JP2017227633A - Radioactive iodine adsorbent and method for manufacturing the same - Google Patents

Radioactive iodine adsorbent and method for manufacturing the same Download PDF

Info

Publication number
JP2017227633A
JP2017227633A JP2017116869A JP2017116869A JP2017227633A JP 2017227633 A JP2017227633 A JP 2017227633A JP 2017116869 A JP2017116869 A JP 2017116869A JP 2017116869 A JP2017116869 A JP 2017116869A JP 2017227633 A JP2017227633 A JP 2017227633A
Authority
JP
Japan
Prior art keywords
radioactive iodine
activated carbon
amount
weight
iodine adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017116869A
Other languages
Japanese (ja)
Other versions
JP7111447B2 (en
Inventor
佐藤 俊介
Shunsuke Sato
俊介 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futamura Chemical Co Ltd
Original Assignee
Futamura Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futamura Chemical Co Ltd filed Critical Futamura Chemical Co Ltd
Priority to TW106120615A priority Critical patent/TWI742097B/en
Publication of JP2017227633A publication Critical patent/JP2017227633A/en
Application granted granted Critical
Publication of JP7111447B2 publication Critical patent/JP7111447B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radioactive iodine adsorbent having durability under a high temperature and a high humidity, having the adsorption capacity of radioactive iodine in a gas to be treated including both of radioactive iodine and a radioactive iodine compound, and capable of reducing the used amount of a material acting on adsorption, and provide a method for manufacturing the same.SOLUTION: The radioactive iodine adsorbent comprises a base material activated carbon, tri-ethylene diamine attached to the base material activated carbon, and an alkali metal iodide attached to the base material activated carbon. The attached amount of the tri-ethylene diamine is 0.5 to 2.5 wt.% of the weight of the radioactive iodine adsorbent, and the attached amount of the alkali metal iodide is 1 to 3 wt.% of the weight of the radioactive iodine adsorbent. The method for manufacturing the radioactive iodine adsorbent comprises: the cleaning step of cleaning the activated carbon by acid to dry them so as to obtain the base material activated carbon; the first attaching step of mixing and drying an alkali metal iodide aqueous solution; and the second attaching step of mixing and drying a tri-ethylene diamine aqueous solution.SELECTED DRAWING: Figure 1

Description

本発明は放射性ヨウ素吸着材及びその製造方法に関し、特に、気体状のヨウ素化合物の吸着効率を高めたヨウ素吸着材とそのための製造方法に関する。   The present invention relates to a radioactive iodine adsorbing material and a method for producing the same, and more particularly to an iodine adsorbing material having improved adsorption efficiency of a gaseous iodine compound and a producing method therefor.

軽水炉等の一般的なウラン型原子炉に用いられる核燃料において、ウラン(235U)は核分裂反応の主要元素である。ウラン(235U)の核分裂反応により生成される放射性物質の核種として、例えば、ストロンチウム(90Sr)、ヨウ素(131I)、セシウム(134Cs、137Cs)等が存在する。 In nuclear fuels used in general uranium reactors such as light water reactors, uranium ( 235 U) is the main element of the fission reaction. As nuclides of radioactive substances generated by the fission reaction of uranium ( 235 U), for example, strontium ( 90 Sr), iodine ( 131 I), cesium ( 134 Cs, 137 Cs) and the like exist.

通常、核燃料であるウランは燃料棒の内部に収容されており、内部のウランの核分裂物質が外部に拡散することはない。ここで、ウランの核分裂がある程度進行した後、MOX燃料等への加工、核燃料の処分等に際し燃料棒は開封される。また、燃料棒自体の損傷のリスクもある。このような場合、原則遮蔽環境下にて作業は行われるものの、万が一の状況下での放射性同位体核種の外部への飛散のおそれはあり得る。   Normally, uranium, which is a nuclear fuel, is housed inside the fuel rod, and the uranium fission material inside does not diffuse outside. Here, after the nuclear fission of uranium has progressed to some extent, the fuel rods are opened for processing into MOX fuel or the like, disposal of nuclear fuel, or the like. There is also a risk of damage to the fuel rods themselves. In such a case, although the work is performed in a shielded environment in principle, there is a possibility that the radioisotope is scattered outside in the unlikely event.

ウランの核分裂により生じる放射性同位体核種において、ヨウ素は、気体のI2またはヨウ化メチル(CH3I)等の有機ヨウ素化合物として存在することが知られている。ヨウ素(131I)の半減期は約8日間ではあるものの、高エネルギーのβ線を出しながらキセノン(Xe)へ壊変する。従って、放射性ヨウ素の大気中への拡散抑制の問題は他の核種と比べても重要である。特に、人体の摂取には注意する必要があり、ヨウ素剤の服用が推奨されていることからも明らかである。 In radioisotope nuclides produced by uranium fission, iodine is known to exist as an organic iodine compound such as gaseous I 2 or methyl iodide (CH 3 I). Although the half life of iodine ( 131 I) is about 8 days, it disintegrates to xenon (Xe) while emitting high-energy β rays. Therefore, the problem of suppressing the diffusion of radioactive iodine into the atmosphere is also important compared to other nuclides. In particular, it is necessary to pay attention to human consumption, and it is clear from the fact that iodine is recommended.

原子力発電所、原子力関連施設(再処理施設、貯蔵施設)等において、施設作業者の作業区域に空調機器には、大気中の空気に含まれる放射性ヨウ素を吸着するための吸着材が備えられている。このような施設内への設置の他に、周辺住民の避難施設の空調機器への設置も検討され始めている。それゆえ、放射性ヨウ素吸着材の需要は、今後増大すると考えられる。   In nuclear power plants, nuclear facilities (reprocessing facilities, storage facilities), etc., air conditioning equipment is provided in the work area of facility workers and is equipped with an adsorbent for adsorbing radioactive iodine contained in air in the atmosphere. Yes. In addition to installation in such facilities, installation of air-conditioning equipment in evacuation facilities for residents in the vicinity has begun to be considered. Therefore, the demand for radioactive iodine adsorbents is expected to increase in the future.

従前の放射性ヨウ素の吸着材として、例えば、ヨウ化カリウムを添着した活性炭、銀を添着したゼオライト等が知られている。しかしながら、これらの吸着材のヨウ素及びヨウ素化合物の吸着性能は必ずしも十分ではなかった。そこで、活性炭にトリエチレンジアミンとヨウ化カリウムを添着した吸着材が提案されている(特許文献1,2参照)。   As conventional radioactive iodine adsorbents, for example, activated carbon impregnated with potassium iodide, zeolite impregnated with silver, and the like are known. However, the adsorption performance of iodine and iodine compounds of these adsorbents is not always sufficient. Therefore, an adsorbent in which triethylenediamine and potassium iodide are impregnated on activated carbon has been proposed (see Patent Documents 1 and 2).

特許文献1,2に代表される放射性ヨウ素吸着材は、高温、高湿度下においても耐久性を有し、しかもヨウ素及びヨウ素化合物の両方の吸着性能を備えるため極めて好適な吸着材である。しかしながら、放射性ヨウ素の吸着性能を発揮するための添着成分は高価であり、使用量の低減が検討されてきた。   The radioactive iodine adsorbents represented by Patent Documents 1 and 2 are extremely suitable adsorbents because they have durability even under high temperature and high humidity, and have adsorption performance of both iodine and iodine compounds. However, the adhering component for exhibiting the adsorption performance of radioactive iodine is expensive, and reduction of the amount used has been studied.

特開2012−2606号公報JP 2012-2606 A 特開2015−45588号公報JP2015-45588A

その後、発明者は、放射性ヨウ素吸着材の材料、製造過程について鋭意検討を重ね、従前の条件よりも添着物質の量を低減しても十分な吸着効率が発揮されることを確認した。   After that, the inventor conducted extensive studies on the material and manufacturing process of the radioactive iodine adsorbent, and confirmed that sufficient adsorption efficiency was exhibited even if the amount of the adhering substance was reduced as compared with the previous conditions.

本発明は、上記状況に鑑み提案されたものであり、高温、高湿度下においても耐久性を有し、放射性ヨウ素及び放射性ヨウ素化合物の両方を含有する被処理ガス中からの放射性ヨウ素の吸着性能を備え、しかも吸着に作用する物質の使用量の低減を可能とする放射性ヨウ素吸着材及びその製造方法を提供する。   The present invention has been proposed in view of the above situation, has durability even under high temperature and high humidity, and adsorption performance of radioactive iodine from the gas to be treated containing both radioactive iodine and radioactive iodine compound And a radioactive iodine adsorbent capable of reducing the amount of a substance that acts on adsorption and a method for producing the same.

すなわち、第1の発明は、放射性ヨウ素を含む被処理ガス中より放射性ヨウ素を吸着する放射性ヨウ素吸着材であって、前記放射性ヨウ素吸着材は、基材活性炭と、前記基材活性炭に添着されるトリエチレンジアミンと、前記基材活性炭に添着されるアルカリ金属ヨウ化物とを備え、前記トリエチレンジアミンの添着量が前記放射性ヨウ素吸着材の重量の0.5〜2.5重量%であり、前記アルカリ金属ヨウ化物の添着量が前記放射性ヨウ素吸着材の重量の1〜3重量%であることを特徴とする放射性ヨウ素吸着材に係る。   That is, the first invention is a radioactive iodine adsorbent that adsorbs radioactive iodine from a gas to be treated containing radioactive iodine, and the radioactive iodine adsorbent is attached to the base activated carbon and the base activated carbon. Triethylenediamine and an alkali metal iodide attached to the base activated carbon, the amount of the triethylenediamine added is 0.5 to 2.5% by weight of the radioactive iodine adsorbent, and the alkali metal The radioactive iodine adsorbent is characterized in that the amount of iodide added is 1 to 3% by weight of the weight of the radioactive iodine adsorbent.

第2の発明は、前記アルカリ金属ヨウ化物がヨウ化カリウムである第1の発明に記載の放射性ヨウ素吸着材に係る。   A second invention relates to the radioactive iodine adsorbent according to the first invention, wherein the alkali metal iodide is potassium iodide.

第3の発明は、前記トリエチレンジアミンの添着量が、前記放射性ヨウ素吸着材の重量の1.7〜2.5重量%である第1の発明に記載の放射性ヨウ素吸着材に係る。   A third invention relates to the radioactive iodine adsorbing material according to the first invention, wherein the amount of the triethylenediamine added is 1.7 to 2.5% by weight of the weight of the radioactive iodine adsorbing material.

第4の発明は、前記基材活性炭のBET比表面積が1900m2/g以下である第1の発明に記載の放射性ヨウ素吸着材に係る。 4th invention concerns the radioactive iodine adsorption material as described in 1st invention whose BET specific surface area of the said base material activated carbon is 1900 m < 2 > / g or less.

第5の発明は、放射性ヨウ素を含む被処理ガス中より放射性ヨウ素を吸着する放射性ヨウ素吸着材の製造方法であって、活性炭を酸洗浄し乾燥して基材活性炭を得る洗浄工程と、アルカリ金属ヨウ化物の水溶液と前記基材活性炭を混合し、乾燥して第1添着活性炭を得る第1添着工程と、トリエチレンジアミンの水溶液と前記第1添着活性炭を混合し、乾燥して第2添着活性炭を得る第2添着工程とを備え、前記第1添着工程における前記アルカリ金属ヨウ化物の添着量が前記放射性ヨウ素吸着材の重量の1〜3重量%であり、前記第2添着工程における前記トリエチレンジアミンの添着量が前記放射性ヨウ素吸着材の重量の0.5〜2.5重量%であることを特徴とする放射性ヨウ素吸着材の製造方法に係る。   5th invention is the manufacturing method of the radioactive iodine adsorption material which adsorb | sucks a radioactive iodine from the to-be-processed gas containing a radioactive iodine, Comprising: The washing | cleaning process of obtaining activated carbon by acid cleaning and drying, and an alkali metal, The aqueous solution of iodide and the base activated carbon are mixed and dried to obtain the first impregnated activated carbon; the aqueous solution of triethylenediamine and the first impregnated activated carbon are mixed and dried to obtain the second impregnated activated carbon. A second attaching step, wherein the amount of alkali metal iodide added in the first attaching step is 1 to 3% by weight of the radioactive iodine adsorbent, and the triethylenediamine in the second attaching step The method according to the present invention relates to a method for producing a radioactive iodine adsorbent, characterized in that the amount of attachment is 0.5 to 2.5 wt% of the weight of the radioactive iodine adsorbent.

第6の発明は、前記アルカリ金属ヨウ化物がヨウ化カリウムである第5の発明に記載の放射性ヨウ素吸着材の製造方法に係る。   6th invention concerns the manufacturing method of the radioactive iodine adsorption material as described in 5th invention whose said alkali metal iodide is potassium iodide.

第7の発明は、前記トリエチレンジアミンの添着量が、前記放射性ヨウ素吸着材の重量の1.7〜2.5重量%である第5の発明に記載の放射性ヨウ素吸着材の製造方法に係る。   7th invention concerns the manufacturing method of the radioactive iodine adsorption material as described in 5th invention whose addition amount of the said triethylenediamine is 1.7 to 2.5 weight% of the weight of the said radioactive iodine adsorption material.

第8の発明は、前記基材活性炭のBET比表面積が1900m2/g以下である第5の発明に記載の放射性ヨウ素吸着材の製造方法に係る。 8th invention concerns on the manufacturing method of the radioactive iodine adsorption material as described in 5th invention whose BET specific surface area of the said base material activated carbon is 1900 m < 2 > / g or less.

第1の発明に係る放射性ヨウ素吸着材によると、放射性ヨウ素を含む被処理ガス中より放射性ヨウ素を吸着する放射性ヨウ素吸着材であって、前記放射性ヨウ素吸着材は、基材活性炭と、前記基材活性炭に添着されるトリエチレンジアミンと、前記基材活性炭に添着されるアルカリ金属ヨウ化物とを備え、前記トリエチレンジアミンの添着量が前記放射性ヨウ素吸着材の重量の0.5〜2.5重量%であり、前記アルカリ金属ヨウ化物の添着量が前記放射性ヨウ素吸着材の重量の1〜3重量%であるため、放射性ヨウ素及び放射性ヨウ素化合物の両方を含有する被処理ガス中からの放射性ヨウ素の吸着性能を備え、しかも吸着に作用する物質の使用量の低減を可能とする放射性ヨウ素吸着材を得ることができる。   According to the radioactive iodine adsorbing material according to the first aspect of the present invention, the radioactive iodine adsorbing material adsorbs radioactive iodine from the gas to be treated containing radioactive iodine, and the radioactive iodine adsorbing material includes base activated carbon and the base A triethylenediamine adhering to the activated carbon and an alkali metal iodide adhering to the base activated carbon, the amount of the triethylenediamine adhering is 0.5 to 2.5% by weight of the radioactive iodine adsorbent. Yes, since the amount of the alkali metal iodide is 1 to 3% by weight of the radioactive iodine adsorbent, the adsorption performance of radioactive iodine from the gas to be treated containing both the radioactive iodine and the radioactive iodine compound In addition, it is possible to obtain a radioactive iodine adsorbent that can reduce the amount of a substance that acts on adsorption.

第2の発明に係る放射性ヨウ素吸着材によると、第1の発明において、前記アルカリ金属ヨウ化物がヨウ化カリウムであるため、性状は安定しており、比較的調達も容易である。   According to the radioactive iodine adsorbent according to the second invention, in the first invention, since the alkali metal iodide is potassium iodide, the properties are stable and the procurement is relatively easy.

第3の発明に係る放射性ヨウ素吸着材によると、第1の発明において、前記トリエチレンジアミンの添着量が、前記放射性ヨウ素吸着材の重量の1.7〜2.5重量%であるため、さらに高い吸着能力を備える。   According to the radioactive iodine adsorbing material according to the third invention, in the first invention, the amount of triethylenediamine added is 1.7 to 2.5% by weight of the weight of the radioactive iodine adsorbing material. With adsorption capacity.

第4の発明に係る放射性ヨウ素吸着材によると、第1の発明において、前記基材活性炭のBET比表面積が1900m2/g以下であるため、吸着能力に影響する体積当たりの薬品添着量及び細孔容積の減少による破過時間の低下による性能低下を回避することができる。 According to the radioactive iodine adsorbent according to the fourth invention, in the first invention, since the BET specific surface area of the base activated carbon is 1900 m 2 / g or less, the amount of chemical adhering per volume and the fine amount affecting the adsorption capacity are reduced. It is possible to avoid performance degradation due to a decrease in breakthrough time due to a decrease in pore volume.

第5の発明に係る放射性ヨウ素吸着材の製造方法によると、放射性ヨウ素を含む被処理ガス中より放射性ヨウ素を吸着する放射性ヨウ素吸着材の製造方法であって、活性炭を酸洗浄し乾燥して基材活性炭を得る洗浄工程と、アルカリ金属ヨウ化物の水溶液と前記基材活性炭を混合し、乾燥して第1添着活性炭を得る第1添着工程と、トリエチレンジアミンの水溶液と前記第1添着活性炭を混合し、乾燥して第2添着活性炭を得る第2添着工程とを備え、前記第1添着工程における前記アルカリ金属ヨウ化物の添着量が前記放射性ヨウ素吸着材の重量の1〜3重量%であり、前記第2添着工程における前記トリエチレンジアミンの添着量が前記放射性ヨウ素吸着材の重量の0.5〜2.5重量%であるため、
放射性ヨウ素及び放射性ヨウ素化合物の両方を含有する被処理ガス中からの放射性ヨウ素の吸着性能を備え、しかも吸着に作用する物質の使用量の低減を可能とする放射性ヨウ素吸着材を簡便な製造方法により得ることができる。
According to the method for producing a radioactive iodine adsorbent according to the fifth aspect of the present invention, there is provided a method for producing a radioactive iodine adsorbent that adsorbs radioactive iodine from a gas to be treated containing radioactive iodine. Cleaning step to obtain activated carbon, mixing first aqueous solution of alkali metal iodide and base activated carbon, drying to obtain first impregnated activated carbon, mixing aqueous solution of triethylenediamine and first impregnated activated carbon And a second attaching step for drying to obtain a second impregnated activated carbon, wherein the amount of alkali metal iodide attached in the first attaching step is 1 to 3% by weight of the radioactive iodine adsorbent, Since the amount of triethylenediamine added in the second attaching step is 0.5 to 2.5% by weight of the radioactive iodine adsorbent,
A simple method for producing a radioactive iodine adsorbent that is capable of adsorbing radioactive iodine from a gas to be treated containing both radioactive iodine and a radioactive iodine compound, and that can reduce the amount of substances that act on the adsorption. Can be obtained.

第6の発明に係る放射性ヨウ素吸着材の製造方法によると、第5の発明において、前記アルカリ金属ヨウ化物がヨウ化カリウムであるため、性状は安定しており、比較的調達も容易である。   According to the method for producing a radioactive iodine adsorbent according to the sixth invention, in the fifth invention, since the alkali metal iodide is potassium iodide, the properties are stable and the procurement is relatively easy.

第7の発明に係る放射性ヨウ素吸着材の製造方法によると、第5の発明において、前記トリエチレンジアミンの添着量が、前記放射性ヨウ素吸着材の重量の1.7〜2.5重量%であるため、さらに吸着能力を高めることができる。   According to the method for producing a radioactive iodine adsorbent according to the seventh invention, in the fifth invention, the amount of triethylenediamine attached is 1.7 to 2.5% by weight of the weight of the radioactive iodine adsorbent. Further, the adsorption capacity can be increased.

第8の発明に係る放射性ヨウ素吸着材の製造方法によると、第5の発明において、前記基材活性炭のBET比表面積が1900m2/g以下であるため、吸着能力に影響する体積当たりの薬品添着量及び細孔容積の減少による破過時間の低下による性能低下を回避した放射性ヨウ素吸着材を製造することができる。 According to the method for producing a radioactive iodine adsorbent according to the eighth invention, in the fifth invention, since the BET specific surface area of the base activated carbon is 1900 m 2 / g or less, the chemical adhering per volume affecting the adsorption capacity It is possible to produce a radioactive iodine adsorbent that avoids performance degradation due to reduction in breakthrough time due to reduction in the amount and pore volume.

本発明の放射性ヨウ素吸着材の製造方法を説明する概略工程図である。It is a schematic process drawing explaining the manufacturing method of the radioactive iodine adsorption material of this invention.

本発明の放射性ヨウ素吸着材は、放射性ヨウ素(主に131I等)を含む被処理ガス中より放射性ヨウ素を吸着することによって、放射性ヨウ素の大気中への拡散を抑制するための吸着材である。ウランの核分裂により生じたヨウ素(131I等)は、ハロゲンの一種であることから反応性に富み、温度条件次第では、ヨウ素(I2)は気体として存在する。また、電離状態のI-と他の有機物との反応により有機物由来のメチル基と反応してヨウ化メチル(CH3I)等の有機ヨウ素化合物が生成することも知られている。このような気体中の放射性のヨウ素及びヨウ素化合物を含む被処理ガスに対する効率の良い吸着材として、本発明の放射性ヨウ素吸着材が提案される。 The radioactive iodine adsorbent of the present invention is an adsorbent for suppressing the diffusion of radioactive iodine into the atmosphere by adsorbing radioactive iodine from the gas to be treated containing radioactive iodine (mainly 131 I or the like). . Iodine ( 131 I, etc.) generated by uranium fission is a kind of halogen, and therefore has high reactivity. Depending on temperature conditions, iodine (I 2 ) exists as a gas. It is also known that an organic iodine compound such as methyl iodide (CH 3 I) is produced by reacting with an organic substance-derived methyl group by a reaction between ionized I and another organic substance. The radioactive iodine adsorbent of the present invention is proposed as an efficient adsorbent for the gas to be treated containing radioactive iodine and iodine compounds in such a gas.

そこで、放射性ヨウ素吸着材について、図1の概略工程図と併せてその製造方法とともに説明する。放射性ヨウ素吸着材の主体となる材料として、基材活性炭が用意される。基材活性炭は、公知の活性炭(Activated carbon)の粒状物である。活性炭は、木材の製材、加工時に生じるオガコ(大鋸屑)や鉋屑等、廃材や間伐材、廃竹、伐採竹、ヤシ殻等のセルロース分に富む木質の植物原料の粉砕物を炭化、焼成、適宜の賦活を経て得た炭化物である。植物原料の他に、古タイヤ、フェノール樹脂等の各種樹脂製品の炭化物等も活性炭に加えることができる。そのため、基材活性炭は比較的安価かつ量的に調達可能である。   Therefore, the radioactive iodine adsorbing material will be described together with its manufacturing method together with the schematic process diagram of FIG. Substrate activated carbon is prepared as the main material of the radioactive iodine adsorbent. The base activated carbon is a granular material of a known activated carbon. Activated carbon is carbonized, fired, and appropriately pulverized pulverized products of woody plant materials rich in cellulose, such as wood saws, sawdust (wood sawdust) and sawdust generated during processing, waste wood, thinned wood, waste bamboo, felled bamboo, palm shell It is the carbide obtained through the activation of. In addition to plant materials, carbides of various resin products such as old tires and phenol resins can be added to the activated carbon. Therefore, the base activated carbon can be procured relatively inexpensively and quantitatively.

活性炭は吸着、濾過材料として使用されており、安全性が高くしかも活性炭表面に発達した細孔により幅広い物質を吸着対象とすることができる。そこで、活性炭の表面並びにその細孔への次述する添着物質等の付着、活性炭の細孔内への放射性のヨウ素及びヨウ素化合物を含む被処理ガスの浸透性能も高い。活性炭の大きさは1ないし5mm程度の粒状体であり、大きさは不定形である。活性炭の大きさや形状の制御は粉砕、破砕、篩別等により、任意である。しかしながら、放射性ヨウ素吸着材は放射性ヨウ素を含む被処理ガスを吸着の対象とする。極端に粒径が細かい場合には、目詰まり等の圧力損失が大きくなり、ガス通気にも影響が生じるおそれがある。ただし、被処理ガスを加圧しながら通気が可能であれば、粉末状活性炭の選択も可能である。   Activated carbon is used as an adsorbing and filtering material, and is highly safe and can cover a wide range of substances due to the pores developed on the activated carbon surface. Therefore, the surface of the activated carbon and its pores adhere to the following substances, and the permeation performance of the gas to be treated containing radioactive iodine and iodine compound into the pores of the activated carbon is also high. The size of the activated carbon is a granular body of about 1 to 5 mm, and the size is irregular. The size and shape of the activated carbon can be arbitrarily controlled by crushing, crushing, sieving, or the like. However, the radioactive iodine adsorbing material targets the gas to be treated containing radioactive iodine for adsorption. When the particle size is extremely fine, pressure loss such as clogging becomes large, and there is a possibility that gas ventilation may be affected. However, powdered activated carbon can be selected as long as the gas to be processed can be ventilated while being pressurized.

活性炭の吸着性能の評価指標として、BET法による比表面積(m2/g)が利用される。一般傾向として、比表面積が増加するほど活性炭内部の細孔は発達して吸着性能は高まる。しかしながら、吸着対象との関係では、どの範囲の大きさの細孔を発達させるべきかが重要となり、単純に比表面積の増大が吸着性能の向上に結びつかない。特に、本発明の放射性ヨウ素吸着材は有機ヨウ素化合物等を主な吸着対象とする。この場合、吸着対象の分子の大きさ等が勘案されて相対的にメソ孔(概ね2ないし50nmの範囲の細孔)を多く有する活性炭ほど好ましいと考えられる。 A specific surface area (m 2 / g) by the BET method is used as an evaluation index of the adsorption performance of activated carbon. As a general tendency, as the specific surface area increases, the pores inside the activated carbon develop and the adsorption performance increases. However, in relation to the object to be adsorbed, it is important which pore size should be developed, and simply increasing the specific surface area does not lead to improvement in adsorption performance. In particular, the radioactive iodine adsorbent of the present invention mainly uses organic iodine compounds and the like as adsorption targets. In this case, the activated carbon having a relatively large number of mesopores (pores in the range of approximately 2 to 50 nm) is considered to be preferable in consideration of the size of the molecule to be adsorbed.

そこで、後記の実施例の検証を踏まえ、ヨウ化メチル等の有機ヨウ素化合物を吸着する際の活性炭のBET法による比表面積は1900m2/g以下と導き出される。BET法による比表面積が1900m2/gを超える場合、ヨウ化メチルの破過時間の低下による性能低下が現れる。さらに、比表面積の上限は1750m2/g以下、さらには1550m2/g以下、より好ましくは1400m2/g以下に規定される。比表面積の下限については、好ましくは1100m2/gである。比表面積の増加は吸着能力に影響する体積当たりの薬品添着量及び細孔容積の減少につながり、吸着材としての破過時間の低下をもたらす。 Therefore, based on the verification of Examples described later, the specific surface area of activated carbon when adsorbing organic iodine compounds such as methyl iodide by the BET method is derived to be 1900 m 2 / g or less. When the specific surface area by the BET method exceeds 1900 m 2 / g, performance deterioration due to reduction in breakthrough time of methyl iodide appears. Further, the upper limit of the specific surface area of 1750m 2 / g or less, more 1550 m 2 / g or less, more preferably defined below 1400 m 2 / g. The lower limit of the specific surface area is preferably 1100 m 2 / g. An increase in the specific surface area leads to a decrease in the amount of chemical adhering per volume and the pore volume, which affect the adsorption capacity, leading to a decrease in breakthrough time as an adsorbent.

はじめに活性炭は希塩酸等の弱酸性溶液中に浸漬され、同弱酸性溶液にて煮沸される。その後、水洗と乾燥を経て次の工程に供する基材活性炭が得られる(「洗浄工程」)。安価に仕上げるため、活性炭には、前述のとおり天然物由来の原料が多く使用される。そのため、品質のばらつきが完全には払拭されない。また、活性炭の表面及び細孔内に有機物、塩類が存在していると、次に述べるアルカリ金属のヨウ化物、トリエチレンジアミンの添着は阻害されるおそれが考えられる。そこで、活性炭が希塩酸等の弱酸性溶液にて煮沸されると、有機物は分解され、また塩類も溶解可能である。結果として、事前に品質の安定化を図ることが可能となる。特に、トリエチレンジアミンは塩基性を呈する。そのため、酸洗浄により活性炭表面の塩基性基が減少することは好ましいと考えられる。   First, the activated carbon is immersed in a weak acid solution such as dilute hydrochloric acid and boiled in the weak acid solution. Then, the base activated carbon used for the following process is obtained through water washing and drying ("washing process"). In order to finish cheaply, as described above, many raw materials derived from natural products are used for activated carbon. Therefore, the quality variation is not completely wiped out. Further, if organic substances and salts are present on the surface and pores of the activated carbon, it is considered that the addition of alkali metal iodide and triethylenediamine described below may be inhibited. Thus, when activated carbon is boiled in a weakly acidic solution such as dilute hydrochloric acid, the organic matter is decomposed and salts can also be dissolved. As a result, it becomes possible to stabilize the quality in advance. In particular, triethylenediamine exhibits basicity. Therefore, it is considered preferable that the basic group on the activated carbon surface is reduced by acid cleaning.

次にアルカリ金属ヨウ化物の水溶液が調製され、同水溶液と基材活性炭は混合、その後乾燥され、第1添着活性炭が得られる(「第1添着工程」)。アルカリ金属ヨウ化物は、具体的にはヨウ化カリウム(KI)またはヨウ化ナトリウム(NaI)である。それ以外のアルカリ金属の場合、当量(1モル当たりのグラム数)との関係から使用量が増え、また、価格がヨウ化カリウムよりも高価になる。ヨウ化カリウムの性状は安定しており、比較的調達も容易であることから好ましく用いられる。   Next, an aqueous solution of alkali metal iodide is prepared, the aqueous solution and the base activated carbon are mixed, and then dried to obtain a first impregnated activated carbon (“first impregnation step”). The alkali metal iodide is specifically potassium iodide (KI) or sodium iodide (NaI). In the case of other alkali metals, the amount used is increased in relation to the equivalent amount (grams per mole), and the price is higher than that of potassium iodide. Potassium iodide is preferably used because it is stable and relatively easy to procure.

アルカリ金属ヨウ化物(ヨウ化カリウムまたはヨウ化ナトリウム)による放射性ヨウ素吸着の作用は次のとおりと考えられる。吸着材側の安定同位体のヨウ素(1272)に被処理ガス中の放射性ヨウ素(1312等)が接触すると、ヨウ素の核種の交換が生じる。これについては、例えば、式(i)の反応が参照される。式(i)はヨウ化カリウム「KI」の例であり、「I*」はヨウ素の放射性同位体を示す。結果、被処理ガス中の放射性ヨウ素は接触前よりも低減する。従って、アルカリ金属ヨウ化物は、被処理ガス中、単体で存在する放射性ヨウ素(1312等)と放射性ヨウ化メチル(CH3 131I等)の放射性有機ヨウ素化合物の除去に作用する。 The action of radioiodine adsorption by alkali metal iodide (potassium iodide or sodium iodide) is considered as follows. When radioactive iodine (such as 131 I 2 ) in the gas to be treated comes into contact with iodine ( 127 I 2 ), which is a stable isotope on the adsorbent side, exchange of iodine nuclides occurs. For this, reference is made, for example, to the reaction of formula (i). Formula (i) is an example of potassium iodide “KI”, where “I * ” represents the radioactive isotope of iodine. As a result, radioactive iodine in the gas to be treated is reduced more than before contact. Accordingly, the alkali metal iodide acts to remove radioactive organic iodine compounds such as radioactive iodine ( 131 I 2 etc.) and radioactive methyl iodide (CH 3 131 I etc.) present alone in the gas to be treated.

Figure 2017227633
Figure 2017227633

ヨウ化カリウムまたはヨウ化ナトリウムは水に溶解後、基材活性炭への吹き付け塗布、浸漬等により水溶液と十分に混合される。アルカリ金属ヨウ化物の水溶液は、最終的な添着量を考慮して濃度調整される。その後、水分の蒸発に十分な温度、時間をかけて乾燥される。アルカリ金属ヨウ化物は塩であることから、乾燥時の温度を上げることも可能である。ただし、基材の熱分解を避ける必要から、概ね100ないし200℃の加熱及び乾燥条件となる。   After potassium iodide or sodium iodide is dissolved in water, it is sufficiently mixed with the aqueous solution by spray coating, dipping, etc. on the base activated carbon. The concentration of the aqueous alkali metal iodide solution is adjusted in consideration of the final amount of adhesion. Then, it is dried over a temperature and time sufficient for evaporation of moisture. Since alkali metal iodide is a salt, it is possible to increase the temperature during drying. However, since it is necessary to avoid thermal decomposition of the substrate, the heating and drying conditions are approximately 100 to 200 ° C.

第1添着工程におけるアルカリ金属ヨウ化物の添着量は、最終的に出来上がる放射性ヨウ素吸着材の重量の1ないし3重量%、より好ましくは1.5ないし3重量%に制御される。単位放射性ヨウ素吸着材あたりの重量比が1重量%を下回る場合、アルカリ金属ヨウ化物(ヨウ化カリウム等)の量は少なくなり吸着効果は低下する。そして、1.5重量%を上回るとより効果が高まる。上限について、重量比が3重量%を超過しても吸着効果の向上は頭打ちとなり、効果の点からは過剰と考えられる。そのため、使用量を抑制する趣旨から、上限は3重量%に規定される。   The amount of alkali metal iodide applied in the first attaching step is controlled to 1 to 3% by weight, more preferably 1.5 to 3% by weight, based on the weight of the final radioactive iodine adsorbent. When the weight ratio per unit radioactive iodine adsorbent is less than 1% by weight, the amount of alkali metal iodide (potassium iodide, etc.) decreases and the adsorption effect decreases. And if it exceeds 1.5 weight%, an effect will increase more. Regarding the upper limit, even if the weight ratio exceeds 3% by weight, the improvement of the adsorption effect reaches its peak, and it is considered excessive from the viewpoint of the effect. Therefore, the upper limit is defined as 3% by weight for the purpose of reducing the amount used.

続いて、トリエチレンジアミンの水溶液が調製される。同トリエチレンジアミン水溶液と第1添着活性炭は混合、その後乾燥され、第2添着活性炭が得られる(「第2添着工程」)。トリエチレンジアミンは(f)式にて示される構造であり、1,4−ジアザビシクロ[2.2.2]オクタンとも称される。トリエチレンジアミンはその分子中に3級アミンを2箇所有する。しかも、窒素原子の周りの結合は後ろに縛られた構造である。このことから、孤立電子対は立体障害を受けにくく求核性に富む領域となる。それゆえ、被処理ガス中の放射性ヨウ素を含むヨウ化メチル(CH3 131I)等に対して求核反応は生じやすく、4級アンモニウム塩が生じると考えられる。当該反応は、例えば、式(ii)の機構として説明される。 Subsequently, an aqueous solution of triethylenediamine is prepared. The triethylenediamine aqueous solution and the first impregnated activated carbon are mixed and then dried to obtain a second impregnated activated carbon (“second impregnation step”). Triethylenediamine has a structure represented by the formula (f) and is also referred to as 1,4-diazabicyclo [2.2.2] octane. Triethylenediamine has two tertiary amines in its molecule. In addition, the bond around the nitrogen atom is a structure tied back. For this reason, the lone pair of electrons is a region that is less susceptible to steric hindrance and rich in nucleophilicity. Therefore, it is considered that a nucleophilic reaction is likely to occur with methyl iodide (CH 3 131 I) containing radioactive iodine in the gas to be treated, and a quaternary ammonium salt is generated. The reaction is described as, for example, the mechanism of formula (ii).

Figure 2017227633
Figure 2017227633

Figure 2017227633
Figure 2017227633

トリエチレンジアミンは水に溶解後、基材活性炭への吹き付け塗布、浸漬等により水溶液と十分に混合される。トリエチレンジアミンの水溶液も、最終的な添着量を考慮して濃度調整される。その後、水分の蒸発に十分な温度、時間をかけて乾燥される。ただし、トリエチレンジアミンは100℃を上回る高温下では熱分解し、添着量は減少する。そこで、熱分解を避けるべく、乾燥に際してはおおよそ80℃以下、好ましくは70℃以下の温度条件により乾燥される。従って、第1添着工程にて述べた高温に依存した乾燥はできない。それゆえ、乾燥の便宜からトリエチレンジアミンの水への溶解時、使用する水の量は低温乾燥を考慮して第1添着活性炭が湿る程度の量である。   After triethylenediamine is dissolved in water, it is sufficiently mixed with the aqueous solution by spray coating, dipping, etc. on the base activated carbon. The concentration of the aqueous solution of triethylenediamine is also adjusted in consideration of the final amount of adhesion. Then, it is dried over a temperature and time sufficient for evaporation of moisture. However, triethylenediamine is thermally decomposed at a high temperature exceeding 100 ° C., and the amount of adhesion decreases. Therefore, in order to avoid thermal decomposition, the drying is performed under a temperature condition of approximately 80 ° C. or less, preferably 70 ° C. or less. Therefore, the drying depending on the high temperature described in the first attaching step cannot be performed. Therefore, for the convenience of drying, when triethylenediamine is dissolved in water, the amount of water used is such that the first impregnated activated carbon gets wet in consideration of low temperature drying.

第2添着工程におけるトリエチレンジアミンの添着量は、最終的に出来上がる放射性ヨウ素吸着材の重量の0.5ないし2.5重量%に制御される。当該添着量の上限は後記の実施例の検証に基づく。添着量3重量%を超過しても、超過分に見合う性能向上効果は少ない。さらに減らした例においても吸着結果が良好になったためである。下限については、おおよそ0.5重量%の添着量を伴わなければ効果を乏しいと考えられる。そこで、より効果高める場合には、1.7重量%以上の添着量が望まれる。それゆえ、トリエチレンジアミンの添着量は、0.5ないし2.5重量%の範囲、さらには1.7ないし2.5重量%の範囲として規定される。第2添着工程までを終了して、「放射性ヨウ素吸着材」は完成する。   The amount of triethylenediamine added in the second attaching step is controlled to 0.5 to 2.5% by weight of the weight of the final radioactive iodine adsorbent. The upper limit of the amount of attachment is based on the verification of examples described later. Even if the amount of attachment exceeds 3% by weight, the performance improvement effect corresponding to the excess is small. This is because the adsorption results were improved even in the case of further reduction. As for the lower limit, it is considered that the effect is poor unless an attachment amount of about 0.5% by weight is accompanied. Therefore, in order to enhance the effect, an amount of attachment of 1.7% by weight or more is desired. Therefore, the amount of triethylenediamine applied is defined as a range of 0.5 to 2.5% by weight, and further a range of 1.7 to 2.5% by weight. The process up to the second attaching step is completed, and the “radioactive iodine adsorbent” is completed.

このような極めて単純な性状であるとともに、従前の吸着材よりも添着成分を抑制した。そこで、放射性ヨウ素吸着材は、ガス用の濾材として、例えば、集塵機、空気浄化装置、空調機器の適宜の外気等の取り入れ口、収容部等(図示せず)に充填される。これらの機器は、原子力発電所、核燃料再処理施設、核燃料等の廃棄や貯蔵施設、さらには、これら施設外の避難施設等へも設置される。特に、活性炭への添着成分を抑制しても同等の効果が期待されるため、使用量の低減、使用期間の延長等の利点がある。   In addition to such extremely simple properties, the adhering components were suppressed as compared with the conventional adsorbent. Therefore, the radioactive iodine adsorbent is filled, for example, in a dust collector, an air purifier, an intake of appropriate air or the like of an air conditioner, a storage unit, and the like (not shown) as a gas filter medium. These devices are installed in nuclear power plants, nuclear fuel reprocessing facilities, nuclear fuel disposal and storage facilities, and evacuation facilities outside these facilities. In particular, since the same effect is expected even if the component adhering to the activated carbon is suppressed, there are advantages such as a reduction in the amount used and an extension in the period of use.

[使用原料]
発明者は、放射性ヨウ素吸着材を作成するため、下記の原料を使用した。
・活性炭
株式会社ツルミコール製,ヤシ殻活性炭「HC−20」(粒径:1.18−2.36mm)を使用した(活性炭1)。
・アルカリ金属ヨウ化物
アルカリ金属ヨウ化物として、ヨウ化カリウム(和光純薬株式会社製)を使用した。
・トリエチレンジアミン
トリエチレンジアミンは、関東化学式会社製を使用した。
[Raw materials]
The inventor used the following raw materials in order to create a radioactive iodine adsorbent.
Activated charcoal Co., Ltd. made by Tsurumi Coal Co., Ltd., coconut shell activated carbon “HC-20” (particle size: 1.18-2.36 mm) was used (activated carbon 1).
-Alkali metal iodide Potassium iodide (made by Wako Pure Chemical Industries, Ltd.) was used as an alkali metal iodide.
-Triethylenediamine Triethylenediamine was manufactured by Kanto Chemical Company.

[放射性ヨウ素吸着材の作製(I)]
発明者は、トリエチレンジアミンの添着量を変えながら4種類の放射性ヨウ素吸着材を作製した(試作例1ないし4)。はじめに、水3Lに1Nの塩酸120mLを添加して塩酸希釈液を調製し、ここに活性炭1500gを投入した。ここで、約30分間、活性炭を煮沸した。煮沸後、活性炭を流水で洗浄した。流水による洗浄は、洗浄水のpHが6ないし8の範囲に収まるまで続けた。水洗後、115℃で16時間かけて乾燥し、基材活性炭を得た。
[Production of radioactive iodine adsorbent (I)]
The inventor produced four types of radioactive iodine adsorbents while changing the amount of triethylenediamine (Prototype Examples 1 to 4). First, 120 mL of 1N hydrochloric acid was added to 3 L of water to prepare a diluted hydrochloric acid solution, and 1500 g of activated carbon was added thereto. Here, the activated carbon was boiled for about 30 minutes. After boiling, the activated carbon was washed with running water. Washing with running water was continued until the pH of the wash water was in the range of 6-8. After washing with water, it was dried at 115 ° C. for 16 hours to obtain a base activated carbon.

ヨウ化カリウム8gを水300mLに溶解してヨウ化カリウム水溶液を調製した。前出の基材活性炭400gにヨウ化カリウム水溶液を添加し、双方が馴染むように十分に混合した。その後、115℃で16時間かけてヨウ化カリウム添着活性炭(第1添着活性炭)とした。   A potassium iodide aqueous solution was prepared by dissolving 8 g of potassium iodide in 300 mL of water. A potassium iodide aqueous solution was added to 400 g of the above-mentioned base activated carbon, and mixed well so that both became familiar. Then, it was set as potassium iodide impregnated activated carbon (first impregnated activated carbon) at 115 ° C. for 16 hours.

トリエチレンジアミン12g(試作例1)、同20g(試作例2)、同28g(試作例3)、同10.8g(試作例4)を、水67mLに溶解して各例のトリエチレンジアミン水溶液を調製した。前出のヨウ化カリウム添着活性炭にトリエチレンジアミン水溶液をスプレーにより噴霧し、双方が馴染むように十分に混合した。続けて、80℃以下、主に70℃前後の温度を維持しながら乾燥した。乾燥の前後にて概ね2%の重量変化が確認できるまで乾燥を続けた。こうして試作例1ないし4の放射性ヨウ素吸着材を作製した。   12 g of Triethylenediamine (Prototype Example 1), 20 g (Prototype Example 2), 28 g (Prototype Example 3) and 10.8 g (Prototype Example 4) were dissolved in 67 mL of water to prepare triethylenediamine aqueous solutions of the respective examples. did. A triethylenediamine aqueous solution was sprayed on the above-mentioned potassium iodide-impregnated activated carbon, and mixed well so that both would become familiar. Subsequently, the film was dried while maintaining a temperature of 80 ° C. or lower, mainly around 70 ° C. Drying was continued until a weight change of approximately 2% was confirmed before and after drying. In this way, the radioactive iodine adsorbents of prototype examples 1 to 4 were produced.

[物性測定]
〈活性炭の細孔に関する物性値〉
基材活性炭と、両物質が添着した放射性ヨウ素吸着材の両方の物性を測定した。結果は表1に示すとおりである。測定項目のうち、充填密度(g/mL)、乾燥減量(%)、ベンゼン吸着力(%)、強熱残分(%)、粒度分布(%)、硬度(%)、及び発火点(℃)は、JIS K 1474(2014)に準拠して測定した。
[Physical property measurement]
<Physical properties of activated carbon pores>
The physical properties of both the base activated carbon and the radioactive iodine adsorbent adhering both substances were measured. The results are as shown in Table 1. Among the measurement items, packing density (g / mL), loss on drying (%), benzene adsorption power (%), ignition residue (%), particle size distribution (%), hardness (%), and ignition point (° C. ) Was measured according to JIS K 1474 (2014).

比表面積(m2/g)は、マイクロトラック・ベル株式会社製,自動比表面積/細孔分布測定装置「BELSORP−miniII」を使用して77Kにおける窒素吸着等温線を測定し、BET法により求めた(BET比表面積)。また、後出の細孔容積も同装置により測定した。 The specific surface area (m 2 / g) is obtained by measuring the nitrogen adsorption isotherm at 77K using an automatic specific surface area / pore distribution measuring device “BELSORP-miniII” manufactured by Microtrack Bell Co., Ltd., and obtained by the BET method. (BET specific surface area). The pore volume described later was also measured with the same apparatus.

〈ヨウ化カリウムの添着量〉
各試作例の放射性ヨウ素吸着材について、実際に添着したヨウ化カリウムの量を測定した。放射性ヨウ素吸着材のヨウ化カリウム抽出に際し、10gの放射性ヨウ素吸着材に対してイオン交換水200mLを溶媒とし、ソックスレー抽出器を使用して24時間かけて抽出した。抽出液を採取し、これにイオン交換水を添加し希釈して全量250mLの抽出溶液を調製した。
<Amount of potassium iodide added>
For the radioactive iodine adsorbent of each prototype, the amount of potassium iodide actually attached was measured. In the extraction of potassium iodide from the radioactive iodine adsorbent, 200 mL of ion-exchanged water was used as a solvent for 10 g of the radioactive iodine adsorbent, and extracted using a Soxhlet extractor over 24 hours. The extract was collected, and ion-exchanged water was added to the extract and diluted to prepare an extract solution having a total amount of 250 mL.

100mLの分液漏斗に抽出溶液とイオン交換水を添加して全量を10mLとした。ここに2Nの硫酸5mL、30%過酸化水素水2mLを添加し5分間静置した。続いて、クロロホルム20mLを添加し1分間振とう後、下層に分離したクロロホルム層を分取した。再度分液漏斗にクロロホルム20mLを添加し1分間振とう後、下層に分離したクロロホルム層を分取した。回収したクロロホルム層に別途のクロロホルムを添加し全量50mLのサンプル液を調製した。   The extraction solution and ion-exchanged water were added to a 100 mL separatory funnel to make a total volume of 10 mL. To this, 5 mL of 2N sulfuric acid and 2 mL of 30% hydrogen peroxide were added and allowed to stand for 5 minutes. Subsequently, 20 mL of chloroform was added and shaken for 1 minute, and then the chloroform layer separated into the lower layer was collected. Again, 20 mL of chloroform was added to the separatory funnel and shaken for 1 minute, and then the chloroform layer separated into the lower layer was separated. Separate chloroform was added to the collected chloroform layer to prepare a sample solution having a total volume of 50 mL.

サンプル液を石英セル(光路長1cm)に移し、吸光光度計(株式会社日立ハイテクサイエンス製,U−2001,ダブルビーム分光光度計)を用い、波長510nmの吸光度を測定した。予め既知の濃度のヨウ化カリウムの溶液により検量線を作成し、濃度を求めた。そして、基材活性炭のヨウ化カリウム量(添着量)から単位重量活性炭当たりの添着量(重量%)を算出した。   The sample solution was transferred to a quartz cell (optical path length 1 cm), and the absorbance at a wavelength of 510 nm was measured using an absorptiometer (manufactured by Hitachi High-Tech Science Co., Ltd., U-2001, double beam spectrophotometer). A calibration curve was prepared in advance with a solution of potassium iodide having a known concentration, and the concentration was determined. And the amount of attachment (weight%) per unit weight activated carbon was computed from the amount of potassium iodide (attachment amount) of base material activated carbon.

〈トリエチレンジアミンの添着量〉
各試作例の放射性ヨウ素吸着材について、実際に添着したトリエチレンジアミンの量を測定した。放射性ヨウ素吸着材のトリエチレンジアミン抽出に際し、10gの放射性ヨウ素吸着材に対してメタノール200mLを溶媒とし、ソックスレー抽出器を使用して24時間かけて抽出した。抽出液を採取し、これにメタノールを添加し希釈して全量250mLの抽出溶液を調製した。
<Amount of triethylenediamine attached>
For the radioactive iodine adsorbent of each prototype, the amount of triethylenediamine actually attached was measured. At the time of triethylenediamine extraction of the radioactive iodine adsorbent, 200 mL of methanol was used as a solvent for 10 g of the radioactive iodine adsorbent, and extraction was performed using a Soxhlet extractor over 24 hours. The extract was collected, and methanol was added thereto and diluted to prepare an extract solution having a total amount of 250 mL.

ガスクロマトグラフィー(株式会社日立ハイテクサイエンス製,G−3900)を用いて前掲のメタノールによる抽出溶液中のトリエチレンジアミン量を測定した。キャリアガスに窒素を使用し、カラム(ジーエルサイエンス株式会社製,Unisole 10T+KOH)、検出器(FID)を使用した。予め既知の濃度のトリエチレンジアミン溶液をガスクロマトグラフィーに充填して検量線を作成し、検出チャートにおけるピーク面積の比較から量を計測し、基材活性炭のトリエチレンジアミン量(添着量)から単位重量活性炭当たりの添着量(重量%)を算出した。   The amount of triethylenediamine in the extraction solution with methanol described above was measured using gas chromatography (manufactured by Hitachi High-Tech Science Co., Ltd., G-3900). Nitrogen was used as the carrier gas, and a column (Unisole 10T + KOH, manufactured by GL Science Inc.) and a detector (FID) were used. Prepare a calibration curve by filling a gas chromatography with a triethylenediamine solution of a known concentration in advance, measure the amount by comparing the peak areas in the detection chart, and calculate the unit weight activated carbon from the amount of triethylenediamine (attachment amount) of the base activated carbon The amount of adhesion per weight (% by weight) was calculated.

〈放射性ヨウ素の吸着量測定〉
放射性ヨウ素の吸着量の測定に際し、放射性ヨウ化メチルの吸着量により各試作例の放射性ヨウ素吸着材の性能を評価した。そこで、ヨウ素の放射性同位体を含む放射性ヨウ化メチルを用い、その除去効率の確性試験を行った(単位:%)。試験内容は、ASTM D3803−91に準拠した。
<Measurement of adsorption amount of radioactive iodine>
When measuring the amount of radioactive iodine adsorbed, the performance of the radioactive iodine adsorbent of each prototype was evaluated based on the amount of radioactive methyl iodide adsorbed. Therefore, a radioactivity methyl iodide containing a radioactive isotope of iodine was used, and the accuracy of its removal efficiency was tested (unit:%). The content of the test conformed to ASTM D3803-91.

各試作例の放射性ヨウ素吸着材に湿潤空気(圧力:約1気圧、温度:30.0℃、相対湿度:約95%)を16時間通気して水分を飽和させた。続いて、湿潤空気(圧力:約1気圧、温度:30.0℃、相対湿度:約95%)を120分間通気した。その後、ヨウ化メチル(質量濃度1.75mg/m3)を含む湿潤空気(圧力:約1気圧、温度:30.0℃、相対湿度:約95%)を60分間通気し、131Iのガンマ線の放射能強度を測定して、透過率を求め、放射性ヨウ素除去効率を求めた。 Moist air (pressure: about 1 atm, temperature: 30.0 ° C., relative humidity: about 95%) was passed through the radioactive iodine adsorbent of each prototype for 16 hours to saturate the moisture. Subsequently, humid air (pressure: about 1 atm, temperature: 30.0 ° C., relative humidity: about 95%) was aerated for 120 minutes. Thereafter, moist air (pressure: about 1 atm, temperature: 30.0 ° C., relative humidity: about 95%) containing methyl iodide (mass concentration 1.75 mg / m 3 ) was aerated for 60 minutes, and 131 I gamma rays The radioactivity intensity was measured to determine the transmittance, and the radioiodine removal efficiency was determined.

Figure 2017227633
Figure 2017227633

[放射性ヨウ素吸着材の作製(I)の結果と考察]
試作例1,2,3によると、ヨウ化カリウム(アルカリ金属ヨウ化物)の添着量はほぼ同等であり、トリエチレンジアミンの添着量が順に増加している。しかしながら、最終的な放射性ヨウ素の除去効率を見ると、トリエチレンジアミンの添着量の差ほど数値の差異は小さい。このことから、トリエチレンジアミンの添着量に軽減の余地はある。特に、3.0重量%を下回る添着量であっても放射性ヨウ素の吸着に寄与していることを踏まえ、トリエチレンジアミンの好ましい添着量は0.5ないし2.5重量%の範囲として導くことができる。ヨウ化カリウムの添着量については、各試作例における実測値を踏まえ、概ね1ないし3重量%の範囲が妥当と勘案できる。
[Results and discussion of preparation of radioactive iodine adsorbent (I)]
According to Prototype Examples 1, 2, and 3, the amount of potassium iodide (alkali metal iodide) added was almost the same, and the amount of triethylenediamine added increased in order. However, when looking at the final removal efficiency of radioactive iodine, the difference in numerical values is smaller as the amount of triethylenediamine added is different. For this reason, there is room for reduction in the amount of triethylenediamine attached. In particular, it can be derived that the preferable amount of triethylenediamine added is in the range of 0.5 to 2.5% by weight, considering that even if the amount is less than 3.0% by weight, it contributes to the adsorption of radioactive iodine. it can. Regarding the amount of potassium iodide attached, it can be considered that the range of 1 to 3% by weight is appropriate based on the actual measurement values in each prototype.

試作例4は試作例1ないし3と異なる活性炭を基材とした例である。従って、基材となる活性炭の物性上の差異が影響していると考えられる。試作例1と4との比較によると、ヨウ化カリウムの添着量は同等かやや多い。しかもトリエチレンジアミンの添着量も増加している。しかしながら、放射性ヨウ素の除去効率は僅かながら低下した。この作用については、完全には解明されてはいないものの、おそらく活性炭表面の表面酸性基や親水性基等の存在量との関連性が濃厚と考える。   Prototype Example 4 is an example using activated carbon different from Prototype Examples 1 to 3 as a base material. Therefore, it is thought that the difference in the physical properties of the activated carbon used as the base material has an influence. According to a comparison between prototype examples 1 and 4, the amount of potassium iodide added is the same or slightly higher. Moreover, the amount of triethylenediamine added is also increasing. However, the removal efficiency of radioactive iodine slightly decreased. Although this effect has not been fully elucidated, it is considered that the relationship with the abundance of surface acidic groups, hydrophilic groups, etc. on the activated carbon surface is likely to be strong.

[放射性ヨウ素吸着材の作製(II)]
前述の「放射性ヨウ素吸着材の作製(I)」より、放射性ヨウ素吸着材を作製する際の基本物性と添着量を把握することができた。そこで、さらに詳細なヨウ化カリウム及びトリエチレンジアミンの添着量範囲を検証し、併せて、基材活性炭に好適な比表面積の範囲も検証した。トリエチレンジアミンの添着量を変更した例は試作例11ないし14、ヨウ化カリウムの添着量を変更した例は試作例15ないし17、比表面積を変更した例は試作例18ないし22を作製である。
[Production of radioactive iodine adsorbent (II)]
From the above-mentioned “Preparation of Radioactive Iodine Adsorbent (I)”, it was possible to grasp the basic physical properties and the amount of attachment when preparing the radioactive iodine adsorbent. Therefore, a more detailed range of addition amounts of potassium iodide and triethylenediamine was verified, and at the same time, a range of specific surface area suitable for the base activated carbon was also verified. Examples in which the amount of triethylenediamine added was changed to Prototype Examples 11 to 14, Samples in which the amount of potassium iodide was changed were changed to Samples 15 to 17, and examples in which the specific surface area was changed were prepared as Prototype Examples 18 to 22.

異なるBET比表面積の評価に際し、さらに以下の活性炭2ないし8を使用した。各活性炭のBET比表面積の測定は前述と同様とした。
活性炭2ないし8の作製に際し、共通のヤシ殻活性炭を用意し賦活の条件(時間)を変更しながら比表面積の異なる活性炭を得た。いずれの活性炭も粒径を1.18ないし2.36mmの範囲において粒度分布が同一となるように調整した。
(活性炭2):比表面積:1173m2/g
(活性炭3):比表面積:1223m2/g
(活性炭4):比表面積:1394m2/g
(活性炭5):比表面積:1519m2/g
(活性炭6):比表面積:1725m2/g
(活性炭7):比表面積:1552m2/g
(活性炭8):比表面積:1723m2/g
In the evaluation of different BET specific surface areas, the following activated carbons 2 to 8 were further used. The measurement of the BET specific surface area of each activated carbon was the same as described above.
When producing activated carbons 2 to 8, common coconut shell activated carbon was prepared, and activated carbons having different specific surface areas were obtained while changing activation conditions (time). All the activated carbons were adjusted to have the same particle size distribution in the range of 1.18 to 2.36 mm.
(Activated carbon 2): Specific surface area: 1173 m 2 / g
(Activated carbon 3): Specific surface area: 1223 m 2 / g
(Activated carbon 4): Specific surface area: 1394 m 2 / g
(Activated carbon 5): Specific surface area: 1519 m 2 / g
(Activated carbon 6): Specific surface area: 1725 m 2 / g
(Activated carbon 7): Specific surface area: 1552 m 2 / g
(Activated carbon 8): Specific surface area: 1723 m 2 / g

〈試作例11ないし14の作製〉
トリエチレンジアミンの添着量を変更した試作例11ないし14の作製に際し、水67mLに溶解するトリエチレンジアミンを4.0g(試作例11)、6.0g(試作例12)、8.8g(試作例13)、9.6g(試作例14)とし、順に増量してトリエチレンジアミン水溶液をそれぞれ調製した。試作例11ないし14におけるヨウ化カリウムの添着量は前述の試作例1ないし4の作製と共通とした。試作例11ないし14は基材活性炭に試作例1ないし4と同一の活性炭1を使用し、同様の調製を行った。
<Production of Prototype Examples 11 to 14>
In the production of prototype examples 11 to 14 in which the amount of triethylenediamine was changed, 4.0 g (prototype example 11), 6.0 g (prototype example 12), and 8.8 g (prototype example 13) of triethylenediamine dissolved in 67 mL of water were prepared. ), 9.6 g (Prototype Example 14), and the triethylenediamine aqueous solution was prepared by increasing the amount in order. The amount of potassium iodide used in Prototype Examples 11 to 14 was the same as that in Prototype Examples 1 to 4 described above. In Prototype Examples 11 to 14, the same activated carbon 1 as in Prototype Examples 1 to 4 was used as the base activated carbon, and the same preparation was performed.

〈試作例15ないし17の作製〉
ヨウ化カリウムの添着量を変更した試作例15ないし17の作製に際し、水300mLに溶解するヨウ化カリウムを12.0g(試作例15)、20.0g(試作例16)、28.0g(試作例17)とし、順に増量してヨウ化カリウム水溶液を調製した。トリエチレンジアミンの添着量は全て共通とし、水67mLにトリエチレンジアミンを10.8gの溶解として溶液を調製した。試作例15ないし17は基材活性炭に試作例1ないし4と同一の活性炭1を使用し、同様の調製を行った。
<Production of prototype examples 15 to 17>
In the production of prototype examples 15 to 17 in which the amount of potassium iodide added was changed, 12.0 g (prototype example 15), 20.0 g (prototype example 16), and 28.0 g (prototype) of potassium iodide dissolved in 300 mL of water. As Example 17), an aqueous potassium iodide solution was prepared by increasing the amount in order. All the addition amounts of triethylenediamine were the same, and a solution was prepared by dissolving 10.8 g of triethylenediamine in 67 mL of water. In Prototype Examples 15 to 17, the same activated carbon 1 as in Prototype Examples 1 to 4 was used as the base activated carbon, and the same preparation was performed.

〈試作例18ないし22の作製〉
試作例18ないし22は、基材活性炭として比表面積の異なる活性炭を使用した。試作例18は「活性炭2」、試作例19は「活性炭3」、試作例20は「活性炭4」、試作例21は「活性炭5」、試作例22は「活性炭6」を使用した。試作例18ないし22の作製に際し、トリエチレンジアミンの添着量は全て共通とし、水67mLにトリエチレンジアミンを10.8gの溶解として溶液を調製した。試作例18ないし22におけるヨウ化カリウムの添着量は前述の試作例1ないし4の作製と共通とした。活性炭の調製は前述と同様とした。
<Production of Prototype Examples 18 to 22>
In Prototype Examples 18 to 22, activated carbons having different specific surface areas were used as the base activated carbon. Prototype 18 was “activated carbon 2”, prototype 19 was “activated carbon 3”, prototype 20 was “activated carbon 4”, prototype 21 was “activated carbon 5”, and prototype 22 was “activated carbon 6”. In the production of Prototype Examples 18 to 22, the amount of triethylenediamine added was the same, and a solution was prepared by dissolving 10.8 g of triethylenediamine in 67 mL of water. The amount of potassium iodide used in the prototypes 18 to 22 was the same as that of the prototypes 1 to 4 described above. The activated carbon was prepared in the same manner as described above.

試作例11ないし22の作製方法とその分析方法は、前述の試作例1ないし4と共通とした。試作例11ないし22の結果は表2ないし表5である。ただし、当該作製(II)では、簡略化のために「放射性ヨウ素除去効率の測定」を省略して、ヨウ化メチルの破過時間を測定した。また、基材活性炭の性状把握のため、全細孔容積(cm3/g)と、細孔直径の区間毎(「2nm未満」、「2ないし4nm」、「4ないし10nm」、「10ないし50nm」、「50nm以上」)の細孔容積も測定した。 The production methods and analysis methods of the prototype examples 11 to 22 are the same as those of the prototype examples 1 to 4 described above. The results of prototype examples 11 to 22 are shown in Tables 2 to 5. However, in the preparation (II), for the sake of simplification, the “measurement of radioactive iodine removal efficiency” was omitted, and the breakthrough time of methyl iodide was measured. In addition, in order to grasp the properties of the activated carbon substrate, the total pore volume (cm 3 / g) and the pore diameter intervals (“less than 2 nm”, “2 to 4 nm”, “4 to 10 nm”, “10 to The pore volume of “50 nm” and “50 nm or more”) was also measured.

〈破過時間の測定〉
ヨウ化メチルを空気により希釈して20ppmの通気ガス濃度に調整し、各試作例を充填したカラム内に送通した。カラムは、内径を2.0cm、層高さを5.0cm、充填量を15.7mLとした。通気条件として、風量を3770mL/min、LVを0.20m/sec、SVを14408h-1、方向をダウンフローとし、温度を29.6ないし30.0℃、相対湿度を86.0ないし96.0%の条件下とした。そして、破過時点の濃度を2ppmとし、検知管により測定した。通気開始(20ppm)から破過時点の濃度(2ppm)を超えるまでの時間を破過時間とした。
<Measurement of breakthrough time>
Methyl iodide was diluted with air to adjust the concentration of aeration gas to 20 ppm, and sent to a column packed with each prototype. The column had an inner diameter of 2.0 cm, a layer height of 5.0 cm, and a packing amount of 15.7 mL. As ventilation conditions, the air volume is 3770 mL / min, the LV is 0.20 m / sec, the SV is 14408 h −1 , the direction is downflow, the temperature is 29.6 to 30.0 ° C., and the relative humidity is 86.0 to 96. The condition was 0%. And the density | concentration at the time of breakthrough was 2 ppm, and it measured with the detector tube. The time from the start of aeration (20 ppm) to exceeding the concentration (2 ppm) at the time of breakthrough was defined as breakthrough time.

Figure 2017227633
Figure 2017227633

Figure 2017227633
Figure 2017227633

Figure 2017227633
Figure 2017227633

Figure 2017227633
Figure 2017227633

[放射性ヨウ素吸着材の作製(II)の結果と考察]
〈1.トリエチレンジアミンの添着量〉
試作例11ないし14より、トリエチレンジアミンの添着量に比例して破過時間は長くなり吸着剤としての性能は良好となる。ここで、放射性ヨウ素吸着材に求められる性能を考えると、破過時間240minを上回る範囲は非常に良好であり、既に十分な性能を発揮している。なお、破過時間240minとは、既存の吸着材の標準的な値であるため基準に採用した。そのため、トリエチレンジアミンの添着量については2.5重量%を上限と規定した。下限については性能発揮の点から0.5重量%、好ましくは1.2重量%、より好ましくは1.5重量%である。また、破過時間240minを超える添着量から下限を規定する場合は1.7重量%である。
[Results and discussion of preparation of radioactive iodine adsorbent (II)]
<1. Addition amount of triethylenediamine>
From prototype examples 11 to 14, the breakthrough time becomes longer in proportion to the amount of triethylenediamine, and the performance as an adsorbent is improved. Here, considering the performance required for the radioactive iodine adsorbent, the range exceeding the breakthrough time of 240 min is very good, and already exhibits sufficient performance. Note that the breakthrough time 240 min is a standard value for existing adsorbents, and thus was adopted as a standard. Therefore, the upper limit for the amount of triethylenediamine is 2.5% by weight. The lower limit is 0.5% by weight, preferably 1.2% by weight, more preferably 1.5% by weight from the viewpoint of performance. Further, when the lower limit is specified from the amount of adhesion exceeding the breakthrough time 240 min, it is 1.7% by weight.

〈2.ヨウ化カリウムの添着量〉
試作例15ないし17より、ヨウ化カリウムは添着量の増加と反比例に破過時間は減少した。試作例17のヨウ化カリウムの添着量6.1重量%では破過時間240minを下回った。おそらく、ヨウ化カリウムの物理的な障害により試作例の吸着材への吸着は阻害されたと考える。基材活性炭の添着成分であるヨウ化カリウムの役割はヨウ化メチル自体の吸着としてではなく、むしろ、ヨウ素原子の置換と考えられている(前出の式(i)参照)。そのため、ヨウ化カリウムの添着量とヨウ化メチル吸着の評価は分けて考えるべきである。そこで、吸着時の干渉抑制と置換促進の双方を両立する範囲として、破過時間240minを超えるヨウ化カリウムの添着量の上限は5重量%であり、さらには好ましい上限は3重量%である。
<2. Amount of potassium iodide added>
From prototype examples 15 to 17, the breakthrough time of potassium iodide decreased in inverse proportion to the increase in the amount of adhering. When the amount of potassium iodide applied in Prototype Example 17 was 6.1% by weight, the breakthrough time was less than 240 min. Probably, the adsorption to the adsorbent of the prototype was hindered by the physical obstacle of potassium iodide. The role of potassium iodide, which is an additive component of the base activated carbon, is considered not as adsorption of methyl iodide itself, but rather as substitution of iodine atoms (see the above formula (i)). Therefore, the amount of potassium iodide added and the evaluation of methyl iodide adsorption should be considered separately. Therefore, as a range in which both interference suppression during adsorption and substitution promotion are compatible, the upper limit of the amount of potassium iodide added exceeding the breakthrough time of 240 min is 5% by weight, and a more preferable upper limit is 3% by weight.

〈3.基材活性炭のBET比表面積〉
試作例18ないし22におけるBET比表面積と破過時間との関係から、試作例22のBET比表面積が1700m2/gを超過すると破過時間240minまで低下した。また、試作例21までBET比表面積が増加すると他の試作例よりも漸減した。さらに、表4の区間毎の細孔容積に着目すると、BET比表面積が最大の試作例22ではメソ孔の範囲は減少し、ミクロ孔の範囲は増加した。この点から、ヨウ化メチル分子と細孔との大きさの相違が吸着効率に影響していると予想できる。そこで、細孔分布も加えてBET比表面積を勘案すると、上限は1900m2/g以下、さらには、1850m2/g以下、より好ましくは1750m2/g以下に規定される。比表面積の下限については、試作例18を踏まえて1100m2/g、好ましくは試作例19と20より1200ないし1300m2/g、より好ましくは試作例20と21より1400ないし1500m2/gと導き出すことができる。
<3. BET specific surface area of base activated carbon>
From the relationship between the BET specific surface area and breakthrough time in the prototypes 18 to 22, when the BET specific surface area of the prototype 22 exceeded 1700 m 2 / g, the breakthrough time decreased to 240 minutes. Moreover, when the BET specific surface area increased to the trial example 21, it gradually decreased from the other trial examples. Further, when focusing on the pore volume for each section in Table 4, the range of mesopores decreased and the range of micropores increased in Experimental Example 22 having the largest BET specific surface area. From this point, it can be expected that the difference in size between methyl iodide molecules and pores affects the adsorption efficiency. Therefore, considering the BET specific surface area in addition to the pore distribution, the upper limit is defined as 1900 m 2 / g or less, further 1850 m 2 / g or less, more preferably 1750 m 2 / g or less. The lower limit of the specific surface area, 1100 m 2 / g in light of Prototype Example 18 preferably derives a prototype example 19 1200 no more than 20 to 1300 m 2 / g, more preferably a prototype example 20 to 1400 no more 21 and 1500 m 2 / g be able to.

[放射性ヨウ素吸着材の作製(III)]
放射性ヨウ素吸着材の作製(I及びII)の結果を考慮し、より最適な添着量と比表面積の範囲を割り出した。そこで、当該範囲を充足する仕様の放射性ヨウ素吸着材(試作例31ないし35)の放射性ヨウ素の吸着効果を検証した。
[Production of radioactive iodine adsorbent (III)]
Considering the results of preparation of the radioactive iodine adsorbent (I and II), a more optimal amount of adhesion and range of specific surface area were determined. Therefore, the radioactive iodine adsorption effect of the radioactive iodine adsorbent with specifications satisfying the range (prototype examples 31 to 35) was verified.

〈試作例31,32の作製〉
試作例31,32の作製に際し、水67mLに溶解するトリエチレンジアミンを4.0g(試作例31)、10.8g(試作例32)としてトリエチレンジアミン水溶液をそれぞれ調製した。試作例31,32におけるヨウ化カリウムの添着量は前述の試作例1ないし4の作製と共通とした。試作例31,32は基材活性炭に試作例1ないし4と同一の活性炭1を使用し、同様の調製を行った。
<Production of prototype examples 31 and 32>
When producing Prototype Examples 31 and 32, triethylenediamine aqueous solutions were prepared with 4.0 g (Trial Example 31) and 10.8 g (Trial Example 32) of triethylenediamine dissolved in 67 mL of water. The amount of potassium iodide applied in the prototype examples 31 and 32 was the same as that in the prototype examples 1 to 4 described above. Trial manufacture examples 31 and 32 used the same activated carbon 1 as trial manufacture examples 1 thru / or 4 for substrate activated carbon, and performed the same preparation.

〈試作例33の作製〉
試作例33の作製に際し、水300mLに溶解するヨウ化カリウムを12.0g(試作例15)としてヨウ化カリウム水溶液を調製した。トリエチレンジアミンの添着量は、水67mLにトリエチレンジアミンを10.8gの溶解として溶液を調製した。試作例33は基材活性炭に試作例1ないし4と同一の活性炭1を使用し、同様の調製を行った。
<Production of Prototype Example 33>
In the production of prototype 33, an aqueous potassium iodide solution was prepared with 12.0 g (prototype 15) of potassium iodide dissolved in 300 mL of water. The amount of triethylenediamine added was prepared by dissolving 10.8 g of triethylenediamine in 67 mL of water. Trial Example 33 uses the same activated carbon 1 as Trial Examples 1 to 4 as the base activated carbon, and the same preparation was performed.

〈試作例34,35の作製〉
試作例34,35の作製に際し、試作例34は「活性炭7」、試作例35は「活性炭8」を使用した。試作例34,35の作製に際し、トリエチレンジアミンの添着量は共通とし、水67mLにトリエチレンジアミンを10.8gの溶解として溶液を調製した。試作例34,35におけるヨウ化カリウムの添着量は前述の試作例1ないし4の作製と共通とした。活性炭の調製は前述と同様とした。
<Production of prototype examples 34 and 35>
In the production of prototype examples 34 and 35, “activated carbon 7” was used for prototype example 34, and “activated carbon 8” was used for prototype example 35. In the production of prototype examples 34 and 35, the amount of triethylenediamine added was the same, and a solution was prepared by dissolving 10.8 g of triethylenediamine in 67 mL of water. The amount of potassium iodide applied in the prototype examples 34 and 35 was the same as that in the prototype examples 1 to 4 described above. The activated carbon was prepared in the same manner as described above.

試作例31ないし35の作製方法とその分析方法は、前述の試作例1ないし4と共通とした。試作例31ないし35の結果は表6及び7である。試作例31ないし35の放射性ヨウ素の吸着量測定は、前出の放射性ヨウ素吸着材の作製(I)にて説明のASTM D3803−91に準拠し、共通の条件下にて実施した。   The production methods and analysis methods of the prototype examples 31 to 35 are the same as those of the prototype examples 1 to 4 described above. The results of prototype examples 31 to 35 are shown in Tables 6 and 7. Measurement of the amount of radioactive iodine adsorbed in Prototype Examples 31 to 35 was performed under common conditions in accordance with ASTM D3803-91 described in the above-mentioned preparation (I) of the radioactive iodine adsorbent.

Figure 2017227633
Figure 2017227633

Figure 2017227633
Figure 2017227633

[放射性ヨウ素吸着材の作製(III)の結果と考察]
試作例31ないし35の放射性ヨウ素吸着材を使用した際の放射性ヨウ素の除去効率の結果から、実際の放射性ヨウ素の除去性能は、放射性ヨウ素吸着材の作製(I及びII)と概ね一致した。従って、既述の基材活性炭に添着するヨウ化カリウム(アルカリ金属ヨウ化物)及びトリエチレンジアミンの添着量は適切である。また、基材活性炭の比表面積の適性も確認できた。
[Results and discussion of preparation of radioactive iodine adsorbent (III)]
From the result of the removal efficiency of radioactive iodine when using the radioactive iodine adsorbents of the prototype examples 31 to 35, the actual removal performance of radioactive iodine almost coincided with the production of the radioactive iodine adsorbent (I and II). Therefore, the amounts of potassium iodide (alkali metal iodide) and triethylenediamine added to the above-mentioned base activated carbon are appropriate. Moreover, the suitability of the specific surface area of the base activated carbon was confirmed.

本発明の放射性ヨウ素吸着材は、活性炭に担持させる添着物質の量を既存品よりも低減しながらも良好な吸着性能を発揮するとともに、より低廉に製造することができ、既存品との代替に有利に作用する。また、放射性ヨウ素吸着材の製造方法によると、添着物質の性能をより引き出しやすくしたため、添着物質量を減らしても効果を維持できる。   The radioactive iodine adsorbent of the present invention exhibits good adsorption performance while reducing the amount of the adhering substance supported on the activated carbon compared to the existing product, and can be manufactured at a lower cost, replacing the existing product. It works advantageously. In addition, according to the method for producing a radioactive iodine adsorbent, the performance of the adhering substance is made easier to extract, and therefore the effect can be maintained even if the amount of the adhering substance is reduced.

Claims (8)

放射性ヨウ素を含む被処理ガス中より放射性ヨウ素を吸着する放射性ヨウ素吸着材であって、
前記放射性ヨウ素吸着材は、基材活性炭と、前記基材活性炭に添着されるトリエチレンジアミンと、前記基材活性炭に添着されるアルカリ金属ヨウ化物とを備え、
前記トリエチレンジアミンの添着量が前記放射性ヨウ素吸着材の重量の0.5〜2.5重量%であり、
前記アルカリ金属ヨウ化物の添着量が前記放射性ヨウ素吸着材の重量の1〜3重量%である
ことを特徴とする放射性ヨウ素吸着材。
A radioactive iodine adsorbent that adsorbs radioactive iodine from a gas to be treated containing radioactive iodine,
The radioactive iodine adsorbent comprises a base activated carbon, triethylenediamine attached to the base activated carbon, and an alkali metal iodide attached to the base activated carbon.
The amount of triethylenediamine added is 0.5 to 2.5% by weight of the radioactive iodine adsorbent,
The radioactive iodine adsorbent characterized in that the amount of the alkali metal iodide is 1 to 3% by weight of the weight of the radioactive iodine adsorbent.
前記アルカリ金属ヨウ化物がヨウ化カリウムである請求項1に記載の放射性ヨウ素吸着材。   The radioactive iodine adsorbent according to claim 1, wherein the alkali metal iodide is potassium iodide. 前記トリエチレンジアミンの添着量が、前記放射性ヨウ素吸着材の重量の1.7〜2.5重量%である請求項1に記載の放射性ヨウ素吸着材。   2. The radioactive iodine adsorbent according to claim 1, wherein the amount of triethylenediamine added is 1.7 to 2.5 wt% of the weight of the radioactive iodine adsorbent. 前記基材活性炭のBET比表面積が1900m2/g以下である請求項1に記載の放射性ヨウ素吸着材。 The radioactive iodine adsorbent according to claim 1, wherein the base activated carbon has a BET specific surface area of 1900 m 2 / g or less. 放射性ヨウ素を含む被処理ガス中より放射性ヨウ素を吸着する放射性ヨウ素吸着材の製造方法であって、
活性炭を酸洗浄し乾燥して基材活性炭を得る洗浄工程と、
アルカリ金属ヨウ化物の水溶液と前記基材活性炭を混合し、乾燥して第1添着活性炭を得る第1添着工程と、
トリエチレンジアミンの水溶液と前記第1添着活性炭を混合し、乾燥して第2添着活性炭を得る第2添着工程とを備え、
前記第1添着工程における前記アルカリ金属ヨウ化物の添着量が前記放射性ヨウ素吸着材の重量の1〜3重量%であり、
前記第2添着工程における前記トリエチレンジアミンの添着量が前記放射性ヨウ素吸着材の重量の0.5〜2.5重量%である
ことを特徴とする放射性ヨウ素吸着材の製造方法。
A method for producing a radioactive iodine adsorbent that adsorbs radioactive iodine from a gas to be treated containing radioactive iodine,
A cleaning step of acid cleaning the activated carbon and drying to obtain a base activated carbon;
A first impregnation step of mixing an aqueous solution of alkali metal iodide and the base activated carbon and drying to obtain a first impregnated activated carbon;
A second adhering step of mixing an aqueous solution of triethylenediamine and the first impregnated activated carbon and drying to obtain a second impregnated activated carbon;
The amount of the alkali metal iodide applied in the first attaching step is 1 to 3% by weight of the weight of the radioactive iodine adsorbent;
The method for producing a radioactive iodine adsorbent, characterized in that the amount of triethylenediamine added in the second attaching step is 0.5 to 2.5% by weight of the weight of the radioactive iodine adsorbent.
前記アルカリ金属ヨウ化物がヨウ化カリウムである請求項5に記載の放射性ヨウ素吸着材の製造方法。   The method for producing a radioactive iodine adsorbent according to claim 5, wherein the alkali metal iodide is potassium iodide. 前記トリエチレンジアミンの添着量が、前記放射性ヨウ素吸着材の重量の1.7〜2.5重量%である請求項5に記載の放射性ヨウ素吸着材の製造方法。   The method for producing a radioactive iodine adsorbent according to claim 5, wherein the amount of the triethylenediamine added is 1.7 to 2.5% by weight of the weight of the radioactive iodine adsorbent. 前記基材活性炭のBET比表面積が1900m2/g以下である請求項5に記載の放射性ヨウ素吸着材の製造方法。 The method for producing a radioactive iodine adsorbent according to claim 5, wherein the base activated carbon has a BET specific surface area of 1900 m 2 / g or less.
JP2017116869A 2016-06-21 2017-06-14 Method for producing radioactive iodine adsorbent Active JP7111447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106120615A TWI742097B (en) 2016-06-21 2017-06-20 Radioactive iodine adsorption material and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016122737 2016-06-21
JP2016122737 2016-06-21

Publications (2)

Publication Number Publication Date
JP2017227633A true JP2017227633A (en) 2017-12-28
JP7111447B2 JP7111447B2 (en) 2022-08-02

Family

ID=60891519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017116869A Active JP7111447B2 (en) 2016-06-21 2017-06-14 Method for producing radioactive iodine adsorbent

Country Status (2)

Country Link
JP (1) JP7111447B2 (en)
TW (1) TWI742097B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113457615A (en) * 2021-07-01 2021-10-01 中国辐射防护研究院 Radioactive iodine adsorbent and preparation method thereof
CN115557943A (en) * 2022-09-22 2023-01-03 中国辐射防护研究院 Functionalized amine ionic liquid for adsorbing radioactive iodine and preparation method thereof
CN116440297A (en) * 2022-12-13 2023-07-18 北京普尔伟业生物科技有限公司 Radioactive carbon microsphere and its preparation method and application
CN116499925A (en) * 2023-06-30 2023-07-28 苏州巨联环保有限公司 Method for testing adsorption saturation degree of activated carbon

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111833A (en) * 1974-09-05 1978-09-05 The United States Of America As Represented By The United States Department Of Energy Activated carbon material
JPS5896299A (en) * 1981-12-03 1983-06-08 東洋紡績株式会社 Radioactive iodine removing material
JP2000084406A (en) * 1998-09-17 2000-03-28 Takeda Chem Ind Ltd Adsorbent for lower aldehydes
WO2006109595A1 (en) * 2005-04-06 2006-10-19 Toyo Boseki Kabushiki Kaisha Filter for removing radioactive substance and filter unit employing the same
JP2012002606A (en) * 2010-06-15 2012-01-05 Mitsubishi Heavy Ind Ltd Radioactive iodine adsorbent and radioactive iodine removal device
JP2013203614A (en) * 2012-03-29 2013-10-07 Japan Enviro Chemicals Ltd Activated carbon and method for producing the same
JP2015045588A (en) * 2013-08-28 2015-03-12 三菱重工業株式会社 Radioactive iodine removal device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111833A (en) * 1974-09-05 1978-09-05 The United States Of America As Represented By The United States Department Of Energy Activated carbon material
JPS5896299A (en) * 1981-12-03 1983-06-08 東洋紡績株式会社 Radioactive iodine removing material
JP2000084406A (en) * 1998-09-17 2000-03-28 Takeda Chem Ind Ltd Adsorbent for lower aldehydes
WO2006109595A1 (en) * 2005-04-06 2006-10-19 Toyo Boseki Kabushiki Kaisha Filter for removing radioactive substance and filter unit employing the same
JP2012002606A (en) * 2010-06-15 2012-01-05 Mitsubishi Heavy Ind Ltd Radioactive iodine adsorbent and radioactive iodine removal device
US20130068102A1 (en) * 2010-06-15 2013-03-21 Mitsubishi Heavy Industries, Ltd. Radioactive iodine adsorbent and radioactive iodine removal apparatus
JP2013203614A (en) * 2012-03-29 2013-10-07 Japan Enviro Chemicals Ltd Activated carbon and method for producing the same
JP2015045588A (en) * 2013-08-28 2015-03-12 三菱重工業株式会社 Radioactive iodine removal device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113457615A (en) * 2021-07-01 2021-10-01 中国辐射防护研究院 Radioactive iodine adsorbent and preparation method thereof
CN113457615B (en) * 2021-07-01 2023-11-24 中国辐射防护研究院 Radioactive iodine adsorbent and preparation method thereof
CN115557943A (en) * 2022-09-22 2023-01-03 中国辐射防护研究院 Functionalized amine ionic liquid for adsorbing radioactive iodine and preparation method thereof
CN116440297A (en) * 2022-12-13 2023-07-18 北京普尔伟业生物科技有限公司 Radioactive carbon microsphere and its preparation method and application
CN116440297B (en) * 2022-12-13 2023-10-13 北京普尔伟业生物科技有限公司 Radioactive carbon microsphere and its preparation method and application
CN116499925A (en) * 2023-06-30 2023-07-28 苏州巨联环保有限公司 Method for testing adsorption saturation degree of activated carbon
CN116499925B (en) * 2023-06-30 2023-09-15 苏州巨联环保有限公司 Method for testing adsorption saturation degree of activated carbon

Also Published As

Publication number Publication date
TW201815466A (en) 2018-05-01
JP7111447B2 (en) 2022-08-02
TWI742097B (en) 2021-10-11

Similar Documents

Publication Publication Date Title
JP2017227633A (en) Radioactive iodine adsorbent and method for manufacturing the same
Luo et al. Study on the effects of oxygen-containing functional groups on Hg0 adsorption in simulated flue gas by XAFS and XPS analysis
CA1058143A (en) Activation of water soluble amines by halogens for trapping radioiodine from air streams
CN104936691B (en) Zeolite composite materials and application thereof containing the iodine or bromine being limited in hole
Jung et al. Feasibility study of using Bi-mna metal–organic frameworks as adsorbents for radioiodine capture at high temperature
JP6023553B2 (en) Cesium adsorbent and cesium adsorption filter body
CN112915979B (en) Aerogel sponge material and preparation method and application thereof
JP2010201360A (en) Adsorbent for lower aldehydes and method for producing the same
JP4139486B2 (en) Lower aldehyde adsorbent
KR102140913B1 (en) Adsorbents for removing radioactive iodine compounds
JP6441451B2 (en) Adsorbent for the adsorption of noble gas, its use and noble gas adsorption method
RU2262758C2 (en) Filter for air cleaning from radioactive iodine
RU2290993C1 (en) Method of producing chemical absorber
KR20210116302A (en) Salt Capable Of Selectively Hydrated With Tritium Water, Adsorbent That Binds To The Hydrate And Method For Removing Tritium Water Using The Same
JP6581945B2 (en) Radioactive iodine adsorbent and radioactive iodine removal device
Lin Evaluation of the contribution of the isotopic exchange mechanism to the retention of radioactive iodine
Yaqoob et al. Removal of gaseous methyl iodide using hexamethylenetetramine and triethylenediamine impregnated activated carbon: A comparative study
Naritomi et al. Method for improving the collecting performance of iodine samplers under high relative humidity
JPS642915B2 (en)
JP2014041111A (en) Radioactive cesium adsorbent
Heo et al. Fabrication of Bamboo-Based Activated Carbon for Low-Level CO2 Adsorption toward Sustainable Indoor Air
Zgureva et al. Studies on the activated carbon replacement by zeolite Na-X in the gas purification system of 1000 MWe nuclear power plant to improve nuclear safety
Kulyukhin et al. Carbon-containing sorbents for removing volatile radioactive iodine compounds from the water vapor-air medium
Miensah et al. Sonicated Zeolitic Imidazolate Frameork-8 derived Nitrogen-doped hierarchical nanoporous carbon for efficient capture and reversible storage of radioiodine
Kulemin et al. Removal of volatile 137 Cs and 131 I compounds from an air flow

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220721

R150 Certificate of patent or registration of utility model

Ref document number: 7111447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150