JP2017228903A - 符号化プログラム、符号化方法、符号化装置、復号化プログラム、復号化方法及び復号化装置 - Google Patents

符号化プログラム、符号化方法、符号化装置、復号化プログラム、復号化方法及び復号化装置 Download PDF

Info

Publication number
JP2017228903A
JP2017228903A JP2016122973A JP2016122973A JP2017228903A JP 2017228903 A JP2017228903 A JP 2017228903A JP 2016122973 A JP2016122973 A JP 2016122973A JP 2016122973 A JP2016122973 A JP 2016122973A JP 2017228903 A JP2017228903 A JP 2017228903A
Authority
JP
Japan
Prior art keywords
image
encoding
unit
encoded data
decoding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016122973A
Other languages
English (en)
Inventor
藤後 努
Tsutomu Togo
努 藤後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2016122973A priority Critical patent/JP2017228903A/ja
Priority to US15/598,995 priority patent/US20170365070A1/en
Priority to EP17173029.4A priority patent/EP3261345A1/en
Publication of JP2017228903A publication Critical patent/JP2017228903A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/007Transform coding, e.g. discrete cosine transform
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • H04N19/39Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability involving multiple description coding [MDC], i.e. with separate layers being structured as independently decodable descriptions of input picture data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/001Model-based coding, e.g. wire frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/59Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • H04N19/89Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving methods or arrangements for detection of transmission errors at the decoder
    • H04N19/895Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving methods or arrangements for detection of transmission errors at the decoder in combination with error concealment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/32Indexing scheme for image data processing or generation, in general involving image mosaicing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/432Truncation
    • G06T3/10
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration

Abstract

【課題】パケットロスに伴う画質の変動を抑制すること。【解決手段】送信装置10は、第1の画像を取得する処理と、第1の画像の水平および垂直の方向ごとに当該第1の画像に含まれる画素を所定数おきに抽出することにより第1の画像を複数の第2の画像に分離する処理と、分離された第2の画像ごとに符号化を行う処理とを実行する。【選択図】図1

Description

本発明は、符号化プログラム、符号化方法、符号化装置、復号化プログラム、復号化方法及び復号化装置に関する。
映像等のストリーミングが行われる場合、ネットワーク上でストリームデータの一部がパケットロスにより欠損することがある。例えば、通信の帯域が変動しやすい、携帯電話機等のモバイルネットワークほど、パケットロスが発生しやすい。パケットロスが発生する頻度が増加すると、ストリームの受信側では、再生映像が乱れる事象が頻繁に発生することになる。さらに、フレーム間予測を用いる符号化が実施される場合、パケットロスが発生したフレームだけでなく、当該フレームがフレーム間予測に用いられた他のフレームにも影響を及ぼす。
このようなパケットロスに対処する技術として、次のような技術がある。例えば、定期的にIピクチャ(Intra Picture)などのキーフレームを挿入することにより、途中でパケットロスが発生しても、キーフレームを用いてパケットロスが生じたフレームを復元する技術がある。また、パケットロスの発生時にパケットを再送し、再送されたパケットを用いてデータストリームを再構築して復号および表示を行う技術がある。この他、同一の動画像データを複数の圧縮率で符号化し、受信側で正常に受信できた符号化データの中から最も圧縮率が低く画質の良い符号化データをフレームまたはパケット単位で選択して復号化する技術も存在する。
特開2001−339722号公報 国際公開第2003/092295号
しかしながら、上記の技術では、パケットロスに伴う画質の変動を抑制できない場合がある。
例えば、キーフレームを挿入する場合、キーフレームにパケットロスが発生すると、次のキーフレームが受信されるまで映像の画質が低下するのを抑制することができない。また、パケットを再送する場合、受信側ではパケットが再送されるまで待機することになるので、伝送遅延が発生する。この場合にも、再送があったフレームの再生が伝送遅延に伴って遅れる結果、画質が劣化する。さらに、同一の動画像データを複数の圧縮率で符号化する場合、フレームごとに異なる圧縮率の動画像データが復号化される状況が発生しうる。この場合、パケットロス時には低画質の映像が再生される一方で、パケットロスがない場合には高画質の映像が再生される結果、フレーム間で画質にばらつきが発生する。
1つの側面では、本発明は、パケットロスに伴う画質の変動を抑制できる符号化プログラム、符号化方法、符号化装置、復号化プログラム、復号化方法及び復号化装置を提供することを目的とする。
一態様では、符号化プログラムは、第1の画像を取得する処理と、前記第1の画像の水平および垂直の方向ごとに当該第1の画像に含まれる画素を所定数おきに抽出することにより第1の画像を複数の第2の画像に分離する処理と、分離された第2の画像ごとに符号化を行う処理とをコンピュータに実行させる。
パケットロスに伴う画質の変動を抑制できる。
図1は、実施例1に係る伝送システムに含まれる各装置の機能的構成を示すブロック図である。 図2は、送信シーケンスの一例を示す図である。 図3は、受信シーケンスの一例を示す図である。 図4は、符号化処理単位の一例を示す図である。 図5は、符号化処理単位の一例を示す図である。 図6は、実施例1に係る符号化処理の手順を示すフローチャートである。 図7は、実施例1に係る復号化処理の手順を示すフローチャートである。 図8は、実施例1及び実施例2に係る符号化プログラムを実行するコンピュータのハードウェア構成例を示す図である。
以下に添付図面を参照して本願に係る符号化プログラム、符号化方法、符号化装置、復号化プログラム、復号化方法及び復号化装置について説明する。なお、この実施例は開示の技術を限定するものではない。そして、各実施例は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。
図1は、実施例1に係る伝送システムに含まれる各装置の機能的構成を示すブロック図である。図1に示す伝送システム1は、送信装置10から受信装置30へ映像に関するデータストリームを伝送する伝送サービスを提供するものである。
図1に示すように、伝送システム1には、送信装置10と、受信装置30とが含まれる。これら送信装置10及び受信装置30は、ネットワーク2を介して接続される。かかるネットワーク2は、任意の通信網により構築することができるが、その一部に移動体通信網、いわゆるモバイルネットワークが含まれることとしてもかまわない。例えば、送信装置10及び受信装置30のうち一方または両方が基地局等を介してネットワーク2に接続されることとしてもよい。
送信装置10は、映像の送信元となるコンピュータであり、また、受信装置30は、映像の受信側となるコンピュータである。これら送信装置10及び受信装置30は、組み込み系のマイコン、汎用のパーソナルコンピュータ、ワークステーションなどの任意のコンピュータにより実装することができる。この他、送信装置10及び受信装置30には、スマートフォンを始めとする携帯電話機やPHS(Personal Handyphone System)などの移動体通信端末、さらには、スレート端末やタブレット端末などを含む携帯端末装置全般を採用することができる。
このように送信装置10及び受信装置30には、上記の伝送サービスの内容に応じて、任意の実装形態および任意の接続形態が採用される。例えば、伝送サービスの例として、警備や河川などの映像監視サービス、放送系の映像伝送サービス、道路や橋梁等の維持管理サービスなどが挙げられるが、これらはあくまで例示であり、これらの例により適用範囲は限定されない。
ここで、上記の伝送サービスの一環として、送信装置10は、伝送の対象とする第1の画像の水平および垂直の方向ごとに当該第1の画像に含まれる画素を所定数おきに抽出することにより第1の画像を複数の第2の画像に分離して第2の画像ごとに符号化を行う符号化サービスを提供する。以下では、「第1の画像」の一例として映像ストリームの原画像を示し、「第2の画像」の一例として原画像から分離されたサブサンプルを示すこととする。
図2は、送信シーケンスの一例を示す図である。図2には、送信装置10から受信装置30へストリーミングが行われる映像の原画像の一つが示されており、一例として、原画像が2つのサブサンプルに分離される場合が示されている。図2に示すように、送信装置10は、原画像の水平および垂直の方向ごとに当該原画像に含まれる画素を1画素おきに抽出する。これによって、図2に示す原画像に含まれる画素のうち白丸で示された画素が抽出されると共に、白丸の画素が抽出されることにより残った黒丸の画素も抽出される。この結果、原画像は、解像度が水平方向および垂直方向の共に2分の1となった、サブサンプルA及びサブサンプルBに分離される。このように、原画像のフレームが入力される度に上記の分離を実施することにより、原画像の映像シーケンスからサブサンプルAの映像シーケンス及びサブサンプルBの映像シーケンスが得られる。
その後、送信装置10は、上記の分離により得られたサブサンプルごとに動画の圧縮符号化を実施する。これによって、サブサンプルAの映像シーケンスから各フレームの符号化データaが得られると共に、サブサンプルBの映像シーケンスから各フレームの符号化データbが得られる。
これら符号化データa及び符号化データbは、同一の送信方法で送信することもできるが、リアルタイム性及び画質の向上の両立を目指す観点から、異なる送信方法で送信することができる。例えば、送信装置10は、符号化データaのストリーム及び符号化データbのストリームをRTP(Realtime Transport Protocol)などのプロトコルで受信装置30へ送信する。このとき、送信装置10は、符号化データaには前方誤り訂正、いわゆるFEC(Forward Error Correction)、あるいは自動再送要求、いわゆるARQ(Automatic Repeat-reQuest)を用いた再送制御の少なくともいずれか1つを付加する。さらに、送信装置10は、符号化データa及び符号化データbのストリームを同時のタイミングでネットワーク2へ送出することもできるが、異なるタイミングでネットワーク2へ送出することもできる。例えば、送信装置10は、FEC付きまたは再送制御付きで伝送が行われる符号化データaのネットワーク2への送出を開始してから、FEC及び再送制御のいずれも実施されない符号化データbのネットワーク2への送出を開始することができる。
このような符号化サービスによって、受信装置30では、次のような復号化サービスを提供できる。すなわち、送信装置10からネットワーク2へ送出されたサブサンプルのうちいずれかのサブサンプルにパケットロスが発生する場合、受信装置30では、パケットロスがあるサブサンプルの欠損箇所をパケットロスがないサブサンプル上で欠損箇所に対応する領域の画素を用いて補間した上で原画像を復元することができる。
図3は、受信シーケンスの一例を示す図である。図3には、図2に示された符号化データa及び符号化データbが受信装置30で受信される場合が示されており、符号化データbの一部にパケットロスが発生している例が示されている。図3に示すように、受信装置30は、送信装置10から符号化データa及び符号化データbを受信すると、各サブサンプルごとに復号化を行う。これによって、符号化データaからサブサンプルAが復号化されると共に、符号化データbからサブサンプルBが復号化される。
ここで、図3に示す通り、符号化データbの一部にパケットロスが発生することにより、サブサンプルBには、図3に点線で囲われた部分の画素が持つ画素値に欠損が生じる。以下では、画素値に欠損がある画素のことを「欠損画素」と記載し、欠損画素の集まりのことを「欠損箇所」と記載する場合がある。このようにサブサンプルBに欠損箇所がある場合、受信装置30は、パケットロスが発生しなかったサブサンプルAでサブサンプルBの欠損箇所に対応する領域の画素が持つ画素値を補間に用いる。
すなわち、サブサンプルA及びサブサンプルBは、原画像の水平方向および垂直方向において互いの画素が1つおきに抽出された画素の集まりである。このため、サブサンプルBに欠損箇所が存在したとしてもサブサンプルAに欠損箇所が存在しない状況下では、原画像においてサブサンプルBの各欠損画素の左右および上下はサブサンプルAの画素に該当する。このため、サブサンプルでパケットロスが発生したとしても、原画像上で互いが隣接する画素の画素値が欠損する可能性を低減できるので、欠損画素の近傍、例えば近傍画素の左右および上下に存在する画素を用いる補間の精度が高まる。その後、受信装置30は、サブサンプルA及びサブサンプルBを統合することにより、原画像を復元する。
[送信装置10の構成]
図1に示すように、送信装置10は、取得部11と、分離部12と、第1符号化部13
−1〜第M符号化部13−Mと、送信処理部14とを有する。なお、送信装置10は、図1に示した機能部以外にも、送信装置10として実装されるコンピュータが標準装備する機能部、例えば通信インタフェースなどを有することができるのは言うまでもない。
取得部11は、第1の画像を取得する処理部である。
一実施形態として、取得部11は、図示しないカメラによって撮像されたライブ映像を原画像として取得する。他の一例として、取得部11は、映像を蓄積するハードディスクや光ディスクなどの補助記憶装置またはメモリカードやUSB(Universal Serial Bus)メモリなどのリムーバブルメディアから原画像を取得することもできる。更なる一例として、取得部11は、外部装置からネットワークを介して受信することによって原画像を取得することもできる。このように送信装置10が原画像の映像シーケンスを取得する経路は任意の経路であってよく、特定の経路に限定されない。
分離部12は、第1の画像を複数の第2の画像へ分離する処理部である。
一実施形態として、分離部12は、取得部11により原画像のフレームが取得される度に、原画像の水平および垂直の方向ごとに当該原画像に含まれる画素を所定の画素おきに抽出する処理を繰り返すことにより、原画像を複数のサブサンプルに分離する。例えば、原画像の分割数がMであるとしたとき、分離部12は、原画像の水平および垂直の方向ごとに当該原画像に含まれる画素をM−1画素おきに抽出する。続いて、分離部12は、原画像に残った画素から水平方向および垂直方向ごとにM−2画素おきに抽出する。その後、分離部12は、抽出の回数がM回になるまで上記の抽出を繰り返し実行する。これによって、1つの原画像がM個のサブサンプルに分離される。以下では、あくまで一例として、サブサンプルごとに符号化が並列して行われる場合を想定し、各サブサンプルが第1符号化部13−1〜第M符号化部13−Mへ入力されることとする。
第1符号化部13−1〜第M符号化部13−Mは、サブサンプルごとに符号化を行う処理部である。
一実施形態として、第1符号化部13−1〜第M符号化部13−Mは、所定の符号化処理単位ごとに、予測画像との差分による情報量削減、直交変換による高周波成分の除去及びエントロピー符号化等を行う。例えば、H.264が符号化方式として採用される場合、16×16画素に固定された画像領域であるMB(Macroblock)が符号化処理単位とされる。また、HEVC(High Efficiency Video Coding)が符号化方式として採用される場合、階層4分木構造を持ち8×8〜64×64画素の間で可変であるCU(Coding Unit)及びPU(Prediction Unit)もしくはTU(Transform Unit)が符号化処理単位とされる。
ここで、第1符号化部13−1〜第M符号化部13−Mでは、符号化処理単位とするブロックごとに、当該ブロックの符号化に用いる符号化モードを共通化する。ここで言う「符号化モード」には、Inter/Intraなどのフレーム間予測の実施可否が含まれる。さらに、「符号化モード」には、Pフレーム(Predicted Frame)またはBフレーム(Bi-directional Predicted Frame)などの参照方向も含まれる。さらに、「符号化モード」には、フレーム間予測、フレーム内予測、または、フィールド間予測及びフィールド内予測などの種別なども含まれる。加えて、第1符号化部13−1〜第M符号化部13−Mでは、符号化処理単位とするブロックごとに、当該ブロックの符号化に用いる動き予測ベクトルも共通化する。
このように、第1符号化部13−1〜第M符号化部13−Mの間で符号化処理単位とする各ブロックの符号化モードを共通化する場合、次のような手順で共通化を実現できる。例えば、第1符号化部13−1は、第1符号化部13−1に割り当てられたサブサンプルを符号化した後に、符号化処理単位および符号化モードを第2符号化部13−2へ通知する。続いて、第2符号化部13−2は、第1符号化部13−1から通知された符号化処理単位および符号化モードにしたがって第2符号化部13−2に割り当てられたサブサンプルを符号化した後に、符号化処理単位および符号化モードを第3符号化部13−3へ通知する。これを繰り返して最後に、第M符号化部13−Mは、第M−1符号化部13−M−1から通知された符号化処理単位および符号化モードにしたがって第M符号化部13−Mに割り当てられたサブサンプルを符号化する。また、第1符号化部13−1は、第1符号化部13−1に割り当てられたサブサンプルを符号化した後に、符号化処理単位および符号化モードを第2符号化部13−2〜第M符号化部13−Mへ通知することとしてもよい。
さらに、第1符号化部13−1〜第M符号化部13−Mでは、各サブサンプルの間で原画像上の位置が対応するブロックの符号化データの情報量を一致させると共に、原画像におけるブロックが符号化された場合の符号化データの情報量ともさらに一致させる。
図4及び図5は、符号化処理単位の一例を示す図である。図4及び図5には、図2と同様、原画像が2つのサブサンプルに分離する場合が示されており、図4には、図2に示した原画像における符号化処理単位のブロック1〜4が示される一方で、図5には、図2に示したサブサンプルA及びサブサンプルBにおける符号化処理単位のブロックA1〜A4及びブロックB1〜B4が示されている。図4に示す原画像内のブロック1、2、3及び4が符号化された符号化データの情報量を「J」、「J」、「J」、「J」とし、これらの総和を「ΣJ」とする。また、図5に示すサブサンプルA内のブロックA1、A2、A3及びA4が符号化された符号化データの情報量を「JA1」、「JA2」、「JA3」、「JA4」とし、これらの総和を「ΣJ」とする。さらに、図5に示すサブサンプルB内のブロックB1、B2、B3及びB4が符号化された符号化データの情報量を「JB1」、「JB2」、「JB3」、「JB4」とし、これらの総和を「ΣJ」とする。
このとき、第1符号化部13−1〜第M符号化部13−Mは、下記の式(1)〜式(4)を満たすように、各サブサンプルごとに符号化処理単位とするブロックの符号化を実行する。これによって、復号化後に各サブサンプルが統合された場合に、統合後の原画像において符号化処理単位のブロック間の画質差が生じるのを抑制することができる。下記の式(1)〜式(4)を満たす情報量の一致を実現するには、一例として、原画像において符号化処理単位とする各ブロックの符号化データの情報量を見積もった上で、第1符号化部13−1〜第M符号化部13−Mで符号化を順次実行することとすればよい。
A1/ΣJ≒JB1/ΣJ≒J/ΣJ・・・(1)
A2/ΣJ≒JB2/ΣJ≒J/ΣJ・・・(2)
A3/ΣJ≒JB3/ΣJ≒J/ΣJ・・・(3)
A4/ΣJ≒JB4/ΣJ≒J/ΣJ・・・(4)
送信処理部14は、各サブサンプルの符号化データを送信する処理部である。
一実施形態として、送信処理部14は、第1符号化部13−1〜第M符号化部13−Mごとにサブサンプルが符号化された符号化データを受信装置30へ送信する。このとき、送信処理部14は、同一の送信方法で送信することもできるが、リアルタイム性及び画質の向上の両立を目指す観点から、異なる送信方法で送信することもできる。例えば、図2に示した通り、符号化データa及び符号化データbを伝送する場合、送信処理部14は、符号化データaのストリーム及び符号化データbのストリームをRTPなどのプロトコルで受信装置30へ送信する。このとき、送信処理部14は、符号化データaにはFEC、あるいはARQ(Automatic Repeat-reQuest)を用いた再送制御の少なくともいずれか1つを付加する。さらに、送信処理部14は、符号化データa及び符号化データbのストリームを同時のタイミングでネットワーク2へ送出することもできるが、異なるタイミングでネットワーク2へ送出することもできる。例えば、送信処理部14は、FEC付きまたは再送制御付きで伝送が行われる符号化データaのネットワーク2への送出を開始してから、FEC及び再送制御のいずれも実施されない符号化データbのネットワーク2への送出を開始することができる。なお、原画像を3つ以上のサブサンプルに分離する場合、一例として、第1符号化部13−1〜第M符号化部13−Mから出力される符号化データのうち前半部をRTP+FECまたは再送制御とし、後半部をRTPとし、各符号化データを送信すればよい。
なお、図1では、各サブサンプルが並列して符号化される場合を例示したが、各サブサンプルを順番に符号化して伝送することもできる。この場合、RTP+FECまたは再送制御で送信されるサブサンプルから符号化を行う方が効率がよい。
また、上記の取得部11、分離部12、第1符号化部13−1〜第M符号化部13−M及び送信処理部14などの処理部は、次のようにして実装できる。例えば、CPU(Central Processing Unit)などの中央処理装置に、上記の取得部11、分離部12、第1符号化部13−1〜第M符号化部13−M及び送信処理部14と同様の機能を発揮するプロセスをメモリ上に展開して実行させることにより実現できる。これらの処理部は、必ずしも中央処理装置で実行されずともよく、MPU(Micro-Processing Unit)に実行させることとしてもよい。また、上記の各処理部は、ハードワイヤードロジックによっても実現できる。
また、上記の各処理部が用いる主記憶装置には、一例として、各種の半導体メモリ素子、例えばRAM(Random Access Memory)やフラッシュメモリを採用できる。また、上記の各処理部が参照する記憶装置は、必ずしも主記憶装置でなくともよく、補助記憶装置であってもかまわない。この場合、HDD(Hard Disk Drive)、光ディスクやSSD(Solid State Drive)などを採用できる。
[受信装置30の構成]
図1に示すように、受信装置30は、受信処理部31と、第1復号化部33−1〜第M復号化部33−Mと、補間部34と、統合部35とを有する。なお、受信装置30は、図1に示した機能部以外にも、受信装置30として実装されるコンピュータが標準装備する機能部、例えば通信インタフェースなどを有することができるのは言うまでもない。
受信処理部31は、各サブサンプルの符号化データを受信する処理部である。
一実施形態として、受信処理部31は、ネットワーク2を介して符号化データの映像パケットを受信する度に、当該映像パケットのヘッダ情報を参照して、符号化データを当該符号化データのサブサンプルに対応するデコーダ、すなわち第1復号化部33−1〜第M復号化部33−Mへ入力する。このとき、受信処理部31は、図示しない入力部または外部装置からの指示入力にしたがって映像パケットのタイムアウトを判定する閾値を変更することができる。例えば、描画優先モードが指定された場合、受信処理部31は、画質優先モードが指定された場合よりもタイムアウトを判定する閾値を短く設定することができる。また、画質優先モードが指定された場合、受信処理部31は、描画優先モードが指定された場合よりもタイムアウトを判定する閾値を長く設定することができる。この場合、受信処理部31は、再送制御も許可し、再送パケットを用いて各サブサンプルの符号化データを再構築させることもできる。
第1復号化部33−1〜第M復号化部33−Mは、サブサンプルごとに復号化を行う処理部である。
一実施形態として、第1復号化部33−1〜第M復号化部33−Mは、符号化処理単位とされたブロックごとに、当該ブロックの符号化データを復号化する。同一のフレーム内の全てのブロックが復号化されることにより、サブサンプルが復号化されることになる。
補間部34は、欠損画素の画素値を補間する処理部である。
一実施形態として、補間部34は、タイムアウト等によりパケットロスが検出された場合、ロストが検出されたパケットのシーケンス番号と前後する受信済みのパケットに対応する画素の位置からサブサンプル上における欠損画素の位置を特定する。続いて、補間部34は、第1復号化部33−1〜第M復号化部33−Mにより復号化されたサブサンプルのうち先に特定された欠損画素と同一の位置に欠損画素が存在しない他のサブサンプルを抽出する。その上で、補間部34は、先に抽出されたサブサンプル上で欠損画素に対応する近傍画素、すなわち原画像上で欠損画素の上下、左右または斜めなどの近傍に位置する画素が持つ画素値を用いて、欠損画素の画素値を補間する。例えば、補間部34は、欠損画素の上、下、左、右、左斜め上、左斜め下、右斜め上、右斜め下のうちいずれかの近傍画素の画素値をそのまま欠損画素の画素値に設定することができる。また、補間部34は、欠損画素の上下の2画素、左右の2画素、上下左右の4画素、あるいは上下左右に左斜め上、左斜め下、右斜め上及び右斜め下の画素が加えられた8画素の代表値、例えば平均値や中央値などを欠損画素の画素値に設定することができる。この他、補間部34は、バイリニア補間やバイキュービック補間などの手法を用いることとしてもかまわない。
統合部35は、各サブサンプルを統合する処理部である。
一実施形態として、統合部35は、パケットロスが検出されなかった場合、第1復号化部33−1〜第M復号化部33−Mにより復号化された各サブサンプルを統合する。また、統合部35は、パケットロスが検出された場合、第1復号化部33−1〜第M復号化部33−Mにより復号化されたサブサンプルのうちパケットロスが検出されなかったサブサンプルと、補間部34により欠損画素の画素値が補間されたサブサンプルとを統合する。これによって、各サブサンプルから原画像が復元される。このようにして得られた原画像は、図示しない任意の出力先、例えば動画の記録部、動画の再生処理部、動画から監視対象物を判定する処理部、あるいは動画から移動体を検出する処理部などに出力することができる。
なお、上記の受信処理部31、第1復号化部33−1〜第M復号化部33−M、補間部34及び統合部35などの処理部は、次のようにして実装できる。例えば、CPUなどの中央処理装置に、上記の受信処理部31、第1復号化部33−1〜第M復号化部33−M、補間部34及び統合部35と同様の機能を発揮するプロセスをメモリ上に展開して実行させることにより実現できる。これらの処理部は、必ずしも中央処理装置で実行されずともよく、MPUに実行させることとしてもよい。また、上記の各処理部は、ハードワイヤードロジックによっても実現できる。
また、上記の各処理部が用いる主記憶装置には、一例として、各種の半導体メモリ素子、例えばRAMやフラッシュメモリを採用できる。また、上記の各処理部が参照する記憶装置は、必ずしも主記憶装置でなくともよく、補助記憶装置であってもかまわない。この場合、HDD、光ディスクやSSDなどを採用できる。
[処理の流れ]
次に、本実施例に係る伝送システム1の処理の流れについて説明する。なお、ここでは、送信装置10により実行される(1)符号化処理について説明した後に、受信装置30により実行される(2)復号化処理について説明することとする。
(1)符号化処理
図6は、実施例1に係る符号化処理の手順を示すフローチャートである。この処理は、取得部11により原画像のフレームが取得される度に実行される。図6に示すように、分離部12は、原画像の分割数をカウントするカウンタmの値を1に初期化する(ステップS101)。続いて、分離部12は、取得部11により取得された原画像の水平および垂直の方向ごとに当該原画像に含まれる画素を所定の画素おきに抽出する(ステップS102)。これによって、原画像からサブサンプルが1つ分離される。
続いて、分離部12は、上記のカウンタmの値を1つインクリメントし、カウンタmの値が分割数Mになるまで(ステップS103No)、ステップS102の処理を繰り返し実行する。
その後、カウンタmの値が分割数Mに到達した場合(ステップS103Yes)、第1符号化部13−1〜第M符号化部13−Mは、ステップS102の繰り返しにより得られたサブサンプルの符号化を並列して実行する。
すなわち、第1符号化部13−1は、サブサンプル内で符号化処理単位とするブロックをカウントするカウンタiを「1」に初期化する(ステップS104A)。続いて、第1符号化部13−1は、サブサンプル内のブロックを符号化する(ステップS105A)。このとき、第1符号化部13−1は、ステップS105Aの符号化で用いた符号化モード及びステップS105Aで得られた符号化データの情報量を第2符号化部13−2へ通知する。そして、第1符号化部13−1は、上記のカウンタiの値を1つインクリメントし、カウンタiの値が符号化処理単位のブロックの総数Nになるまで(ステップS106ANo)、ステップS105Aの処理を繰り返し実行する。その後、カウンタiの値が符号化処理単位のブロックの総数Nに到達した場合(ステップS106AYes)、送信処理部14は、第1符号化部13−1により符号化されたサブサンプルの符号化データを受信装置30へ送信する(ステップS107A)。
また、第2符号化部13−2においても、サブサンプル内で符号化処理単位とするブロックをカウントするカウンタiを「1」に初期化する(ステップS104B)。続いて、第2符号化部13−2は、第1符号化部13−1から通知された情報量および符号化モードにしたがってサブサンプル内のブロックを符号化する(ステップS105B)。このとき、第2符号化部13−2は、ステップS105Bの符号化で用いた符号化モード及びステップS105Bで得られた符号化データの情報量を第3符号化部13−3へ通知する。そして、第2符号化部13−2は、上記のカウンタiの値を1つインクリメントし、カウンタiの値が符号化処理単位のブロックの総数Nになるまで(ステップS106BNo)、ステップS105Bの処理を繰り返し実行する。その後、カウンタiの値が符号化処理単位のブロックの総数Nに到達した場合(ステップS106BYes)、送信処理部14は、第2符号化部13−2により符号化されたサブサンプルの符号化データを受信装置30へ送信する(ステップS107B)。
最終段である第M符号化部13−Mの場合、第M符号化部13−Mは、サブサンプル内で符号化処理単位とするブロックをカウントするカウンタiを「1」に初期化する(ステップS104M)。続いて、第M符号化部13−Mは、第M−1符号化部13−M−1から通知された情報量および符号化モードにしたがってサブサンプル内のブロックを符号化する(ステップS105M)。そして、第M符号化部13−Mは、上記のカウンタiの値を1つインクリメントし、カウンタiの値が符号化処理単位のブロックの総数Nになるまで(ステップS106MNo)、ステップS105Mの処理を繰り返し実行する。その後、カウンタiの値が符号化処理単位のブロックの総数Nに到達した場合(ステップS106MYes)、送信処理部14は、第M符号化部13−Mにより符号化されたサブサンプルの符号化データを受信装置30へ送信する(ステップS107M)。
(2)復号化処理
図7は、実施例1に係る復号化処理の手順を示すフローチャートである。この処理は、一例として、各サブサンプルの符号化データが受信された場合に実行される。図7に示すように、各符号化データは、サブサンプルごとに並列して復号化される。
すなわち、第1復号化部33−1に割り当てられたサブサンプルの符号化データが受信処理部31により受信されると(ステップS301A)、第1復号化部33−1は、サブサンプル内で符号化時に符号化処理単位とされたブロックをカウントするカウンタjを「1」に初期化する(ステップS302A)。
続いて、第1復号化部33−1は、第1復号化部33−1に割り当てられたサブサンプル内のブロックの符号化データを復号化する(ステップS303A)。このとき、ブロック内に欠損画素が存在する場合(ステップS304AYes)、補間部34は、第1復号化部33−1を除く各復号化部で符号化データが復号化された各サブサンプルのブロックのうち欠損画素が存在しないサブサンプルのブロック内の近傍画素を参照して、欠損画素の画素値を補間する(ステップS305A)。
そして、第1復号化部33−1は、上記のカウンタjの値を1つインクリメントし、カウンタjの値が符号化処理単位のブロックの総数Nになるまで(ステップS306ANo)、ステップS303A〜ステップS305Aの処理を繰り返し実行する。
これらステップS301A〜ステップS306Aの処理と並列して、第2復号化部33−2は、次のように処理を実行する。すなわち、第2復号化部33−2に割り当てられたサブサンプルの符号化データが受信処理部31により受信されると(ステップS301B)、第2復号化部33−2は、サブサンプル内で符号化時に符号化処理単位とされたブロックをカウントするカウンタjを「1」に初期化する(ステップS302B)。
続いて、第2復号化部33−2は、第2復号化部33−2に割り当てられたサブサンプル内のブロックの符号化データを復号化する(ステップS303B)。このとき、ブロック内に欠損画素が存在する場合(ステップS304BYes)、補間部34は、第2復号化部33−2を除く各復号化部で符号化データが復号化された各サブサンプルのブロックのうち欠損画素が存在しないサブサンプルのブロック内の近傍画素を参照して、欠損画素の画素値を補間する(ステップS305B)。
そして、第2復号化部33−2は、上記のカウンタjの値を1つインクリメントし、カウンタjの値が符号化処理単位のブロックの総数Nになるまで(ステップS306BNo)、ステップS303B〜ステップS305Bの処理を繰り返し実行する。
最終段である第M復号化部33−Mにおいても、第M復号化部33−Mに割り当てられたサブサンプルの符号化データが受信処理部31により受信されると(ステップS301M)、第M復号化部33−Mは、サブサンプル内で符号化時に符号化処理単位とされたブロックをカウントするカウンタjを「1」に初期化する(ステップS302M)。
続いて、第M復号化部33−Mは、第M復号化部33−Mに割り当てられたサブサンプル内のブロックの符号化データを復号化する(ステップS303M)。このとき、ブロック内に欠損画素が存在する場合(ステップS304MYes)、補間部34は、第M復号化部33−Mを除く各復号化部で符号化データが復号化された各サブサンプルのブロックのうち欠損画素が存在しないサブサンプルのブロック内の近傍画素を参照して、欠損画素の画素値を補間する(ステップS305M)。
そして、第M復号化部33−Mは、上記のカウンタjの値を1つインクリメントし、カウンタjの値が符号化処理単位のブロックの総数Nになるまで(ステップS306MNo)、ステップS303M〜ステップS305Mの処理を繰り返し実行する。
その後、ステップS306AYes、ステップS306BYes、・・・、かつステップS306MYesである場合、各サブサンプルが復号化されたことがわかる。この場合、統合部35は、パケットロスが検出されなかった場合、第1復号化部33−1〜第M復号化部33−Mにより復号化された各サブサンプルを統合し、また、パケットロスが検出された場合、第1復号化部33−1〜第M復号化部33−Mにより復号化されたサブサンプルのうちパケットロスが検出されなかったサブサンプルと、補間部34により欠損画素の画素値が補間されたサブサンプルとを統合することにより原画像を復元し(ステップS307)、処理を終了する。
[効果の一側面]
上述してきたように、本実施例に係る送信装置10は、伝送の対象とする第1の画像の水平および垂直の方向ごとに当該第1の画像に含まれる画素を所定数おきに抽出することにより第1の画像を複数の第2の画像に分離して第2の画像ごとに符号化を行う。これによって、送信装置10からネットワーク2へ送出されたサブサンプルのうちいずれかのサブサンプルにパケットロスが発生する場合、受信装置30では、パケットロスがあるサブサンプルの欠損箇所をパケットロスがないサブサンプル上で欠損箇所に対応する領域の画素を用いて補間した上で原画像を復元することができる。このようにサブサンプルでパケットロスが発生したとしても、上記の符号化を実施することにより、原画像上で互いが隣接する画素の画素値が欠損する可能性を低減できるので、欠損画素の近傍、例えば近傍画素の左右および上下に存在する画素を用いる補間の精度が高まる。したがって、本実施例に係る送信装置10によれば、パケットロスに伴う画質の変動を抑制できる。
さて、これまで開示の装置に関する実施例について説明したが、本発明は上述した実施例以外にも、種々の異なる形態にて実施されてよいものである。そこで、以下では、本発明に含まれる他の実施例を説明する。
[送信方法の変え方]
例えば、上記の実施例1では、2つのサブサンプルの間でRTP+FECまたは再送制御と、RTPとすることにより送信方法を変える例を説明したが、2つのサブサンプルの間でプロトコルを変えることもできる。例えば、符号化データaをTCP−IP(Transmission Control Protocol/Internet Protocol)で伝送する一方で、符号化データbをUDP(User Datagram Protocol)で伝送することもできる。
[分散および統合]
また、図示した各装置の各構成要素は、必ずしも物理的に図示の如く構成されておらずともよい。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。例えば、送信装置10が有する取得部11、分離部12、第1符号化部13−1〜第M符号化部13−Mまたは送信処理部14を送信装置10の外部装置としてネットワーク経由で接続するようにしてもよい。また、受信装置30が有する受信処理部31、第1復号化部33−1〜第M復号化部33−M、補間部34または統合部35を受信装置30の外部装置としてネットワーク経由で接続するようにしてもよい。また、送信装置10が有する取得部11、分離部12、第1符号化部13−1〜第M符号化部13−Mまたは送信処理部14を別の装置がそれぞれ有し、ネットワーク接続されて協働することで、上記の送信装置10の機能を実現するようにしてもよい。また、受信装置30が有する受信処理部31、第1復号化部33−1〜第M復号化部33−M、補間部34または統合部35を別の装置がそれぞれ有し、ネットワーク接続されて協働することで、上記の受信装置30の機能を実現するようにしてもよい。
[符号化プログラム]
また、上記の実施例で説明した各種の処理は、予め用意されたプログラムをパーソナルコンピュータやワークステーションなどのコンピュータで実行することによって実現することができる。そこで、以下では、図8を用いて、上記の実施例と同様の機能を有する符号化プログラムを実行するコンピュータの一例について説明する。
図8は、実施例1及び実施例2に係る符号化プログラムを実行するコンピュータのハードウェア構成例を示す図である。図8に示すように、コンピュータ100は、操作部110aと、スピーカ110bと、カメラ110cと、ディスプレイ120と、通信部130とを有する。さらに、このコンピュータ100は、CPU150と、ROM160と、HDD170と、RAM180とを有する。これら110〜180の各部はバス140を介して接続される。
HDD170には、図8に示すように、上記の実施例1で示した取得部11、分離部12、第1符号化部13−1〜第M符号化部13−M及び送信処理部14と同様の機能を発揮する符号化プログラム170aが記憶される。この符号化プログラム170aは、図1に示した取得部11、分離部12、第1符号化部13−1〜第M符号化部13−M及び送信処理部14の各構成要素と同様、統合又は分離してもかまわない。すなわち、HDD170には、必ずしも上記の実施例1で示した全てのデータが格納されずともよく、処理に用いるデータがHDD170に格納されればよい。
このような環境の下、CPU150は、HDD170から符号化プログラム170aを読み出した上でRAM180へ展開する。この結果、符号化プログラム170aは、図8に示すように、符号化プロセス180aとして機能する。この符号化プロセス180aは、RAM180が有する記憶領域のうち符号化プロセス180aに割り当てられた領域にHDD170から読み出した各種データを展開し、この展開した各種データを用いて各種の処理を実行する。例えば、符号化プロセス180aが実行する処理の一例として、図6に示す処理などが含まれる。なお、CPU150では、必ずしも上記の実施例1で示した全ての処理部が動作せずともよく、実行対象とする処理に対応する処理部が仮想的に実現されればよい。
なお、上記の符号化プログラム170aは、必ずしも最初からHDD170やROM160に記憶されておらずともかまわない。例えば、コンピュータ100に挿入されるフレキシブルディスク、いわゆるFD、CD−ROM、DVDディスク、光磁気ディスク、ICカードなどの「可搬用の物理媒体」に符号化プログラム170aを記憶させる。そして、コンピュータ100がこれらの可搬用の物理媒体から符号化プログラム170aを取得して実行するようにしてもよい。また、公衆回線、インターネット、LAN、WANなどを介してコンピュータ100に接続される他のコンピュータまたはサーバ装置などに符号化プログラム170aを記憶させておき、コンピュータ100がこれらから符号化プログラム170aを取得して実行するようにしてもよい。
また、図8には、HDD170に符号化プログラム170aが記憶される場合を例示したが、受信処理部31、第1復号化部33−1〜第M復号化部33−M、補間部34及び統合部35と同様の機能を発揮する復号化プログラムをHDD170に記憶させることで、RAM180上に復号化プロセスを展開し、図7に示した処理などを実現することができるのは言うまでもない。
1 伝送システム
2 ネットワーク
10 送信装置
11 取得部
12 分離部
13−1 第1符号化部
13−2 第2符号化部
13−M 第M符号化部
14 送信処理部
30 受信装置
31 受信処理部
33−1 第1復号化部
33−2 第2復号化部
33−M 第M復号化部
34 補間部
35 統合部

Claims (11)

  1. 第1の画像を取得する処理と、
    前記第1の画像の水平および垂直の方向ごとに当該第1の画像に含まれる画素を所定数おきに抽出することにより第1の画像を複数の第2の画像に分離する処理と、
    分離された第2の画像ごとに符号化を行う処理と
    をコンピュータに実行させることを特徴とする符号化プログラム。
  2. 前記符号化を行う処理は、前記複数の第2の画像の間で共通する符号化モードを用いて前記符号化を行うことを特徴とする請求項1に記載の符号化プログラム。
  3. 前記符号化を行う処理は、前記複数の第2の画像の間で前記第1の画像上の位置が対応するブロックの符号化データの情報量を一致させることを特徴とする請求項1に記載の符号化プログラム。
  4. 前記符号化を行う処理は、前記第1の画像におけるブロックが符号化された場合の符号化データの情報量とさらに一致させることを特徴とする請求項3に記載の符号化プログラム。
  5. 前記第2の画像ごとに符号化された符号化データの伝送に異なる通信プロトコルを用いるか、または、前方誤り訂正あるいは再送制御を付加することにより、各符号化データの間で送信方法を変更することを特徴とする請求項1〜4のいずれか1つに記載の符号化プログラム。
  6. 第1の画像を取得する処理と、
    前記第1の画像の水平および垂直の方向ごとに当該第1の画像に含まれる画素を所定数おきに抽出することにより第1の画像を複数の第2の画像に分離する処理と、
    分離された第2の画像ごとに符号化を行う処理と
    がコンピュータにより実行されることを特徴とする符号化方法。
  7. 第1の画像を取得する取得部と、
    前記第1の画像の水平および垂直の方向ごとに当該第1の画像に含まれる画素を所定数おきに抽出することにより第1の画像を複数の第2の画像に分離する分離部と、
    分離された第2の画像ごとに符号化を行う符号化部と
    を有することを特徴とする符号化装置。
  8. 第1の画像の水平および垂直の方向ごとに当該第1の画像に含まれる画素を所定数おきに抽出することにより前記第1の画像が分離された複数の第2の画像ごとに当該第2の画像の符号化データを取得する処理と、
    前記複数の第2の画像ごとに前記符号化データを復号化する処理と、
    復号化された複数の第2の画像を統合することにより前記第1の画像を生成する処理と
    をコンピュータに実行させることを特徴とする復号化プログラム。
  9. 前記複数の第2の画像のうちいずれかの第2の画像に画素値が欠損した欠損画素が存在する場合、前記欠損画素が存在しない第2の画像上で前記欠損画素の近傍に対応する近傍画素が持つ画素値を参照して前記欠損画素の画素値を補間する処理を前記コンピュータにさらに実行させることを特徴とする請求項8に記載の復号化プログラム。
  10. 第1の画像の水平および垂直の方向ごとに当該第1の画像に含まれる画素を所定数おきに抽出することにより前記第1の画像が分離された複数の第2の画像ごとに当該第2の画像の符号化データを取得する処理と、
    前記複数の第2の画像ごとに前記符号化データを復号化する処理と、
    復号化された複数の第2の画像を統合することにより前記第1の画像を生成する処理と
    がコンピュータにより実行されることを特徴とする復号化方法。
  11. 第1の画像の水平および垂直の方向ごとに当該第1の画像に含まれる画素を所定数おきに抽出することにより前記第1の画像が分離された複数の第2の画像ごとに当該第2の画像の符号化データを受信する受信部と、
    前記複数の第2の画像ごとに前記符号化データを復号化する復号化部と、
    復号化された複数の第2の画像を統合することにより前記第1の画像を生成する統合部と
    を有することを特徴とする復号化装置。
JP2016122973A 2016-06-21 2016-06-21 符号化プログラム、符号化方法、符号化装置、復号化プログラム、復号化方法及び復号化装置 Pending JP2017228903A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016122973A JP2017228903A (ja) 2016-06-21 2016-06-21 符号化プログラム、符号化方法、符号化装置、復号化プログラム、復号化方法及び復号化装置
US15/598,995 US20170365070A1 (en) 2016-06-21 2017-05-18 Encoding program media, encoding method, encoding apparatus, decoding program media, decoding method, and decoding apparatus
EP17173029.4A EP3261345A1 (en) 2016-06-21 2017-05-26 Encoding program, encoding method, encoding apparatus, decoding program, decoding method, and decoding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016122973A JP2017228903A (ja) 2016-06-21 2016-06-21 符号化プログラム、符号化方法、符号化装置、復号化プログラム、復号化方法及び復号化装置

Publications (1)

Publication Number Publication Date
JP2017228903A true JP2017228903A (ja) 2017-12-28

Family

ID=58778957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016122973A Pending JP2017228903A (ja) 2016-06-21 2016-06-21 符号化プログラム、符号化方法、符号化装置、復号化プログラム、復号化方法及び復号化装置

Country Status (3)

Country Link
US (1) US20170365070A1 (ja)
EP (1) EP3261345A1 (ja)
JP (1) JP2017228903A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021038625A1 (ja) 2019-08-23 2021-03-04 三菱電機株式会社 画像送信装置、画像受信装置、画像送信プログラム及び画像受信プログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105472369B (zh) * 2009-01-29 2017-09-12 杜比实验室特许公司 视频装置
CN113613014A (zh) * 2021-08-03 2021-11-05 北京爱芯科技有限公司 一种图像解码方法、装置和图像编码方法、装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001339722A (ja) 2000-05-26 2001-12-07 Matsushita Electric Ind Co Ltd マルチチャネル画像符号化装置、復号化表示装置、符号化方法および復号化表示方法
WO2003092295A1 (en) 2002-04-26 2003-11-06 Nec Corporation Moving image transferring system, moving image encoding apparatus, moving image decoding apparatus, and moving image transferring program
US20050013249A1 (en) * 2003-07-14 2005-01-20 Hao-Song Kong Redundant packets for streaming video protection
US7480335B2 (en) * 2004-05-21 2009-01-20 Broadcom Corporation Video decoder for decoding macroblock adaptive field/frame coded video data with spatial prediction
US8971402B2 (en) * 2008-06-17 2015-03-03 Cisco Technology, Inc. Processing of impaired and incomplete multi-latticed video streams
US8699578B2 (en) * 2008-06-17 2014-04-15 Cisco Technology, Inc. Methods and systems for processing multi-latticed video streams

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021038625A1 (ja) 2019-08-23 2021-03-04 三菱電機株式会社 画像送信装置、画像受信装置、画像送信プログラム及び画像受信プログラム
JPWO2021038625A1 (ja) * 2019-08-23 2021-03-04
JP7170886B2 (ja) 2019-08-23 2022-11-14 三菱電機株式会社 画像送信装置、画像受信装置、画像送信プログラム及び画像受信プログラム
US11671607B2 (en) 2019-08-23 2023-06-06 Mitsubishi Electric Corporation Image transmission device, image reception device and computer readable medium

Also Published As

Publication number Publication date
US20170365070A1 (en) 2017-12-21
EP3261345A1 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
US11297354B2 (en) Encoding apparatus, decoding apparatus and transmission control method
US7747921B2 (en) Systems and methods for transmitting data over lossy networks
US9049464B2 (en) Multiple description coding with plural combined diversity
JP2006352181A (ja) 画像の符号化/復号化装置、符号化/復号化プログラム及び符号化/復号化方法
AU2005267171A1 (en) Method and apparatus for encoder assisted-frame rate up conversion (EA-FRUC) for video compression
KR101377528B1 (ko) 움직임 벡터 부호화/복호화 방법 및 장치
US20210409685A1 (en) Video encoding method, video decoding method, and related apparatuses
JP6354262B2 (ja) 映像符号化データ送信装置、映像符号化データ送信方法、映像符号化データ受信装置、映像符号化データ受信方法、及び映像符号化データ送受信システム
JP2017228903A (ja) 符号化プログラム、符号化方法、符号化装置、復号化プログラム、復号化方法及び復号化装置
CN111263192A (zh) 视频处理方法及相关设备
CN107210843B (zh) 使用喷泉编码的实时视频通信的系统和方法
JP4203036B2 (ja) 動画像復号装置とこの装置を備えた移動体端末
EP1309201A1 (en) Image coding apparatus and image coding method
US20150010069A1 (en) Intra video coding in error prone environments
US20210014482A1 (en) Bidirectional intra prediction signaling
CN111093082A (zh) 一种流媒体直播的方法及系统
KR101538010B1 (ko) 영상 부호화 장치, 영상 부호화 방법, 영상 복호화 장치 및 영상 복호화 방법
US7079582B2 (en) Image coding apparatus and image coding method
US20060067410A1 (en) Method for encoding and decoding video signals
JP6677482B2 (ja) 階層符号化装置及び送信装置
KR101858212B1 (ko) 역 텔레시네 필터
KR20190081413A (ko) 영상을 송수신하는 장치 및 방법
JP6826439B2 (ja) 映像復号装置
WO2023030070A1 (zh) 编码、封装及显示方法、装置及电子设备
JP7338992B2 (ja) 送信装置、受信装置、及びプログラム