの第2の表記の正確さの状態、及び(iii)ライブラリ候補についてのライブラリスペクトルの表記、を使用して、前記ライブラリ候補の第2のセットにおける各ライブラリ候補に対する前記サンプルの類似性の第2の表記を判定することによってライブラリ候補の第2のサブセットを選択するステップと、
    j.選択した前記ライブラリ候補の第2のサブセットに基づいて、前記サンプルの第2の最有力な組成を判定するステップと、
    k.前記サンプルの第1及び第2の最有力な組成に基づいて、前記サンプルの結果としての最有力な組成を判定するステップと、
    l.前記サンプルの結果としての最有力な組成をユーザに表示するステップと、
    を含む方法。
  5. 選択するステップdは、さらにライブラリ候補についてのライブラリスペクトルの表記の正確さの状態を使用する、請求項4に記載の方法。
  6. 選択するステップiは、さらにライブラリ候補についてのライブラリスペクトルの表記の正確さの状態を使用する、請求項4に記載の方法。
  7. ライブラリ候補の第1の監視対象リストを前記ライブラリ候補の第1のサブセットに追加するステップをさらに含む、請求項4に記載の方法。
  8. ライブラリ候補の第2の監視対象リストを前記ライブラリ候補の第2のサブセットに追加するステップをさらに含む、請求項7に記載の方法。
  9. 前記サンプルの第1の最有力な組成を前記ライブラリ候補の第2のサブセットに追加するステップをさらに含む、請求項4に記載の方法。
  10. 前記サンプルからの前記データは、前記サンプルの少なくとも1つの観察された特性をさらに含む、請求項9に記載の方法。
  11. 前記ライブラリ候補の第1のサブセットを選択するステップの前に前記ライブラリ候補の第2のサブセットを選択するステップと、前記サンプルの第2の最有力な組成を前記ライブラリ候補の第1のサブセットに追加するステップをさらに含む、請求項4に記載の方法。
  12. 任意の単一のライブラリ候補に対する前記サンプルの類似性が、レポート閾値より低く、
    (i)前記測定スペクトルの第1の表記、(ii)前記測定スペクトルの第1の表記の正確さの状態、及び(iii)ライブラリ候補についての前記ライブラリスペクトルの表記、を使用して、前記ライブラリ候補の第1のサブセットにおけるライブラリ候補の混合物に対する前記サンプルの類似性の第3の表記を判定することによってライブラリ候補の第3のサブセットを選択するステップを更に含み、
    前記サンプルの結果としての最有力な組成を判定するステップは、前記ライブラリ候補の混合物に対する前記サンプルの判定された類似性の表記に基づく、請求項4に記載の方法。
  13. 前記ライブラリ候補の第3のサブセットを選択するステップは、さらに、ライブラリ候補についての前記ライブラリスペクトルの表記の正確さの状態を使用する、請求項12に記載の方法。
  14. 前記レポート閾値は0.05以上である、請求項12に記載の方法。
  15. (i)前記測定スペクトルの第2の表記、(ii)前記測定スペクトルの第2の表記の正確さの状態、及び(iii)ライブラリ候補についての前記ライブラリスペクトルの表記、を使用して、前記ライブラリ候補の第2のセットにおけるライブラリ候補の混合物に対する前記サンプルの類似性の第4の表記を判定することによって、ライブラリ候補の第4のサブセットを選択するステップをさらに含む、請求項12に記載の方法。
  16. 前記ライブラリ候補の第4のサブセットを選択するステップは、さらに、ライブラリ候補についての前記ライブラリスペクトルの表記の正確さの状態を使用する、請求項15に記載の方法。
  17. 前記サンプルの第1の最有力な組成を前記ライブラリ候補の第4のサブセットに追加するステップをさらに含む、請求項15に記載の方法。
  18. ライブラリ候補の第3の監視対象リストを前記ライブラリ候補の第3のサブセットに追加するステップをさらに含む、請求項15に記載の方法。
  19. ライブラリ候補の第4の監視対象リストを前記ライブラリ候補の第4のサブセットに追加するステップをさらに含む、請求項18に記載の方法。
  20. 前記サンプルからの前記データは、前記サンプルの少なくとも1つの観察した特性をさらに含む、請求項15に記載の方法。
  21. 前記ライブラリ候補の第3のサブセットを選択するステップの前に前記ライブラリ候補の第4のサブセットを選択するステップと、前記サンプルの第2の最有力な組成を前記ライブラリ候補の第3のサブセットに追加するステップをさらに含む、請求項15に記載の方法。
  22. 前記ライブラリ候補の第3のサブセットを選択するステップの前に前記ライブラリ候補の第4のサブセットを選択するステップと、前記サンプルの第2の最有力な組成を前記ライブラリ候補の第1のサブセットに追加するステップをさらに含む、請求項15に記載の方法。
  23. プロセスによって実行されると、材料の化学特性をフィールド分析する方法を実行可能な持続性のコンピュータプログラムを保有するコンピュータプログラム製品であって、
    前記方法は、フーリエ変換赤外分光法(FTIR)検査を提供するように構成された少なくとも1個のセンサとラマン分光法検査を提供するように構成された少なくとも別のセンサとを含む手持ち式機器を提供するステップを備える、コンピュータプログラム製品。
  24. プロセスによって実行されると、分光計を使って少なくとも2つの技術によりサンプルの最有力な組成を判定する方法を実行可能な持続性のコンピュータプログラムを保有するコンピュータプログラム製品であって、前記方法が、
    a.前記分光計を使って第1の技術により前記サンプルから、前記第1の技術によって取得される測定スペクトルの第1の表記を含むデータを取得するステップと、
    b.前記測定スペクトルの第1の表記の正確さの状態を判定するステップと、
    c.ライブラリ候補の第1のセットを提供し、各ライブラリ候補に対して、各ライブラリ候補を表すデータを提供するステップであって、前記データが前記第1の技術によって取得されるライブラリスペクトルの表記を含む、提供するステップと、
    d.(i)前記測定スペクトルの第1の表記、(ii)前記測定スペクトルの第1の表記の正確さの状態、及び(iii)ライブラリ候補についてのライブラリスペクトルの表記、を使用して、前記ライブラリ候補の第1のセットにおける各ライブラリ候補に対する前記サンプルの類似性の第1の表記を判定することによってライブラリ候補の第1のサブセットを選択するステップと、
    e.選択した前記ライブラリ候補の第1のサブセットに基づいて、前記サンプルの第1の最有力な組成を判定するステップと、
    f.前記分光計を使って第2の技術により前記サンプルから、前記第2の技術によって取得される測定スペクトルの第2の表記を含むデータを取得するステップと、
    g.前記測定スペクトルの第2の表記の正確さの状態を判定するステップと、
    h.ライブラリ候補の第2のセットを提供し、各ライブラリ候補に対して、各ライブラリ候補を表すデータを提供するステップであって、前記データが前記第2の技術によって取得されるライブラリスペクトルの表記を含む、提供するステップと、
    i.(i)前記測定スペクトルの第2の表記、(ii)前記測定スペクトルの第2の表記の正確さの状態、及び(iii)ライブラリ候補についてのライブラリスペクトルの表記、を使用して、前記ライブラリ候補の第2のセットにおける各ライブラリ候補に対する前記サンプルの類似性の第2の表記を判定することによってライブラリ候補の第2のサブセットを選択するステップと、
    j.選択した前記ライブラリ候補の第2のサブセットに基づいて、前記サンプルの第2の最有力な組成を判定するステップと、
    k.前記サンプルの第1及び第2の最有力な組成に基づいて、前記サンプルの結果としての最有力な組成を判定するステップと、
    l.前記サンプルの結果としての最有力な組成をユーザに表示するステップと、
    を含む、コンピュータプログラム製品。
JP2016542661A 2013-12-23 2014-12-22 フィールド使用分光装置の適応 Pending JP2017500577A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361920230P 2013-12-23 2013-12-23
US61/920,230 2013-12-23
PCT/US2014/071973 WO2015138037A2 (en) 2013-12-23 2014-12-22 Adaptation of field use spectroscopy equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019199531A Division JP6790215B2 (ja) 2013-12-23 2019-11-01 フィールド使用分光装置の適応

Publications (1)

Publication Number Publication Date
JP2017500577A true JP2017500577A (ja) 2017-01-05

Family

ID=53502826

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016542661A Pending JP2017500577A (ja) 2013-12-23 2014-12-22 フィールド使用分光装置の適応
JP2019199531A Active JP6790215B2 (ja) 2013-12-23 2019-11-01 フィールド使用分光装置の適応

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019199531A Active JP6790215B2 (ja) 2013-12-23 2019-11-01 フィールド使用分光装置の適応

Country Status (5)

Country Link
US (2) US9513167B2 (ja)
EP (2) EP3087359B1 (ja)
JP (2) JP2017500577A (ja)
CN (1) CN105829869B (ja)
WO (1) WO2015138037A2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9297697B2 (en) 2012-06-05 2016-03-29 Apple Inc. In-device coexistence between radios
TWI703313B (zh) * 2015-12-09 2020-09-01 台灣超微光學股份有限公司 光譜儀的量測方法、光譜儀及其電子電路
CN106855501B (zh) * 2015-12-09 2022-01-25 台湾超微光学股份有限公司 光谱仪的量测方法、光谱仪及其电子电路
US10274440B2 (en) * 2016-06-22 2019-04-30 International Business Machines Corporation Method to facilitate investigation of chemical constituents in chemical analysis data
CN106841035B (zh) * 2017-01-25 2024-02-23 成都中信华瑞科技有限公司 检测方法及装置
US20180352623A1 (en) * 2017-06-05 2018-12-06 Lunera Lighting, Inc. Utilizing computing resources embedded in led lamps
US10810408B2 (en) 2018-01-26 2020-10-20 Viavi Solutions Inc. Reduced false positive identification for spectroscopic classification
US10763144B2 (en) * 2018-03-01 2020-09-01 Verity Instruments, Inc. Adaptable-modular optical sensor based process control system, and method of operation thereof
KR102600150B1 (ko) * 2018-10-10 2023-11-08 삼성전자주식회사 분광 정보를 분석하는 장치 및 방법
US10993465B2 (en) 2019-08-08 2021-05-04 NotCo Delaware, LLC Method of classifying flavors
CN110658175B (zh) * 2019-08-30 2021-12-31 杭州赫太克科技有限公司 拉曼光谱仪与红外热像仪的手机融合系统
US10962473B1 (en) * 2020-11-05 2021-03-30 NotCo Delaware, LLC Protein secondary structure prediction
CN113220349B (zh) * 2021-03-22 2022-09-02 重庆邮电大学 一种基于语义本体模型的仪表异构外设的适配方法
US11373107B1 (en) 2021-11-04 2022-06-28 NotCo Delaware, LLC Systems and methods to suggest source ingredients using artificial intelligence
US11982661B1 (en) 2023-05-30 2024-05-14 NotCo Delaware, LLC Sensory transformer method of generating ingredients and formulas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526765A (ja) * 2003-05-12 2006-11-24 エラスムス ユニバーシティ メディカル センター ロッテルダム 微生物の自動特徴づけおよび分類
US7254501B1 (en) * 2004-12-10 2007-08-07 Ahura Corporation Spectrum searching method that uses non-chemical qualities of the measurement
US20120092658A1 (en) * 2007-05-21 2012-04-19 Masud Azimi Preparing samples for optical measurement
US20130321793A1 (en) * 2012-05-31 2013-12-05 Mark A. Hamilton Sample analysis

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5841139A (en) * 1997-02-28 1998-11-24 Bio-Rad Laboratories, Inc. Optical instrument providing combined infrared and Ramen analysis of samples
US7808633B2 (en) * 2007-02-14 2010-10-05 Chemimage Corporation Spectroscopic system and method for predicting outcome of disease
US7057721B2 (en) * 2002-01-10 2006-06-06 Chemimage Corporation Wide field method for detecting pathogenic microorganisms
US7072770B1 (en) 2004-03-29 2006-07-04 Chemimage Corporation Method for identifying components of a mixture via spectral analysis
US20070165235A1 (en) * 2006-01-17 2007-07-19 Honeywell International Inc. Horticultural sensor
US8760636B2 (en) * 2006-08-11 2014-06-24 Thermo Scientific Portable Analytical Instruments Inc. Object scanning and authentication
US7675611B2 (en) 2007-05-21 2010-03-09 Ahura Scientific Inc. Handheld infrared and Raman measurement devices and methods
JP2012506026A (ja) * 2008-09-05 2012-03-08 ビーエーエスエフ ソシエタス・ヨーロピア 物質または物質混合物の検査方法およびその使用
US8891086B2 (en) * 2009-06-15 2014-11-18 Thermo Scientific Portable Analytical Instruments Inc. Optical scanning systems and methods for measuring a sealed container with a layer for reducing diffusive scattering
CN101726373B (zh) * 2009-12-30 2012-12-05 河南新天科技股份有限公司 一种红外方式智能热量表校准装置和方法
US20130284192A1 (en) * 2012-04-25 2013-10-31 Eyal Peleg Electronic cigarette with communication enhancements
US9110001B2 (en) 2012-07-02 2015-08-18 Thermo Scientific Portable Analytical Instruments Inc. Method for tagging reference materials of interest in spectroscopic searching applications
CN203299820U (zh) * 2013-06-14 2013-11-20 昆山市环境监测站 一种环境样品信息打印录入系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526765A (ja) * 2003-05-12 2006-11-24 エラスムス ユニバーシティ メディカル センター ロッテルダム 微生物の自動特徴づけおよび分類
US7254501B1 (en) * 2004-12-10 2007-08-07 Ahura Corporation Spectrum searching method that uses non-chemical qualities of the measurement
US20120092658A1 (en) * 2007-05-21 2012-04-19 Masud Azimi Preparing samples for optical measurement
US20130321793A1 (en) * 2012-05-31 2013-12-05 Mark A. Hamilton Sample analysis

Also Published As

Publication number Publication date
WO2015138037A3 (en) 2016-02-18
WO2015138037A9 (en) 2015-11-05
WO2015138037A4 (en) 2016-04-07
CN105829869A (zh) 2016-08-03
US9921107B2 (en) 2018-03-20
US9513167B2 (en) 2016-12-06
EP3462147A1 (en) 2019-04-03
EP3087359A2 (en) 2016-11-02
US20160025569A1 (en) 2016-01-28
JP6790215B2 (ja) 2020-11-25
WO2015138037A2 (en) 2015-09-17
JP2020016669A (ja) 2020-01-30
US20170314992A1 (en) 2017-11-02
EP3087359B1 (en) 2018-11-28
CN105829869B (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
JP6790215B2 (ja) フィールド使用分光装置の適応
Delvecchio et al. The VLA-COSMOS 3 GHz Large Project: AGN and host-galaxy properties out to z≲ 6
US8368034B2 (en) Substance detection, inspection and classification system using enhanced photoemission spectroscopy
JP5852097B2 (ja) レーザ誘起ブレークダウン分光のための認識アルゴリズムを形成するための方法
US20080191137A1 (en) Methods and apparatus for molecular species detection, inspection and classification using ultraviolet to near infrared Enhanced Photoemission Spectroscopy
Sikirzhytskaya et al. Forensic identification of blood in the presence of contaminations using Raman microspectroscopy coupled with advanced statistics: effect of sand, dust, and soil
CN105008898B (zh) 用于组合的libs和ir吸收光谱法研究的系统和方法
US20040155202A1 (en) Methods and apparatus for molecular species detection, inspection and classification using ultraviolet fluorescence
US20090225322A1 (en) Selection of interrogation wavelengths in optical bio-detection systems
Eshelman et al. Time-resolved detection of aromatic compounds on planetary surfaces by ultraviolet laser induced fluorescence and Raman spectroscopy
CN105911022A (zh) 基于宽调谐外腔式量子级联激光器的危化品遥感探测方法和装置
EP2366991A1 (en) Probabilistic scoring for components of a mixture
US20210010935A1 (en) Detection systems and method for multi-chemical substance detection using ultraviolet fluorescence, specular reflectance, and artificial intelligence
Green et al. Performance characterization of a combined material identification and screening algorithm
CN103884673B (zh) 一种毒品吸食情况红外光谱在线监测系统与方法
Mattmann Detection and identification technologies for CBRN agents
Poryvkina et al. Spectral pattern recognition of controlled substances in street samples using artificial neural network system
Hug et al. Wearable real-time direct reading naphthalene and VOC personal exposure monitor
Yeak Optical Vortices through Laser Beam Engineering for Remote Sensing Applications
Crocombe Miniature and handheld spectroscopic instruments for chemical sensing and security applications: Enabled by photonics
Richardt et al. Analysis of Chemical Warfare Agents–Searching for Molecules
Stokes et al. The fusion of MIR absorbance and NIR Raman spectroscopic techniques for identification of improvised explosive materials in multiple scenarios
Levy Advances in portable FTIR spectrometers for the field: the HazMatID Ranger
Valussi et al. Raman and infrared techniques for fighting drug-related crime: a preliminary assessment
Blatny Conference 8018: Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160627

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181001

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200305