JP2017228646A - Laser light adjustment method, and laser light source device - Google Patents

Laser light adjustment method, and laser light source device Download PDF

Info

Publication number
JP2017228646A
JP2017228646A JP2016123688A JP2016123688A JP2017228646A JP 2017228646 A JP2017228646 A JP 2017228646A JP 2016123688 A JP2016123688 A JP 2016123688A JP 2016123688 A JP2016123688 A JP 2016123688A JP 2017228646 A JP2017228646 A JP 2017228646A
Authority
JP
Japan
Prior art keywords
temperature
light
wavelength
laser
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016123688A
Other languages
Japanese (ja)
Other versions
JP6836848B2 (en
Inventor
鳴海 達也
Tatsuya Narumi
達也 鳴海
洋一 戸井田
Yoichi Toida
洋一 戸井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2016123688A priority Critical patent/JP6836848B2/en
Priority to US15/617,307 priority patent/US10505336B2/en
Priority to CN201710450281.4A priority patent/CN107528210B/en
Priority to DE102017210544.5A priority patent/DE102017210544A1/en
Publication of JP2017228646A publication Critical patent/JP2017228646A/en
Application granted granted Critical
Publication of JP6836848B2 publication Critical patent/JP6836848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/136Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1062Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using a controlled passive interferometer, e.g. a Fabry-Perot etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1303Stabilisation of laser output parameters, e.g. frequency or amplitude by using a passive reference, e.g. absorption cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1305Feedback control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1317Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/136Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity
    • H01S3/137Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity for stabilising of frequency
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3551Crystals
    • G02F1/3553Crystals having the formula MTiOYO4, where M=K, Rb, TI, NH4 or Cs and Y=P or As, e.g. KTP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0402Arrangements for thermal management for liquid lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1671Solid materials characterised by a crystal matrix vanadate, niobate, tantalate
    • H01S3/1673YVO4 [YVO]

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Automation & Control Theory (AREA)
  • Nonlinear Science (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laser light adjustment method capable of outputting laser light of desired wavelength with high output, and to provide a laser light source device.SOLUTION: A laser light adjustment method executes a first adjustment step for detecting the optical intensity and wavelength of second harmonic light by using a photodetector for detecting the second harmonic light, and adjusting the temperature of a Nd:YVOcrystal 32 and a KTP crystal 33 by adjusting a first temperature adjustment mechanism 36, so that the wavelength of detected second harmonic light approaches a target wavelength, and optical intensity of the second harmonic light goes above a predetermined value, and a second adjustment step of adjusting the temperature of an etalon 34 by a second temperature adjustment mechanism 37, so that the wavelength of detected second harmonic light approaches a target wavelength, after the first adjustment step, and optical intensity of the second harmonic light goes above a predetermined value.SELECTED DRAWING: Figure 1

Description

本発明は、レーザ光を出射するレーザ光源装置におけるレーザ光調整方法、及びレーザ光源装置に関する。   The present invention relates to a laser light adjustment method in a laser light source device that emits laser light, and a laser light source device.

従来、励起光を出射する励起用の光源と、励起用の光源からの励起光を受けてレーザ光を生成する共振器とを備えたレーザ光源装置が知られている(例えば、特許文献1、2参照)。
このようなレーザ光源装置は、共振器の筐体内にNd:YVO結晶等の固体レーザ媒体と、非線形光学結晶のSHG(Second Harmonic Generation)素子(例えばKTP結晶等)と、エタロンと、共振器ミラーとを備える。そして、半導体レーザからの励起光を固体レーザ媒体に入射させて基本波光を出射させ、当該基本波光を高調波光に変換し、エタロンを透過した所定周波数の高調波光が共振器から出力させる。
2. Description of the Related Art Conventionally, there has been known a laser light source device that includes an excitation light source that emits excitation light and a resonator that generates excitation light from the excitation light source (for example, Patent Document 1, 2).
Such a laser light source device includes a solid-state laser medium such as an Nd: YVO 4 crystal, a non-linear optical crystal SHG (Second Harmonic Generation) element (for example, a KTP crystal), an etalon, and a resonator in a resonator housing. And a mirror. Then, excitation light from the semiconductor laser is incident on the solid-state laser medium to emit fundamental wave light, the fundamental wave light is converted into harmonic light, and harmonic light having a predetermined frequency that has passed through the etalon is output from the resonator.

ここで、特許文献1に記載のレーザ光源装置は、共振器の温度調整機構と、エタロンの温度調整機構とを備える。このレーザ光源装置は、共振器の温度制御を行うことで、共振器内のSHG素子にて安定した波長変換動作を行わせ、エタロンの温度制御を行うことで、高調波光の波長と、エタロンのピーク透過波長とを合わせ込む。
また、特許文献2に記載のレーザ光源装置は、SHG素子(非線形光学結晶)の温度調整機構と、共振器の温度調整機構とを備える。このレーザ光源装置は、エタロンを共振器から取り外した状態でSHG素子の温度調整を行った後、エタロンを共振器内に配置し、共振器の温度制御を行うことで、エタロンの温度制御を行う。
Here, the laser light source device disclosed in Patent Document 1 includes a resonator temperature adjustment mechanism and an etalon temperature adjustment mechanism. This laser light source device performs a stable wavelength conversion operation by the SHG element in the resonator by controlling the temperature of the resonator, and by controlling the temperature of the etalon, the wavelength of the harmonic light and the etalon of the etalon are controlled. Match the peak transmission wavelength.
The laser light source device described in Patent Document 2 includes a temperature adjusting mechanism for an SHG element (nonlinear optical crystal) and a temperature adjusting mechanism for a resonator. In this laser light source device, after adjusting the temperature of the SHG element with the etalon removed from the resonator, the etalon is placed in the resonator and the temperature of the resonator is controlled to control the temperature of the etalon. .

特許第3509598号公報Japanese Patent No. 3509598 特開2011−249400号公報JP 2011-249400 A

ところで、上記特許文献1では、共振器全体の温度制御とエタロンの温度制御とを行っているが、共振器の温度とエタロンの温度とが異なる場合に、互いに影響を及ぼし合うことになる。また、特許文献2では、SHG素子の温度制御を行った後、エタロンを組み入れて共振器全体の温度制御を行っているが、共振器の温度とSHG素子の温度とが異なる温度とする場合に、共振器全体の温度制御を行う際にSHG素子もその影響を受けてしまう。このように、従来の構成では、共振器内の各素子の温度を最適な温度に設定することが困難であり、所望波長のレーザ光を高出力で出力することが困難であるとの課題があった。   By the way, in Patent Document 1, temperature control of the entire resonator and temperature control of the etalon are performed. However, when the temperature of the resonator and the temperature of the etalon are different, they influence each other. In Patent Document 2, the temperature control of the SHG element is performed and then the etalon is incorporated to control the temperature of the entire resonator. However, when the temperature of the resonator and the temperature of the SHG element are different from each other. When the temperature control of the entire resonator is performed, the SHG element is also affected. As described above, in the conventional configuration, it is difficult to set the temperature of each element in the resonator to an optimum temperature, and it is difficult to output a laser beam having a desired wavelength at a high output. there were.

本発明は、所望波長のレーザ光を高出力で出力可能なレーザ光調整方法、及びレーザ光源装置を提供することを目的とする。   It is an object of the present invention to provide a laser light adjusting method and a laser light source device that can output laser light having a desired wavelength with high output.

本発明のレーザ光調整方法は、励起光を出射する励起用光源と、前記励起光を受けて基本波光を生成するレーザ媒体と、前記基本波光を目的波長の高調波光に変換する非線形光学結晶と、所定の波長の光を透過させるエタロンと、前記レーザ媒体、前記非線形光学結晶、及び前記エタロンを内部に収納する共振器筐体と、前記レーザ媒体及び前記非線形光学結晶の温度を制御する第一温度調整機構と、前記エタロンの温度を制御する第二温度調整機構と、を備えたレーザ光源装置におけるレーザ光調整方法であって、前記高調波光を検出する光検出部を用いて、前記高調波光の光強度及び波長を検出し、検出された前記高調波光の波長が目的波長に近づき、かつ前記高調波光の光強度が所定値以上となるように、前記第一温度調整機構を調整して前記レーザ媒体及び前記非線形光学結晶の温度を調整する第一調整ステップと、前記第一調整ステップの後、前記光検出部を用いて前記高調波光の光強度及び波長を検出し、検出された前記高調波光の波長が目的波長に近づき、かつ前記高調波光の光強度が所定値以上となるように、前記第二温度調整機構により前記エタロンの温度を調整する第二調整ステップと、を実施する。   The laser light adjustment method of the present invention includes an excitation light source that emits excitation light, a laser medium that receives the excitation light to generate fundamental light, and a nonlinear optical crystal that converts the fundamental light into harmonic light of a target wavelength. An etalon that transmits light of a predetermined wavelength; a resonator housing that houses the laser medium, the nonlinear optical crystal, and the etalon; and a first that controls temperatures of the laser medium and the nonlinear optical crystal. A laser light adjustment method in a laser light source device comprising a temperature adjustment mechanism and a second temperature adjustment mechanism for controlling the temperature of the etalon, wherein the harmonic light is detected using a light detection unit that detects the harmonic light. The first temperature adjustment mechanism is adjusted so that the detected wavelength of the harmonic light approaches the target wavelength and the light intensity of the harmonic light is equal to or greater than a predetermined value. A first adjustment step for adjusting the temperature of the laser medium and the nonlinear optical crystal, and after the first adjustment step, the light detection unit is used to detect the light intensity and wavelength of the harmonic light and detect And a second adjustment step of adjusting the temperature of the etalon by the second temperature adjustment mechanism so that the wavelength of the harmonic light approaches a target wavelength and the light intensity of the harmonic light is equal to or greater than a predetermined value. .

本発明では、レーザ光源装置において、第一温度調整機構によりレーザ媒体及び非線形光学結晶(SHG素子)の温度が制御可能となり、第二温度調整機構によりエタロンの温度が制御可能となっている。そして、本発明では、検出器により検出される高調波光の検出結果(波長や光強度)に基づいて、先ず、第一調整ステップで、第一温度調整機構を制御し、レーザ媒体及び非線形光学結晶の温度を最適化する。つまり、レーザ媒体及び非線形光学結晶を目的波長のレーザ光が高出力で得られる温度に設定し、これを第一温度調整機構によって維持させる。この後、第二調整ステップを実施して、エタロンの温度調整を行って、エタロンを透過するピーク透過波長を目的波長に合わせる。なお、第二調整ステップでは、エタロンの温度のみではなく、共振器筐体の光軸に対するエタロンの角度も適宜調整してもよい。
第二調整ステップでは、第一調整ステップにおいて設定した温度条件が第一温度調整機構により維持されているため、エタロンの温度制御を行った際のレーザ媒体や非線形光学結晶の温度変化を抑制することが可能となる。つまり、レーザ媒体や非線形光学結晶は、第二調整ステップによる温度制御の影響を受けることがなく、最適化されたレーザ光(高調波光)をそのまま出力し続けることが可能となる。したがって、本発明では、レーザ光源装置から所望波長のレーザ光を高出力で出力することができる。
In the present invention, in the laser light source device, the temperature of the laser medium and the nonlinear optical crystal (SHG element) can be controlled by the first temperature adjusting mechanism, and the temperature of the etalon can be controlled by the second temperature adjusting mechanism. In the present invention, based on the detection result (wavelength or light intensity) of the harmonic light detected by the detector, first, in the first adjustment step, the first temperature adjustment mechanism is controlled, and the laser medium and the nonlinear optical crystal Optimize the temperature. That is, the temperature of the laser medium and the nonlinear optical crystal is set to a temperature at which laser light having a target wavelength can be obtained with high output, and this is maintained by the first temperature adjustment mechanism. Thereafter, the second adjustment step is performed to adjust the temperature of the etalon so that the peak transmission wavelength that transmits the etalon is matched with the target wavelength. In the second adjustment step, not only the temperature of the etalon but also the angle of the etalon with respect to the optical axis of the resonator housing may be appropriately adjusted.
In the second adjustment step, since the temperature condition set in the first adjustment step is maintained by the first temperature adjustment mechanism, the temperature change of the laser medium or the nonlinear optical crystal when the temperature control of the etalon is performed is suppressed. Is possible. That is, the laser medium and the nonlinear optical crystal are not affected by the temperature control by the second adjustment step, and can continue to output the optimized laser light (harmonic light) as it is. Therefore, in the present invention, laser light having a desired wavelength can be output from the laser light source device with high output.

本発明のレーザ光調整方法において、前記レーザ光源装置は、前記共振器筐体の温度を制御する第三温度調整機構を備え、前記第三温度調整機構により前記共振器筐体の温度を予め設定された基準温度に維持する第三調整ステップを実施することが好ましい。
本発明では、第三調整ステップが実施されることで、第三温度調整機構により共振器筐体の温度が基準温度に維持される。これにより、レーザ光の波長安定化を行う際の温度条件が統一された状態で、第一調整ステップ及び第二調整ステップが行われることになる。よって、使用環境等によって、レーザ光源装置の周囲の環境温度が変化する場合でも、当該温度変化の影響を受けずに、レーザ媒体、非線形光学結晶、及びエタロンの温度を最適温度に設定することができる。
In the laser light adjustment method of the present invention, the laser light source device includes a third temperature adjustment mechanism that controls the temperature of the resonator casing, and the temperature of the resonator casing is preset by the third temperature adjustment mechanism. Preferably, a third adjustment step is performed to maintain the set reference temperature.
In the present invention, by performing the third adjustment step, the temperature of the resonator housing is maintained at the reference temperature by the third temperature adjustment mechanism. Thus, the first adjustment step and the second adjustment step are performed in a state where the temperature conditions for stabilizing the wavelength of the laser light are unified. Therefore, even when the ambient temperature around the laser light source device changes depending on the usage environment, the temperature of the laser medium, nonlinear optical crystal, and etalon can be set to the optimum temperature without being affected by the temperature change. it can.

本発明のレーザ光調整方法において、前記共振器筐体は、前記レーザ媒体、前記非線形光学結晶、及び前記エタロンのそれぞれを支持する支持部を備え、前記共振器筐体及び前記支持部は、熱伝導率が170(W/mK)以上の素材により構成されていることが好ましい。
従来のレーザ光源装置では、熱伝導率が小さく線膨張係数も小さい低膨張素材により共振器筐体が構成されていた。これは、上述した特許文献1のように、共振器筐体の温度を制御することでレーザ媒体や非線形光学結晶の温度を制御したり、特許文献2のように、共振器筐体の温度を制御することでエタロンの温度を制御したりする場合、共振器筐体の温度を変化させることによる共振器長の変化を抑制するためである。また、上記のような従来のレーザ光源装置では、共振器筐体の温度と、各素子の温度とを、それぞれ異なる温度とする場合に、互いの設定温度が影響を及ぼし合い、温度制御が困難となる。よって、熱伝導率が小さい素材により共振器筐体や支持部を構成して、互いの設定温度が影響を及ぼし合う不都合を抑制していた。しかしながら、このような熱伝導率が低い素材により共振器筐体を構成する場合、共振器筐体の温度を均一化するのに長い時間を要する。特に、環境温度が経時的に変化するような場合では、温度の均一化により一層の時間を要する。
これに対して、本発明では、共振器筐体が、熱伝導率が170(W/mK)以上の素材により構成されている。このため、共振器筐体の温度を迅速に均一化することができ、温度条件を統一した状態で、レーザ光の安定化処理を実施することができる。また、本発明では、上述のように、レーザ媒体及び非線形光学結晶と、エタロンと、共振器筐体と、の間の温度影響を抑制することが可能であるので、熱伝導率が大きい共振器筐体を用いた場合でも、その影響を抑制できる。なお、共振器筐体を基準温度に維持した状態でレーザ光の安定化処理を実施するので、低膨張素材により構成された共振器筐体を用いる必要もない。
In the laser beam adjustment method of the present invention, the resonator housing includes a support portion that supports each of the laser medium, the nonlinear optical crystal, and the etalon, and the resonator housing and the support portion are heat It is preferable to be made of a material having a conductivity of 170 (W / mK) or more.
In the conventional laser light source device, the resonator casing is composed of a low expansion material having a low thermal conductivity and a small linear expansion coefficient. This is because the temperature of the resonator case is controlled by controlling the temperature of the resonator case as in Patent Document 1 described above, or the temperature of the resonator case is controlled as in Patent Document 2. This is because when the temperature of the etalon is controlled by controlling, the change in the resonator length caused by changing the temperature of the resonator housing is suppressed. Further, in the conventional laser light source device as described above, when the temperature of the resonator casing and the temperature of each element are different from each other, the set temperatures influence each other, making temperature control difficult. It becomes. Therefore, the resonator casing and the support portion are made of a material having a low thermal conductivity, and inconveniences in which the set temperatures influence each other are suppressed. However, when the resonator casing is made of such a material having low thermal conductivity, it takes a long time to equalize the temperature of the resonator casing. In particular, when the environmental temperature changes with time, more time is required to make the temperature uniform.
In contrast, in the present invention, the resonator casing is made of a material having a thermal conductivity of 170 (W / mK) or more. For this reason, the temperature of the resonator casing can be quickly equalized, and the laser beam stabilization process can be performed in a state where the temperature conditions are unified. In the present invention, as described above, since it is possible to suppress the temperature effect between the laser medium and the nonlinear optical crystal, the etalon, and the resonator housing, the resonator having a high thermal conductivity. Even when a casing is used, the influence can be suppressed. In addition, since the laser beam stabilization process is performed in a state where the resonator casing is maintained at the reference temperature, it is not necessary to use a resonator casing made of a low expansion material.

本発明のレーザ光調整方法において、前記共振器筐体及び前記支持部は、ベリリウム銅により構成されていることが好ましい。
本発明では、共振器筐体及び支持部がベリリウム銅により構成されている。ベリリウム銅は、熱伝導率が170〜260(W/mK)であり、上述したように、共振器筐体の温度を迅速に均一化することができる。
In the laser beam adjustment method of the present invention, it is preferable that the resonator casing and the support portion are made of beryllium copper.
In the present invention, the resonator housing and the support portion are made of beryllium copper. Beryllium copper has a thermal conductivity of 170 to 260 (W / mK), and as described above, the temperature of the resonator housing can be quickly equalized.

本発明のレーザ調整方法において、前記光検出部は、前記共振器筐体から出射された前記高調波光が照射され、所定波長の光を吸収する吸収セルと、前記吸収セルを介した前記高調波光を受光して出力信号を出力する検出器と、を含み、前記第一調整ステップ及び前記第二調整ステップは、前記検出器からの前記出力信号に基づく前記吸収セルの飽和吸収線の波長と、前記高調波光の波長とが一致するように、前記第一温度調整機構及び前記第二温度調整機構を制御することが好ましい。
これにより、本発明では、第二出力信号に含まれる飽和吸収線を検出し、高調波光の波長がこの飽和吸収線の波長となるように、第一調整ステップや第二調整ステップを実施することで、高精度に目的波長に設定することができる。
In the laser adjustment method of the present invention, the light detection unit is irradiated with the harmonic light emitted from the resonator casing and absorbs light of a predetermined wavelength, and the harmonic light via the absorption cell. And a detector that outputs an output signal, wherein the first adjustment step and the second adjustment step include a wavelength of a saturated absorption line of the absorption cell based on the output signal from the detector, and It is preferable to control the first temperature adjustment mechanism and the second temperature adjustment mechanism so that the wavelength of the harmonic light matches.
Thereby, in the present invention, the saturated absorption line included in the second output signal is detected, and the first adjustment step and the second adjustment step are performed so that the wavelength of the harmonic light becomes the wavelength of the saturated absorption line. Thus, the target wavelength can be set with high accuracy.

本発明のレーザ光源装置は、励起光を出射する励起用光源と、前記励起光を受けて基本波光を生成するレーザ媒体と、前記基本波光を目的波長の高調波光に変換する非線形光学結晶と、所定の波長の光を透過させるエタロンと、前記レーザ媒体、前記非線形光学結晶、及び前記エタロンを内部に収納する共振器筐体と、前記レーザ媒体及び前記非線形光学結晶の温度を制御する第一温度調整機構と、前記エタロンの温度を制御する第二温度調整機構と、を備えることを特徴とする。
本発明のレーザ光源装置は、レーザ媒体及び非線形光学結晶の温度を制御する第一温度調整機構と、エタロンの温度を制御する第二温度調整機構とがそれぞれ独立して設けられている。このため、上述したようなレーザ光調整方法によるレーザ光の調整が可能となり、目的波長のレーザ光(高調波光)を高出力で出力することができる。
The laser light source device of the present invention includes an excitation light source that emits excitation light, a laser medium that receives the excitation light and generates fundamental light, a nonlinear optical crystal that converts the fundamental light into harmonic light of a target wavelength, An etalon that transmits light of a predetermined wavelength; a resonator housing that houses the laser medium, the nonlinear optical crystal, and the etalon; and a first temperature that controls the temperature of the laser medium and the nonlinear optical crystal. An adjustment mechanism and a second temperature adjustment mechanism for controlling the temperature of the etalon are provided.
In the laser light source device of the present invention, a first temperature adjusting mechanism for controlling the temperature of the laser medium and the nonlinear optical crystal and a second temperature adjusting mechanism for controlling the temperature of the etalon are provided independently. For this reason, the laser beam can be adjusted by the laser beam adjusting method as described above, and the laser beam (harmonic light) having the target wavelength can be output at a high output.

本発明のレーザ光源装置において、前記高調波光の出力を安定化させる制御部を備え、前記制御部は、前記共振器筐体から出射された前記高調波光の波長及び光強度を検出する光検出部からの検出結果に基づき、検出された前記高調波光の波長が目的波長に近づくように、かつ検出された前記高調波光の光強度が所定値以上となるように、前記第一温度調整機構及び前記第二温度調整機構を制御して、前記レーザ媒体及び前記非線形光学結晶の温度、前記エタロンの温度の順で温度調整を実施することが好ましい。
本発明のレーザ光源装置は、制御部が第一温度調整機構および第二温度調整機構を順に制御することで、上述したようなレーザ光調整方法を自動で行うことができ、ユーザの利便性を向上できる。
The laser light source device of the present invention includes a control unit that stabilizes the output of the harmonic light, and the control unit detects a wavelength and light intensity of the harmonic light emitted from the resonator housing. Based on the detection result from the first temperature adjustment mechanism and the first temperature adjustment mechanism, so that the wavelength of the detected harmonic light approaches the target wavelength, and the light intensity of the detected harmonic light is a predetermined value or more It is preferable to control the second temperature adjustment mechanism to adjust the temperature in the order of the temperature of the laser medium and the nonlinear optical crystal and the temperature of the etalon.
In the laser light source device of the present invention, the control unit sequentially controls the first temperature adjustment mechanism and the second temperature adjustment mechanism, so that the laser light adjustment method as described above can be automatically performed, and the convenience of the user is improved. Can be improved.

本発明のレーザ光源装置において、前記共振器筐体の温度を制御する第三温度調整機構をさらに備え、前記制御部は、前記第三温度調整機構を制御して、前記共振器筐体の温度を予め設定された基準温度に維持することが好ましい。
本発明では、共振器筐体の温度を制御する第三温度調整機構が設けられているので、共振器筐体の温度を基準温度に維持することができ、環境温度の変化によらず、安定したレーザ光を出力することができる。
The laser light source device of the present invention further includes a third temperature adjustment mechanism for controlling the temperature of the resonator casing, and the control unit controls the temperature of the resonator casing by controlling the third temperature adjustment mechanism. Is preferably maintained at a preset reference temperature.
In the present invention, since the third temperature adjustment mechanism for controlling the temperature of the resonator casing is provided, the temperature of the resonator casing can be maintained at the reference temperature, and stable regardless of the environmental temperature change. Laser beam can be output.

本発明のレーザ光源装置において、前記共振器筐体は、前記レーザ媒体、前記非線形光学結晶、及び前記エタロンのそれぞれを支持する支持部を備え、前記共振器筐体及び各前記支持部は、熱伝導率が170(W/mK)以上の素材により構成されていることが好ましい。
また、前記共振器筐体及び各前記支持部は、ベリリウム銅により構成されていることが好ましい。
本発明では、共振器筐体や支持部は、熱伝導率が170(W/mK)以上となるベリリウム銅により構成されている。このため、共振器筐体における温度を迅速に均一化でき、基準温度に維持することができる。したがって、共振器の温度が統一された温度条件下で迅速なレーザ光の安定化処理を実施することができる。
In the laser light source device of the present invention, the resonator housing includes a support portion that supports each of the laser medium, the nonlinear optical crystal, and the etalon, and the resonator housing and each of the support portions are each provided with heat. It is preferable to be made of a material having a conductivity of 170 (W / mK) or more.
Moreover, it is preferable that the said resonator housing | casing and each said support part are comprised by beryllium copper.
In the present invention, the resonator housing and the support portion are made of beryllium copper having a thermal conductivity of 170 (W / mK) or more. For this reason, the temperature in a resonator housing | casing can be equalized rapidly and it can maintain at reference temperature. Therefore, rapid laser beam stabilization processing can be performed under temperature conditions in which the temperature of the resonator is unified.

本発明は、レーザ光源装置から所望波長のレーザ光を高出力で出力することができる。   The present invention can output a laser beam having a desired wavelength from a laser light source device at a high output.

本発明に係る一実施形態におけるレーザ光源装置1を示すブロック図。1 is a block diagram showing a laser light source device 1 according to an embodiment of the present invention. 本実施形態における制御ユニットの機能構成を示すブロック図。The block diagram which shows the function structure of the control unit in this embodiment. 本実施形態におけるレーザ光調整処理を示すフローチャート。The flowchart which shows the laser beam adjustment process in this embodiment.

以下、本発明に係る一実施形態について説明する。
[レーザ光源装置の構成]
図1は、本実施形態におけるレーザ光源装置1を示すブロック図である。
レーザ光源装置1は、図1に示すように、光を出射する光源2と、共振器3と、共振器3から出射される光をレーザ光源装置1の外部に導光する導光手段4と、共振器3から出射される光を変調することでヨウ素の飽和吸収線を検出するための飽和吸収線検出手段5と、レーザ光源装置1を制御する制御ユニット6とを備える。
光源2は、励起用光源であり、例えば808nm付近の波長の光(励起光)を出射する半導体レーザ21と、半導体レーザ21から出射される励起光を平行化するコリメータレンズ22と、半導体レーザ21の熱を逃がすための放熱板23と、光源2の温度を制御するための光源温度調整機構24とを備える。光源温度調整機構24は、例えばサーミスタ等により構成される温度センサ241と、温度を調整するペルチェ素子等により構成される温度調整器242とを備える。光源温度調整機構24により、半導体レーザ21の温度が調整されることで、基本波光を生成可能な波長の励起光を安定して出力することができる。
Hereinafter, an embodiment according to the present invention will be described.
[Configuration of Laser Light Source Device]
FIG. 1 is a block diagram showing a laser light source device 1 in the present embodiment.
As shown in FIG. 1, the laser light source device 1 includes a light source 2 that emits light, a resonator 3, and a light guide unit 4 that guides light emitted from the resonator 3 to the outside of the laser light source device 1. A saturated absorption line detecting means 5 for detecting a saturated absorption line of iodine by modulating the light emitted from the resonator 3 and a control unit 6 for controlling the laser light source device 1 are provided.
The light source 2 is an excitation light source, for example, a semiconductor laser 21 that emits light (excitation light) having a wavelength near 808 nm, a collimator lens 22 that collimates the excitation light emitted from the semiconductor laser 21, and the semiconductor laser 21. A heat radiating plate 23 for releasing the heat of the light source and a light source temperature adjusting mechanism 24 for controlling the temperature of the light source 2 are provided. The light source temperature adjusting mechanism 24 includes a temperature sensor 241 configured by, for example, a thermistor, and a temperature adjuster 242 configured by a Peltier element that adjusts the temperature. By adjusting the temperature of the semiconductor laser 21 by the light source temperature adjusting mechanism 24, it is possible to stably output the excitation light having a wavelength capable of generating the fundamental light.

[共振器の構成]
共振器3は、筐体31(共振器筐体)を備え、筐体31の内部には、コリメータレンズ22にて平行化された励起光を集光するフォーカスレンズ311と、フォーカスレンズ311にて集光される励起光で励起され、1064nm付近の波長の光(基本波光)を出射するNd:YVO結晶32(レーザ媒体)と、Nd:YVO結晶32から出射される基本波光を532nm付近の波長の光(第2高調波光)に変換するためのKTP結晶33(非線形光学結晶)と、KTP結晶33の光路後段に配設されるエタロン34、及び共振器ミラー35と、Nd:YVO結晶32及びKTP結晶33の温度を制御する第一温度調整機構36と、エタロン34の温度を制御する第二温度調整機構37と、エタロンの角度を調整する角度調整機構38と、を備えている。また、筐体31には、筐体31自体の温度を調整する第三温度調整機構39が設けられている。
[Configuration of resonator]
The resonator 3 includes a casing 31 (resonator casing). A focus lens 311 that collects the excitation light collimated by the collimator lens 22 and a focus lens 311 are provided inside the casing 31. excited by focused the excitation light, Nd emits light of around 1064 nm (fundamental light): YVO 4 crystal 32 (the laser medium), Nd: YVO 4 around 532nm the fundamental wave light emitted from the crystal 32 A KTP crystal 33 (non-linear optical crystal) for converting the light into the light of the second wavelength (second harmonic light), an etalon 34 and a resonator mirror 35 disposed downstream of the optical path of the KTP crystal 33, and Nd: YVO 4 A first temperature adjusting mechanism 36 for controlling the temperature of the crystal 32 and the KTP crystal 33, a second temperature adjusting mechanism 37 for controlling the temperature of the etalon 34, and an angle adjusting mechanism 3 for adjusting the angle of the etalon. It has a, and. The casing 31 is provided with a third temperature adjustment mechanism 39 that adjusts the temperature of the casing 31 itself.

より具体的には、筐体31は、その内部に、Nd:YVO結晶32及びKTP結晶33を支持するレーザ素子支持部312と、エタロン34を支持するエタロン支持部313とを備えている。なお、共振器ミラー35は、ピエゾ素子351を介して筐体31に取り付けられている。共振器ミラー35は、ピエゾ素子351への印加電圧を制御することで、共振器3の光軸方向に沿って移動可能となる(共振器長を変更することができる)。
そして、レーザ素子支持部312やエタロン支持部313は、筐体31に一体構成とされていてもよく、筐体31に対して別途取り付けられていてもよい。これらの筐体31、レーザ素子支持部312、及びエタロン支持部313は、少なくとも熱伝導率が170(W/mK)以上の素材により構成されており、本実施形態では、ベリリウム銅(熱伝導率170〜260(W/mK))により構成される。
More specifically, the housing 31 includes therein a laser element support portion 312 that supports the Nd: YVO 4 crystal 32 and the KTP crystal 33, and an etalon support portion 313 that supports the etalon 34. The resonator mirror 35 is attached to the housing 31 via a piezo element 351. The resonator mirror 35 can move along the optical axis direction of the resonator 3 by controlling the voltage applied to the piezo element 351 (the resonator length can be changed).
The laser element support portion 312 and the etalon support portion 313 may be integrated with the housing 31 or may be separately attached to the housing 31. The casing 31, the laser element support portion 312, and the etalon support portion 313 are made of a material having a thermal conductivity of 170 (W / mK) or more. In this embodiment, beryllium copper (thermal conductivity) 170 to 260 (W / mK)).

このようなベリリウム銅は、従来のレーザ光源装置において用いられていたセラミック(熱伝導率10〜15(W/mK))等に比べて、極めて熱伝導率が高い。このような筐体31では、第三温度調整機構39による温度制御が行われた際に、迅速に設定された温度に均一化することができる。
つまり、従来のような熱伝導率が低い素材により構成された筐体では、温度が伝達しにくいので、共振器全体を均一温度にするために長時間を要し、レーザ光の安定化処理を実施するための時間が長くなる。これに対して、熱伝導率が高い本実施形態の筐体31では、第三温度調整機構39により、筐体31の温度制御を行った際に、迅速に設定温度に均一化することができる。また、熱伝導率が小さい場合、周囲環境が変化して、例えば、筐体31の第三温度調整機構39から遠い位置で温度変化が発生した場合でも、当該位置から第三温度調整機構39まで熱が伝達されにくい。したがって、筐体31の温度分布が不均一になりやすい。これに対して、本実施形態では、筐体31の一部に温度変化が発生した場合でも、その温度が迅速に第三温度調整機構39まで伝達されることになり、即座の温度調整が可能となる。
Such beryllium copper has extremely high thermal conductivity compared to ceramics (thermal conductivity 10 to 15 (W / mK)) used in conventional laser light source devices. In such a casing 31, when temperature control is performed by the third temperature adjustment mechanism 39, it can be made uniform quickly to a set temperature.
In other words, the conventional housing made of a material with low thermal conductivity is difficult to transmit the temperature, so it takes a long time to make the entire resonator uniform temperature, and the laser beam stabilization process is performed. Longer time to implement. On the other hand, in the case 31 of the present embodiment having a high thermal conductivity, when the temperature control of the case 31 is performed by the third temperature adjustment mechanism 39, it can be quickly equalized to the set temperature. . In addition, when the thermal conductivity is small, the surrounding environment changes, and, for example, even when a temperature change occurs at a position far from the third temperature adjustment mechanism 39 of the casing 31, from the position to the third temperature adjustment mechanism 39. Heat is difficult to transfer. Therefore, the temperature distribution of the casing 31 tends to be non-uniform. On the other hand, in this embodiment, even when a temperature change occurs in a part of the casing 31, the temperature is quickly transmitted to the third temperature adjustment mechanism 39, and an immediate temperature adjustment is possible. It becomes.

Nd:YVO結晶32及びKTP結晶33は、上述のように、レーザ素子支持部312に取り付けられている。
ここで、Nd:YVO結晶32の半導体レーザ21側の面には、励起光を透過し、基本波光を反射するためのコーティングが施され、共振器ミラー35におけるNd:YVO結晶32側の面には、基本波光を反射し、第2高調波光を透過するためのコーティングが施されている。したがって、基本波光は、Nd:YVO結晶32、及び共振器ミラー35の間を往復してマルチモードで発振し、第2高調波光は、共振器ミラー35を透過して共振器3から出射される。
なお、本実施形態では、レーザ媒体として、Nd:YVO結晶32を例示するが、これに限定されず、例えばNd:YAG結晶等が用いられてもよい。また、非線形光学結晶として、KTP結晶33を例示するが、これに限定されず、例えばBBO結晶やLBO結晶等が用いられてもよい。
As described above, the Nd: YVO 4 crystal 32 and the KTP crystal 33 are attached to the laser element support portion 312.
Here, the surface of the Nd: YVO 4 crystal 32 on the semiconductor laser 21 side is coated with a coating for transmitting the excitation light and reflecting the fundamental wave light, so that the Nd: YVO 4 crystal 32 side of the resonator mirror 35 The surface is coated with a coating for reflecting the fundamental light and transmitting the second harmonic light. Therefore, the fundamental wave light reciprocates between the Nd: YVO 4 crystal 32 and the resonator mirror 35 and oscillates in multimode, and the second harmonic light passes through the resonator mirror 35 and is emitted from the resonator 3. The
In the present embodiment, the Nd: YVO 4 crystal 32 is exemplified as the laser medium. However, the present invention is not limited to this, and for example, an Nd: YAG crystal or the like may be used. Moreover, although the KTP crystal 33 is illustrated as a nonlinear optical crystal, it is not limited to this, For example, a BBO crystal, a LBO crystal, etc. may be used.

また、レーザ素子支持部312には、図1に示すように、第一温度調整機構36が設けられている。この第一温度調整機構36は、例えば、温度を検出するためのサーミスタ等により構成された温度センサ361や、温度を調整するためのペルチェ素子等で構成される温度調整器362により構成されている。この第一温度調整機構36は、制御ユニット6に接続されており、温度センサ361により検出した温度が制御ユニット6に出力される。また、温度調整器362は、制御ユニット6から入力された制御信号に基づいて、Nd:YVO結晶32及びKTP結晶33の温度を所定値に変更及び維持する。 The laser element support 312 is provided with a first temperature adjustment mechanism 36 as shown in FIG. The first temperature adjustment mechanism 36 includes, for example, a temperature sensor 361 configured with a thermistor or the like for detecting temperature, and a temperature adjuster 362 configured with a Peltier element or the like for adjusting temperature. . The first temperature adjustment mechanism 36 is connected to the control unit 6, and the temperature detected by the temperature sensor 361 is output to the control unit 6. Further, the temperature regulator 362 changes and maintains the temperatures of the Nd: YVO 4 crystal 32 and the KTP crystal 33 to predetermined values based on the control signal input from the control unit 6.

エタロン34は、上述のように、共振器3の内部の光軸上に配設され、所定の波長の光を透過させるものであり、マルチモードで発振する基本波光をシングルモードにすることができる。なお、基本波光をシングルモードにすることによって、KTP結晶33にて変換された第2高調波光もシングルモードにすることができる。
このエタロン34は、エタロン支持部313に支持され、かつ、角度調整機構38により共振器3の光軸に対する角度を変更可能となる。この角度調整機構38は、例えばアクチュエータ等により構成されており、制御ユニット6の制御により駆動することができる。
また、エタロン支持部313には、第二温度調整機構37が設けられている。この第二温度調整機構37は、第一温度調整機構36と同様の構成を有し、例えば温度センサ371と温度調整器372とにより構成することができ、制御ユニット6によりエタロン34の温度を所定値に設定することができる。
As described above, the etalon 34 is disposed on the optical axis inside the resonator 3 and transmits light of a predetermined wavelength, and can convert the fundamental wave light oscillated in multimode into a single mode. . Note that by setting the fundamental wave light to the single mode, the second harmonic light converted by the KTP crystal 33 can also be set to the single mode.
The etalon 34 is supported by the etalon support portion 313, and the angle with respect to the optical axis of the resonator 3 can be changed by the angle adjustment mechanism 38. The angle adjustment mechanism 38 is configured by an actuator or the like, for example, and can be driven by the control of the control unit 6.
The etalon support 313 is provided with a second temperature adjustment mechanism 37. The second temperature adjustment mechanism 37 has the same configuration as the first temperature adjustment mechanism 36, and can be constituted by, for example, a temperature sensor 371 and a temperature adjuster 372. The control unit 6 sets the temperature of the etalon 34 to a predetermined value. Can be set to a value.

なお、共振器3に、KTP結晶33の、共振器3の光軸に対する角度を変化させるKTP角度調整部等が設けられていてもよい。   The resonator 3 may be provided with a KTP angle adjusting unit or the like that changes the angle of the KTP crystal 33 with respect to the optical axis of the resonator 3.

[導光手段の構成]
導光手段4は、共振器3の光路後段に配設されるフィルタ41,42と、フィルタ41,42を透過した光の偏光方向を調整する1/2波長板43と、1/2波長板43にて偏光方向が調整された光を分離するための偏光ビームスプリッタ44とを備える。
フィルタ41は、共振器3からの漏れ光である励起光を減衰させる機能を有している。また、フィルタ42は、レーザ光源装置1の光軸に対して傾斜した状態で配設され、共振器3からの漏れ光である基本波光を反射させる機能を有しているので、フィルタ42を反射した光は、レーザ光源装置1の光軸から離間する方向に導かれる。すなわち、1/2波長板43には、フィルタ41,42を透過する第2高調波光が入射する。
偏光ビームスプリッタ44は、偏光分離膜44Aを有している。そして、1/2波長板43から出射され、偏光ビームスプリッタ44に入射した光のうち、偏光分離膜44Aに対してP偏光の光は、偏光分離膜44Aを透過し、S偏光の光は、偏光分離膜44Aを反射する。
[Configuration of light guiding means]
The light guide means 4 includes filters 41 and 42 disposed downstream of the optical path of the resonator 3, a half-wave plate 43 that adjusts the polarization direction of light transmitted through the filters 41 and 42, and a half-wave plate And a polarization beam splitter 44 for separating the light whose polarization direction is adjusted at 43.
The filter 41 has a function of attenuating excitation light that is leakage light from the resonator 3. Further, the filter 42 is disposed in an inclined state with respect to the optical axis of the laser light source device 1 and has a function of reflecting the fundamental wave light that is leakage light from the resonator 3. The emitted light is guided in a direction away from the optical axis of the laser light source device 1. That is, the second harmonic light that passes through the filters 41 and 42 is incident on the half-wave plate 43.
The polarization beam splitter 44 has a polarization separation film 44A. Of the light emitted from the half-wave plate 43 and incident on the polarization beam splitter 44, the P-polarized light passes through the polarization separation film 44A and the S-polarized light passes through the polarization separation film 44A. Reflects the polarization separation film 44A.

また、導光手段4は、偏光ビームスプリッタ44にて反射されたS偏光の光を分離するための2つのビームスプリッタ45,46と、各ビームスプリッタ45,46にて分離された光の光強度を検出するための強度検出部47と、各ビームスプリッタ45,46にて分離された光の波長及びスペクトルを検出するための波長検出部48とを備える。
各ビームスプリッタ45,46は、入射する光の一部を界面45A,46Aにて反射させるとともに、他の一部を透過させるものであり、それぞれ同一の機能を有している。そして、ビームスプリッタ46を透過した光は、レーザ光源装置1の外部に出射され、測長等に使用するレーザ光として用いられる。
The light guiding means 4 includes two beam splitters 45 and 46 for separating S-polarized light reflected by the polarization beam splitter 44, and the light intensity of the light separated by the beam splitters 45 and 46. And a wavelength detector 48 for detecting the wavelength and spectrum of the light separated by the beam splitters 45 and 46.
Each of the beam splitters 45 and 46 reflects a part of incident light at the interfaces 45A and 46A and transmits the other part, and has the same function. The light transmitted through the beam splitter 46 is emitted to the outside of the laser light source device 1 and used as laser light used for length measurement or the like.

次に、導光手段4における光路について説明する。
偏光ビームスプリッタ44にて反射されたS偏光の光は、ビームスプリッタ45に入射する。ビームスプリッタ45に入射した光のうち、ビームスプリッタ45を透過した光は、強度検出部47に入射する。そして、強度検出部47は、入射した光の光強度を検出し、検出した光強度に基づく信号を制御ユニット6に出力する。
Next, the optical path in the light guide 4 will be described.
The S-polarized light reflected by the polarization beam splitter 44 enters the beam splitter 45. Of the light that has entered the beam splitter 45, the light that has passed through the beam splitter 45 enters the intensity detector 47. The intensity detection unit 47 detects the light intensity of the incident light and outputs a signal based on the detected light intensity to the control unit 6.

また、ビームスプリッタ45にて反射された光は、ビームスプリッタ46に入射する。ビームスプリッタ46に入射した光のうち、ビームスプリッタ46にて反射された光は、波長検出部48に入射する。そして、波長検出部48は、入射した光の波長を検出し、検出した光の波長に基づく信号を制御ユニット6に出力する。また、ビームスプリッタ46を透過した光は、レーザ光源装置1の外部に出射される。
この波長検出部48としては、例えば回析格子を用いた検出部や、マイケルソン干渉計を用いた検出部を例示できる。回析格子を用いた検出部を用いる場合、回析格子は、入射光の波長に応じて反射する方向が異なるため、回析格子により反射された光が検出された位置及び光量を検出することで、波長を計測することができる。また、マイケルソン干渉計では、被測定レーザ光の波長と、基準となるレーザ光の波長とを比較し、被測定レーザ光の波長を計測する。
Further, the light reflected by the beam splitter 45 enters the beam splitter 46. Of the light incident on the beam splitter 46, the light reflected by the beam splitter 46 enters the wavelength detector 48. The wavelength detection unit 48 detects the wavelength of the incident light and outputs a signal based on the detected wavelength of the light to the control unit 6. Further, the light transmitted through the beam splitter 46 is emitted to the outside of the laser light source device 1.
Examples of the wavelength detector 48 include a detector using a diffraction grating and a detector using a Michelson interferometer. When using a detection unit that uses a diffraction grating, the direction of reflection differs depending on the wavelength of the incident light, so the position and amount of light detected by the diffraction grating must be detected. Thus, the wavelength can be measured. In the Michelson interferometer, the wavelength of the laser beam to be measured is measured by comparing the wavelength of the laser beam to be measured with the wavelength of the reference laser beam.

[飽和吸収線検出手段の構成]
飽和吸収線検出手段5は、本発明の光検出部であり、偏光ビームスプリッタ44を透過したP偏光の光を入射させる偏光ビームスプリッタ51と、偏光ビームスプリッタ51を透過した光が入射される1/4波長板52と、1/4波長板52の光路後段に配設されるヨウ素セル53(吸収セル)と、ヨウ素セル53を透過した光を反射させる反射ミラー54と、偏光ビームスプリッタ51にて反射された光強度を検出するための強度検出部55(光検出器)とを備える。
なお、ヨウ素セル53には、サーミスタや温度調整器により構成されたセル温度調整機構531が取り付けられている。ヨウ素セル53の温度が所定の基準値に調整されることで、ヨウ素の吸収線(波長)を所望の値に設定する。
偏光ビームスプリッタ51は、偏光分離膜51Aを有し、偏光ビームスプリッタ44と同様の機能を有している。また、1/4波長板52は、入射する光の位相を90°遅らせる機能を有している。
[Configuration of saturation absorption line detection means]
The saturated absorption line detection means 5 is a light detection unit of the present invention, and a polarization beam splitter 51 that makes P-polarized light that has passed through the polarization beam splitter 44 incident thereon, and light that has passed through the polarization beam splitter 51 is incident 1 / 4 wavelength plate 52, iodine cell 53 (absorption cell) disposed downstream of the optical path of ¼ wavelength plate 52, reflection mirror 54 that reflects light transmitted through iodine cell 53, and polarization beam splitter 51 And an intensity detector 55 (photodetector) for detecting the reflected light intensity.
The iodine cell 53 is provided with a cell temperature adjustment mechanism 531 configured by a thermistor or a temperature regulator. The iodine absorption line (wavelength) is set to a desired value by adjusting the temperature of the iodine cell 53 to a predetermined reference value.
The polarization beam splitter 51 has a polarization separation film 51 </ b> A and has the same function as the polarization beam splitter 44. The quarter-wave plate 52 has a function of delaying the phase of incident light by 90 °.

次に、飽和吸収線検出手段5における光路について説明する。
偏光ビームスプリッタ44を透過したP偏光の光は、偏光ビームスプリッタ51を透過し、1/4波長板52を介してヨウ素セル53に入射する。ヨウ素セル53を透過した光は、反射ミラー54にて反射され、ヨウ素セル53、及び1/4波長板52を透過して偏光ビームスプリッタ51に再び入射する。このとき、偏光ビームスプリッタ51に再び入射した光は、1/4波長板52を2度通過しているので、偏光方向が90度回転し、偏光分離膜51Aに対してS偏光の光となる。したがって、偏光ビームスプリッタ51に再び入射した光は、偏光分離膜51Aにて反射される。偏光ビームスプリッタ51にて反射された光は、強度検出部55に入射する。そして、強度検出部55は、入射した光の光強度を検出し、検出した光強度に基づく光出力信号を制御ユニット6に出力する。
Next, the optical path in the saturated absorption line detection means 5 will be described.
The P-polarized light that has passed through the polarization beam splitter 44 passes through the polarization beam splitter 51 and enters the iodine cell 53 via the quarter-wave plate 52. The light transmitted through the iodine cell 53 is reflected by the reflection mirror 54, passes through the iodine cell 53 and the quarter wavelength plate 52, and enters the polarization beam splitter 51 again. At this time, since the light incident on the polarization beam splitter 51 has passed through the quarter-wave plate 52 twice, the polarization direction is rotated by 90 degrees and becomes S-polarized light with respect to the polarization separation film 51A. . Therefore, the light that has entered the polarization beam splitter 51 again is reflected by the polarization separation film 51A. The light reflected by the polarization beam splitter 51 enters the intensity detector 55. Then, the intensity detection unit 55 detects the light intensity of the incident light and outputs a light output signal based on the detected light intensity to the control unit 6.

[制御ユニットの構成]
図2は、本実施形態における制御ユニット6を示すブロック図である。
制御ユニット6は、メモリ等により構成される記憶部61や、CPU(Central Processing Unit)等により構成される制御部62を備える。そして、制御部62は、記憶部61に記憶されたプログラムを読み込み実行することで、図2に示すように、半導体レーザ制御手段621、第一温度制御手段622、第二温度制御手段623、第三温度制御手段624、エタロン角度制御手段625、及びピエゾ素子制御手段626等として機能する。
[Control unit configuration]
FIG. 2 is a block diagram showing the control unit 6 in the present embodiment.
The control unit 6 includes a storage unit 61 configured by a memory or the like, and a control unit 62 configured by a CPU (Central Processing Unit) or the like. Then, the control unit 62 reads and executes the program stored in the storage unit 61, so that the semiconductor laser control unit 621, the first temperature control unit 622, the second temperature control unit 623, the second temperature control unit 623, as shown in FIG. It functions as a three-temperature control means 624, an etalon angle control means 625, a piezo element control means 626, and the like.

半導体レーザ制御手段621は、強度検出部47や強度検出部55から出力される信号に基づいて、共振器3から出射された第2高調波光の光強度が一定となるように、半導体レーザ21を駆動する電流の制御、及び、光源温度調整機構24の制御を行う。
第一温度制御手段622は、第一温度調整機構36の温度センサ361から出力された出力信号に基づいてNd:YVO結晶32及びKTP結晶33の温度を検出する。また、第一温度制御手段622は、強度検出部47、波長検出部48、及び強度検出部55からの出力信号に基づいて、第一温度調整機構36の温度調整器362に対して制御信号を出力し、Nd:YVO結晶32及びKTP結晶33の温度を変更したり、維持したりする。
The semiconductor laser control unit 621 controls the semiconductor laser 21 so that the light intensity of the second harmonic light emitted from the resonator 3 is constant based on the signals output from the intensity detector 47 and the intensity detector 55. The drive current and the light source temperature adjustment mechanism 24 are controlled.
The first temperature control means 622 detects the temperatures of the Nd: YVO 4 crystal 32 and the KTP crystal 33 based on the output signal output from the temperature sensor 361 of the first temperature adjustment mechanism 36. The first temperature control means 622 sends a control signal to the temperature adjuster 362 of the first temperature adjustment mechanism 36 based on the output signals from the intensity detector 47, the wavelength detector 48, and the intensity detector 55. The temperature of the Nd: YVO 4 crystal 32 and the KTP crystal 33 is changed or maintained.

第二温度制御手段623は、第二温度調整機構37の温度センサ371から出力された出力信号に基づいて、エタロン34の温度を検出する。また、第二温度制御手段623は、強度検出部47、波長検出部48、及び強度検出部55からの出力信号に基づいて、第二温度調整機構37の温度調整器372に対して制御信号を出力し、エタロン34の温度を変更したり、維持したりする。
第三温度制御手段624は、第三温度調整機構39の温度センサ391から出力された出力信号に基づいて、共振器3の筐体31の温度を検出する。また、第三温度調整機構39の温度調整器392に対して制御信号を出力し、筐体31の温度を基準温度に維持する。
The second temperature control unit 623 detects the temperature of the etalon 34 based on the output signal output from the temperature sensor 371 of the second temperature adjustment mechanism 37. The second temperature control means 623 sends a control signal to the temperature adjuster 372 of the second temperature adjustment mechanism 37 based on the output signals from the intensity detector 47, the wavelength detector 48, and the intensity detector 55. Output and change or maintain the temperature of the etalon 34.
The third temperature control means 624 detects the temperature of the casing 31 of the resonator 3 based on the output signal output from the temperature sensor 391 of the third temperature adjustment mechanism 39. Further, a control signal is output to the temperature adjuster 392 of the third temperature adjustment mechanism 39 to maintain the temperature of the casing 31 at the reference temperature.

エタロン角度制御手段625は、強度検出部47、波長検出部48、及び強度検出部55からの出力信号に基づいて、角度調整機構38を制御し、エタロン34の共振器3の光軸に対する角度を変更する。
ピエゾ素子制御手段626は、強度検出部47、波長検出部48、及び強度検出部55からの出力信号に基づいて、ピエゾ素子351に対する電圧を制御し、共振器ミラー35の位置を変更する。
The etalon angle control means 625 controls the angle adjustment mechanism 38 based on the output signals from the intensity detector 47, the wavelength detector 48, and the intensity detector 55, and sets the angle of the etalon 34 relative to the optical axis of the resonator 3. change.
The piezo element control means 626 controls the voltage with respect to the piezo element 351 based on the output signals from the intensity detector 47, the wavelength detector 48, and the intensity detector 55, and changes the position of the resonator mirror 35.

[レーザ光源装置のレーザ光調整方法]
次に、レーザ光源装置1のレーザ光調整処理について説明する。図3は、レーザ光調整処理を示すフローチャートである。
レーザ光源装置1を用いる場合、目的波長のレーザ光を高い光強度で出力するために、レーザ光調整処理を実施する。なお、目的波長としては、ヨウ素の飽和吸収線が安定して検出可能な波長が設定される。
具体的には、制御ユニット6は、まず、第三温度調整機構39を制御して、共振器3の筐体31の温度を所定の基準温度(例えば20℃等)に設定し、当該温度を維持する(ステップS1)。ステップS1により、筐体31の温度条件が統一されることになる。
[Laser light adjustment method of laser light source device]
Next, the laser light adjustment process of the laser light source device 1 will be described. FIG. 3 is a flowchart showing the laser beam adjustment process.
When the laser light source device 1 is used, laser light adjustment processing is performed in order to output laser light having a target wavelength with high light intensity. As the target wavelength, a wavelength at which the saturated absorption line of iodine can be detected stably is set.
Specifically, the control unit 6 first controls the third temperature adjustment mechanism 39 to set the temperature of the casing 31 of the resonator 3 to a predetermined reference temperature (for example, 20 ° C. or the like). Maintain (step S1). By step S1, the temperature conditions of the casing 31 are unified.

次に、制御ユニット6の半導体レーザ制御手段621は、半導体レーザ21に流す電流や温度を制御して、励起光を出射させる(ステップS2)。
半導体レーザ21から励起光がNd:YVO結晶32に入射されると、基本波光が励起されて出射され、当該基本波光がKTP結晶33により波長変換されて第2高調波光となる。ステップS1では、強度検出部47から出力される出力信号が最大となるように、つまり、第2高調波光の光強度が最大となるように、半導体レーザ21に流す電流や温度を制御する。これにより、半導体レーザ21から最適な波長の励起光が出射される。
Next, the semiconductor laser control means 621 of the control unit 6 controls the current and temperature supplied to the semiconductor laser 21 to emit excitation light (step S2).
When excitation light is incident on the Nd: YVO 4 crystal 32 from the semiconductor laser 21, the fundamental wave light is excited and emitted, and the fundamental wave light is wavelength-converted by the KTP crystal 33 to become second harmonic light. In step S1, the current and temperature supplied to the semiconductor laser 21 are controlled so that the output signal output from the intensity detector 47 is maximized, that is, the light intensity of the second harmonic light is maximized. As a result, excitation light having an optimum wavelength is emitted from the semiconductor laser 21.

次に、第一温度制御手段622は、第一温度調整機構36を制御して、Nd:YVO結晶32及びKTP結晶33の温度を調整する(ステップS3;第一調整ステップ)。具体的には、第一温度制御手段622は、強度検出部55からの出力信号に基づくヨウ素の飽和吸収線と、波長検出部48により検出される波長(スペクトルにおけるピーク波長)とを一致させるように、かつ、強度検出部47により検出される光強度が最大となるように、Nd:YVO結晶32及びKTP結晶33の温度を調整する。このステップS3では、Nd:YVO結晶32及びKTP結晶33から出射されるレーザ光(第2高調波光)の波長を安定化させる。
また、ステップS1により、共振器3の筐体31の温度が基準温度に設定され、その温度がステップS3においても維持される。したがって、ステップS3によりNd:YVO結晶32及びKTP結晶33の温度が変更されても、筐体31の温度が変更されることがない。
Next, the first temperature control means 622 controls the first temperature adjustment mechanism 36 to adjust the temperatures of the Nd: YVO 4 crystal 32 and the KTP crystal 33 (step S3; first adjustment step). Specifically, the first temperature control unit 622 matches the saturated iodine absorption line based on the output signal from the intensity detection unit 55 with the wavelength (peak wavelength in the spectrum) detected by the wavelength detection unit 48. In addition, the temperatures of the Nd: YVO 4 crystal 32 and the KTP crystal 33 are adjusted so that the light intensity detected by the intensity detector 47 is maximized. In this step S3, the wavelength of the laser light (second harmonic light) emitted from the Nd: YVO 4 crystal 32 and the KTP crystal 33 is stabilized.
In step S1, the temperature of the casing 31 of the resonator 3 is set to the reference temperature, and that temperature is also maintained in step S3. Therefore, even if the temperatures of the Nd: YVO 4 crystal 32 and the KTP crystal 33 are changed in step S3, the temperature of the housing 31 is not changed.

次に、エタロン34の角度及び温度を調整する(ステップS4;第二調整ステップ)。このステップS4では、エタロン角度制御手段625により、角度調整機構38を制御して、エタロン34の角度を調整し、第二温度制御手段623により、第二温度調整機構37を制御して、エタロン34の温度を調整する。
具体的には、エタロン角度制御手段625及び第二温度制御手段623は、強度検出部55からの出力信号に基づくヨウ素の飽和吸収線の波長と、波長検出部48により検出される波長(エタロン34のピーク透過波長)との差分値が、所定の誤差範囲内となるように、かつ、強度検出部47により検出される光強度が、強度検出部55により検出されるヨウ素の飽和吸収線の波長における光強度以上となるように、エタロン34の角度及び温度を制御する。この際、ピエゾ素子制御手段626によりピエゾ素子351に印加する電圧を制御して共振器長を走査(波長走査)し、目的波長が波長走査範囲の中央となるように、エタロン34の角度を設定する。
このステップS4において、エタロン34の角度が変更されることで、エタロン内を通過する光の光路長が変更され、エタロン34の温度が変更されることで、エタロンの熱膨張(ミラー間の距離が変動)により光路長が変更される。これにより、エタロン34を透過する光のピーク透過波長が変更されることになる。
Next, the angle and temperature of the etalon 34 are adjusted (step S4; second adjustment step). In this step S4, the etalon angle control means 625 controls the angle adjustment mechanism 38 to adjust the angle of the etalon 34, and the second temperature control means 623 controls the second temperature adjustment mechanism 37 to control the etalon 34. Adjust the temperature.
Specifically, the etalon angle control unit 625 and the second temperature control unit 623 are configured to detect the wavelength of the saturated absorption line of iodine based on the output signal from the intensity detection unit 55 and the wavelength detected by the wavelength detection unit 48 (etalon 34). The wavelength of the saturated absorption line of iodine detected by the intensity detector 55 so that the difference value with respect to the peak transmission wavelength is within a predetermined error range and the intensity detected by the intensity detector 47 is The angle and temperature of the etalon 34 are controlled so as to be equal to or higher than the light intensity at. At this time, the voltage applied to the piezo element 351 is controlled by the piezo element control means 626 to scan the resonator length (wavelength scan), and the angle of the etalon 34 is set so that the target wavelength is at the center of the wavelength scan range. To do.
In step S4, the angle of the etalon 34 is changed to change the optical path length of the light passing through the etalon, and the temperature of the etalon 34 is changed to change the thermal expansion of the etalon (the distance between the mirrors). The optical path length is changed due to fluctuations. Thereby, the peak transmission wavelength of the light transmitted through the etalon 34 is changed.

なお、上述したように、ステップS1により、筐体31の温度が基準温度で維持されるので、ステップS4によりエタロン34の温度を変更しても、筐体31の温度は、基準温度に維持されたままとなる。また、ステップS3により、Nd:YVO結晶32及びKTP結晶33が設定されると、第一温度制御手段622は、温度センサ361によりその温度を検出して記憶部61に記憶し、当該温度を維持するように第一温度調整機構36を制御する。したがって、ステップS4において、エタロン34の温度が変更されても、Nd:YVO結晶32及びKTP結晶33の温度変化は発生しない。
以上の後、レーザ光調整処理を終了させる。
As described above, since the temperature of the casing 31 is maintained at the reference temperature by step S1, even if the temperature of the etalon 34 is changed by step S4, the temperature of the casing 31 is maintained at the reference temperature. Will remain. Further, when the Nd: YVO 4 crystal 32 and the KTP crystal 33 are set in step S3, the first temperature control means 622 detects the temperature by the temperature sensor 361 and stores it in the storage unit 61, and stores the temperature. The first temperature adjustment mechanism 36 is controlled so as to be maintained. Therefore, even if the temperature of the etalon 34 is changed in step S4, the temperature change of the Nd: YVO 4 crystal 32 and the KTP crystal 33 does not occur.
After the above, the laser beam adjustment process is terminated.

[本実施形態の作用効果]
本実施形態のレーザ光源装置1は、励起光を出射する半導体レーザ21を有する光源2と、共振器3とを備える。共振器3には、励起光を受けて基本波光を生成するNd:YVO結晶32と、基本波光を目的波長の第2高調波光に変換するKTP結晶33と、所定波長の光を透過させるエタロン34と、これらのNd:YVO結晶32、KTP結晶33、及び前記エタロン34を内部に収納する筐体31と、Nd:YVO結晶32及びKTP結晶33の温度を制御する第一温度調整機構36と、エタロン34の温度を制御する第二温度調整機構37と、が収納されている。
そして、このようなレーザ光源装置1におけるレーザ調整方法として、第一調整ステップを実施して、強度検出部47,55及び波長検出部48により検出された検出結果に基づいて、Nd:YVO結晶32及びKTP結晶33の温度を最適化した後、第二調整ステップを実施してエタロン34の温度を最適化する。
つまり、先ず、制御ユニット6の第一温度制御手段622は、Nd:YVO結晶32及びKTP結晶33を、目的波長のレーザ光を好適に出力される状態にして、この状態を維持する。その後、第二温度制御手段623は、エタロン34を目的波長の光がピーク透過波長として透過するように調整する。このようなレーザ光調整方法により、エタロン34の温度を調整する際に、Nd:YVO結晶32及びKTP結晶33の温度が影響を受けることがなく、これによるレーザ光の波長や強度が不安定になる不都合も抑制でき、所望波長のレーザ光を高出力で出力することができる。
[Operational effects of this embodiment]
The laser light source device 1 of this embodiment includes a light source 2 having a semiconductor laser 21 that emits excitation light, and a resonator 3. The resonator 3 includes an Nd: YVO 4 crystal 32 that receives excitation light and generates fundamental light, a KTP crystal 33 that converts fundamental light into second harmonic light of a target wavelength, and an etalon that transmits light of a predetermined wavelength. 34, a casing 31 that houses the Nd: YVO 4 crystal 32, the KTP crystal 33, and the etalon 34, and a first temperature adjustment mechanism that controls the temperatures of the Nd: YVO 4 crystal 32 and the KTP crystal 33. 36 and a second temperature adjusting mechanism 37 that controls the temperature of the etalon 34 are housed.
As a laser adjustment method in such a laser light source device 1, the first adjustment step is performed, and based on the detection results detected by the intensity detection units 47 and 55 and the wavelength detection unit 48, the Nd: YVO 4 crystal After optimizing the temperature of the 32 and KTP crystals 33, a second adjustment step is performed to optimize the temperature of the etalon 34.
That is, first, the first temperature control means 622 of the control unit 6 maintains the Nd: YVO 4 crystal 32 and the KTP crystal 33 in a state in which laser light having a target wavelength is suitably output. Thereafter, the second temperature control means 623 adjusts the etalon 34 so that light of the target wavelength is transmitted as the peak transmission wavelength. When the temperature of the etalon 34 is adjusted by such a laser beam adjustment method, the temperature of the Nd: YVO 4 crystal 32 and the KTP crystal 33 is not affected, and the wavelength and intensity of the laser beam thereby become unstable. Can be suppressed, and laser light having a desired wavelength can be output at a high output.

本実施形態では、上述したような第一調整ステップや第二調整ステップの前に、ステップS1を実施して、第三温度制御手段624は、第三温度調整機構39を制御して、共振器3の筐体31の温度を予め設定された基準温度に設定し、当該温度を維持する。
このため、レーザ光の波長安定化処理を行う際の温度条件が統一された状態で、第一調整ステップ及び第二調整ステップが行われることになる。よって、使用環境等によって、レーザ光源装置1の周囲の環境温度が変化する場合でも、当該温度変化の影響を低減でき、波長や強度が安定したレーザ光を出力することができる。
In the present embodiment, step S1 is performed before the first adjustment step and the second adjustment step as described above, and the third temperature control unit 624 controls the third temperature adjustment mechanism 39 to thereby change the resonator. 3 is set to a preset reference temperature, and the temperature is maintained.
For this reason, a 1st adjustment step and a 2nd adjustment step are performed in the state with which the temperature conditions at the time of performing the wavelength stabilization process of a laser beam were unified. Therefore, even when the environmental temperature around the laser light source device 1 changes depending on the use environment or the like, the influence of the temperature change can be reduced, and laser light with a stable wavelength and intensity can be output.

本実施形態では、筐体31、レーザ素子支持部312、及びエタロン支持部313は、熱伝導率が170(W/mK)以上の素材、より具体的にはベリリウム銅により構成されている。
このような筐体31を用いることで、共振器3の温度を迅速に均一化することができ、所望の目的波長で安定化されたレーザ光を迅速に出力することができる。また、第三温度調整機構39による温度制御が迅速に筐体31や支持部(レーザ素子支持部312及びエタロン支持部313)の全体に行き渡るため、周囲の環境温度が変化する場合でも、迅速に対応することができ、精度よく共振器3の温度を均一にできる。
In the present embodiment, the casing 31, the laser element support portion 312 and the etalon support portion 313 are made of a material having a thermal conductivity of 170 (W / mK) or more, more specifically beryllium copper.
By using such a casing 31, the temperature of the resonator 3 can be made uniform quickly, and laser light stabilized at a desired target wavelength can be outputted quickly. In addition, since the temperature control by the third temperature adjustment mechanism 39 quickly spreads over the entire casing 31 and the support portion (the laser element support portion 312 and the etalon support portion 313), even when the ambient environmental temperature changes, it can be quickly The temperature of the resonator 3 can be made uniform with high accuracy.

ここで、本実施形態のベリリウム銅により構成された筐体31を含む共振器3と、低膨張材料により構成された筐体を有する従来の共振器とにおいて、線膨張係数、共振器の許容温度、共振器長の許容寸法誤差を比較する表を下記表1に示す。   Here, in the resonator 3 including the casing 31 made of beryllium copper and the conventional resonator having the casing made of a low expansion material, the linear expansion coefficient, the allowable temperature of the resonator Table 1 below compares the allowable dimensional errors of the resonator length.

Figure 2017228646
Figure 2017228646

本実施形態では、従来用いられていた低膨張材料により構成される筐体に替えて、ベリリウム銅により構成された筐体31を用いる。ベリリウム銅は、表1に示すように、従来の低膨張材料に比べて線膨張係数が大きく、温度変化による共振器長の変化が大きくなる。このため、従来では、共振器長を許容寸法誤差内とするために、共振器の許容温度差を表1に示すように、1.48℃としていたものに対し、本実施形態では、許容温度差を0.26℃としている。共振器3の温度を基準温度から許容温度差内の範囲内であれば、共振器長が許容寸法誤差内となり、レーザ光の波長や出力に対する影響は許容できる範囲となる。
本実施形態では、許容温度差を従来よりも抑えているが、ベリリウム銅の熱伝導率が高い(従来の低膨張材料では、10〜15(W/mK)ため、上述したように、第三温度調整機構39による温度制御を迅速かつ高精度に行うことができる。
In the present embodiment, a case 31 made of beryllium copper is used instead of the case made of a conventionally used low expansion material. As shown in Table 1, beryllium copper has a larger coefficient of linear expansion than conventional low-expansion materials, and the change in the resonator length due to temperature changes becomes larger. Therefore, conventionally, in order to make the resonator length within the allowable dimensional error, the allowable temperature difference of the resonator is 1.48 ° C. as shown in Table 1, whereas in this embodiment, the allowable temperature is The difference is 0.26 ° C. If the temperature of the resonator 3 is within the allowable temperature difference from the reference temperature, the resonator length is within an allowable dimensional error, and the influence on the wavelength and output of the laser light is within an allowable range.
In the present embodiment, the allowable temperature difference is suppressed as compared with the conventional case, but the thermal conductivity of beryllium copper is high (in the conventional low expansion material, 10 to 15 (W / mK). The temperature control by the temperature adjustment mechanism 39 can be performed quickly and with high accuracy.

本実施形態では、ヨウ素セル53を利用して、ヨウ素の飽和吸収線への波長安定化を行うことで、レーザ光の波長を高度に安定化させる。このようなヨウ素セル53を用いた波長安定化法では、飽和吸収線は特定の波長域で得られる。したがって、目的の飽和吸収線が得られる波長域で、シングルモード化されたレーザ光を十分に高い光強度で発振させる必要がある。これに対して、本実施形態では、上記のようなレーザ光調整処理において、目的波長として、ヨウ素の飽和吸収線が安定して検出可能な波長が設定されている。これにより、強度検出部55により検出される光出力信号から目標とする飽和吸収線を安定して検出することができるようになり、このような飽和吸収線に基づいて、レーザ光の波長を高度に安定化させることができる。   In the present embodiment, the wavelength of the laser beam is highly stabilized by stabilizing the wavelength of the saturated absorption line of iodine using the iodine cell 53. In the wavelength stabilization method using such an iodine cell 53, a saturated absorption line is obtained in a specific wavelength region. Therefore, it is necessary to oscillate a single mode laser beam with a sufficiently high light intensity in a wavelength region where a target saturated absorption line can be obtained. On the other hand, in the present embodiment, in the laser light adjustment process as described above, a wavelength at which the saturated absorption line of iodine can be detected stably is set as the target wavelength. As a result, the target saturated absorption line can be stably detected from the light output signal detected by the intensity detection unit 55, and the wavelength of the laser beam is increased based on such a saturated absorption line. Can be stabilized.

[変形例]
なお、本発明は、前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、上記実施形態では、第二調整ステップにおいて、エタロン34の温度及び角度を調整するが、先ず、エタロン34の角度を調整した後に、エタロン34の温度調整を行ってもよい。エタロン34の角度変化による波長シフト量がエタロン34の温度変化による波長シフト量よりも多いため、上記調整方法では、粗調整の後に微調整を行うことになり、迅速に、かつ精度よくエタロン34の角度及び温度の調整を行うことができる。
[Modification]
Note that the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within a scope in which the object of the present invention can be achieved are included in the present invention.
For example, in the above-described embodiment, the temperature and angle of the etalon 34 are adjusted in the second adjustment step. First, after adjusting the angle of the etalon 34, the temperature of the etalon 34 may be adjusted. Since the wavelength shift amount due to the angle change of the etalon 34 is larger than the wavelength shift amount due to the temperature change of the etalon 34, in the above adjustment method, fine adjustment is performed after the coarse adjustment, and the etalon 34 is quickly and accurately adjusted. Angle and temperature adjustments can be made.

上記実施形態では、第三温度調整機構39により、共振器3の全体の温度を維持する構成を例示したが、これに限定さない。
例えば、環境温度が一定に保たれた使用環境等においてレーザ光源装置1を用いる場合では、第三温度調整機構39が設けられていなくてもよい。また、このような場合では、筐体31として、熱伝導率が低い素材により構成されていてもよく、エタロン34の温度調整時の、Nd:YVO結晶32及びKTP結晶33への温度影響を低減できる。
In the said embodiment, although the structure which maintains the temperature of the whole resonator 3 with the 3rd temperature adjustment mechanism 39 was illustrated, it is not limited to this.
For example, when the laser light source device 1 is used in a usage environment where the environmental temperature is kept constant, the third temperature adjustment mechanism 39 may not be provided. In such a case, the casing 31 may be made of a material having low thermal conductivity, and the temperature influence on the Nd: YVO 4 crystal 32 and the KTP crystal 33 when the temperature of the etalon 34 is adjusted. Can be reduced.

上記実施形態では、ヨウ素セル53(吸収セル)を用いて飽和吸収線を検出し、第2高調波光の波長を飽和吸収線の波長に合わせ込むことでレーザ光の安定化処理を行う例を示したが、これに限定されない。例えば、吸収セルが設けられず、波長検出部48により検出される波長のみに基づいてレーザ光の波長を目的波長に調整する構成などとしてもよい。   In the said embodiment, the saturated absorption line is detected using the iodine cell 53 (absorption cell), and the example which performs the stabilization process of a laser beam by matching the wavelength of 2nd harmonic light with the wavelength of a saturated absorption line is shown. However, it is not limited to this. For example, a configuration in which the absorption cell is not provided and the wavelength of the laser light is adjusted to the target wavelength based only on the wavelength detected by the wavelength detector 48 may be employed.

上記実施形態では、筐体31、レーザ素子支持部312、及びエタロン支持部313の各々がベリリウム銅により構成される例を示すが、筐体31の外装部のみがベリリウム銅により構成され、レーザ素子支持部312、及びエタロン支持部313がその他の素材(例えばセラミック等の熱導電率が小さい素材)により構成されていてもよい。   In the above embodiment, an example is shown in which each of the housing 31, the laser element support portion 312 and the etalon support portion 313 is made of beryllium copper, but only the exterior portion of the housing 31 is made of beryllium copper, The support portion 312 and the etalon support portion 313 may be made of other materials (for example, materials with low thermal conductivity such as ceramic).

また、上記実施形態では、波長検出部48により出射されたレーザ光の波長を検出する構成例を示したが、これに限定されず、例えば飽和吸収線検出手段5により検出されるヨウ素の飽和吸収線の検波のみでレーザ光の波長を検出してもよい。   In the above-described embodiment, the configuration example for detecting the wavelength of the laser beam emitted by the wavelength detection unit 48 has been described. However, the present invention is not limited to this. For example, saturated absorption of iodine detected by the saturated absorption line detection unit 5 The wavelength of the laser beam may be detected only by line detection.

その他、本発明の実施の際の具体的な構造は、本発明の目的を達成できる範囲で他の構造等に適宜変更できる。   In addition, the specific structure for carrying out the present invention can be appropriately changed to other structures and the like within a range where the object of the present invention can be achieved.

本発明は、励起光を出射する励起用の光源と、励起光により生成されたレーザ光を生成する共振器とを備えたレーザ光源装置に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used in a laser light source device that includes an excitation light source that emits excitation light and a resonator that generates laser light generated by the excitation light.

1…レーザ光源装置、2…光源、3…共振器、4…導光手段、5…飽和吸収線検出手段、6…制御ユニット、21…半導体レーザ、31…筐体、32…Nd:YVO結晶(レーザ結晶)、33…KTP結晶(非線形光学結晶)、34…エタロン、35…共振器ミラー、36…第一温度調整機構、37…第二温度調整機構、38…角度調整機構、39…第三温度調整機構、47…強度検出部、48…波長検出部、53…ヨウ素セル、55…強度検出部、61…記憶部、62…制御部、312…レーザ素子支持部、313…エタロン支持部、622…第一温度制御手段、623…第二温度制御手段、624…第三温度制御手段、625…エタロン角度制御手段。
1 ... laser light source device, 2 ... light source, 3 ... cavity, 4 ... guide means, 5 ... saturated absorption line detecting unit, 6 ... control unit, 21 ... semiconductor laser, 31 ... housing, 32 ... Nd: YVO 4 Crystal (laser crystal) 33 ... KTP crystal (nonlinear optical crystal) 34 ... etalon 35 ... resonator mirror 36 ... first temperature adjusting mechanism 37 ... second temperature adjusting mechanism 38 ... angle adjusting mechanism 39 ... Third temperature adjustment mechanism, 47 ... intensity detector, 48 ... wavelength detector, 53 ... iodine cell, 55 ... intensity detector, 61 ... storage unit, 62 ... controller, 312 ... laser element support, 313 ... etalon support 622 ... first temperature control means, 623 ... second temperature control means, 624 ... third temperature control means, 625 ... etalon angle control means.

Claims (10)

励起光を出射する励起用光源と、前記励起光を受けて基本波光を生成するレーザ媒体と、前記基本波光を目的波長の高調波光に変換する非線形光学結晶と、所定の波長の光を透過させるエタロンと、前記レーザ媒体、前記非線形光学結晶、及び前記エタロンを内部に収納する共振器筐体と、前記レーザ媒体及び前記非線形光学結晶の温度を制御する第一温度調整機構と、前記エタロンの温度を制御する第二温度調整機構と、を備えたレーザ光源装置におけるレーザ光調整方法であって、
前記高調波光を検出する光検出部を用いて、前記高調波光の光強度及び波長を検出し、検出された前記高調波光の波長が目的波長に近づき、かつ前記高調波光の光強度が所定値以上となるように、前記第一温度調整機構を調整して前記レーザ媒体及び前記非線形光学結晶の温度を調整する第一調整ステップと、
前記第一調整ステップの後、前記光検出部を用いて前記高調波光の光強度及び波長を検出し、検出された前記高調波光の波長が目的波長に近づき、かつ前記高調波光の光強度が所定値以上となるように、前記第二温度調整機構により前記エタロンの温度を調整する第二調整ステップと、
を実施することを特徴とするレーザ光調整方法。
An excitation light source that emits excitation light; a laser medium that receives the excitation light to generate fundamental light; a nonlinear optical crystal that converts the fundamental light into harmonic light of a target wavelength; and transmits light of a predetermined wavelength. An etalon, the laser medium, the nonlinear optical crystal, and a resonator housing that houses the etalon, a first temperature adjustment mechanism that controls the temperature of the laser medium and the nonlinear optical crystal, and the temperature of the etalon A laser light adjustment method in a laser light source device comprising: a second temperature adjustment mechanism for controlling
Using the light detector that detects the harmonic light, the light intensity and wavelength of the harmonic light are detected, the wavelength of the detected harmonic light approaches the target wavelength, and the light intensity of the harmonic light is equal to or greater than a predetermined value. A first adjustment step of adjusting the temperature of the laser medium and the nonlinear optical crystal by adjusting the first temperature adjustment mechanism,
After the first adjustment step, the light detector detects the light intensity and wavelength of the harmonic light, the wavelength of the detected harmonic light approaches the target wavelength, and the light intensity of the harmonic light is predetermined. A second adjustment step of adjusting the temperature of the etalon by the second temperature adjustment mechanism so as to be equal to or greater than a value;
The laser beam adjustment method characterized by implementing.
請求項1に記載のレーザ光調整方法において、
前記レーザ光源装置は、前記共振器筐体の温度を制御する第三温度調整機構を備え、
前記第三温度調整機構により前記共振器筐体の温度を予め設定された基準温度に維持する
ことを特徴とするレーザ光調整方法。
In the laser beam adjustment method according to claim 1,
The laser light source device includes a third temperature adjustment mechanism for controlling the temperature of the resonator casing,
The laser light adjustment method, wherein the temperature of the resonator casing is maintained at a preset reference temperature by the third temperature adjustment mechanism.
請求項1又は請求項2に記載のレーザ光調整方法において、
前記共振器筐体は、前記レーザ媒体、前記非線形光学結晶、及び前記エタロンのそれぞれを支持する支持部を備え、
前記共振器筐体及び前記支持部は、熱伝導率が170(W/mK)以上の素材により構成されている
ことを特徴とするレーザ光調整方法。
In the laser beam adjustment method according to claim 1 or 2,
The resonator housing includes a support portion that supports each of the laser medium, the nonlinear optical crystal, and the etalon.
The resonator case and the support part are made of a material having a thermal conductivity of 170 (W / mK) or more.
請求項3に記載のレーザ光調整方法において、
前記共振器筐体及び前記支持部は、ベリリウム銅により構成されている
ことを特徴とするレーザ光調整方法。
In the laser beam adjustment method according to claim 3,
The resonator case and the support portion are made of beryllium copper.
請求項1から請求項4のいずれか1項に記載のレーザ調整方法において、
前記光検出部は、
前記共振器筐体から出射された前記高調波光が照射され、所定波長の光を吸収する吸収セルと、
前記吸収セルを介した前記高調波光を受光して出力信号を出力する検出器と、を含み、
前記第一調整ステップ及び前記第二調整ステップは、前記検出器からの前記出力信号に基づく前記吸収セルの飽和吸収線の波長と、前記高調波光の波長とが一致するように、前記第一温度調整機構及び前記第二温度調整機構を制御する
ことを特徴とするレーザ光調整方法。
In the laser adjustment method according to any one of claims 1 to 4,
The light detection unit is
An absorption cell that is irradiated with the harmonic light emitted from the resonator housing and absorbs light of a predetermined wavelength; and
A detector that receives the harmonic light through the absorption cell and outputs an output signal;
In the first adjustment step and the second adjustment step, the wavelength of the saturated absorption line of the absorption cell based on the output signal from the detector and the wavelength of the harmonic light coincide with each other. An adjustment mechanism and the second temperature adjustment mechanism are controlled.
励起光を出射する励起用光源と、
前記励起光を受けて基本波光を生成するレーザ媒体と、
前記基本波光を目的波長の高調波光に変換する非線形光学結晶と、
所定の波長の光を透過させるエタロンと、
前記レーザ媒体、前記非線形光学結晶、及び前記エタロンを内部に収納する共振器筐体と、
前記レーザ媒体及び前記非線形光学結晶の温度を制御する第一温度調整機構と、
前記エタロンの温度を制御する第二温度調整機構と、を備える
ことを特徴とするレーザ光源装置。
An excitation light source that emits excitation light;
A laser medium that receives the excitation light and generates fundamental light;
A nonlinear optical crystal that converts the fundamental light into harmonic light of a target wavelength;
An etalon that transmits light of a predetermined wavelength;
A resonator housing that houses the laser medium, the nonlinear optical crystal, and the etalon;
A first temperature adjustment mechanism for controlling the temperature of the laser medium and the nonlinear optical crystal;
And a second temperature adjustment mechanism for controlling the temperature of the etalon.
請求項6に記載のレーザ光源装置において、
前記高調波光の出力を安定化させる制御部を備え、
前記制御部は、前記共振器筐体から出射された前記高調波光の波長及び光強度を検出する光検出部からの検出結果に基づき、検出された前記高調波光の波長が目的波長に近づくように、かつ検出された前記高調波光の光強度が所定値以上となるように、前記第一温度調整機構及び前記第二温度調整機構を制御して、前記レーザ媒体及び前記非線形光学結晶の温度、前記エタロンの温度の順で温度調整を実施する
ことを特徴とするレーザ光源装置。
The laser light source device according to claim 6,
A control unit for stabilizing the output of the harmonic light;
The control unit is configured so that the detected wavelength of the harmonic light approaches the target wavelength based on the detection result from the light detection unit that detects the wavelength and light intensity of the harmonic light emitted from the resonator casing. And controlling the first temperature adjustment mechanism and the second temperature adjustment mechanism so that the detected light intensity of the harmonic light is equal to or higher than a predetermined value, the temperature of the laser medium and the nonlinear optical crystal, A laser light source device that performs temperature adjustment in the order of the temperature of the etalon.
請求項7に記載のレーザ光源装置において、
前記共振器筐体の温度を制御する第三温度調整機構をさらに備え、
前記制御部は、前記第三温度調整機構を制御して、前記共振器筐体の温度を予め設定された基準温度に維持する
ことを特徴とするレーザ光源装置。
In the laser light source device according to claim 7,
A third temperature adjustment mechanism for controlling the temperature of the resonator housing;
The control unit controls the third temperature adjustment mechanism to maintain the temperature of the resonator housing at a preset reference temperature. The laser light source device.
請求項6から請求項8のいずれか1項に記載のレーザ光源装置において、
前記共振器筐体は、前記レーザ媒体、前記非線形光学結晶、及び前記エタロンのそれぞれを支持する支持部を備え、
前記共振器筐体及び各前記支持部は、熱伝導率が170(W/mK)以上の素材により構成されている
ことを特徴とするレーザ光源装置。
The laser light source device according to any one of claims 6 to 8,
The resonator housing includes a support portion that supports each of the laser medium, the nonlinear optical crystal, and the etalon.
The resonator housing and each of the support portions are made of a material having a thermal conductivity of 170 (W / mK) or more.
請求項9に記載のレーザ光源装置において、
前記共振器筐体及び各前記支持部は、ベリリウム銅により構成されている
ことを特徴とするレーザ光源装置。
The laser light source device according to claim 9, wherein
The resonator case and each support portion are made of beryllium copper.
JP2016123688A 2016-06-22 2016-06-22 Laser light adjustment method and laser light source device Active JP6836848B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016123688A JP6836848B2 (en) 2016-06-22 2016-06-22 Laser light adjustment method and laser light source device
US15/617,307 US10505336B2 (en) 2016-06-22 2017-06-08 Laser adjustment method and laser source device
CN201710450281.4A CN107528210B (en) 2016-06-22 2017-06-15 Laser adjustment method and laser source device
DE102017210544.5A DE102017210544A1 (en) 2016-06-22 2017-06-22 LASER ADJUSTMENT METHOD AND LASER SOURCE DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016123688A JP6836848B2 (en) 2016-06-22 2016-06-22 Laser light adjustment method and laser light source device

Publications (2)

Publication Number Publication Date
JP2017228646A true JP2017228646A (en) 2017-12-28
JP6836848B2 JP6836848B2 (en) 2021-03-03

Family

ID=60676743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016123688A Active JP6836848B2 (en) 2016-06-22 2016-06-22 Laser light adjustment method and laser light source device

Country Status (4)

Country Link
US (1) US10505336B2 (en)
JP (1) JP6836848B2 (en)
CN (1) CN107528210B (en)
DE (1) DE102017210544A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7525743B2 (en) 2021-02-03 2024-07-30 クオンタム ヴァリー アイデアズ ラボラトリーズ Accommodation of etalons in frequency reference systems

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10371626B2 (en) * 2016-08-17 2019-08-06 Kla-Tencor Corporation System and method for generating multi-channel tunable illumination from a broadband source
JP2019149400A (en) 2018-02-26 2019-09-05 株式会社ミツトヨ Laser light source device and laser light adjustment method
WO2019224601A2 (en) * 2018-05-24 2019-11-28 Panasonic intellectual property Management co., Ltd Exchangeable laser resonator modules with angular adjustment
CN114485962A (en) 2020-10-23 2022-05-13 Ii-Iv特拉华股份有限公司 Wavelength reference device
JP2023106919A (en) * 2022-01-21 2023-08-02 キオクシア株式会社 Sample, method for manufacturing sample, and method for measuring infrared absorption spectrum
US20230344190A1 (en) * 2022-04-20 2023-10-26 Coherent Lasersystems Gmbh & Co. Kg Intracavity frequency conversion in solid-state laser resonator with end-pumping

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509598A (en) 1973-05-30 1975-01-31
US5854802A (en) * 1996-06-05 1998-12-29 Jin; Tianfeng Single longitudinal mode frequency converted laser
US5949805A (en) * 1997-09-22 1999-09-07 Trw Inc. Passive conductively cooled laser crystal medium
JP3509598B2 (en) * 1999-01-12 2004-03-22 株式会社島津製作所 Semiconductor laser pumped solid-state laser device
US6671296B2 (en) * 2000-10-10 2003-12-30 Spectrasensors, Inc. Wavelength locker on optical bench and method of manufacture
US7606274B2 (en) * 2001-09-20 2009-10-20 The Uab Research Foundation Mid-IR instrument for analyzing a gaseous sample and method for using the same
US20090014174A1 (en) * 2006-12-29 2009-01-15 Encana Corporation Use of coated slots for control of sand or other solids in wells completed for production of fluids
CN100479274C (en) * 2007-08-07 2009-04-15 山西大学 A standard temperature control device
US20090141749A1 (en) * 2007-12-03 2009-06-04 Young Optics Inc. Laser module
JP2011100812A (en) * 2009-11-05 2011-05-19 Mitsutoyo Corp Laser light source device, and adjustment system of laser light source
JP2011249400A (en) * 2010-05-24 2011-12-08 Mitsutoyo Corp Adjustment system for laser light source and adjustment method for laser light source
JP5859793B2 (en) 2011-09-28 2016-02-16 株式会社ミツトヨ Optical output signal stabilization determination method and laser frequency stabilization device
JP6609097B2 (en) 2014-10-24 2019-11-20 株式会社ミツトヨ Optical resonator
JP5897103B1 (en) 2014-12-29 2016-03-30 季子 幸野 Portable mask pouch
JP6469472B2 (en) 2015-02-17 2019-02-13 株式会社ミツトヨ Laser frequency stabilization device and laser frequency stabilization method
JP2016157863A (en) 2015-02-25 2016-09-01 株式会社ミツトヨ Laser light source device and adjustment method therefor
CN105356215A (en) * 2015-10-30 2016-02-24 中国工程物理研究院应用电子学研究所 Direct frequency multiplication device of semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7525743B2 (en) 2021-02-03 2024-07-30 クオンタム ヴァリー アイデアズ ラボラトリーズ Accommodation of etalons in frequency reference systems

Also Published As

Publication number Publication date
CN107528210B (en) 2021-01-26
US10505336B2 (en) 2019-12-10
CN107528210A (en) 2017-12-29
JP6836848B2 (en) 2021-03-03
US20170373463A1 (en) 2017-12-28
DE102017210544A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6836848B2 (en) Laser light adjustment method and laser light source device
JP5042781B2 (en) Frequency stabilized laser device and laser frequency stabilizing method
US20070008995A1 (en) Frequency-stabilized laser and frequency stabilizing method
US7242700B2 (en) Stabilized frequency-converted laser system
US20090232172A1 (en) Laser frequency stabilizing device, method and program
US7978737B2 (en) Laser device, control device of laser device, method of controlling laser device, method of tuning wavelength of laser device and control data of laser device
JP2006330518A (en) Harmonic generator
JP5557601B2 (en) Laser light source adjustment system
JP2011249400A (en) Adjustment system for laser light source and adjustment method for laser light source
US20230178957A1 (en) Solid-state laser system, phase matching method, and electronic device manufacturing method
JP2008130848A (en) Laser frequency stabilizing apparatus, and laser frequency stabilizing method
TWI675247B (en) Wavelength conversion device
US10630046B2 (en) Laser light source device and laser light adjusting method
JP2011142187A (en) Laser device
JP2000208849A (en) Semiconductor laser exciting solid-state laser device
JP7132756B2 (en) Light absorption device and laser device
JP2017528911A (en) Optically pumped semiconductor laser with mode tracking.
US8761213B2 (en) Wavelength-stabilized frequency-converted optically pumped semiconductor laser
JP4470480B2 (en) Wavelength conversion laser device
JP2013258248A (en) Laser light adjustment method, and laser light source device
JP5231554B2 (en) Frequency stabilized laser device and laser frequency stabilizing method
JP2000228552A (en) Solid-state laser device
JP6273716B2 (en) Solid state laser equipment
JP2011100812A (en) Laser light source device, and adjustment system of laser light source
JP2018006365A (en) Current controller and laser device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210208

R150 Certificate of patent or registration of utility model

Ref document number: 6836848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250