JP2017228344A - Conductive composition, backing-attached current collector for power storage device, electrode for power storage device, and power storage device - Google Patents

Conductive composition, backing-attached current collector for power storage device, electrode for power storage device, and power storage device Download PDF

Info

Publication number
JP2017228344A
JP2017228344A JP2016121363A JP2016121363A JP2017228344A JP 2017228344 A JP2017228344 A JP 2017228344A JP 2016121363 A JP2016121363 A JP 2016121363A JP 2016121363 A JP2016121363 A JP 2016121363A JP 2017228344 A JP2017228344 A JP 2017228344A
Authority
JP
Japan
Prior art keywords
storage device
fine particles
water
electrode
resin fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016121363A
Other languages
Japanese (ja)
Other versions
JP6683028B2 (en
Inventor
淳子 川原
Junko KAWAHARA
淳子 川原
博友 伊藤
Hirotomo Ito
博友 伊藤
順幸 諸石
Yoriyuki Moroishi
順幸 諸石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2016121363A priority Critical patent/JP6683028B2/en
Publication of JP2017228344A publication Critical patent/JP2017228344A/en
Application granted granted Critical
Publication of JP6683028B2 publication Critical patent/JP6683028B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power storage device which achieves superior output and other characteristics without marring the energy density of a power storage device, and which can suppress excessive heat generation and combustion by increasing the internal resistance when the temperature rises; and an electrode, a current collector, a conductive composition for constituting the power storage.SOLUTION: A conductive composition for forming an underlying layer of an electrode for a power storage device comprises: a conductive carbon material (A); a water-soluble resin (B); water-dispersible resin fine particles (C); and an aqueous liquid medium (D). The water-dispersible resin fine particles include olefin-based resin fine particles. To a total of 100 mass% of solid contents of the conductive composition, the content of conductive carbon material (A) is 30-70 mass%, the content of the water-soluble resin (B) is 1-40 mass%, and the content of the water-dispersible resin fine particles (C) is 20-60 mass%. The conductive carbon material (A) is 30 m/g or less in total specific surface area.SELECTED DRAWING: None

Description

本発明は、導電性組成物、及びその組成物を用いて得られる蓄電デバイス(例えばリチウムイオン二次電池などの非水電解質二次電池、電気二重層キャパシター、リチウムイオンキャパシターなど)用電極、並びにその電極を用いて得られる蓄電デバイスに関する。詳しくは、蓄電デバイスの温度が上昇した場合に該蓄電デバイスの内部抵抗を高くする機能を備えた導電性組成物、蓄電デバイス用電極並びに蓄電デバイスに関する。   The present invention relates to an electrode for a conductive composition, and an electricity storage device (for example, a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, an electric double layer capacitor, a lithium ion capacitor, etc.) obtained by using the composition, and The present invention relates to an electricity storage device obtained using the electrode. Specifically, the present invention relates to a conductive composition, a power storage device electrode, and a power storage device having a function of increasing the internal resistance of the power storage device when the temperature of the power storage device rises.

近年、デジタルカメラや携帯電話のような小型携帯型電子機器が広く用いられるようになってきた。これらの電子機器には、容積を最小限にし、かつ重量を軽くすることが常に求められてきており、搭載される電池においても、小型、軽量かつ大容量の電池の実現が求められている。特にリチウムイオン二次電池は鉛蓄電池、ニッカド電池、ニッケル水素電池等の水溶系二次電池と比較して大きなエネルギー密度が得られることから、パソコンや携帯端末等の電源としての重要性が高まっており、さらには車載搭載用高出力電源として好ましく用いられるものとして期待されている。   In recent years, small portable electronic devices such as digital cameras and mobile phones have been widely used. These electronic devices have always been required to minimize the volume and reduce the weight, and the batteries to be mounted are also required to be small, light, and have a large capacity. In particular, lithium-ion secondary batteries have a higher energy density than water-based secondary batteries such as lead-acid batteries, nickel-cadmium batteries, and nickel-metal hydride batteries. In addition, it is expected to be preferably used as a high-output power source mounted on a vehicle.

リチウムイオン二次電池は、エネルギー密度が高いという利点の反面、非水電解質を使用することから、安全性に対する十分な対応策が必要になる。近年、電池の大型化及び高容量化に応じて、安全性の確保が大きな課題となっている。例えば、過充電や電池内部での短絡等により、電池温度が異常に、かつ急激に上昇する場合、電池の外部に設けられた安全性機構だけでは、発熱を規制するのは困難となり、発火する危険性がある。   Lithium ion secondary batteries, while having the advantage of high energy density, use a non-aqueous electrolyte, so a sufficient countermeasure for safety is required. In recent years, ensuring the safety has become a major issue as the size and capacity of batteries increase. For example, if the battery temperature rises abnormally and suddenly due to overcharging or a short circuit inside the battery, it is difficult to control the heat generation with only the safety mechanism provided outside the battery, and it ignites. There is a risk.

特許文献1では、集電体に正温度係数抵抗体(以下PTC)の機能を有する電子伝導材料を接合する方法が記載されている。しかし、電子伝導性材料の厚みが50μmと厚いために、電池全体としてのエネルギー密度が低いといった問題点が挙げられる。
Patent Document 1 describes a method of joining an electron conductive material having a function of a positive temperature coefficient resistor (hereinafter referred to as PTC) to a current collector. However, since the thickness of the electron conductive material is as thick as 50 μm, there is a problem that the energy density of the entire battery is low.

特許文献2では、正極、負極、非水電解液のいずれかにPTCの特性をもたせることが開示されている。しかし、これらにPTC特性を付与するには、電池容量に寄与しない多量の添加物を加える必要があり、エネルギー密度が低いといった問題点が挙げられる。   Patent Document 2 discloses that any of a positive electrode, a negative electrode, and a non-aqueous electrolyte has PTC characteristics. However, in order to impart PTC characteristics to these, it is necessary to add a large amount of additive that does not contribute to the battery capacity, and there is a problem that the energy density is low.

特許文献3では、集電体表面に結晶性熱可塑性樹脂と導電剤および結着材からなる導電層を設ける方法が記載されている。この導電層は、電池内の温度が結晶性熱可塑性樹脂の融点を超えると、導電層の抵抗が上昇して、集電体と活物質間の電流が遮断される。しかし、電池の通常作動時における内部抵抗が高くなり、電池の出力特性が低いといった問題点が挙げられる。   Patent Document 3 describes a method of providing a conductive layer made of a crystalline thermoplastic resin, a conductive agent, and a binder on the surface of a current collector. In this conductive layer, when the temperature in the battery exceeds the melting point of the crystalline thermoplastic resin, the resistance of the conductive layer increases and the current between the current collector and the active material is interrupted. However, there are problems such that the internal resistance during normal operation of the battery is high and the output characteristics of the battery are low.

特許文献4では、集電体表面にポリフッ化ビニリデンと導電剤からなる導電層を設け、この導電層を設けた集電体を120℃を超える温度で加熱する方法が記載されている。しかし、熱処理する工程が追加されるほか、電池内の温度が上昇したときの抵抗上昇は十分でないといった問題点が挙げられる。   Patent Document 4 describes a method in which a conductive layer made of polyvinylidene fluoride and a conductive agent is provided on the current collector surface, and the current collector provided with the conductive layer is heated at a temperature exceeding 120 ° C. However, in addition to an additional heat treatment step, there is a problem that the resistance rise is not sufficient when the temperature in the battery rises.

特許文献5では、導電性粒子、カルボキシメチルセルロース、水分散オレフィン系樹脂および分散剤からなる導電層を設けた集電体を設ける方法が記載されているが電池内部の温度が上昇したときの抵抗上昇は十分ではないといった問題点が挙げられる。   Patent Document 5 describes a method of providing a current collector provided with a conductive layer composed of conductive particles, carboxymethyl cellulose, a water-dispersed olefin resin, and a dispersant, but the resistance rises when the temperature inside the battery rises. Is not enough.

特開平10−241665号公報JP-A-10-241665 特開平11−329503号公報JP 11-329503 A 特開2001−357854号公報JP 2001-357854 A 特開2012−104422号公報JP 2012-104422 A 国際公開第2015/046469号International Publication No. 2015/046469

本発明が解決しようとする課題は、蓄電デバイス(例えば、非水電解質二次電池(例えばリチウムイオン二次電池、電気二重層キャパシター、リチウムイオンキャパシターなど)のエネルギー密度を損なうことなく、通常作動時の蓄電デバイスの出力特性等に優れ、蓄電デバイスの内部温度が上昇した場合にも、内部抵抗を上昇させて過度の発熱や発火を抑制することができる蓄電デバイスと、それを構成するための電極、集電体および導電性組成物を提供することである。   The problem to be solved by the present invention is that during normal operation without impairing the energy density of an electricity storage device (for example, a non-aqueous electrolyte secondary battery (eg, a lithium ion secondary battery, an electric double layer capacitor, a lithium ion capacitor, etc.)) An electricity storage device that is excellent in output characteristics of the electricity storage device, and that can suppress excessive heat generation and ignition by increasing internal resistance even when the internal temperature of the electricity storage device rises, and an electrode for constituting the electricity storage device It is to provide a current collector and a conductive composition.

本発明は、導電性の炭素材料(A)と、水溶性樹脂(B)と、少なくともオレフィン系樹脂微粒子を含む水分散樹脂微粒子(C)とを含む導電性組成物であり、蓄電デバイスの発熱時に集電体の抵抗が増大し、電流を遮断することで、蓄電デバイスの発火等を回避するものである。
本発明者らは、導電性組成物の固形分比と導電性の炭素材料(A)の総比表面積を適切に制御すると、驚くべきことに、通常作動時の内部抵抗の低減と、蓄電デバイス内の温度が上昇したときに飛躍的に抵抗上昇が発現することを見出し、本発明をなすに至った。
The present invention is a conductive composition comprising a conductive carbon material (A), a water-soluble resin (B), and water-dispersed resin fine particles (C) containing at least olefin-based resin fine particles. Sometimes the resistance of the current collector increases and the current is cut off, thereby avoiding ignition of the electricity storage device.
When the present inventors appropriately control the solid content ratio of the conductive composition and the total specific surface area of the conductive carbon material (A), surprisingly, the internal resistance during normal operation is reduced, and the electric storage device. As a result, the inventors have found that a dramatic increase in resistance occurs when the internal temperature rises, leading to the present invention.

即ち、本発明は、導電性の炭素材料(A)と、水溶性樹脂(B)と、水分散樹脂微粒子(C)と、水性液状媒体(D)とを含有してなる蓄電デバイス用電極の下地層形成用導電性組成物であって、前記水分散樹脂微粒子が少なくともオレフィン系樹脂微粒子を含み、導電性組成物の固形分の合計100質量%中、導電性の炭素材料(A)の含有率が、30〜70質量%であり、水溶性樹脂(B)の含有率が、1〜40質量%であり、水分散樹脂微粒子(C)の含有率が、20〜60質量%であり、導電性の炭素材料(A)の総比表面積が30m2/g以下であることを特徴とする蓄電デバイス用電極の下地層形成用導電性組成物に関する。 That is, the present invention provides an electrode for an electricity storage device comprising a conductive carbon material (A), a water-soluble resin (B), water-dispersed resin fine particles (C), and an aqueous liquid medium (D). A conductive composition for forming an underlayer, wherein the water-dispersed resin fine particles include at least olefin resin fine particles, and the conductive carbon material (A) is contained in a total of 100% by mass of the solid content of the conductive composition. The rate is 30 to 70% by mass, the content of the water-soluble resin (B) is 1 to 40% by mass, the content of the water-dispersed resin fine particles (C) is 20 to 60% by mass, The conductive carbon material (A) has a total specific surface area of 30 m 2 / g or less, and relates to a conductive composition for forming a base layer of an electrode for an electricity storage device.

また、本発明は、導電性の炭素材料(A)が、少なくとも黒鉛を含み、導電性の炭素材料(A)中の黒鉛の含有率が、60〜100質量%である上記下地層形成用導電性組成物に関する。   Further, the present invention provides the above conductive for forming an underlayer, wherein the conductive carbon material (A) contains at least graphite, and the content of graphite in the conductive carbon material (A) is 60 to 100% by mass. It relates to a sex composition.

また、本発明は、水分散樹脂微粒子(C)に含まれるオレフィン系樹脂微粒子が、カルボニル基を有するポリオレフィン樹脂微粒子であり、ポリオレフィン樹脂微粒子の赤外吸収スペクトルにおいて、2800〜3000cm-1の最大ピーク高さ(極大吸光度)(X)と、1690〜1740cm-1の最大ピーク高さ(極大吸光度)(Y)との比(Y)/(X)が、0.05〜1.0である上記下地層形成用導電性組成物に関する。 Further, in the present invention, the olefin resin fine particles contained in the water-dispersed resin fine particles (C) are polyolefin resin fine particles having a carbonyl group, and the maximum peak of 2800 to 3000 cm −1 in the infrared absorption spectrum of the polyolefin resin fine particles. The ratio (Y) / (X) between the height (maximum absorbance) (X) and the maximum peak height (maximum absorbance) (Y) of 1690 to 1740 cm −1 is 0.05 to 1.0 The present invention relates to a conductive composition for forming an underlayer.

また、本発明は、集電体と、上記蓄電デバイス用電極の下地層形成用導電性組成物から形成された下地層とを有する蓄電デバイス用下地層付き集電体であって、下地層の密度が、1.4g/cm3以上である下地層付き集電体に関する。 Further, the present invention is a current collector with an underlayer for an electricity storage device comprising a current collector and an underlayer formed from the conductive composition for forming an underlayer for the electrode for an electricity storage device, The present invention relates to a current collector with an underlayer having a density of 1.4 g / cm 3 or more.

また、本発明は、集電体と、上記蓄電デバイス用電極の下地層形成用導電性組成物から形成された下地層と、電極活物質とバインダーとを含有する電極形成用組成物から形成された合材層とを有する蓄電デバイス用電極に関する。   Further, the present invention is formed from a current collector, a base layer formed from the conductive composition for forming the base layer of the electrode for an electricity storage device, and an electrode forming composition containing an electrode active material and a binder. The present invention relates to an electrode for an electricity storage device having a composite layer.

また、本発明は、正極と負極と電解液とを具備する蓄電デバイスであって、前記正極または前記負極の少なくとも一方が上記蓄電デバイス用電極である蓄電デバイスに関する。   The present invention also relates to an electricity storage device including a positive electrode, a negative electrode, and an electrolytic solution, wherein at least one of the positive electrode and the negative electrode is the electrode for the electricity storage device.

また、本発明は、蓄電デバイスが、非水電解質二次電池、電気二重層キャパシターまたはリチウムイオンキャパシターのいずれかである上記蓄電デバイスに関する。   The present invention also relates to the above electricity storage device, wherein the electricity storage device is any one of a nonaqueous electrolyte secondary battery, an electric double layer capacitor, and a lithium ion capacitor.

本発明によって、通常作動時の蓄電デバイスの出力特性等に優れ、蓄電デバイスの内部温度が上昇した場合に、過度の発熱や発火を抑制することができる蓄電デバイス(例えばリチウムイオン二次電池などの非水電解質二次電池、電気二重層キャパシター、リチウムイオンキャパシターなど)を提供できるようになった。   By this invention, it is excellent in the output characteristic of the electrical storage device at the time of a normal operation, etc., and when the internal temperature of an electrical storage device rises, an electrical storage device (for example, a lithium ion secondary battery etc.) which can suppress excessive heat generation and ignition Non-aqueous electrolyte secondary batteries, electric double layer capacitors, lithium ion capacitors, etc.) can be provided.

<導電性組成物>
本発明の導電性組成物は、蓄電デバイス用電極の下地層形成用として使用できる。導電性組成物は、導電性の炭素材料(A)と水溶性樹脂バインダー(B)と、少なくともオレフィン系樹脂微粒子を含む水分散性樹脂微粒子(C)と、水性液状媒体(D)とを含有する。
<Conductive composition>
The conductive composition of the present invention can be used for forming a base layer of an electrode for an electricity storage device. The conductive composition contains a conductive carbon material (A), a water-soluble resin binder (B), water-dispersible resin fine particles (C) containing at least olefin resin fine particles, and an aqueous liquid medium (D). To do.

導電性組成物の固形分の合計100質量%中、導電性の炭素材料(A)の含有量は、導電性と内部抵抗の観点から、30〜70質量%であり、好ましくは40〜60質量%である。   From the viewpoint of conductivity and internal resistance, the content of the conductive carbon material (A) in the total solid content of 100% by mass of the conductive composition is 30 to 70% by mass, preferably 40 to 60% by mass. %.

導電性組成物の固形分の合計100質量%中、水溶性樹脂(B)の含有量は、電極の密着性と導電性、および発熱時における電池の内部抵抗上昇の観点から、1〜40質量%であり、好ましくは5〜30質量%である。水溶性樹脂(B)の含有量が1〜40質量%であれば、加熱によりポリオレフィン樹脂微粒子が溶融した場合でも、水溶性樹脂(B)が炭素同士の再接触を防ぐ効果が確認され、電池の安全性を飛躍的に向上させるため好ましい。   In the total 100% by mass of the solid content of the conductive composition, the content of the water-soluble resin (B) is 1 to 40 masses from the viewpoint of electrode adhesion and conductivity, and increase in internal resistance of the battery during heat generation. %, Preferably 5 to 30% by mass. When the content of the water-soluble resin (B) is 1 to 40% by mass, even when the polyolefin resin fine particles are melted by heating, the effect of the water-soluble resin (B) preventing re-contact between carbons is confirmed. This is preferable because it significantly improves the safety.

導電性組成物の固形分の合計100質量%中、水分散樹脂微粒子(C)の含有量は、内部抵抗と導電性、および発熱時における電池の内部抵抗上昇の観点から、20〜60質量%であり、好ましくは30〜50質量%である。水分散樹脂微粒子(C)の含有量が20〜60質量%以内であれば、ポリオレフィン樹脂(水分散樹脂微粒子(C))の体積膨張が十分に発現し、電池の内部温度が上昇した際に内部抵抗が効果的に上昇するため、好ましい。   In the total 100% by mass of the solid content of the conductive composition, the content of the water-dispersed resin fine particles (C) is 20 to 60% by mass from the viewpoint of internal resistance and conductivity, and increase in internal resistance of the battery during heat generation. Preferably, it is 30-50 mass%. When the content of the water-dispersed resin fine particles (C) is within 20 to 60% by mass, the volume expansion of the polyolefin resin (water-dispersed resin fine particles (C)) is sufficiently expressed, and the internal temperature of the battery is increased. This is preferable because the internal resistance is effectively increased.

導電性組成物の固形分の合計100質量%中、導電性組成物(A)と水溶性樹脂(B)と水分散樹脂微粒子(C)の総量は、内部抵抗と導電性および発熱時における電池の内部抵抗上昇の観点から、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上である。上記組成物中に必要に応じて任意の成分を追加しても良い。   The total amount of the conductive composition (A), the water-soluble resin (B), and the water-dispersed resin fine particles (C) in the total solid content of 100% by mass of the conductive composition is determined by the internal resistance, conductivity, and battery during heat generation. From the viewpoint of an increase in internal resistance, it is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. You may add arbitrary components to the said composition as needed.

任意の成分としては特に限定されないが、例えば電解液の反応によって生成する酸を吸着または消費する材料や、所定温度以上になるとガスを発生する材料、無機のPTC材料、ポリオレフィン系樹脂微粒子が体積膨張した後の導電パスを保持する材料などを追加しても良い。   The optional component is not particularly limited. For example, the material that adsorbs or consumes the acid generated by the reaction of the electrolytic solution, the material that generates gas when the temperature exceeds a predetermined temperature, the inorganic PTC material, and the polyolefin resin fine particles expand in volume. A material for holding the conductive path after the process may be added.

電解液の反応によって生成する酸を吸着する材料としては、例えば、酸化マグネシウム(MgO)、酸化アルミニウム(Al23)、酸化ホウ素(B23)、酸化ガリウム(Ga23)、酸化インジウム(In23)などが挙げられる。 Examples of the material that adsorbs the acid generated by the reaction of the electrolytic solution include magnesium oxide (MgO), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), gallium oxide (Ga 2 O 3 ), Examples thereof include indium oxide (In 2 O 3 ).

電解液の反応によって生成する酸を消費する材料としては、炭酸マグネシウム、炭酸カルシムなどの金属炭酸塩類、カルボン酸ナトリウム、カルボン酸カリウム、スルホン酸ナトリウム、スルホン酸カリウム、安息香酸ナトリウム、安息香酸カリウムなどの金属有機塩類、珪酸ナトリウム、珪酸カリウム、珪酸アルミニウム、珪酸マグネシウム、二酸化珪素などの珪酸塩類、水酸化マグネシウムなどのアルカリ性水酸化物類などが挙げられる。   Materials that consume acid generated by the reaction of the electrolyte include metal carbonates such as magnesium carbonate and calcium carbonate, sodium carboxylate, potassium carboxylate, sodium sulfonate, potassium sulfonate, sodium benzoate, potassium benzoate, etc. Metal silicates such as sodium silicate, potassium silicate, aluminum silicate, magnesium silicate, and silicon dioxide, and alkali hydroxides such as magnesium hydroxide.

所定温度以上になるとガスを発生する材料としては、炭酸リチウム、炭酸亜鉛、炭酸鉛、炭酸ストロンチウムなどの炭酸塩類、膨張黒鉛などが挙げられる。   Examples of materials that generate gas when the temperature exceeds a predetermined temperature include carbonates such as lithium carbonate, zinc carbonate, lead carbonate, and strontium carbonate, and expanded graphite.

無機のPTC材料としては、BaTiMO3(Mは、Cr、Pb、Ca、Sr、Ce、Mn、La、Y、NbおよびNdからなる群より選ばれる一種類以上の元素)などが挙げられる。 Examples of the inorganic PTC material include BaTiMO 3 (M is one or more elements selected from the group consisting of Cr, Pb, Ca, Sr, Ce, Mn, La, Y, Nb, and Nd).

ポリオレフィン系樹脂微粒子が体積膨張した後の導電パスを保持する材料としは、セルロースナノファイバーやシリカ、アルミナなどの無機微粒子などが挙げられる。   Examples of the material that retains the conductive path after the volumetric expansion of the polyolefin resin fine particles include inorganic fine particles such as cellulose nanofibers, silica, and alumina.

また、導電性組成物の適正粘度は、導電性組成物の塗工方法によるが、一般には、10mPa・s以上、30,000mPa・s以下とするのが好ましい。   Moreover, although the appropriate viscosity of an electroconductive composition is based on the coating method of an electroconductive composition, generally it is preferable to set it as 10 mPa * s or more and 30,000 mPa * s or less.

<導電性の炭素材料(A)>
本発明における導電性の炭素材料(A)としては、導電性を有する炭素材料であれば特に限定されるものではないが、黒鉛(グラファイト)、カーボンブラック、導電性炭素繊維(カーボンナノチューブ、カーボンナノファイバー、カーボンファイバー)、フラーレン等を単独で、もしくは2種類以上併せて使用することができる。特に発熱時における電池の内部抵抗上昇の観点から、黒鉛を使用することが好ましい。導電性の炭素材料(A)に黒鉛を含有させることで、オレフィン系樹脂微粒子が体積膨張すると同時に、黒鉛も体積膨張し、導電性の炭素材料同士の接点が面接触から点接触もしくは接触が切れるため、導電性の炭素材料同士の接触を切断する効果が高まると考えられる。
<Conductive carbon material (A)>
The conductive carbon material (A) in the present invention is not particularly limited as long as it is a carbon material having conductivity, but graphite (graphite), carbon black, conductive carbon fiber (carbon nanotube, carbon nano). Fiber, carbon fiber), fullerene and the like can be used alone or in combination of two or more. In particular, graphite is preferably used from the viewpoint of increasing the internal resistance of the battery during heat generation. By incorporating graphite into the conductive carbon material (A), the olefin-based resin fine particles expand in volume, and at the same time, the graphite expands in volume, and the contact between the conductive carbon materials breaks from point contact or contact. For this reason, it is considered that the effect of cutting the contact between the conductive carbon materials is enhanced.

黒鉛とは、炭素の六角板状結晶であるが、本発明としては、土状黒鉛、塊状黒鉛、鱗状黒鉛等の天然黒鉛、及び人造黒鉛等が挙げられる。さらに、膨張化黒鉛、薄片化により成型性、導電性を向上させた薄片化黒鉛、球状化粉砕加工により配向性を抑えた球状化黒鉛、溶けた銑鉄が溶銑予備処理等で温度低下するのに伴い析出した、平面的に結晶化した炭素であるキッシュ黒鉛等も挙げられる。なお、膨張化黒鉛とは、例えば、天然黒鉛等を、濃硫酸と硝酸との混液、濃硫酸と過酸化水素水との混液の強酸化性の溶液に浸漬処理して黒鉛層間化合物を生成させ、水洗してから急速加熱して、黒鉛結晶のC軸方向を膨張処理することによって得られた粉末や、それを一度シート状に圧延したものを粉砕した粉末である。特に蓄電デバイスのエネルギー密度や下地層の導電性の観点から、薄片化黒鉛や天然黒鉛を使用することが好ましい。   Graphite is a hexagonal plate-like crystal of carbon. Examples of the present invention include natural graphite such as earthy graphite, massive graphite, and scaly graphite, and artificial graphite. In addition, exfoliated graphite, exfoliated graphite with improved moldability and conductivity by flaking, spheroidized graphite with reduced orientation by spheroidizing and pulverizing, and molten pig iron, the temperature drops due to hot metal pretreatment, etc. Also included is quiche graphite, which is a carbon crystallized in a planar manner. In addition, expanded graphite refers to, for example, immersing natural graphite or the like in a strong oxidizing solution of a mixture of concentrated sulfuric acid and nitric acid, or a mixture of concentrated sulfuric acid and hydrogen peroxide to form a graphite intercalation compound. It is a powder obtained by washing with water and then rapidly heating to expand the C-axis direction of the graphite crystal, or a powder obtained by pulverizing it once rolled into a sheet. In particular, exfoliated graphite or natural graphite is preferably used from the viewpoint of the energy density of the electricity storage device and the conductivity of the underlayer.

市販の黒鉛としては、昭和電工社製のSCMG−AH、SCMG−AR、SCMG−AR−H、SCMG−AF、SCMG−AFC、UF−G10、UF−G30、Timcal社製のKS−6、SFG−6、日本黒鉛工業社製のCPB、UCP、AP、P#1、PAG−5、HAG−10W、ACP、ACB−150、SP−10、SP−20、J−SP、GR−15、UP−5N、UP−15N、CGC−20、CGB−20、J−SP−α、UP−5−α、SP−5030−α、EXP−SM、富士黒鉛工業社製のUF−2,BF−3A、BF−5A、BF−8A、BF−10A、BF−20A、CNG−44N、BSP−5A、BSP−20A、A−0、FAG−1C、JSG−25、JSG−75、WF−10,WF−20,WF−30,中越黒鉛工業所社製のCX−3000、BF−1AT、FBF、BF、CBR、G−6S,WF−15C,CPB−6S、BSP−10AK、HF−80、HF−48、伊藤黒鉛工業社製のZ−5F,CNP−7、CNP−15、CNP−35、Z+80、Z−25、Z−50、X−10、X−20、SRP7、SRP10、CP2000M、EC1500、SG−BH8、SG−BH、SECカーボン社製のSNO−20、SNO−10、SNO−5、SNE−20、SNE−10、SNE−5等が挙げられるが、これらに限定されるものではなく、2種類以上を組み合わせてもよい。   Commercially available graphite includes Showa Denko's SCMG-AH, SCMG-AR, SCMG-AR-H, SCMG-AF, SCMG-AFC, UF-G10, UF-G30, TIM-6's KS-6, SFG -6, CPB, UCP, AP, P # 1, PAG-5, HAG-10W, ACP, ACB-150, SP-10, SP-20, J-SP, GR-15, UP manufactured by Nippon Graphite Industries Co., Ltd. -5N, UP-15N, CGC-20, CGB-20, J-SP-α, UP-5-α, SP-5030-α, EXP-SM, UF-2, BF-3A manufactured by Fuji Graphite Industries, Ltd. , BF-5A, BF-8A, BF-10A, BF-20A, CNG-44N, BSP-5A, BSP-20A, A-0, FAG-1C, JSG-25, JSG-75, WF-10, WF -20, WF- 0, CX-3000, BF-1AT, FBF, BF, CBR, G-6S, WF-15C, CPB-6S, BSP-10AK, HF-80, HF-48, manufactured by Chuetsu Graphite Industries Co., Ltd. Z-5F, CNP-7, CNP-15, CNP-35, Z + 80, Z-25, Z-50, X-10, X-20, SRP7, SRP10, CP2000M, EC1500, SG-BH8, SG -BH, SNO-20, SNO-10, SNO-5, SNE-20, SNE-10, SNE-5, etc. manufactured by SEC Carbon Co., are not limited to these, but two or more types You may combine.

カーボンブラックとしては、気体もしくは液体の原料を反応炉中で連続的に熱分解し製造するファーネスブラック、特にエチレン重油を原料としたケッチェンブラック、原料ガスを燃焼させて、その炎をチャンネル鋼底面にあて急冷し析出させたチャンネルブラック、ガスを原料とし燃焼と熱分解を周期的に繰り返すことにより得られるサーマルブラック、特にアセチレンガスを原料とするアセチレンブラックなどの各種のものを単独で、もしくは2種類以上併せて使用することができる。また、通常行われている酸化処理されたカーボンブラックや、中空カーボン等も使用できる。   Carbon black is a furnace black produced by continuously pyrolyzing a gas or liquid raw material in a reactor, especially ketjen black using ethylene heavy oil as a raw material. Channel black that has been rapidly cooled and precipitated, thermal black obtained by periodically repeating combustion and thermal decomposition using gas as a raw material, and particularly various types such as acetylene black using acetylene gas as a raw material, or 2 More than one type can be used in combination. Ordinarily oxidized carbon black, hollow carbon and the like can also be used.

導電性炭素繊維としては石油由来の原料から焼成して得られるものが良いが、植物由来の原料からも焼成して得られるものも用いることができる。例えば石油由来の原料で製造される昭和電工社製のVGCFなどを挙げることができる。   As the conductive carbon fibers, those obtained by firing from petroleum-derived raw materials are preferable, but those obtained by firing from plant-derived raw materials can also be used. For example, VGCF manufactured by Showa Denko Co., Ltd. manufactured with petroleum-derived raw materials can be mentioned.

更に、通常使用時における蓄電デバイスの導電性や、温度上昇時における抵抗上昇の観点から、本発明における導電性の炭素材料(A)の総比表面積は30m2/g以下である。好ましくは1.0m2/g以上かつ30m2/g以下であり、より好ましくは5.0m2/g以上かつ30m2/g以下である。また、導電性の炭素材料(A)の総比表面積が30m2/g以下であることで、水溶性樹脂(B)が炭素同士の再接触を防ぐ効果を高めることができると考えられる。
本発明の導電性炭素材料(A)における総比表面積とは、ガス吸着量測定装置を用い、JIS K6217−2で測定されたBET比表面積から、各導電性の炭素材料のBET比表面積と混合比の加重平均値を算出したものである。
Furthermore, the total specific surface area of the conductive carbon material (A) in the present invention is 30 m 2 / g or less from the viewpoint of the electrical conductivity of the electricity storage device during normal use and the increase in resistance when the temperature rises. Preferably not more than 1.0 m 2 / g or more and 30 m 2 / g, more preferably not more than 5.0 m 2 / g or more and 30 m 2 / g. Moreover, it is thought that the effect which water-soluble resin (B) prevents the recontact of carbons can be heightened because the total specific surface area of electroconductive carbon material (A) is 30 m < 2 > / g or less.
The total specific surface area in the conductive carbon material (A) of the present invention is mixed with the BET specific surface area of each conductive carbon material from the BET specific surface area measured by JIS K6217-2 using a gas adsorption amount measuring device. The weighted average value of the ratio is calculated.

<水溶性樹脂(B)>
本明細書における水溶性樹脂(B)とは、25℃の水99g中に水溶性樹脂(B)1g入れて撹拌し、25℃で24時間放置した後、分離・析出せずに水中で樹脂が溶解可能なものである。
<Water-soluble resin (B)>
In the present specification, the water-soluble resin (B) means that 1 g of the water-soluble resin (B) is put in 99 g of water at 25 ° C. and stirred and left at 25 ° C. for 24 hours, and then separated in water without separation / precipitation. Can be dissolved.

水溶性樹脂(B)としては、上述の通り水溶性を示す樹脂であれば特に限定されるものではないが、例えば、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアリルアミン樹脂、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、ホルムアルデヒド樹脂、シリコン樹脂、ポリビニルアルコール樹脂、フッ素樹脂、カルボキシメチルセルロース等の多糖類の樹脂を含む高分子化合物が挙げられる。また、水溶性であれば、これらの樹脂の変性物、混合物、又は共重合体でも良い。これら水溶性樹脂は、1種または複数を組み合わせて使用することも出来る。導電性組成物中に所定量の水溶性樹脂(B)を含むことで、ポリエステル系樹脂微粒子またはポリウレタン系樹脂微粒子が溶解した場合でも、水溶性樹脂(B)が炭素同士の再接触を防ぐ効果が確認され、電池の安全性を向上させることができる。さらに、水溶性樹脂(B)は導電性組成物(スラリー)において、化学的に安定であることから、経時変化が少なく、下地層を形成する際の塗工特性に優れる。   The water-soluble resin (B) is not particularly limited as long as it is a water-soluble resin as described above. For example, an acrylic resin, a polyurethane resin, a polyester resin, a polyamide resin, a polyimide resin, a polyallylamine resin, High molecular compounds containing polysaccharide resins such as phenol resin, epoxy resin, phenoxy resin, urea resin, melamine resin, alkyd resin, formaldehyde resin, silicon resin, polyvinyl alcohol resin, fluororesin, carboxymethyl cellulose, and the like. Moreover, if it is water-soluble, the modified substance, mixture, or copolymer of these resin may be sufficient. These water-soluble resins can be used alone or in combination. By including a predetermined amount of the water-soluble resin (B) in the conductive composition, even when the polyester resin fine particles or the polyurethane resin fine particles are dissolved, the water-soluble resin (B) prevents re-contact between carbons. Is confirmed, and the safety of the battery can be improved. Furthermore, since the water-soluble resin (B) is chemically stable in the conductive composition (slurry), there is little change over time, and the coating properties when forming the underlayer are excellent.

水溶性樹脂(B)の分子量は特に限定されないが、好ましくは質量平均分子量が5,000〜2,000,000である。質量平均分子量(Mw)とは、ゲルパーミエーションクロマトグラフィー(GPC)におけるポリエチレンオキサイド換算分子量を示す。   The molecular weight of the water-soluble resin (B) is not particularly limited, but the mass average molecular weight is preferably 5,000 to 2,000,000. The mass average molecular weight (Mw) indicates the molecular weight in terms of polyethylene oxide in gel permeation chromatography (GPC).

また、本発明において、水溶性樹脂(B)は、カルボキシメチルセルロースを用いることが好ましく、蓄電デバイスの内部温度が上昇したときの抵抗上昇の観点から、上記の質量平均分子量が10,000〜70,000であり、エーテル化度が0.3〜1.0であることがより好ましい。エーテル化は、灰化した試料を硫酸にて煮沸し、フェノールフタレイン指示薬に加え、過剰の酸を水酸化カリウムで逆滴定することにより求める。   Moreover, in this invention, it is preferable to use carboxymethylcellulose for water-soluble resin (B), and said mass mean molecular weight is 10,000-70, from a viewpoint of an increase in resistance when the internal temperature of an electrical storage device rises. More preferably, the degree of etherification is 0.3 to 1.0. Etherification is determined by boiling the incinerated sample with sulfuric acid, adding it to the phenolphthalein indicator, and back titrating excess acid with potassium hydroxide.

さらに、カルボキシメチルセルロース1gを25℃の水99g中に入れて撹拌して得られた1質量%水溶液の粘度が0.01〜0.1Pa・sであることがより好ましい。水溶液の粘度測定はレオメーター(TAインスツルメント社製AR−G2)により、コーンプレート(60mm、1°)を用いて、測定温度25℃、せん断速度360(1/s)で測定したものである。   Furthermore, it is more preferable that the viscosity of a 1% by mass aqueous solution obtained by stirring 1 g of carboxymethyl cellulose in 99 g of water at 25 ° C. is 0.01 to 0.1 Pa · s. The viscosity of the aqueous solution was measured with a rheometer (AR Instruments G2 manufactured by TA Instruments) using a cone plate (60 mm, 1 °) at a measurement temperature of 25 ° C. and a shear rate of 360 (1 / s). is there.

以上のようなカルボキシメチルセルロースは市販品を用いることが可能であり、市販品としては、例えば、ダイセル化学工業社製の#1110、#1120、#1130、#1140.#1170、#1210、#1240、#1250、#1260、#1270などが挙げられるが、これらに限定されるものではない。   Commercially available products can be used as the carboxymethylcellulose as described above. Examples of commercially available products include # 1110, # 1120, # 1130, # 1140. Examples include, but are not limited to, # 1170, # 1210, # 1240, # 1250, # 1260, and # 1270.

<水分散樹脂微粒子(C)>
本発明の水分散樹脂微粒子(C)としては、一般的に水性エマルションとも呼ばれるものであり、樹脂微粒子が水中で溶解せずに、微粒子の形態で分散されているものである。水分散樹脂微粒子であることから、炭素材料(A)の導電性を損なうことがなく、通常作動時の内部抵抗を低減でき、出力特性を改善することができる。
<Water-dispersed resin fine particles (C)>
The water-dispersed resin fine particles (C) of the present invention are generally called aqueous emulsions, and the resin fine particles are dispersed in the form of fine particles without being dissolved in water. Since it is water-dispersed resin fine particles, the electrical resistance of the carbon material (A) is not impaired, the internal resistance during normal operation can be reduced, and the output characteristics can be improved.

水分散樹脂微粒子は少なくともオレフィン系樹脂微粒子を含み、水分散樹脂微粒子に含まれるオレフィン系樹脂微粒子の割合が50〜100質量%であることが好ましい。また、2種以上のオレフィン系樹脂微粒子を含んでいても良く、必要に応じて、オレフィン系樹脂微粒子以外の水分散樹脂微粒子を含んでいても良い。オレフィン系樹脂微粒子以外の水分散樹脂微粒子は特に限定されないが、(メタ)アクリル系エマルション、ニトリル系エマルション、ウレタン系エマルション、ジエン系エマルション(SBRなど)、フッ素系エマルション(PVDFやPTFEなど)等が挙げられる。
The water-dispersed resin fine particles include at least olefin-based resin fine particles, and the ratio of the olefin-based resin fine particles contained in the water-dispersed resin fine particles is preferably 50 to 100% by mass. Moreover, two or more types of olefin resin fine particles may be included, and water-dispersed resin fine particles other than the olefin resin fine particles may be included as necessary. Water-dispersed resin fine particles other than olefin resin fine particles are not particularly limited, but (meth) acrylic emulsions, nitrile emulsions, urethane emulsions, diene emulsions (SBR, etc.), fluorine emulsions (PVDF, PTFE, etc.), etc. Can be mentioned.

水分散樹脂微粒子としては、80〜180℃の範囲内でオレフィン系樹脂微粒子が体積膨張することによって、導電層中に分散している導電性の炭素材料同士の接触を断つことができる樹脂であることが好ましい。これにより、電極自体の抵抗が高くなるので、短絡箇所に流れる電流が減少し、ジュール発熱を抑制し、電池の安全性が保たれるという効果を奏すると考えられる。
ポリオレフィン樹脂微粒子中のオレフィン成分としては、例えば、エチレン、プロピレン、イソブチレン、イソブテン、1−ブテン、2−ブテン、1−ペンテン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、1−ヘキセン、1−オクテン、ノルボルネン等が挙げられる。これらオレフィン成分は、1種でも2種以上であっても良い。また、蓄電デバイスの内部の温度上昇時おけるオレフィン系樹脂微粒子の体積膨張を保持する効果から、カルボン酸やカルボン酸エステルによる変性や共重合などがされていても良い。
The water-dispersed resin fine particles are resins that can break contact between conductive carbon materials dispersed in the conductive layer by volume expansion of the olefin-based resin fine particles within a range of 80 to 180 ° C. It is preferable. Thereby, since the resistance of the electrode itself is increased, it is considered that the current flowing through the short-circuited portion is reduced, the Joule heat generation is suppressed, and the battery safety is maintained.
Examples of the olefin component in the polyolefin resin fine particles include ethylene, propylene, isobutylene, isobutene, 1-butene, 2-butene, 1-pentene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1- Examples include hexene, 1-octene and norbornene. These olefin components may be one type or two or more types. In addition, modification or copolymerization with carboxylic acid or carboxylic acid ester may be performed from the effect of maintaining volume expansion of the olefin resin fine particles when the temperature inside the electricity storage device rises.

本発明において、水分散樹脂微粒子(C)に含まれるオレフィン系樹脂微粒子は、カルボニル基(−CO−)を一定量以上有することが好ましい。また、カルボン酸またはカルボン酸エステルで変性されたオレフィン系樹脂微粒子であることが好ましい。カルボニル基を有すると、樹脂微粒子の溶融耐性を付与できることから、内部短絡などによる蓄電デバイスの内部温度上昇時に、ポリオレフィン樹脂微粒子の体積膨張を維持することができ、炭素材料同士の切断効果を維持し続けることができると考えられる。   In the present invention, the olefin resin fine particles contained in the water-dispersed resin fine particles (C) preferably have a certain amount or more of carbonyl groups (—CO—). Further, olefin resin fine particles modified with carboxylic acid or carboxylic acid ester are preferable. Since having a carbonyl group can provide melting resistance of resin fine particles, the volume expansion of polyolefin resin fine particles can be maintained when the internal temperature of the electricity storage device rises due to an internal short circuit, etc., and the cutting effect between carbon materials is maintained. It is thought that it can continue.

例えば、カルボン酸またはカルボン酸エステルは、特に限定されないが、アクリル酸、メタクリル酸、無水マレイン酸、マレイン酸、無水イタコン酸、イタコン酸、フマル酸、クロトン酸、アクリル酸メチル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸デシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、ピパリン酸ビニルなどが挙げられる。   For example, carboxylic acid or carboxylic acid ester is not particularly limited, but acrylic acid, methacrylic acid, maleic anhydride, maleic acid, itaconic anhydride, itaconic acid, fumaric acid, crotonic acid, methyl acrylate, (meth) acrylic acid Methyl, ethyl (meth) acrylate, propyl (meth) acrylate, butyl acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, (meth ) Dodecyl acrylate, stearyl (meth) acrylate, vinyl formate, vinyl acetate, vinyl propionate, vinyl piperate.

カルボニル基を有するポリオレフィン樹脂微粒子中のカルボニル基の含有量は、フーリエ変換赤外分光装置(FT−IR:PerkinElmer社製Spectrum One/100)による全反射測定法(ATR)によって求めることができ、2800〜3000cm-1のオレフィン由来の最大ピーク高さ(極大吸光度)(X)と、1690〜1740cm-1のカルボニル基由来の最大ピーク高さ(極大吸光度)(Y)との比(Y)/(X)が0.05〜1.0であることが好ましい。また、ポリエチレンからなる樹脂微粒子においては、上記(Y)/(X)が0.3〜0.8であり、ポリプロピレンからなる樹脂微粒子においては、上記(Y)/(X)が0.05〜0.5であることがさらに好ましい。 The content of the carbonyl group in the polyolefin resin fine particles having a carbonyl group can be determined by a total reflection measurement method (ATR) using a Fourier transform infrared spectrometer (FT-IR: Spectrum One / 100 manufactured by PerkinElmer). Ratio (Y) / (maximum peak height (maximum absorbance) (X) derived from an olefin of ˜3000 cm −1 to maximum peak height (maximum absorbance) (Y) derived from a carbonyl group of 1690 to 1740 cm −1 X) is preferably from 0.05 to 1.0. In the resin fine particles made of polyethylene, the above (Y) / (X) is 0.3 to 0.8, and in the resin fine particles made of polypropylene, the above (Y) / (X) is 0.05 to 0.8. More preferably, it is 0.5.

ここでいうピーク高さとは、水分散樹脂微粒子(C)から分散媒を除去し、最終的に120℃で乾燥させて得られた固形物をFT−IRにて測定したものである。ポリオレフィン樹脂微粒子中のカルボニル基の含有量は、波数に対して吸光度をプロットしたスペクトルを用い、2700m-1における吸光度を示す点と3000cm-1における吸光度を示す点との2点を結ぶ直線をベースラインBXとした際の、2800〜3000cm-1に見られるオレフィン由来の2本または4本のうち、最大ピークからベースラインBXまでの高さ(極大吸光度)(X)と、1650m-1における吸光度を示す点と1850cm-1における吸光度を示す点との2点を結ぶ直線をベースラインBYとした際の、1690〜1740cm-1のカルボニル基由来の最大ピークからベースラインBYまでの高さ(極大吸光度)(Y)との比(Y)/(X)から求めることができる。一般的に、ポリエチレン系樹脂は2本、ポリプロピレン系樹脂は4本のピークが認められるが、両者とも最大ピークは2915cm-1付近に認められる。 The peak height referred to here is a value obtained by measuring a solid obtained by removing the dispersion medium from the water-dispersed resin fine particles (C) and finally drying at 120 ° C. by FT-IR. The content of the carbonyl group in the polyolefin resin fine particle is based on a straight line connecting two points, a point indicating the absorbance at 2700 m −1 and a point indicating the absorbance at 3000 cm −1 , using a spectrum in which the absorbance is plotted against the wave number. The height (maximum absorbance) (X) from the maximum peak to the baseline BX among 2 or 4 derived from olefins seen at 2800 to 3000 cm −1 when the line BX is taken, and the absorbance at 1650 m −1 The height from the maximum peak derived from the carbonyl group at 1690 to 1740 cm −1 to the baseline BY when the straight line connecting the two points of the point indicating the absorbance and the point indicating the absorbance at 1850 cm −1 is defined as the baseline BY (maximum) It can be determined from the ratio (Y) / (X) to (absorbance) (Y). In general, two peaks are observed for polyethylene-based resins and four peaks for polypropylene-based resins, and in both cases, the maximum peak is observed in the vicinity of 2915 cm −1 .

以上のようなポリオレフィン系樹脂微粒子は、市販品を用いることが可能であり、市販品としてはユニチカ社製のアローベースSB−1200、SD−1200、SE−1200、TC−4010、TD−4010、東洋アドレ社製のアクアペトロDP−2401、DP−2502、住友精化社製のザイクセンAC、A、AC−HW−10,L、NC、Nなど、三井化学社製のケミパールA100、A400、M200、S100、S200、S300、V100、V200、V300、W100、W200、W300、W400、W4005、WP100、東洋紡社製のハードレンNZ−1004、NZ−1015、東邦化学社製ハイテックE−6500、P−9018、S−3121などが挙げられるが、これらに限定されるものではなく、2種以上を組み合わせて用いても良い。   Commercially available products can be used as the polyolefin resin fine particles as described above, and as commercially available products, Arrow Base SB-1200, SD-1200, SE-1200, TC-4010, TD-4010, manufactured by Unitika Ltd. Chemipearl A100, A400, M200 made by Mitsui Chemicals, such as Aqua Petro DP-2401, DP-2502 made by Toyo Adre, Seixen AC, A, AC-HW-10, L, NC, N made by Sumitomo Seika , S100, S200, S300, V100, V200, V300, W100, W200, W300, W400, W4005, WP100, Hardren NZ-1004, NZ-1015 manufactured by Toyobo, Hitech E-6500, P-9018 manufactured by Toho Chemical Co., Ltd. , S-3121, etc., but are not limited to these. , It may be used in combination of two or more thereof.

水分散樹脂微粒子(C)の分散媒としては、水を使用することが好ましいが、樹脂微粒子の安定化等のために、水と相溶する以下に示す水性液状媒体(D)を使用しても良い。水と相溶する液状媒体としては、アルコール類、グリコール類、セロソルブ類、アミノアルコール類、アミン類、ケトン類、カルボン酸アミド類、リン酸アミド類、スルホキシド類、カルボン酸エステル類、リン酸エステル類、エーテル類、ニトリル類等が挙げられ、水と相溶する範囲で使用しても良い。   As a dispersion medium for the water-dispersed resin fine particles (C), it is preferable to use water. However, for stabilization of the resin fine particles, the following aqueous liquid medium (D) compatible with water is used. Also good. Liquid media compatible with water include alcohols, glycols, cellosolves, amino alcohols, amines, ketones, carboxylic acid amides, phosphoric acid amides, sulfoxides, carboxylic acid esters, and phosphoric acid esters , Ethers, nitriles and the like, and may be used as long as they are compatible with water.

水分散樹脂微粒子(C)の平均粒子径は、好ましくは0.01〜5μmであり、さらに好ましくは0.05〜1μmである。粒子径が小さすぎると、安定に製造するのが困難となり、一方、粒子径が大きすぎると、導電層の導電性を均一に保つことが困難となり、通常作動時の内部抵抗が上昇し、出力性能等が悪化する。   The average particle size of the water-dispersed resin fine particles (C) is preferably 0.01 to 5 μm, more preferably 0.05 to 1 μm. If the particle size is too small, it will be difficult to produce stably, while if the particle size is too large, it will be difficult to keep the conductivity of the conductive layer uniform, increasing the internal resistance during normal operation, and output Performance etc. deteriorates.

なお、本明細書における平均粒子径とは、体積平均粒子径(D50)のことを表し、動的光散乱法により測定した値を指す。動的光散乱法による平均粒子径の測定は、以下のようにして行うことができる。水分散樹脂微粒子分散液は固形分に応じて200〜1000倍に水希釈しておく。該希釈液約5mlを測定装置[(株)日機装製 ナノトラック]のセルに注入し、サンプルに応じた溶剤(本発明では水)および樹脂の屈折率条件を入力後、測定を行う。   In addition, the average particle diameter in this specification represents the volume average particle diameter (D50), and refers to the value measured by the dynamic light scattering method. The average particle diameter can be measured by the dynamic light scattering method as follows. The water-dispersed resin fine particle dispersion is diluted with water 200 to 1000 times depending on the solid content. About 5 ml of the diluted solution is injected into a cell of a measuring device [Nanotrack manufactured by Nikkiso Co., Ltd.], and after inputting the refractive index conditions of the solvent (water in the present invention) and the resin according to the sample, the measurement is performed.

<水性液状媒体(D)>
水性液状媒体(D)としては、水を使用することが好ましいが、必要に応じて、例えば、集電体への塗工性向上のために、水と相溶する液状媒体を使用しても良い。
<Aqueous liquid medium (D)>
As the aqueous liquid medium (D), it is preferable to use water, but if necessary, for example, a liquid medium compatible with water may be used to improve the coating property to the current collector. good.

水と相溶する液状媒体としては、アルコール類、グリコール類、セロソルブ類、アミノアルコール類、アミン類、ケトン類、カルボン酸アミド類、リン酸アミド類、スルホキシド類、カルボン酸エステル類、リン酸エステル類、エーテル類、ニトリル類等が挙げられ、水と相溶する範囲で使用しても良い。   Liquid media compatible with water include alcohols, glycols, cellosolves, amino alcohols, amines, ketones, carboxylic acid amides, phosphoric acid amides, sulfoxides, carboxylic acid esters, and phosphoric acid esters , Ethers, nitriles and the like, and may be used as long as they are compatible with water.

<その他添加剤>
さらに、導電性組成物には、界面活性剤、成膜助剤、消泡剤、レベリング剤、防腐剤、pH調整剤、粘性調整剤などを必要に応じて配合できる。
<Other additives>
Furthermore, a surfactant, a film forming aid, an antifoaming agent, a leveling agent, a preservative, a pH adjusting agent, a viscosity adjusting agent, and the like can be added to the conductive composition as necessary.

<分散機・混合機>
本発明の導電性組成物や後述する合材インキを得る際に用いられる装置としては、顔料分散等に通常用いられている分散機、混合機が使用できる。
例えば、ディスパー、ホモミキサー、若しくはプラネタリーミキサー等のミキサー類;エム・テクニック社製「クレアミックス」、若しくはPRIMIX社「フィルミックス」等のホモジナイザー類;ペイントコンディショナー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノミル」等)、アトライター、パールミル(アイリッヒ社製「DCPミル」等)、若しくはコボールミル等のメディア型分散機;湿式ジェットミル(ジーナス社製「ジーナスPY」、スギノマシン社製「スターバースト」、ナノマイザー社製「ナノマイザー」等)、エム・テクニック社製「クレアSS−5」、若しくは奈良機械社製「MICROS」等のメディアレス分散機;または、その他ロールミル等が挙げられるが、これらに限定されるものではない。また、分散機としては、分散機からの金属混入防止処理を施したものを用いることが好ましい。
<Disperser / Mixer>
As an apparatus used when obtaining the conductive composition of the present invention or a composite ink described later, a disperser or a mixer that is usually used for pigment dispersion or the like can be used.
For example, mixers such as dispersers, homomixers, or planetary mixers; homogenizers such as “Clairemix” manufactured by M Technique, or “Fillmix” manufactured by PRIMIX; paint conditioner (manufactured by Red Devil), ball mill, sand mill (Shinmaru Enterprises "Dynomill", etc.), Attritor, Pearl Mill (Eirich "DCP Mill", etc.), or Coball Mill, etc .; Media type dispersers; Wet Jet Mill (Genus, "Genus PY", Sugino Media-less dispersers such as “Starburst” manufactured by Machine, “Nanomizer” manufactured by Nanomizer, etc., “Claire SS-5” manufactured by M Technique, or “MICROS” manufactured by Nara Machinery; or other roll mills, etc. Although The present invention is not limited to these. Moreover, as the disperser, it is preferable to use a disperser that has been subjected to a metal contamination prevention treatment from the disperser.

例えば、メディア型分散機を使用する場合は、アジテーター及びベッセルがセラミック製又は樹脂製の分散機を使用する方法や、金属製アジテーター及びベッセル表面をタングステンカーバイド溶射や樹脂コーティング等の処理をした分散機を用いることが好ましい。そして、メディアとしては、ガラスビーズ、または、ジルコニアビーズ、若しくはアルミナビーズ等のセラミックビーズを用いることが好ましい。また、ロールミルを使用する場合についても、セラミック製ロールを用いることが好ましい。分散装置は、1種のみを使用しても良いし、複数種の装置を組み合わせて使用しても良い。また、強い衝撃で粒子が割れたり、潰れたりしやすい正または負極活物質の場合は、メディア型分散機よりは、ロールミルやホモジナイザー等のメディアレス分散機が好ましい。   For example, when using a media-type disperser, a disperser in which the agitator and vessel are made of a ceramic or resin disperser, or the surface of the metal agitator and vessel is treated with tungsten carbide spraying or resin coating. Is preferably used. As the media, it is preferable to use glass beads, ceramic beads such as zirconia beads or alumina beads. Moreover, also when using a roll mill, it is preferable to use a ceramic roll. Only one type of dispersion device may be used, or a plurality of types of devices may be used in combination. Further, in the case of a positive or negative electrode active material in which particles are easily broken or crushed by a strong impact, a medialess disperser such as a roll mill or a homogenizer is preferable to a media type disperser.

<蓄電デバイス用下地層付き集電体、蓄電デバイス用電極>
本発明の蓄電デバイス用下地層付き集電体とは、集電体上に、本発明の導電性組成物から形成された下地層を有するものである。また、本発明の蓄電デバイス用電極とは、集電体上に、本発明の導電性組成物から形成された下地層と、電極活物質とバインダーとを含有する電極形成用組成物(合材インキ)から形成された合材層とを有する。
<Current collector with base layer for power storage device, electrode for power storage device>
The current collector with an underlayer for an electricity storage device of the present invention has an underlayer formed from the conductive composition of the present invention on the current collector. The electrode for an electricity storage device of the present invention is an electrode-forming composition (composite material) comprising an underlayer formed from the conductive composition of the present invention on a current collector, an electrode active material, and a binder. And a composite material layer formed from the ink).

(集電体)
電極に使用する集電体の材質や形状は特に限定されず、各種蓄電デバイス用にあったものを適宜選択することができる。例えば、集電体の材質としては、アルミニウム、銅、ニッケル、チタン、又はステンレス等の金属や合金が挙げられる。リチウムイオン電池の場合、特に正極材料としてはアルミニウムが、負極材料としては銅が、それぞれ好ましい。また、形状としては、一般的には平板上の箔が用いられるが、表面を粗面化したものや、穴あき箔状のもの、及びメッシュ状の集電体も使用できる。
(Current collector)
The material and shape of the current collector used for the electrode are not particularly limited, and those suitable for various power storage devices can be appropriately selected. For example, examples of the material for the current collector include metals and alloys such as aluminum, copper, nickel, titanium, and stainless steel. In the case of a lithium ion battery, aluminum is particularly preferable as the positive electrode material, and copper is preferable as the negative electrode material. In general, a flat foil is used as the shape, but a roughened surface, a perforated foil, or a mesh current collector can also be used.

集電体上に導電性組成物や後述する合材インキを塗工する方法としては、特に制限はなく公知の方法を用いることができる。具体的には、ダイコーティング法、ディップコーティング法、ロールコーティング法、ドクターコーティング法、ナイフコーティング法、スプレーコティング法、グラビアコーティング法、スクリーン印刷法または静電塗装法等が挙げる事ができ、乾燥方法としては放置乾燥、送風乾燥機、温風乾燥機、赤外線加熱機、遠赤外線加熱機などが使用できるが、特にこれらに限定されるものではなく、塗布後に平版プレスやカレンダーロール等による圧延処理を行っても良い。   There is no restriction | limiting in particular as a method of apply | coating a conductive composition and the mixture ink mentioned later on a collector, A well-known method can be used. Specific examples include die coating method, dip coating method, roll coating method, doctor coating method, knife coating method, spray coating method, gravure coating method, screen printing method or electrostatic coating method, and the like. Examples of methods that can be used include standing drying, blow dryers, hot air dryers, infrared heaters, and far infrared heaters, but are not limited to these, and rolling treatment with a lithographic press or calender roll after application. May be performed.

下地層の厚みは、好ましくは0.1〜10μmであり、より好ましくは0.5〜5μm、さらに好ましくは0.5〜3μmである。下地層の厚みが0.1μm以上であれば、集電体と活物質とが直接接触するバイパス部分が均一に形成され、電池が発熱した際、下地層部分の抵抗増大による電流遮断効果が十分となる。一方、下地層の厚みが10μm以下であれば、蓄電デバイスの容量が低下しにくいため好ましい。   The thickness of the underlayer is preferably 0.1 to 10 μm, more preferably 0.5 to 5 μm, and still more preferably 0.5 to 3 μm. If the thickness of the underlayer is 0.1 μm or more, the bypass portion where the current collector and the active material are in direct contact is formed uniformly, and when the battery generates heat, the current blocking effect due to the increased resistance of the underlayer portion is sufficient It becomes. On the other hand, it is preferable that the thickness of the underlayer is 10 μm or less because the capacity of the electricity storage device is unlikely to decrease.

通常使用時における蓄電デバイスの導電性や、温度上昇時における抵抗上昇の観点から、下地層の密度は、好ましくは1.4g/cm3以上であり、より好ましくは、1.4g/cm3以上2.2g/cm3以下である。下地層の密度が1.4g/cm3以上であれば、オレフィン系樹脂微粒子の体積膨張による炭素材料同士の接触の切断する効果が高まると考えられ、特に、炭素材料に黒鉛を使用することが好ましい。 From the viewpoint of the electrical conductivity of the electricity storage device during normal use and the increase in resistance when the temperature rises, the density of the underlayer is preferably 1.4 g / cm 3 or more, more preferably 1.4 g / cm 3 or more. It is 2.2 g / cm 3 or less. If the density of the underlayer is 1.4 g / cm 3 or more, it is considered that the effect of cutting the contact between the carbon materials due to the volume expansion of the olefin resin fine particles is enhanced. In particular, it is possible to use graphite for the carbon material. preferable.

下地層は集電体の片面もしくは両面に設置できるが、熱による抵抗上昇や蓄電デバイスの内部抵抗低減の観点から、集電体の両面に設置することが好ましい。   The underlayer can be provided on one side or both sides of the current collector, but is preferably provided on both sides of the current collector from the viewpoint of increasing resistance due to heat and reducing the internal resistance of the electricity storage device.

<合材インキ>
前記したように、一般的な蓄電デバイス用の合材インキは、活物質と、溶媒を必須とし、必要に応じて導電助剤と、バインダーとを含有する。
活物質はできるだけ多く含まれることが好ましく、例えば、合材インキ固形分に占める活物質の割合は、80〜99質量%が好ましい。導電助剤を含む場合、合材インキ固形分に占める導電助剤の割合は、0.1〜15質量%であることが好ましい。バインダーを含む場合、合材インキ固形分に占めるバインダーの割合は、0.1〜15質量%であることが好ましい。
<Composite ink>
As described above, a general ink mixture for a power storage device essentially includes an active material and a solvent, and contains a conductive additive and a binder as necessary.
The active material is preferably contained as much as possible. For example, the proportion of the active material in the solid material ink solid content is preferably 80 to 99% by mass. When the conductive assistant is included, the proportion of the conductive assistant in the solid ink solid content is preferably 0.1 to 15% by mass. When the binder is included, the ratio of the binder to the solid material ink solid content is preferably 0.1 to 15% by mass.

塗工方法によるが、固形分30〜90質量%の範囲で、合材インキの粘度は、100mPa・s以上、30,000mPa・s以下とするのが好ましい。   Although it depends on the coating method, the viscosity of the composite ink is preferably 100 mPa · s or more and 30,000 mPa · s or less in the range of 30 to 90% by mass of the solid content.

合材インキの溶媒(分散媒)は特に限定されないが、使用するバインダーに応じて使い分けることができる。例えば樹脂型のバインダーを用いる場合、樹脂を溶解可能な溶媒が使用され、エマルション型のバインダーを用いる場合、エマルションの分散を維持できる溶媒を用いることが好ましい。溶媒としては、例えば、ジメチルホルムアミド、ジメチルアセトアミド、メチルホルムアミドなどのアミド類、N−メチル−2−ピロリドン(NMP)、ジメチルアミンなどのアミン類、メチルエチルケトン、アセトン、シクロヘキサノンなどのケトン類、アルコール類、グリコール類、セロソルブ類、アミノアルコール類、スルホキシド類、カルボン酸エステル類、リン酸エステル類、エーテル類、ニトリル類、水等が挙げられる。また、必要に応じて、上記溶媒を2種以上組み合わせて使用しても良い。例えば、ポリフッ化ビニリデン(PVDF)をバインダーに用いる場合、PVDFを溶解可能なNMPが好ましく用いられ、カルボキシメチルセルロース(CMC)とスチレンブタジエンゴム(SBR)をバインダーに用いる場合、CMCを溶解し、SBRの分散を維持できる水が好ましく用いられる。   Although the solvent (dispersion medium) of compound ink is not specifically limited, It can be used properly according to the binder to be used. For example, when a resin-type binder is used, a solvent capable of dissolving the resin is used. When an emulsion-type binder is used, it is preferable to use a solvent that can maintain dispersion of the emulsion. Examples of the solvent include amides such as dimethylformamide, dimethylacetamide, and methylformamide, amines such as N-methyl-2-pyrrolidone (NMP), dimethylamine, ketones such as methyl ethyl ketone, acetone, and cyclohexanone, alcohols, Examples include glycols, cellosolves, amino alcohols, sulfoxides, carboxylic acid esters, phosphate esters, ethers, nitriles, and water. Moreover, you may use it in combination of 2 or more types of the said solvent as needed. For example, when polyvinylidene fluoride (PVDF) is used as a binder, NMP capable of dissolving PVDF is preferably used, and when carboxymethyl cellulose (CMC) and styrene butadiene rubber (SBR) are used as a binder, CMC is dissolved and SBR Water that can maintain dispersion is preferably used.

合材インキ中で使用される活物質について以下説明する。
リチウムイオン二次電池用の正極活物質としては、特に限定はされないが、リチウムイオンをドーピングまたはインターカレーション可能な金属酸化物、金属硫化物等の金属化合物、および導電性高分子等を使用することができる。
The active material used in the composite ink will be described below.
The positive electrode active material for the lithium ion secondary battery is not particularly limited, but metal oxides capable of doping or intercalating lithium ions, metal compounds such as metal sulfides, and conductive polymers are used. be able to.

例えば、Fe、Co、Ni、Mn等の遷移金属の酸化物、リチウムとの複合酸化物、遷移金属硫化物等の無機化合物等が挙げられる。具体的には、MnO、V25、V613
TiO2等の遷移金属酸化物粉末、層状構造のニッケル酸リチウム、コバルト酸リチウム
、マンガン酸リチウム、スピネル構造のマンガン酸リチウムなどのリチウムと遷移金属との複合酸化物粉末、オリビン構造のリン酸化合物であるリン酸鉄リチウム系材料、TiS2、FeSなどの遷移金属硫化物粉末等が挙げられる。
Examples thereof include transition metal oxides such as Fe, Co, Ni, and Mn, composite oxides with lithium, and inorganic compounds such as transition metal sulfides. Specifically, MnO, V 2 O 5 , V 6 O 13 ,
Transition metal oxide powders such as TiO 2, lithium nickelate with layered structure, lithium cobaltate, lithium manganate, composite oxide powder of lithium and transition metal such as spinel structure lithium manganate, phosphate compound with olivine structure Examples thereof include lithium iron phosphate materials, transition metal sulfide powders such as TiS 2 and FeS.

また、ポリアニリン、ポリアセチレン、ポリピロール、ポリチオフェン等の導電性高分子を使用することもできる。また、上記の無機化合物や導電性高分子を混合して用いてもよい。   In addition, conductive polymers such as polyaniline, polyacetylene, polypyrrole, and polythiophene can also be used. Moreover, you may mix and use said inorganic compound and conductive polymer.

リチウムイオン二次電池用の負極活物質としては、リチウムイオンをドーピングまたはインターカレーション可能なものであれば特に限定されない。例えば、金属Li、その合金であるスズ合金、シリコン合金、鉛合金等の合金系、LiXFe23、LiXFe34、LiXWO2、チタン酸リチウム、バナジウム酸リチウム、ケイ素酸リチウム等の金属酸化物系、ポリアセチレン、ポリ−p−フェニレン等の導電性高分子系、ソフトカーボンやハードカーボンといった、アモルファス系炭素質材料や、高黒鉛化炭素材料等の人造黒鉛、あるいは天然黒鉛等の炭素質粉末、カーボンブラック、メソフェーズカーボンブラック、樹脂焼成炭素材料、気層成長炭素繊維、炭素繊維などの炭素系材料が挙げられる。これら負極活物質は、1種または複数を組み合わせて使用することも出来る。 The negative electrode active material for the lithium ion secondary battery is not particularly limited as long as it can be doped or intercalated with lithium ions. For example, metal Li, alloys thereof such as tin alloys, silicon alloys, lead alloys, Li x Fe 2 O 3 , Li x Fe 3 O 4 , Li x WO 2 , lithium titanate, lithium vanadate, silicon Metal oxides such as lithium oxide, conductive polymers such as polyacetylene and poly-p-phenylene, amorphous carbonaceous materials such as soft carbon and hard carbon, artificial graphite such as highly graphitized carbon materials, or natural Examples thereof include carbonaceous powders such as graphite, carbon black, mesophase carbon black, resin-fired carbon materials, air-growth carbon fibers, and carbon fibers. These negative electrode active materials can be used alone or in combination.

電気二重層キャパシター用の電極活物質としては、特に限定されないが、活性炭、ポリアセン、カーボンウィスカ及びグラファイト等が挙げられ、これらの粉末または繊維などが挙げられる。電気二重層キャパシター用の好ましい電極活物質は活性炭であり、具体的にはフェノール系、ヤシガラ系、レーヨン系、アクリル系、石炭/ 石油系ピッチコークス、メソカーボンマイクロビーズ(MCMB)等を賦活した活性炭を挙げることができる。同じ重量でもより広い面積の界面を形成することが可能な、比表面積の大きいものが好ましい。具体的には、比表面積が30m2/g以上、好ましくは500〜5000m2/g、より好ましくは1000〜 3000m2/gであることが好ましい。 Although it does not specifically limit as an electrode active material for electric double layer capacitors, Activated carbon, polyacene, carbon whisker, graphite, etc. are mentioned, These powder or fiber etc. are mentioned. The preferred electrode active material for the electric double layer capacitor is activated carbon, specifically activated carbon activated with phenolic, coconut shell, rayon, acrylic, coal / petroleum pitch coke, mesocarbon microbeads (MCMB), etc. Can be mentioned. Those having a large specific surface area capable of forming an interface having a larger area even with the same weight are preferred. Specifically, the specific surface area is 30 m 2 / g or more, preferably 500 to 5000 m 2 / g, more preferably 1000 to 3000 m 2 / g.

これらの電極活物質は、単独、または二種類以上を組み合わせて使用することができるし、体積平均粒子径(D50)または粒度分布の異なる二種類以上の炭素を組み合わせて使用してもよい。   These electrode active materials can be used alone or in combination of two or more kinds, or two or more kinds of carbons having different volume average particle diameter (D50) or particle size distribution may be used in combination.

リチウムイオンキャパシター用の正極活物質としては、リチウムイオンおよびアニオンを可逆的にドープ・脱ドープすることが可能な材料であれば、特に限定されるものではないが、例えば活性炭粉末が挙げられる。活性炭の体積平均粒子径(D50)は、0.1μm〜20μmが好ましい。ここでいう体積平均粒子径(D50)は、上述の通りである。   The positive electrode active material for the lithium ion capacitor is not particularly limited as long as it is a material capable of reversibly doping and dedoping lithium ions and anions, and examples thereof include activated carbon powder. The volume average particle diameter (D50) of the activated carbon is preferably 0.1 μm to 20 μm. The volume average particle diameter (D50) here is as described above.

リチウムイオンキャパシター用の負極活物質としては、リチウムイオンを可逆的にドープ・脱ドープ可能である材料であれば、特に限定されるものではないが、例えば人造黒鉛、天然黒鉛などの黒鉛系材料が挙げられる。黒鉛材料の体積平均粒子径(D50)は、0.1μm〜20μmが好ましい。ここでいう体積平均粒子径(D50)は、上述の通りである。   The negative electrode active material for the lithium ion capacitor is not particularly limited as long as it is a material capable of reversibly doping and dedoping lithium ions. For example, graphite-based materials such as artificial graphite and natural graphite can be used. Can be mentioned. The volume average particle diameter (D50) of the graphite material is preferably 0.1 μm to 20 μm. The volume average particle diameter (D50) here is as described above.

合材インキ中の導電助剤とは、導電性を有する炭素材料であれば特に限定されるものではなく、上述の導電性の炭素材料(A)と同様のものも使用できる。   The conductive assistant in the composite ink is not particularly limited as long as it is a carbon material having conductivity, and the same conductive carbon material (A) as described above can be used.

合材インキ中のバインダーとは、活物質や導電性の炭素材料などの粒子同士、あるいは導電性の炭素材料と集電体を結着させるために使用されるものである。   The binder in the composite ink is used for binding particles such as an active material or a conductive carbon material, or a conductive carbon material and a current collector.

合材インキ中で使用されるバインダーとしては、例えば、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、ホルムアルデヒド樹脂、シリコン樹脂、フッ素樹脂、カルボキシメチルセルロース等のセルロース樹脂、スチレン−ブタジエンゴムやフッ素ゴム等の合成ゴム、ポリアニリンやポリアセチレン等の導電性樹脂等、ポリフッ化ビニリデン、ポリフッ化ビニル、及びテトラフルオロエチレン等のフッ素原子を含む高分子化合物が挙げられる。また、これらの樹脂の変性物、混合物、又は共重合体でも良い。これらバインダーは、1種または複数を組み合わせて使用することも出来る。
また、水性の合材インキ中で好適に使用されるバインダーとしては水媒体のものが好ましく、水媒体のバインダーの形態としては、水溶性型、エマルション型、ハイドロゾル型等が挙げられ、適宜選択することができる。
Examples of binders used in the composite ink include acrylic resin, polyurethane resin, polyester resin, phenol resin, epoxy resin, phenoxy resin, urea resin, melamine resin, alkyd resin, formaldehyde resin, silicon resin, fluorine resin, Cellulose resins such as carboxymethyl cellulose, synthetic rubbers such as styrene-butadiene rubber and fluororubber, conductive resins such as polyaniline and polyacetylene, and polymer compounds containing fluorine atoms such as polyvinylidene fluoride, polyvinyl fluoride, and tetrafluoroethylene Is mentioned. Further, a modified product, a mixture, or a copolymer of these resins may be used. These binders can be used alone or in combination.
The binder suitably used in the water-based composite ink is preferably an aqueous medium, and examples of the aqueous medium binder include water-soluble type, emulsion type, hydrosol type, and the like. be able to.

さらに、合材インキには、成膜助剤、消泡剤、レベリング剤、防腐剤、pH調整剤、粘性調整剤などを必要に応じて配合できる。   Furthermore, a film forming aid, an antifoaming agent, a leveling agent, a preservative, a pH adjuster, a viscosity adjuster, and the like can be blended in the composite ink as necessary.

<電極の製造方法>
本発明の導電性組成物を、集電体上に塗工・乾燥し、下地層を形成し、蓄電デバイス用下地層電極を得ることができる。
<Method for producing electrode>
The conductive composition of the present invention can be applied and dried on a current collector to form a base layer, whereby a base layer electrode for an electricity storage device can be obtained.

あるいは、本発明の導電性組成物を、集電体上に塗工・乾燥し、下地層を形成し、該下地層上に、合材層を設け、蓄電デバイス用電極を得ることもできる。下地層上に設ける合材層は、上記した合材インキを用いて形成することができる。   Alternatively, the conductive composition of the present invention can be applied to a current collector and dried to form a base layer, and a composite layer can be provided on the base layer to obtain an electrode for an electricity storage device. The composite material layer provided on the base layer can be formed using the above-described composite ink.

<蓄電デバイス>
正極もしくは負極の少なくとも一方に上記の電極を用い、二次電池、キャパシターなどの蓄電デバイスを得ることができる。
<Power storage device>
By using the above electrode for at least one of the positive electrode and the negative electrode, an electricity storage device such as a secondary battery or a capacitor can be obtained.

二次電池としては、リチウムイオン二次電池の他、ナトリウムイオン二次電池、マグネシウムイオン二次電池、アルカリ二次電池、鉛蓄電池、ナトリウム硫黄二次電池、リチウム空気二次電池等が挙げられ、それぞれの二次電池で従来から知られている、電解液やセパレーター等を適宜用いることができる。   Secondary batteries include lithium ion secondary batteries, sodium ion secondary batteries, magnesium ion secondary batteries, alkaline secondary batteries, lead storage batteries, sodium sulfur secondary batteries, lithium air secondary batteries, etc. An electrolyte solution, a separator, and the like that are conventionally known for each secondary battery can be appropriately used.

キャパシターとしては、電気二重層キャパシター、リチウムイオンキャパシターなどが挙げられ、それぞれのキャパシターで従来から知られている、電解液やセパレーター等を適宜用いることができる。   Examples of the capacitor include an electric double layer capacitor, a lithium ion capacitor, and the like, and an electrolyte, a separator, and the like that are conventionally known for each capacitor can be appropriately used.

<電解液>
リチウムイオン二次電池の場合を例にとって説明する。電解液としては、リチウムを含んだ電解質を非水系の溶剤に溶解したものを用いる。
<Electrolyte>
A case of a lithium ion secondary battery will be described as an example. As the electrolytic solution, an electrolyte containing lithium dissolved in a non-aqueous solvent is used.

電解質としては、LiBF4、LiClO4、LiPF6、LiAsF6、LiSbF6、LiCF3SO3、Li(CF3SO22N、LiC49SO3、Li(CF3SO23C、LiI、LiBr、LiCl、LiAlCl、LiHF2、LiSCN、又はLiBPh4等が挙げられるがこれらに限定されない。 As electrolytes, LiBF 4 , LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 3 C , LiI, LiBr, LiCl, LiAlCl, LiHF 2 , LiSCN, or LiBPh 4, but are not limited thereto.

非水系の溶剤としては特に限定はされないが、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、及びジエチルカーボネート等のカーボネート類;
γ−ブチロラクトン、γ−バレロラクトン、及びγ−オクタノイックラクトン等のラクトン類;
テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、1,2−メトキシエタン、1,2−エトキシエタン、及び1,2−ジブトキシエタン等のグライム類;
メチルフォルメート、メチルアセテート、及びメチルプロピオネート等のエステル類;ジメチルスルホキシド、及びスルホラン等のスルホキシド類;並びに、
アセトニトリル等のニトリル類等が挙げられる。又これらの溶剤は、それぞれ単独で使用しても良いが、2種以上を混合して使用しても良い。
Although it does not specifically limit as a non-aqueous solvent, For example, carbonates, such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate;
Lactones such as γ-butyrolactone, γ-valerolactone, and γ-octanoic lactone;
Glymes such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,2-methoxyethane, 1,2-ethoxyethane, and 1,2-dibutoxyethane;
Esters such as methyl formate, methyl acetate, and methyl propionate; sulfoxides such as dimethyl sulfoxide and sulfolane; and
Nitriles such as acetonitrile are exemplified. These solvents may be used alone or in combination of two or more.

さらに上記電解液をポリマーマトリクスに保持しゲル状とした高分子電解質とすることもできる。ポリマーマトリクスとしては、ポリアルキレンオキシドセグメントを有するアクリレート系樹脂、ポリアルキレンオキシドセグメントを有するポリホスファゼン系樹脂、及びポリアルキレンオキシドセグメントを有するポリシロキサン等が挙げられるがこれらに限定されない。   Furthermore, it is also possible to obtain a polymer electrolyte in which the above electrolytic solution is held in a polymer matrix and made into a gel. Examples of the polymer matrix include, but are not limited to, an acrylate resin having a polyalkylene oxide segment, a polyphosphazene resin having a polyalkylene oxide segment, and a polysiloxane having a polyalkylene oxide segment.

<セパレーター>
セパレーターとしては、例えば、ポリエチレン不織布、ポリプロピレン不織布、ポリアミド不織布及びそれらに親水性処理を施したものが挙げられるが、特にこれらに限定されるものではない。
<Separator>
Examples of the separator include, but are not limited to, a polyethylene nonwoven fabric, a polypropylene nonwoven fabric, a polyamide nonwoven fabric and those obtained by subjecting them to a hydrophilic treatment.

本発明の組成物を用いたリチウムイオン二次電池、電気二重層キャパシター、リチウムイオンキャパシターの構造については特に限定されないが、通常、正極及び負極と、必要に応じて設けられるセパレーターとから構成され、ペーパー型、円筒型、ボタン型、積層型等、使用する目的に応じた種々の形状とすることができる。   The structure of the lithium ion secondary battery, the electric double layer capacitor, and the lithium ion capacitor using the composition of the present invention is not particularly limited, and is usually composed of a positive electrode and a negative electrode, and a separator provided as necessary. Various shapes can be formed according to the purpose of use, such as a paper type, a cylindrical type, a button type, and a laminated type.

(実施例1)
<導電性組成物>
導電性の炭素材料として黒鉛(A−1:TIMREX KS−6、Timcal社製)60質量部、水溶性樹脂であるカルボキシメチルセルロース(B−1:CMCダイセル#1240、ダイセル化学工業社製)2.5%水溶液200質量部(固形分として5質量部)、水性液状媒体(D)として水500質量部をミキサーに入れて30分間混合し、更にサンドミルに入れて30分間分散を行った。次に水分散樹脂微粒子であるポリオレフィン系樹脂微粒子(C−1:アローベースSB−1200、ユニチカ社製、25%水系分散液(平均粒子径0.10μm))140質量部(固形分として35質量部)を入れ、ミキサーで10分間混合し、導電性組成物(1)を得た。
Example 1
<Conductive composition>
1. As a conductive carbon material, graphite (A-1: TIMRX KS-6, manufactured by Timcal) 60 parts by mass, carboxymethyl cellulose which is a water-soluble resin (B-1: CMC Daicel # 1240, manufactured by Daicel Chemical Industries) 200 parts by mass of a 5% aqueous solution (5 parts by mass as a solid content) and 500 parts by mass of water as an aqueous liquid medium (D) were mixed in a mixer for 30 minutes, and further dispersed in a sand mill for 30 minutes. Next, polyolefin resin fine particles (C-1: Arrow Base SB-1200, manufactured by Unitika Co., Ltd., 25% aqueous dispersion (average particle size: 0.10 μm)) 140 parts by mass (35 mass as solid content) which are water-dispersed resin fine particles Part) and mixed with a mixer for 10 minutes to obtain a conductive composition (1).

実施例および比較例に用いた材料の評価については、以下の通り行った。
(導電性の炭素材料の総比表面積)
導電性の炭素材料は、ガス吸着量測定装置(日本ベル社製 BELSORP−mini)を用い、JIS K6217−2にて比表面積を測定した。総比表面積は、各導電性の炭素材料の比表面積と混合比の加重平均値を総比表面積とした。
Evaluation of materials used in Examples and Comparative Examples was performed as follows.
(Total specific surface area of conductive carbon material)
The specific surface area of the conductive carbon material was measured in accordance with JIS K6217-2 using a gas adsorption amount measuring device (BELSORP-mini manufactured by Nippon Bell Co., Ltd.). The total specific surface area was defined as a weighted average value of the specific surface area and mixing ratio of each conductive carbon material.

(カルボキシメチルセルロース水溶液の粘度)
カルボキシメチルセルロース1gと水99gとを混合して水溶液を作成した。そして、水溶液の粘度をレオメーター(TAインスツルメント社製AR−G2)により、コーンプレート(60mm、1°)を用いて、測定温度25℃、せん断速度360(1/s)で測定した。
(Viscosity of carboxymethyl cellulose aqueous solution)
An aqueous solution was prepared by mixing 1 g of carboxymethyl cellulose and 99 g of water. Then, the viscosity of the aqueous solution was measured with a rheometer (AR Instruments G-TA2 manufactured by TA Instruments) using a cone plate (60 mm, 1 °) at a measurement temperature of 25 ° C. and a shear rate of 360 (1 / s).

(水分散樹脂微粒子の体積平均粒子径)
水分散樹脂微粒子分散液を、固形分に応じて200〜1000倍に水で希釈し、該希釈液約5mlをナノトラック(日機装社製 Wave−EX150)のセルに注入し、水および樹脂の屈折率条件を入力後、測定を行い、D50体積平均粒子径を求めた。尚、「体積平均粒子径」を「平均粒子径」と略記することがある。
(Volume average particle diameter of water-dispersed resin fine particles)
The water-dispersed resin fine particle dispersion is diluted with water to 200 to 1000 times depending on the solid content, and about 5 ml of the diluted solution is injected into a nanotrack cell (Wave-EX150 manufactured by Nikkiso Co., Ltd.) to refract water and resin. After inputting the rate condition, measurement was performed to determine D50 volume average particle diameter. The “volume average particle diameter” may be abbreviated as “average particle diameter”.

(ポリオレフィン樹脂微粒子中のカルボニル基含有量(Y)/(X))
水分散樹脂微粒子(C)を含む分散液を80℃のオーブンに入れ、分散媒を除去した後、120℃で30分乾燥させて固形物を得た。この固形物をフーリエ変換赤外分光装置(FT−IR:PerkinElmer社製Spectrum One/100)による全反射測定法(ATR)によって測定して赤外吸収スペクトルを得た。樹脂微粒子中のカルボニル基含有量は、波数に対して吸光度をプロットした赤外吸収スペクトルを用い、2700cm-1における吸光度を示す点と3000cm-1における吸光度を示す点との2点を結ぶ直線をベースラインBXとした際の、2800〜3000cm-1のオレフィン由来の最大ピークからベースラインBXまでの高さ(極大吸光度)(X)と、1650m-1における吸光度を示す点と1850cm-1における吸光度を示す点との2点を結ぶ直線をベースラインBYとした際の、1690〜1740cm-1のカルボニル基由来の最大ピークからベースラインBYまでの高さ(極大吸光度)(Y)との比(Y)/(X)を求めた。
(Carbonyl group content in polyolefin resin fine particles (Y) / (X))
The dispersion containing the water-dispersed resin fine particles (C) was placed in an oven at 80 ° C. to remove the dispersion medium, and then dried at 120 ° C. for 30 minutes to obtain a solid. This solid matter was measured by a total reflection measurement method (ATR) using a Fourier transform infrared spectrometer (FT-IR: Spectrum One / 100 manufactured by PerkinElmer) to obtain an infrared absorption spectrum. Carbonyl group content in the resin fine particles, using an infrared absorption spectrum obtained by plotting absorbance against wave number, a straight line connecting two points of the point indicating the absorbance at a point and 3000 cm -1 indicating the absorbance at 2700 cm -1 when used as a baseline BX, 2800 to 3000 cm from the maximum peak derived from olefins -1 until the baseline BX height (maximum absorbance) and (X), the absorbance at a point and 1850 cm -1 indicating the absorbance at 1650 m -1 The ratio from the maximum peak derived from the carbonyl group at 1690 to 1740 cm -1 to the baseline BY (maximum absorbance) (Y) when the straight line connecting the two points with the point indicating Y) / (X) was determined.

(実施例2〜15、比較例2〜3、参考例1)
表1に示す材料、組成比に変更した以外は、実施例1と同様の方法により、それぞれ導電性組成物(2)〜(15)、(17)〜(19)を得た。
(Examples 2-15, Comparative Examples 2-3, Reference Example 1)
Conductive compositions (2) to (15) and (17) to (19) were obtained in the same manner as in Example 1 except that the materials and composition ratios shown in Table 1 were changed.

実施例および比較例で使用した材料を以下に示す。
(導電性の炭素材料(A))
・A−1:TIMREX KS−6(Timcal社製、黒鉛、比表面積20m2/g)
・A−2:J−SP−α (日本黒鉛社製、黒鉛、比表面積10m2/g、平均粒子径6μm)
・A−3:SNO−5(SECカーボン社製、黒鉛、比面積15m2/g、平均粒子径5μm)
・A−4:デンカブラックHS−100(デンカ社製、アセチレンブラック、平均粒子径48nm、比表面積45m2/g)
(水溶性樹脂)(B))
・B−1:CMCダイセル#1240(ダイセル化学工業社製、カルボキシメチルセルロース、粘度0.02Pa・s)
・B−2:ポリアクリル酸ナトリウム(和光純薬工業社製、平均分子量5000)
・B−3:クラレポバールPVA235(クラレ社製、ポリビニルアルコール)
(水分散樹脂微粒子(C))
・C−1:ザイクセンAC(固形分30%水分散液、平均粒子径0.04μm、変性量(Y)/(X)0.64、カルボニル基を有するポリエチレン系樹脂微粒子)(住友精化社製)
・C−2:アローベースSB−1200(固形分25%水分散液、平均粒子径0.10μm、変性量(Y)/(X)0.58、カルボニル基を有するポリエチレン系樹脂微粒子)(ユニチカ社製)
・C−3:ケミパールW4005(固形分40%水分散液、平均粒子径0.57μm、変性なし、ポリエチレン系樹脂微粒子)(三井化学社製)
The materials used in Examples and Comparative Examples are shown below.
(Conductive carbon material (A))
A-1: TIMREX KS-6 (manufactured by Timcal, graphite, specific surface area 20 m 2 / g)
A-2: J-SP-α (manufactured by Nippon Graphite Co., graphite, specific surface area 10 m 2 / g, average particle diameter 6 μm)
A-3: SNO-5 (manufactured by SEC Carbon, graphite, specific area 15 m 2 / g, average particle diameter 5 μm)
A-4: Denka Black HS-100 (manufactured by Denka Co., acetylene black, average particle size 48 nm, specific surface area 45 m 2 / g)
(Water-soluble resin) (B))
B-1: CMC Daicel # 1240 (Daicel Chemical Industries, carboxymethyl cellulose, viscosity 0.02 Pa · s)
B-2: Sodium polyacrylate (Wako Pure Chemical Industries, average molecular weight 5000)
B-3: Kuraray Poval PVA235 (Kuraray Co., Ltd., polyvinyl alcohol)
(Water-dispersed resin fine particles (C))
C-1: Saixen AC (30% solid content aqueous dispersion, average particle size 0.04 μm, modified amount (Y) / (X) 0.64, polyethylene resin fine particles having a carbonyl group) (Sumitomo Seika Co., Ltd.) Made)
C-2: Arrow Base SB-1200 (25% solid content aqueous dispersion, average particle size 0.10 μm, modified amount (Y) / (X) 0.58, polyethylene resin fine particles having a carbonyl group) (Unitika) (Made by company)
C-3: Chemipearl W4005 (40% solid content aqueous dispersion, average particle size 0.57 μm, unmodified, polyethylene resin fine particles) (Mitsui Chemicals)

<下地層付き集電体>(実施例1〜14、比較例2〜3、参考例1)
導電性組成物(1)〜(14)、(17)〜(19)を、乾燥後の厚みが表1に示す厚みとなるように、集電体となる厚さ20μmのアルミニウム箔(以下、「アルミ」と略記することがある)上にバーコーターを用いて、塗布をした後、80℃で加熱乾燥し、下地層付き集電体(1)〜(14)、(17)〜(19)をそれぞれ得た。
<Current Collector with Underlayer> (Examples 1 to 14, Comparative Examples 2 to 3, Reference Example 1)
Conductive compositions (1) to (14) and (17) to (19) were dried with an aluminum foil having a thickness of 20 μm (hereinafter referred to as “the current collector”) so that the thickness after drying becomes the thickness shown in Table 1. (It may be abbreviated as “aluminum”) Using a bar coater, it was coated and then dried at 80 ° C. to obtain a collector with an underlayer (1) to (14), (17) to (19 ) Respectively.

<下地層付き集電体>(実施例15)
導電性組成物(15)を、乾燥後の厚みが3μmとなるように、集電体となる厚さ20μmの銅箔上にバーコーターを用いて塗布をした後、80℃で加熱乾燥し、下地層付き集電体(15)を得た。
<Current Collector with Underlayer> (Example 15)
The conductive composition (15) was applied on a copper foil having a thickness of 20 μm serving as a current collector using a bar coater so that the thickness after drying was 3 μm, and then heat-dried at 80 ° C., A current collector (15) with an underlayer was obtained.

得られた導電性組成物および下地層付き集電体を、表1に示す。   Table 1 shows the obtained conductive composition and the collector with the underlayer.

<リチウムイオン二次電池正極用合材インキ>
電極活物質の一種である正極活物質としてLiNi0.5Mn0.3Co0.2293質量部、導電剤としてアセチレンブラック4質量部、バインダーとしてポリフッ化ビニリデン3質量部、N―メチルピロリドン45質量部を入れて混合して、電極形成用組成物の一種である正極用合材インキを作製した。
<Composite ink for lithium ion secondary battery positive electrode>
93 parts by mass of LiNi 0.5 Mn 0.3 Co 0.2 O 2 as a positive electrode active material which is a kind of electrode active material, 4 parts by mass of acetylene black as a conductive agent, 3 parts by mass of polyvinylidene fluoride as a binder, and 45 parts by mass of N-methylpyrrolidone And mixed to prepare a positive electrode mixture ink which is a kind of composition for electrode formation.

<リチウムイオン二次電池負極用合材インキ>
電極活物質の一種である負極活物質として人造黒鉛98質量部、カルボキシメチルセルロース1.5%水溶液66.7質量部(固形分として1質量部)をプラネタリーミキサーに入れて混練し、水33質量部、スチレンブタジエンエマルション48質量%水系分散液2.08質量部(固形分として1質量部)を混合して、電極形成用組成物の一種である負極二次電池電極用合材インキを得た。
<Composite ink for negative electrode of lithium ion secondary battery>
As a negative electrode active material which is a kind of electrode active material, 98 parts by mass of artificial graphite and 66.7 parts by mass of a 1.5% aqueous solution of carboxymethyl cellulose (1 part by mass as a solid content) are put in a planetary mixer and kneaded, and 33 parts by mass of water. Part, 2.08 parts by mass of a 48% by mass styrene butadiene emulsion aqueous dispersion (1 part by mass as solid content) was mixed to obtain a mixture ink for negative electrode secondary battery electrode which is a kind of composition for electrode formation. .

<下地層付きリチウムイオン二次電池用正極>(実施例1〜14、比較例2〜3、参考例1)
上述のリチウムイオン二次電池正極用合材インキを、二次電池用下地層付き集電体(1)〜(14)、(17)〜(19)の下地層が形成された面に、乾燥後の目付け量が20mg/cm2となるようにドクターブレードを用いて塗布し、80℃で加熱乾燥した。さらにロールプレスによる圧延処理を行い、合材層の密度が3.1g/cm3となる正極(1)〜(14)、(17)〜(19)をそれぞれ作製した。
<Positive Electrode for Lithium Ion Secondary Battery with Underlayer> (Examples 1 to 14, Comparative Examples 2 to 3, Reference Example 1)
The above lithium-ion secondary battery positive electrode mixture ink is dried on the surface on which the base layers of the current collectors (1) to (14) and (17) to (19) with the base layer for secondary batteries are formed. It apply | coated using the doctor blade so that the amount of subsequent weights might be 20 mg / cm < 2 >, and it heat-dried at 80 degreeC. Furthermore, the rolling process by roll press was performed and the positive electrode (1)-(14) and (17)-(19) from which the density of a compound-material layer became 3.1 g / cm < 3 > were produced, respectively.

<下地層なしリチウムイオン二次電池用正極>(実施例15、比較例1用正極)
上述のリチウムイオン二次電池正極用合材インキを、集電体となる厚さ20μmのアルミ箔上に、乾燥後の目付け量が20mg/cm2となるようにとなるようにドクターブレードを用いて塗布し、80℃で加熱乾燥した。さらにロールプレスによる圧延処理を行い、合材層の密度が3.1g/cm3となる正極(15)、(16)をそれぞれ作製した。
<Positive electrode for lithium ion secondary battery without base layer> (Example 15, positive electrode for Comparative Example 1)
A doctor blade was used so that the above-mentioned mixture ink for lithium ion secondary battery positive electrode was dried on a 20 μm-thick aluminum foil serving as a current collector so that the basis weight after drying was 20 mg / cm 2. And then dried by heating at 80 ° C. Furthermore, the rolling process by roll press was performed and the positive electrodes (15) and (16) from which the density of a compound-material layer became 3.1 g / cm < 3 > were produced, respectively.

<下地層なしリチウムイオン二次電池用負極>(実施例1〜14、比較例1〜3、参考例1用負極)
上述のリチウムイオン二次電池負極用合材インキを、乾燥後の目付け量が12mg/cm2となるようにドクターブレードを用いて塗布し、80℃で加熱乾燥した。さらにロールプレスによる圧延処理を行い、合材層の密度が1.5g/cm3となる負極(1)〜(14)、(16)〜(19)をそれぞれ作製した。
<Negative Electrode for Lithium Ion Secondary Battery without Base Layer> (Examples 1 to 14, Comparative Examples 1 to 3, Negative Electrode for Reference Example 1)
The above-mentioned ink mixture for negative electrodes of lithium ion secondary batteries was applied using a doctor blade so that the weight per unit area after drying was 12 mg / cm 2 and dried by heating at 80 ° C. Furthermore, the rolling process by a roll press was performed, and the negative electrode (1)-(14) and (16)-(19) from which the density of a compound-material layer became 1.5 g / cm < 3 > were produced, respectively.

<下地層付きリチウムイオン二次電池用負極>(実施例15)
上述のリチウムイオン二次電池負極用合材インキを、下地層付き集電体(15)の下地層が形成された面に、乾燥後の目付け量が12mg/cm2となるようにドクターブレードを用いて塗布し、80℃で加熱乾燥した。さらにロールプレスによる圧延処理を行い、合材層の密度が1.5g/cm3となる負極(15)を作製した。
<Anode for Lithium Ion Secondary Battery with Underlayer> (Example 15)
The above-mentioned ink mixture for negative electrode of lithium ion secondary battery is placed on the surface on which the underlayer of the current collector with underlayer (15) is formed so that the basis weight after drying is 12 mg / cm 2. Used, and dried by heating at 80 ° C. Furthermore, the rolling process by a roll press was performed and the negative electrode (15) from which the density of a compound material layer was set to 1.5 g / cm < 3 > was produced.

<ラミネート型リチウムイオン二次電池>(実施例1〜15、比較例1〜3、参考例1)
表2に示す正極と負極を、各々45mm×40mm、50mm×45mmに打ち抜き、その間に挿入されるセパレーター(多孔質ポリプロプレンフィルム)とをアルミ製ラミネート袋に挿入し、真空乾燥の後、電解液(エチレンカーボネートとジエチルカーボネートを1:1(体積比)の割合で混合した混合溶媒に、LiPF6を1Mの濃度で溶解させた非水系電解液)を注入した後、アルミ製ラミネートを封口してラミネート型リチウムイオン電池を作製した。ラミネート型リチウムイオン型電池の作製はアルゴンガス置換したグロ−ブボックス内で行い、ラミネート型リチウムイオン型電池作製後、以下に示す方法によって、初期抵抗、抵抗増加、レート特性およびサイクル特性の電池特性評価を行った。
<Laminated lithium ion secondary battery> (Examples 1 to 15, Comparative Examples 1 to 3, Reference Example 1)
The positive electrode and negative electrode shown in Table 2 are punched into 45 mm × 40 mm and 50 mm × 45 mm, respectively, and a separator (porous polypropylene film) inserted therebetween is inserted into an aluminum laminate bag, vacuum dried, and then an electrolyte solution After injecting (nonaqueous electrolyte solution in which LiPF 6 was dissolved at a concentration of 1M) into a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a ratio of 1: 1 (volume ratio), the aluminum laminate was sealed. A laminated lithium ion battery was produced. Laminate type lithium ion batteries are produced in a glove box substituted with argon gas. After the production of laminated type lithium ion batteries, the battery characteristics of initial resistance, resistance increase, rate characteristics and cycle characteristics are as follows. Evaluation was performed.

(抵抗測定)
放電電流12mA(0.2C)にて放電終止電圧3.0Vで定電流放電を行ったラミネート型電池を、インピーダンスアナライザー(biologic社製SP−50)にて500kHzでの抵抗測定を行った。
上述したラミネート型電池を25℃から180℃まで昇温速度10℃/分で一気に加熱し、抵抗測定を行った。25℃で測定した抵抗を初期抵抗とし、下記(式1)により算出される値を抵抗増加とした。
(式1) 抵抗増加=180℃での抵抗値/25℃での抵抗値
初期抵抗および抵抗増加について、以下の基準で評価した結果を表2に示す。
・初期抵抗
○:「初期抵抗が下地層なしの比較例1の初期抵抗より小さい。優れている。」
△:「初期抵抗が下地層なしの比較例1の初期抵抗と同等。」
×:「初期抵抗が下地層なしの比較例1の初期抵抗より大きい。劣っている。」
・抵抗増加
○○:「抵抗増加が初期抵抗の10倍以上。特に優れている。」
○:「抵抗増加が初期抵抗の5倍以上、10倍未満。優れている。」
△:「抵抗増加が初期低能の3倍以上、5倍未満。実用可能なレベル。」
×:「抵抗増加が初期抵抗の3倍未満。電流の遮断効果が低い。劣っている。」
(Resistance measurement)
A laminate type battery that was discharged at a constant discharge current of 3.0 V at a discharge current of 12 mA (0.2 C) was subjected to resistance measurement at 500 kHz with an impedance analyzer (SP-50 manufactured by biologic).
The above-mentioned laminate type battery was heated from 25 ° C. to 180 ° C. at a heating rate of 10 ° C./min, and resistance measurement was performed. The resistance measured at 25 ° C. was defined as the initial resistance, and the value calculated by the following (Equation 1) was defined as the resistance increase.
(Equation 1) Resistance increase = resistance value at 180 ° C./resistance value at 25 ° C. The results of evaluating the initial resistance and the resistance increase according to the following criteria are shown in Table 2.
Initial resistance ○: “The initial resistance is smaller than the initial resistance of Comparative Example 1 without an underlayer. Excellent.”
Δ: “The initial resistance is equivalent to the initial resistance of Comparative Example 1 without the underlayer”
X: “The initial resistance is larger than the initial resistance of Comparative Example 1 without the underlayer. Inferior”
・ Increased resistance ○○: “Increased resistance is more than 10 times the initial resistance. Especially excellent.”
○: “Increase in resistance is 5 to 10 times the initial resistance. Excellent”
Δ: “An increase in resistance is 3 times or more and less than 5 times the initial low ability. Practical level.”
X: “Increased resistance is less than 3 times the initial resistance. Current blocking effect is low. Inferior”

(レート特性)
上述したラミネート電池について、充放電装置(北斗電工社製SM−8)を用い、充放電測定を行った。
充電電流12mA(0.2C)にて充電終止電圧4.2Vで定電流定電圧充電(カットオフ電流0.6mAを行った後、放電電流12mA(0.2C)および120mA(2C)で放電終止電圧3.0Vに達するまで定電流放電を行って、それぞれ放電容量を求めた。レート特性は0.2C放電容量と2C放電容量の比、つまり以下(式2)で表される。
(式2) レート特性=2C放電容量/0.2C放電容量×100(%)
以下の基準で評価した結果を表2に示す。
・レート特性
○:「レート特性が80%以上。優れている。」
△:「レート特性が70以上、80%未満。下地層なしの比較例1のレート特性と同等。」
×:「レート特性が70%未満。劣っている。」
(Rate characteristics)
About the laminated battery mentioned above, charging / discharging measurement was performed using the charging / discharging apparatus (SM-8 by Hokuto Denko).
Constant current and constant voltage charge with a charge current of 12 mA (0.2 C) and a charge end voltage of 4.2 V (after a cut-off current of 0.6 mA, the discharge was terminated at a discharge current of 12 mA (0.2 C) and 120 mA (2 C). The constant current discharge was performed until the voltage reached 3.0 V, and the discharge capacity was obtained, respectively, and the rate characteristic is expressed by the ratio of 0.2 C discharge capacity to 2 C discharge capacity, that is, the following (Equation 2).
(Equation 2) Rate characteristics = 2C discharge capacity / 0.2C discharge capacity × 100 (%)
Table 2 shows the results of evaluation based on the following criteria.
・ Rate characteristic ○: “Rate characteristic is 80% or more. Excellent”
Δ: “The rate characteristic is 70 or more and less than 80%. Equivalent to the rate characteristic of Comparative Example 1 without a base layer”
X: “Rate characteristic is less than 70%. Inferior”

(サイクル特性)
50℃恒温槽にて充電電流を60mAにて充電終止電圧を4.2Vで定電流定電圧充電(カットオフ電流0.6mA)を行った後、放電電流60mAで放電終止電圧3.0Vに達するまで定電流放電を行って、初回放電容量を求めた。この充放電サイクルを200回行い、放電容量維持率(初回放電容量に対する200回目の放電容量の百分率)を算出した。以下の基準で評価した結果を表2に示す。
・サイクル特性
○:「放電容量維持率が85%以上。優れている。」
△:「放電容量維持率が80%以上、85%未満。下地層なしの比較例1の放電容量維持率と同等。」
×:「放電容量維持率が80%未満。劣っている。」
(Cycle characteristics)
After performing constant current and constant voltage charging (cutoff current 0.6 mA) at a charge current of 60 mA and a charge end voltage of 4.2 V in a 50 ° C. constant temperature bath, the discharge current reaches 60 V at a discharge current of 60 mA. The initial discharge capacity was obtained by performing constant current discharge until. This charge / discharge cycle was performed 200 times, and the discharge capacity maintenance ratio (percentage of the 200th discharge capacity with respect to the initial discharge capacity) was calculated. Table 2 shows the results of evaluation based on the following criteria.
Cycle characteristics ○: “Discharge capacity maintenance ratio is 85% or more. Excellent”
Δ: “Discharge capacity maintenance ratio is 80% or more and less than 85%. Equivalent to the discharge capacity maintenance ratio of Comparative Example 1 without a base layer.”
×: “Discharge capacity maintenance rate is less than 80%. Inferior”

表2に示すように、本発明の導電性組成物から形成された下地層を用いることで、電池の内部温度が上昇した場合、電池の内部抵抗が上昇することが確認された。このことから、例えば、内部短絡などにより電池が異常発熱した場合、集電体の抵抗が増大し、電流を遮断することで、電池の発火等を回避するものと考えられる。   As shown in Table 2, it was confirmed that the internal resistance of the battery increased when the internal temperature of the battery increased by using the base layer formed from the conductive composition of the present invention. From this, for example, when the battery abnormally heats up due to an internal short circuit or the like, it is considered that the resistance of the current collector increases and the current is cut off to avoid ignition of the battery.

一方、下地層を形成していない比較例1や、黒鉛を含まないまたは黒鉛の比率が少なく、導電性の炭素材料(A)の比表面積が高く、下地層の密度が低い比較例2〜3や参考例1では、電池の内部温度が上昇しても、目立った電池の内部抵抗の上昇は見られなかった。   On the other hand, Comparative Example 1 in which an underlayer is not formed, and Comparative Examples 2 to 3 that do not contain graphite or have a low ratio of graphite, a high specific surface area of the conductive carbon material (A), and a low density of the underlayer In Reference Example 1, even if the internal temperature of the battery increased, no noticeable increase in the internal resistance of the battery was observed.

比較例1は下地層を形成していないため、発熱時に抵抗を増大させる効果がなく、比較例2〜3や参考例1では、発熱時における樹脂の体積膨張に伴う黒鉛の体積膨張が不十分なため、炭素材料同士の導電性を遮断する効果が少なかったためと考えられる。   Since Comparative Example 1 does not form an underlayer, there is no effect of increasing resistance during heat generation. In Comparative Examples 2-3 and Reference Example 1, volume expansion of graphite accompanying resin volume expansion during heat generation is insufficient. Therefore, it is considered that the effect of blocking the conductivity between the carbon materials was small.

<電気二重層キャパシター用正極、負極用合材インキ>
活物質として活性炭(比表面積1800m2/g)85部、導電助剤(アセチレンブラック:デンカブラックHS−100、デンカ社製)5部、カルボキシメチルセルロース(和光純薬工業社製)8部、バインダー(ポリテトラフルオロエチレン30−J:三井・デュポンフロロケミカル社製、60%水系分散体)3.3部(固形分として2部)、水220部を混合して正極、負極用合材インキを作製した。
<Positive electrode for electric double layer capacitor, mixed ink for negative electrode>
As active materials, 85 parts of activated carbon (specific surface area 1800 m 2 / g), 5 parts of conductive additive (acetylene black: Denka Black HS-100, manufactured by Denka), 8 parts of carboxymethyl cellulose (manufactured by Wako Pure Chemical Industries), binder ( Polytetrafluoroethylene 30-J: Mitsui / DuPont Fluorochemical Co., Ltd., 60% aqueous dispersion) 3.3 parts (2 parts as a solid content) and 220 parts of water were mixed to produce a mixture ink for positive and negative electrodes. did.

<下地層なし電気二重層キャパシター用正極、負極(比較例4、及び評価用対極)>
上述の電気二重層キャパシター用合材インキを、集電体となる厚さ20μmのアルミ箔上に、ドクターブレードを用いて塗布した後、加熱乾燥した後にロールプレスによる圧延処理を行い、電極の厚みが50μmとなる正極および負極を作製した。
<Positive electrode and negative electrode for electric double layer capacitor without base layer (Comparative Example 4 and counter electrode for evaluation)>
The above-mentioned composite ink for electric double layer capacitor was applied on a 20 μm thick aluminum foil serving as a current collector using a doctor blade, dried by heating, and then subjected to a rolling process by a roll press to obtain the thickness of the electrode. A positive electrode and a negative electrode having a thickness of 50 μm were prepared.

<下地層付き電気二重層キャパシター用正極、負極>
(実施例16)
上述の電気二重層キャパシター用合材インキを、実施例1の下地層付き集電体(1)の下地層が形成された面に、ドクターブレードを用いて塗布した後、80℃で加熱乾燥した後、ロールプレスによる圧延処理を行い、厚みが50μmとなる正極を作製した。
<Positive electrode and negative electrode for electric double layer capacitor with underlying layer>
(Example 16)
The above mixture ink for electric double layer capacitor was applied to the surface of the current collector with an underlayer (1) of Example 1 on which the underlayer was formed, using a doctor blade, and then heated and dried at 80 ° C. Then, the rolling process by a roll press was performed and the positive electrode from which thickness becomes 50 micrometers was produced.

(実施例17〜29、比較例5、6、参考例2)
下地層付き集電体(1)を表3に示す集電体に変更した以外は、実施例16と同様にして、正極および負極をそれぞれ作製した。
(Examples 17 to 29, Comparative Examples 5 and 6, Reference Example 2)
A positive electrode and a negative electrode were produced in the same manner as in Example 16 except that the current collector with an underlayer (1) was changed to the current collector shown in Table 3.

<電気二重層キャパシター>
表3に示す正極と負極をそれぞれ直径16mmに打ち抜き、その間に挿入されるセパレーター(多孔質ポリプロピレンフィルム)と、電解液(プロピレンカーボネート溶媒にTEMABF4(四フッ化ホウ素トリエチルメチルアンモニウム)を1Mの濃度で溶解させた非水系電解液)とからなる電気二重層キャパシターを作製した。電気二重層キャパシターはアルゴンガス置換したグロ−ブボックス内で行い、電気二重層キャパシター作製後、所定の電気特性評価を行った。
<Electric double layer capacitor>
The positive electrode and negative electrode shown in Table 3 were each punched out to a diameter of 16 mm, and a separator (porous polypropylene film) inserted between them and an electrolytic solution (propylene carbonate solvent TEMABF 4 (boron tetrafluoride triethylmethylammonium) at a concentration of 1M An electric double layer capacitor was prepared. The electric double layer capacitor was used in a glove box substituted with argon gas, and after the electric double layer capacitor was fabricated, predetermined electric characteristics were evaluated.

(充放電サイクル特性)
得られた電気二重層キャパシターについて、充放電装置を用い、充放電測定を行った。
充電電流10Cレートにて充電終止電圧2.0Vまで充電を行った後、放電電流10Cレートで放電終止電圧0Vに達するまで定電流放電を行った。これらの充電・放電サイクルを1サイクルとして5サイクルの充電・放電を繰り返し、5サイクル目の放電容量を初回放電容量とした。(初回放電容量を維持率100%とする)。また、充放電電流レートは、セル容量を1時間で放電出来る電流の大きさを1Cとした。
次に、50℃恒温槽にて充電電流10Cレートにて充電終止電圧2.0Vで充電を行った後、放電電流10Cレートで放電終止電圧0Vに達するまで定電流放電を行った。この充放電サイクルを500回行い放電容量維持率の変化率を算出した(100%に近いほど良好)。
○:「変化率が85%以上。優れている。」
△:「変化率が80%以上、85%未満。下地層なしの比較例1の放電容量維持率と同等。」
×:「変化率が80%未満。劣っている。」
(Charge / discharge cycle characteristics)
About the obtained electric double layer capacitor, charging / discharging measurement was performed using the charging / discharging apparatus.
After charging to a charge end voltage of 2.0 V at a charge current of 10 C, constant current discharge was performed until the discharge end voltage of 0 V was reached at a discharge current of 10 C. These charge / discharge cycles are defined as one cycle, and 5 cycles of charge / discharge are repeated, and the discharge capacity at the fifth cycle is defined as the initial discharge capacity. (The initial discharge capacity is assumed to be 100% maintenance rate). In addition, the charge / discharge current rate was 1 C, which is the magnitude of current that can discharge the cell capacity in one hour.
Next, charging was performed at a charging current 10C rate in a 50 ° C. constant temperature bath at a charging end voltage of 2.0 V, and then constant current discharging was performed at a discharging current of 10 C rate until reaching a discharging end voltage of 0 V. This charge / discharge cycle was repeated 500 times to calculate the rate of change of the discharge capacity maintenance rate (the closer to 100%, the better).
○: “Change rate is 85% or more. Excellent”
Δ: “Change rate is 80% or more and less than 85%. Equivalent to the discharge capacity maintenance rate of Comparative Example 1 without a base layer.”
X: “Change rate is less than 80%. Inferior”

(抵抗測定)
充電電流10Cレートにて充電終止電圧2.0Vまで充電を行ったラミネート型電池を、インピーダンスアナライザー(biologic社製SP−50)にて500kHzでの抵抗測定を行った。
上述したラミネート型電池を25℃から180℃まで昇温速度10℃/分で一気に加熱し、抵抗測定を行った。25℃で測定した抵抗を初期抵抗とし、180℃で測定した抵抗値と25℃で測定した抵抗値の商を抵抗増加とした。すなわち抵抗増加は以下(式1)で表される。
(式1) 抵抗増加=180℃での抵抗値/25℃での抵抗値
初期抵抗および抵抗増加について、以下の基準で評価した結果を表2に示す。
・初期抵抗
○:「初期抵抗が下地層なしの比較例1の初期抵抗より小さい。優れている。」
△:「初期抵抗が下地層なしの比較例1の初期抵抗と同等。」
×:「初期抵抗が下地層なしの比較例1の初期抵抗より大きい。劣っている。」
・抵抗増加
○○:「抵抗増加が初期抵抗の10倍以上。特に優れている。」
○:「抵抗増加が初期抵抗の5倍以上、10倍未満。優れている。」
△:「抵抗増加が初期低能の3倍以上、5倍未満。実用可能なレベル。」
×:「抵抗増加が初期抵抗の3倍未満。電流の遮断効果が低い。劣っている。」
(Resistance measurement)
A laminate type battery charged to a charge end voltage of 2.0 V at a charging current rate of 10 C was subjected to resistance measurement at 500 kHz with an impedance analyzer (SP-50 manufactured by biologic).
The above-mentioned laminate type battery was heated from 25 ° C. to 180 ° C. at a heating rate of 10 ° C./min, and resistance measurement was performed. The resistance measured at 25 ° C. was taken as the initial resistance, and the quotient of the resistance value measured at 180 ° C. and the resistance value measured at 25 ° C. was taken as the resistance increase. That is, the increase in resistance is expressed by the following (formula 1).
(Equation 1) Resistance increase = resistance value at 180 ° C./resistance value at 25 ° C. The results of evaluating the initial resistance and the resistance increase according to the following criteria are shown in Table 2.
Initial resistance ○: “The initial resistance is smaller than the initial resistance of Comparative Example 1 without an underlayer. Excellent.”
Δ: “The initial resistance is equivalent to the initial resistance of Comparative Example 1 without the underlayer”
X: “The initial resistance is larger than the initial resistance of Comparative Example 1 without the underlayer. Inferior”
・ Increased resistance ○○: “Increased resistance is more than 10 times the initial resistance. Especially excellent.”
○: “Increase in resistance is 5 to 10 times the initial resistance. Excellent”
Δ: “An increase in resistance is 3 times or more and less than 5 times the initial low ability. Practical level.”
X: “Increased resistance is less than 3 times the initial resistance. Current blocking effect is low. Inferior”

<リチウムイオンキャパシター用正極用合材インキ>
活物質として活性炭(比表面積1800m2/g)85部、導電助剤(アセチレンブラック:デンカブラックHS−100、デンカ社製)5部、カルボキシメチルセルロース(和光純薬工業社製)8部、バインダー(ポリテトラフルオロエチレン30−J:三井・デュポンフロロケミカル社製、60%水系分散体)3.3部(固形分として2部)を混合して正極用合材インキを作製した。
<Composite ink for positive electrode for lithium ion capacitor>
As active materials, 85 parts of activated carbon (specific surface area 1800 m 2 / g), 5 parts of conductive additive (acetylene black: Denka Black HS-100, manufactured by Denka), 8 parts of carboxymethyl cellulose (manufactured by Wako Pure Chemical Industries), binder ( Polytetrafluoroethylene 30-J: 60% aqueous dispersion manufactured by Mitsui DuPont Fluorochemical Co., Ltd.) 3.3 parts (2 parts as a solid content) were mixed to prepare a positive electrode mixture ink.

<リチウムイオンキャパシター用負極用合材インキ>
負極活物質として黒鉛90部、導電助剤(アセチレンブラック:デンカブラックHS−100、デンカ社製)5部、ヒドロキシエチルセルロース(和光純薬工業社製)2重量%水溶液175部(固形分として3.5部)をミキサーに入れて混合し、水26.3部、バインダー(SBR:スチレンブタジエン系ラテックス40%水系分散体)3.75部(固形分として1.5部)を混合して、負極用合材インキを作製した。
<Composite ink for negative electrode for lithium ion capacitor>
90 parts of graphite as a negative electrode active material, 5 parts of a conductive additive (acetylene black: Denka Black HS-100, manufactured by Denka), 175 parts of a 2% by weight aqueous solution of hydroxyethyl cellulose (manufactured by Wako Pure Chemical Industries, Ltd., 3. 5 parts) is mixed in a mixer, and 26.3 parts of water and 3.75 parts of binder (SBR: 40% aqueous dispersion of styrene butadiene latex) (1.5 parts as a solid content) are mixed to prepare a negative electrode A composite ink was prepared.

<下地層なしリチウムイオンキャパシター用正極(実施例41、比較例7)>
上述のリチウムイオンキャパシター用正極用合材インキを、集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥してロールプレスによる圧延処理を行った後、厚みが60μmとなる正極を作製した。
<Positive electrode for lithium ion capacitor without base layer (Example 41, Comparative Example 7)>
After applying the above-mentioned ink mixture for the positive electrode for lithium ion capacitors onto a 20 μm thick aluminum foil serving as a current collector using a doctor blade, after heating and drying under reduced pressure and performing a rolling process by a roll press, A positive electrode having a thickness of 60 μm was produced.

<下地層付きリチウムイオンキャパシター用正極>
(実施例30)
上述のリチウムイオンキャパシター用正極用合材インキを、実施例1の下地層付き集電体(1)の下地層が形成された面に、ドクターブレードを用いて塗布した後、減圧加熱乾燥してロールプレスによる圧延処理を行った後、厚みが60μmとなる正極を作製した。
<Positive electrode for lithium ion capacitor with underlayer>
(Example 30)
The above-mentioned ink mixture for positive electrode for lithium ion capacitor was applied to the surface on which the base layer of the current collector with base layer (1) of Example 1 was formed using a doctor blade, and then dried by heating under reduced pressure. After performing the rolling process by the roll press, a positive electrode having a thickness of 60 μm was produced.

(実施例31〜40、42、43、比較例8、9、参考例3)
下地層付き集電体(1)を表4に示す集電体に変更した以外は、実施例30と同様にして、正極を得た。
(Examples 31-40, 42, 43, Comparative Examples 8, 9, Reference Example 3)
A positive electrode was obtained in the same manner as in Example 30 except that the current collector with an underlayer (1) was changed to the current collector shown in Table 4.

<下地層なしリチウムイオンキャパシター用負極(実施例30〜40、42、43、比較例7〜9、参考例3)>
上述のリチウムイオンキャパシター用負極用合材インキを、集電体となる厚さ20μmの銅箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥してロールプレスによる圧延処理を行った後、厚みが45μmとなる負極を作製した。
<Negative Electrode for Lithium Ion Capacitors (Examples 30 to 40, 42, 43, Comparative Examples 7 to 9, Reference Example 3)>
After applying the above-mentioned ink mixture for the negative electrode for lithium ion capacitors on a copper foil having a thickness of 20 μm to be a current collector, using a doctor blade, drying under reduced pressure and performing a rolling process by a roll press, A negative electrode having a thickness of 45 μm was produced.

<下地層付きリチウムイオンキャパシター用負極>
(実施例41)
上述のリチウムイオンキャパシター用負極用合材インキを、実施例1の下地層付き集電体(1)上にドクターブレードを用いて塗布した後、減圧加熱乾燥してロールプレスによる圧延処理を行った後、厚みが45μmとなる負極を作製した。
<Anode for Lithium Ion Capacitor with Underlayer>
(Example 41)
The above-mentioned ink mixture for negative electrode for lithium ion capacitor was applied on the current collector with an underlayer (1) of Example 1 using a doctor blade, then dried under reduced pressure and dried by a roll press. Thereafter, a negative electrode having a thickness of 45 μm was produced.

<リチウムイオンキャパシター>
表4示す正極と、あらかじめリチウムイオンのハーフドープ処理を施した負極を、それぞれ直径16mmの大きさで用意し、その間に挿入されるセパレーター(多孔質ポリプロピレンフィルム)と、電解液(エチレンカーボネートとジメチルカーボネートとジエチルカーボネートを1:1:1(体積比)の割合で混合した混合溶媒にLiPF6を1Mの濃度で溶解させた非水系電解液)とからなるリチウムイオンキャパシターを作製した。リチウムイオンのハーフドープは、ビーカーセル中で負極とリチウム金属の間にセパレーターを挟み、負極容量の約半分の量となるようリチウムイオンを負極にドープして行った。また、リチウムイオンキャパシターはアルゴンガス置換したグロ−ブボックス内で行い、リチウムイオンキャパシター作製後、所定の電気特性評価を行った。
<Lithium ion capacitor>
A positive electrode shown in Table 4 and a negative electrode previously half-doped with lithium ions were prepared with a diameter of 16 mm, a separator (porous polypropylene film) inserted between them, and an electrolyte (ethylene carbonate and dimethyl). A lithium ion capacitor comprising a non-aqueous electrolyte solution in which LiPF 6 was dissolved at a concentration of 1 M in a mixed solvent in which carbonate and diethyl carbonate were mixed at a ratio of 1: 1: 1 (volume ratio) was produced. Lithium ion half dope was performed by sandwiching a separator between the negative electrode and lithium metal in a beaker cell, and doping the negative electrode with lithium ions so that the amount was about half of the negative electrode capacity. Moreover, the lithium ion capacitor was performed in a glove box substituted with argon gas, and a predetermined electrical property evaluation was performed after the lithium ion capacitor was fabricated.

(充放電サイクル特性)
得られたリチウムイオンキャパシターについて、充放電装置を用い、充放電測定を行った。
充電電流10Cレートにて充電終止電圧4.0Vまで充電を行った後、放電電流10Cレートで放電終止電圧2.0Vに達するまで定電流放電を行った。これらの充電・放電サイクルを1サイクルとして5サイクルの充電・放電を繰り返し、5サイクル目の放電容量を初回放電容量とした。(初回放電容量を維持率100%とする)。
次に、50℃恒温槽にて充電電流10Cレートにて充電終止電圧4.0Vで充電を行った後、放電電流10Cレートで放電終止電圧2.0Vに達するまで定電流放電を行った。この充放電サイクルを500回行い放電容量維持率の変化率を算出した(100%に近いほど良好)。
○:「変化率が85%以上。優れている。」
△:「変化率が80%以上、85%未満。下地層なしの比較例1の放電容量維持率と同等。」
×:「変化率が80%未満。劣っている。」
(Charge / discharge cycle characteristics)
About the obtained lithium ion capacitor, charging / discharging measurement was performed using the charging / discharging apparatus.
After charging to a charge end voltage of 4.0 V at a charge current of 10 C, constant current discharge was performed until the discharge end voltage of 2.0 V was reached at a discharge current of 10 C. These charge / discharge cycles are defined as one cycle, and 5 cycles of charge / discharge are repeated, and the discharge capacity at the fifth cycle is defined as the initial discharge capacity. (The initial discharge capacity is assumed to be 100% maintenance rate).
Next, after charging at a charging end voltage of 4.0 V at a charging current of 10 C in a constant temperature bath at 50 ° C., constant current discharging was performed until the discharging end voltage of 2.0 V was reached at a discharge current of 10 C. This charge / discharge cycle was repeated 500 times to calculate the rate of change of the discharge capacity maintenance rate (the closer to 100%, the better).
○: “Change rate is 85% or more. Excellent”
Δ: “Change rate is 80% or more and less than 85%. Equivalent to the discharge capacity maintenance rate of Comparative Example 1 without a base layer.”
X: “Change rate is less than 80%. Inferior”

(抵抗測定)
充電電流10Cレートにて充電終止電圧4.0Vまで充電を行ったラミネート型電池を、インピーダンスアナライザー(biologic社製SP−50)にて500kHzでの抵抗測定を行った。
上述したラミネート型電池を25℃から180℃まで昇温速度10℃/分で一気に加熱し、抵抗測定を行った。25℃で測定した抵抗を初期抵抗とし、180℃で測定した抵抗値と25℃で測定した抵抗値の商を抵抗増加とした。すなわち抵抗増加は以下(式1)で表される。
(式1) 抵抗増加=180℃での抵抗値/25℃での抵抗値
初期抵抗および抵抗増加について、以下の基準で評価した結果を表2に示す。
・初期抵抗
○:「初期抵抗が下地層なしの比較例1の初期抵抗より小さい。優れている。」
△:「初期抵抗が下地層なしの比較例1の初期抵抗と同等。」
×:「初期抵抗が下地層なしの比較例1の初期抵抗より大きい。劣っている。」
・抵抗増加
○○:「抵抗増加が初期抵抗の10倍以上。特に優れている。」
○:「抵抗増加が初期抵抗の5倍以上、10倍未満。優れている。」
△:「抵抗増加が初期低能の3倍以上、5倍未満。実用可能なレベル。」
×:「抵抗増加が初期抵抗の3倍未満。電流の遮断効果が低い。劣っている。」
(Resistance measurement)
A laminate type battery charged to a charge end voltage of 4.0 V at a charging current of 10 C was subjected to resistance measurement at 500 kHz with an impedance analyzer (SP-50 manufactured by biologic).
The above-mentioned laminate type battery was heated from 25 ° C. to 180 ° C. at a heating rate of 10 ° C./min, and resistance measurement was performed. The resistance measured at 25 ° C. was taken as the initial resistance, and the quotient of the resistance value measured at 180 ° C. and the resistance value measured at 25 ° C. was taken as the resistance increase. That is, the increase in resistance is expressed by the following (formula 1).
(Equation 1) Resistance increase = resistance value at 180 ° C./resistance value at 25 ° C. The results of evaluating the initial resistance and the resistance increase according to the following criteria are shown in Table 2.
Initial resistance ○: “The initial resistance is smaller than the initial resistance of Comparative Example 1 without an underlayer. Excellent.”
Δ: “The initial resistance is equivalent to the initial resistance of Comparative Example 1 without the underlayer”
X: “The initial resistance is larger than the initial resistance of Comparative Example 1 without the underlayer. Inferior”
・ Increased resistance ○○: “Increased resistance is more than 10 times the initial resistance. Especially excellent.”
○: “Increase in resistance is 5 to 10 times the initial resistance. Excellent”
Δ: “An increase in resistance is 3 times or more and less than 5 times the initial low ability. Practical level.”
X: “Increased resistance is less than 3 times the initial resistance. Current blocking effect is low. Inferior”

また、表3、表4に示すように、電気二重層キャパシターや、リチウムイオンキャパシターでもリチウムイオン二次電池の実施例と同様の効果を得ることが確認できた。   Further, as shown in Tables 3 and 4, it was confirmed that the same effects as those of the examples of the lithium ion secondary battery were obtained even with the electric double layer capacitor or the lithium ion capacitor.

以上の結果から、本発明によって、蓄電デバイスの出力特性等に優れ、過充電や内部短絡などにより蓄電デバイスの内部温度が上昇した場合に、内部抵抗を上昇させることで流れる電流を抑制することで、電池の安全性を高める機能を備えた非水電解質二次電池などの蓄電デバイスを形成するための導電性組成物を提供することができる。   From the above results, according to the present invention, the output characteristics of the electricity storage device are excellent, and when the internal temperature of the electricity storage device rises due to overcharge or internal short circuit, the current flowing is suppressed by increasing the internal resistance. In addition, it is possible to provide a conductive composition for forming an electricity storage device such as a non-aqueous electrolyte secondary battery having a function of improving battery safety.

Claims (7)

導電性の炭素材料(A)と、水溶性樹脂(B)と、水分散樹脂微粒子(C)と、水性液状媒体(D)とを含有してなる蓄電デバイス用電極の下地層形成用導電性組成物であって、前記水分散樹脂微粒子が少なくともオレフィン系樹脂微粒子を含み、導電性組成物の固形分の合計100質量%中、導電性の炭素材料(A)の含有率が、30〜70質量%であり、水溶性樹脂(B)の含有率が、1〜40質量%であり、水分散樹脂微粒子(C)の含有率が、20〜60質量%であり、導電性の炭素材料(A)の総比表面積が30m2/g以下であることを特徴とする蓄電デバイス用電極の下地層形成用導電性組成物。 Conductivity for forming an underlayer of an electrode for an electricity storage device comprising a conductive carbon material (A), a water-soluble resin (B), water-dispersed resin fine particles (C), and an aqueous liquid medium (D) In the composition, the water-dispersed resin fine particles include at least olefin resin fine particles, and the content of the conductive carbon material (A) is 30 to 70 in a total of 100% by mass of the solid content of the conductive composition. The content of the water-soluble resin (B) is 1 to 40% by mass, the content of the water-dispersed resin fine particles (C) is 20 to 60% by mass, and a conductive carbon material ( A conductive composition for forming a base layer of an electrode for an electricity storage device, wherein the total specific surface area of A) is 30 m 2 / g or less. 導電性の炭素材料(A)が、少なくとも黒鉛を含み、導電性の炭素材料(A)中の黒鉛の含有率が、60〜100質量%である請求項1に記載の下地層形成用導電性組成物。 The electroconductive carbon material (A) contains at least graphite, and the content of graphite in the electroconductive carbon material (A) is 60 to 100% by mass. Composition. 水分散樹脂微粒子(C)に含まれるオレフィン系樹脂微粒子が、カルボニル基を有するポリオレフィン樹脂微粒子であり、ポリオレフィン樹脂微粒子の赤外吸収スペクトルにおいて、2800〜3000cm-1の最大ピーク高さ(極大吸光度)(X)と、1690〜1740cm-1の最大ピーク高さ(極大吸光度)(Y)との比(Y)/(X)が、0.05〜1.0であることを特徴とする請求項1または2に記載の下地層形成用導電性組成物。 The olefin-based resin fine particles contained in the water-dispersed resin fine particles (C) are polyolefin resin fine particles having a carbonyl group, and the maximum peak height (maximum absorbance) of 2800 to 3000 cm −1 in the infrared absorption spectrum of the polyolefin resin fine particles. The ratio (Y) / (X) between (X) and the maximum peak height (maximum absorbance) (Y) of 1690 to 1740 cm -1 is 0.05 to 1.0. 3. The conductive composition for forming an underlayer according to 1 or 2. 集電体と、請求項1〜3いずれかに記載の蓄電デバイス用電極の下地層形成用導電性組成物から形成された下地層とを有する蓄電デバイス用下地層付き集電体。 The electrical power collector with a base layer for electrical storage devices which has an electrical power collector and the base layer formed from the electrically conductive composition for base layer formation of the electrode for electrical storage devices in any one of Claims 1-3. 集電体と、請求項1〜3いずれかに記載の蓄電デバイス用電極の下地層形成用導電性組成物から形成された下地層と、電極活物質とバインダーとを含有する電極形成用組成物から形成された合材層とを有する蓄電デバイス用電極。 An electrode forming composition comprising: a current collector; an underlayer formed from the conductive composition for forming an underlayer of the electrode for an electricity storage device according to any one of claims 1 to 3; an electrode active material; and a binder. An electrode for an electricity storage device having a composite material layer formed from the above. 正極と負極と電解液とを具備する蓄電デバイスであって、前記正極または前記負極の少なくとも一方が請求項5に記載の蓄電デバイス用電極である、蓄電デバイス。 An electricity storage device comprising a positive electrode, a negative electrode, and an electrolyte solution, wherein at least one of the positive electrode and the negative electrode is the electrode for an electricity storage device according to claim 5. 蓄電デバイスが、非水電解質二次電池、電気二重層キャパシターまたはリチウムイオンキャパシターのいずれかである請求項6に記載の蓄電デバイス。 The electricity storage device according to claim 6, wherein the electricity storage device is any one of a non-aqueous electrolyte secondary battery, an electric double layer capacitor, and a lithium ion capacitor.
JP2016121363A 2016-06-20 2016-06-20 Conductive composition, current collector with underlayer for power storage device, electrode for power storage device, and power storage device Active JP6683028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016121363A JP6683028B2 (en) 2016-06-20 2016-06-20 Conductive composition, current collector with underlayer for power storage device, electrode for power storage device, and power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016121363A JP6683028B2 (en) 2016-06-20 2016-06-20 Conductive composition, current collector with underlayer for power storage device, electrode for power storage device, and power storage device

Publications (2)

Publication Number Publication Date
JP2017228344A true JP2017228344A (en) 2017-12-28
JP6683028B2 JP6683028B2 (en) 2020-04-15

Family

ID=60891737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016121363A Active JP6683028B2 (en) 2016-06-20 2016-06-20 Conductive composition, current collector with underlayer for power storage device, electrode for power storage device, and power storage device

Country Status (1)

Country Link
JP (1) JP6683028B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019106282A (en) * 2017-12-12 2019-06-27 三洋化成工業株式会社 Resin current collector and lithium ion battery
JP2019216035A (en) * 2018-06-13 2019-12-19 三洋化成工業株式会社 Resin collector, lamination type resin collector, and lithium ion battery
JP2020102387A (en) * 2018-12-25 2020-07-02 三洋化成工業株式会社 Positive electrode for resin current collector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63175336A (en) * 1987-01-15 1988-07-19 ティムカル リミテッド Negative cover agent dispersion for battery
JPH09134709A (en) * 1995-11-07 1997-05-20 Nisshin Steel Co Ltd Painted metallic plate for lithium battery positive electrode can
JPH10241665A (en) * 1996-12-26 1998-09-11 Mitsubishi Electric Corp Electrode and battery using the same
WO2014077366A1 (en) * 2012-11-19 2014-05-22 株式会社Uacj Collector, electrode structure, electricity storage component, and composition for collectors
JP2015026595A (en) * 2013-04-19 2015-02-05 東洋インキScホールディングス株式会社 Conductive composition, current collector with underlying layer for power storage device, electrode for power storage device, and power storage device
WO2015046469A1 (en) * 2013-09-30 2015-04-02 日立化成株式会社 Lithium ion secondary battery cathode and lithium ion secondary battery using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63175336A (en) * 1987-01-15 1988-07-19 ティムカル リミテッド Negative cover agent dispersion for battery
JPH09134709A (en) * 1995-11-07 1997-05-20 Nisshin Steel Co Ltd Painted metallic plate for lithium battery positive electrode can
JPH10241665A (en) * 1996-12-26 1998-09-11 Mitsubishi Electric Corp Electrode and battery using the same
WO2014077366A1 (en) * 2012-11-19 2014-05-22 株式会社Uacj Collector, electrode structure, electricity storage component, and composition for collectors
JP2015026595A (en) * 2013-04-19 2015-02-05 東洋インキScホールディングス株式会社 Conductive composition, current collector with underlying layer for power storage device, electrode for power storage device, and power storage device
WO2015046469A1 (en) * 2013-09-30 2015-04-02 日立化成株式会社 Lithium ion secondary battery cathode and lithium ion secondary battery using same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019106282A (en) * 2017-12-12 2019-06-27 三洋化成工業株式会社 Resin current collector and lithium ion battery
JP7074469B2 (en) 2017-12-12 2022-05-24 三洋化成工業株式会社 Resin current collectors and lithium-ion batteries
JP2019216035A (en) * 2018-06-13 2019-12-19 三洋化成工業株式会社 Resin collector, lamination type resin collector, and lithium ion battery
WO2019239916A1 (en) * 2018-06-13 2019-12-19 日産自動車株式会社 Resin current collector and laminated type resin current collector, and lithium ion battery comprising this
CN112292777A (en) * 2018-06-13 2021-01-29 日产自动车株式会社 Resin current collector, laminated resin current collector, and lithium ion battery provided with same
JP6998278B2 (en) 2018-06-13 2022-02-10 三洋化成工業株式会社 Resin current collectors, laminated resin current collectors, and lithium-ion batteries
CN112292777B (en) * 2018-06-13 2024-04-05 日产自动车株式会社 Resin current collector, laminated resin current collector, and lithium ion battery provided with same
JP2020102387A (en) * 2018-12-25 2020-07-02 三洋化成工業株式会社 Positive electrode for resin current collector
JP7227760B2 (en) 2018-12-25 2023-02-22 三洋化成工業株式会社 Resin current collector for positive electrode

Also Published As

Publication number Publication date
JP6683028B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
US10626264B2 (en) Conductive composition, current collector with base layer for electric storage device, electrode for electric storage device, and electric storage device
JP5939346B1 (en) Conductive composition, non-aqueous electrolyte secondary battery-coated current collector, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JPWO2015152113A1 (en) Graphite negative electrode active material, negative electrode and lithium ion secondary battery
EP2555306A1 (en) Lithium-ion secondary battery
CN113728064B (en) Carbon black-containing slurry, electrode paste, method for producing electrode, and method for producing secondary battery
TW201503476A (en) Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
JP6808948B2 (en) Negative electrode for non-aqueous lithium-ion secondary battery, its manufacturing method and non-aqueous lithium-ion secondary battery
KR20220027846A (en) Composite particles for an electrochemical device and a method for manufacturing the same, a binder composition for a functional layer for an electrochemical device and a method for manufacturing the same, a conductive material paste for an electrode mixture layer and a method for manufacturing the same, a slurry for an electrode mixture layer, an electrode for an electrochemical device, and an electrochemical device
JP6683028B2 (en) Conductive composition, current collector with underlayer for power storage device, electrode for power storage device, and power storage device
CN111971824A (en) Negative electrode active material for secondary battery, negative electrode comprising same, and method for producing same
JP6044300B2 (en) Non-aqueous secondary battery electrode forming conductive primer composition, non-aqueous secondary battery electrode using the same, and non-aqueous secondary battery
JP6880576B2 (en) Conductive composition, current collector with base layer for power storage device, electrode for power storage device, and power storage device
JP2008198536A (en) Electrode, and secondary battery or capacitor using it
JP6763163B2 (en) Conductive composition, current collector with base layer for power storage device, electrode for power storage device, and power storage device
US20200099051A1 (en) Negative electrode for lithium ion battery and lithium ion battery
JP7009048B2 (en) Conductive composition, current collector with base layer for power storage device, electrode for power storage device, and power storage device
JP6874283B2 (en) Conductive compositions, grounded current collectors for power storage devices, electrodes for power storage devices, and power storage devices
JP2022165797A (en) Carbon material dispersion for underlayer, conductive composition for underlayer using the same, current collector with underlayer for power storage device, electrode for power storage device, power storage device
JP6879044B2 (en) Collector with base layer for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN115152048A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP7055589B2 (en) Conductive composition, current collector with base layer for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2019117725A (en) Conductive composition, power collector with ground layer for electricity storage device, electrode for electricity storage device, and electricity storage device
JP6760034B2 (en) Conductive composition, current collector with base layer for power storage device, electrode for power storage device, and power storage device
JP2023059402A (en) Conductive composition, current collector with underlayer for power storage device and electrode for power storage device using conductive composition, and power storage device obtained using the electrode
JP2017224469A (en) Conductive composition for forming backing layer of electrode for nonaqueous electrolyte secondary battery, and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190403

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200309

R151 Written notification of patent or utility model registration

Ref document number: 6683028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250