JP2017227575A - Bio-fouling evaluation method of organic separation membrane - Google Patents

Bio-fouling evaluation method of organic separation membrane Download PDF

Info

Publication number
JP2017227575A
JP2017227575A JP2016125129A JP2016125129A JP2017227575A JP 2017227575 A JP2017227575 A JP 2017227575A JP 2016125129 A JP2016125129 A JP 2016125129A JP 2016125129 A JP2016125129 A JP 2016125129A JP 2017227575 A JP2017227575 A JP 2017227575A
Authority
JP
Japan
Prior art keywords
membrane
organic
cleaning
confirmed
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016125129A
Other languages
Japanese (ja)
Other versions
JP6719291B2 (en
Inventor
晃彦 津田
Akihiko Tsuda
晃彦 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2016125129A priority Critical patent/JP6719291B2/en
Publication of JP2017227575A publication Critical patent/JP2017227575A/en
Application granted granted Critical
Publication of JP6719291B2 publication Critical patent/JP6719291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of grasping easily and surely an organic substance causing bio-fouling of a membrane.SOLUTION: A membrane surface in which bio-fouling is confirmed is measured by direct fluorography, and a three-dimensional fluorescence spectrum is compared with that in the state where an organic substance does not adhere thereto, to thereby enable confirmation of existence/absence of a spectrum characteristic to an adhering organic substance. A progress state of adhesion of an organic substance can be confirmed by comparing conditions before and after the use, and a cleaning effect can be confirmed by comparing conditions before and after chemical cleaning of the membrane in which adhesion of an organic substance is confirmed.SELECTED DRAWING: Figure 4

Description

本発明は、有機分離膜に付着した有機物を評価する方法に関し、特に微生物自体や微生物が生成する汚染物質による目詰まり(以下バイオファウリングという)の状態や薬品洗浄による再生状態を評価する方法に関する。   The present invention relates to a method for evaluating organic substances adhering to an organic separation membrane, and more particularly, to a method for evaluating the state of clogging (hereinafter referred to as biofouling) due to microorganisms or contaminants generated by microorganisms and the regeneration state by chemical cleaning. .

分離膜、たとえば、逆浸透膜(RO膜)を用いた水処理は、海水淡水化、純水製造、上水道、医薬品製造用水の産業分野で用いられる技術である。RO膜はイオン類や分子を分離対象とし、水を透過させる。RO膜を用いた分離では、膜面で溶質を阻止し、処理原水を徐々に濃縮していくことから、ある特定の物質が一次側で溶解度を超えてしまうと膜面に結晶の形で析出する。また微生物が膜面で繁殖し、微生物の本体や代謝物で流路を防ぎ通水を妨害する、いわゆるバイオファウリングが発生する。また近年使用した水を回収処理するシステムにおいてもRO膜が使用されている。回収被処理水の全有機物濃度(TOC)が高い場合に低コストの生物処理を行い、TOCを低減する方法が多く用いられており、生物処理後に生物処理により微生物から代謝物が生成され、この代謝物がRO膜の閉塞を引き起こす場合がある。   Water treatment using a separation membrane such as a reverse osmosis membrane (RO membrane) is a technique used in the industrial fields of seawater desalination, pure water production, water supply, and pharmaceutical production water. RO membranes separate ions and molecules and allow water to permeate. In separation using RO membranes, solutes are blocked on the membrane surface, and the raw water for treatment is gradually concentrated, so if a certain substance exceeds the solubility on the primary side, it will precipitate in the form of crystals on the membrane surface. To do. Also, microorganisms propagate on the membrane surface, and so-called biofouling occurs in which the main body and metabolites of the microorganisms block the flow path and obstruct water flow. In addition, RO membranes are also used in recently used water recovery systems. When the total organic matter concentration (TOC) of recovered treated water is high, low-cost biological treatment is used, and many methods are used to reduce TOC. Metabolites are produced from microorganisms by biological treatment after biological treatment. Metabolites can cause RO membrane occlusion.

RO膜の透過水量の低下や水質の低下が生じた場合、洗浄が必要となり、どのような薬品にて洗浄を実施すれば性能が回復するかを判断する際に、膜面の付着物の分析が重要となる。また洗浄の効果は、膜面の閉塞が進むほど低下し、RO膜の回復が悪くなる。最適な薬品で洗浄を実施することで、安定した運転が可能となり、事前に洗浄薬品の選定を実施することも重要である。   When the RO membrane permeate flow rate or water quality deteriorates, cleaning is required, and in order to determine what kind of chemicals will be used to recover the performance, analysis of membrane surface deposits Is important. In addition, the cleaning effect is reduced as the membrane surface is further blocked, and the recovery of the RO membrane is worsened. By performing cleaning with the optimal chemicals, stable operation becomes possible, and it is also important to select cleaning chemicals in advance.

従来、現場で使用しているRO膜の中から数本抜き出し、分析室に持ち帰り、付着物分析を実施する。水処理で使用するRO膜は、スパイラル型エレメントであり、2枚の平膜がスペーサーを挟み込んで円筒型となっている。入口側から被処理水を通水し、中心部の集水管に処理水が流れる。RO膜の分析フローを図1に示す。最初にエレメントの外観観察(101)を行い、物理的な破壊の有無を確認する。続いて、解体前に塩水等を通水して出荷時との通水量を比較する(102)。その後にエレメントを解体(103)し、膜面への異物付着状態を確認(104)する。膜面付着物が容易にサンプリング可能な場合(A)は付着物を、顕微鏡観察(105)、蛍光X線や熱分析による組成分析1(106)、FTIRやラマン分光分析等による有機物分析1(107)を行う。一方、容易にサンプリングできない場合や付着物量が少ない場合(B)は直接膜面を分析する。膜面の分析も、膜面の組成分析(108)と膜面の有機物分析2(109)を行う。   Conventionally, several RO membranes used in the field are extracted, taken back to the analysis room, and the deposit analysis is performed. The RO membrane used in water treatment is a spiral element, and two flat membranes are cylindrical with a spacer interposed therebetween. The treated water is passed from the inlet side, and the treated water flows into the central water collecting pipe. An analysis flow of the RO membrane is shown in FIG. First, the appearance of the element is observed (101) to confirm the presence or absence of physical destruction. Subsequently, salt water or the like is passed before dismantling, and the amount of water passed at the time of shipment is compared (102). Thereafter, the element is disassembled (103), and the foreign matter adhesion state on the film surface is confirmed (104). When the film surface deposits can be easily sampled (A), the deposits are observed with a microscope (105), composition analysis 1 (106) by fluorescent X-ray or thermal analysis, organic matter analysis 1 (FTIR or Raman spectroscopic analysis 1) ( 107). On the other hand, when the sample cannot be easily sampled or the amount of deposits is small (B), the film surface is directly analyzed. As for the analysis of the film surface, composition analysis (108) of the film surface and organic matter analysis 2 (109) of the film surface are performed.

サンプリング可能な物質の場合、顕微鏡観察と機器分析の結果から総合的に判断することが重要である。乾燥させた付着物を蛍光X線分析にて半定量分析を行う。炭素成分の、有機物と無機物の判断には、JIS K0102や下水処理試験法にあるように熱分析を用いる。また前述のように膜面の付着物が少量の場合や、膜面の付着物の微少域の状態を確認したい場合には、電子顕微鏡に付属するEDX分析装置で定性分析を実施する。   In the case of a sampleable substance, it is important to make a comprehensive judgment from the results of microscopic observation and instrumental analysis. Semi-quantitative analysis is performed on the dried deposit by fluorescent X-ray analysis. Thermal analysis is used to judge organic and inorganic carbon components, as in JIS K0102 and sewage treatment test methods. Further, as described above, when the amount of deposits on the film surface is small or when it is desired to check the state of the minute amount of the deposits on the film surface, a qualitative analysis is performed with an EDX analyzer attached to the electron microscope.

RO膜の用途として、工業用水を被処理水とする純水製造用途以外に、工場で使用された水を回収水として再利用するケースも増えており、有機物によるファウリングがRO膜の性能の低下を引き起こす要因となる。
有機物の同定は、フーリエ変換赤外分光光度計(以下FTIR)やラマン分光法を用いるのが一般的である。FTIRとしては、膜面を直接に顕微ATR反射法で測定する、あるいは採取した付着物をKBr透過法で測定する方法がある。付着物に微生物が多く含まれる場合、赤外吸収スペクトルでは膜基材以外はブロードなピークしか得られないため、顕微鏡観察、蛍光X線等による元素分析、FTIR分析の各結果から総合的に判断を行う。
In addition to the use of pure water that uses industrial water as treated water, RO membranes are increasingly used as recovered water, and fouling due to organic matter is an important factor in RO membrane performance. It becomes a factor causing the decrease.
For identification of organic substances, a Fourier transform infrared spectrophotometer (hereinafter referred to as FTIR) or Raman spectroscopy is generally used. As FTIR, there is a method in which a film surface is directly measured by a microscopic ATR reflection method, or a collected deposit is measured by a KBr transmission method. If the deposit contains a lot of microorganisms, only a broad peak can be obtained in the infrared absorption spectrum except for the film substrate. Therefore, comprehensive judgment is made based on the results of microscopic observation, elemental analysis using fluorescent X-rays, and FTIR analysis. I do.

付着物を同定した後、付着物に応じた薬品で洗浄を行う。金属酸化物の場合は無機酸で洗浄を実施し、バイオファウリングを引き起こしている有機物の場合は、次亜塩素酸ソーダや水酸化ナトリウム等のアルカリ洗浄剤や、界面活性剤で洗浄を行う。薬品洗浄は、現地で行う場合もあるため、あらかじめ薬品洗浄の効果を確認しておくことが重要である。   After identifying the deposit, clean it with chemicals appropriate for the deposit. In the case of a metal oxide, cleaning is performed with an inorganic acid, and in the case of an organic substance causing biofouling, cleaning is performed with an alkali cleaning agent such as sodium hypochlorite or sodium hydroxide, or a surfactant. Since chemical cleaning may be performed locally, it is important to confirm the effect of chemical cleaning in advance.

また、分離膜の透過流束の低下を事前に回避するため、膜分離装置からの濃縮水中の膜ファウリング物質濃度を測定方法も知られている(特許文献1)。濃縮水の蛍光強度から、膜ファウリング物質、特にアルキルフェニルエーテル型非イオン界面活性剤の濃度をサンプル検量線から求める方法である。   Also, a method for measuring the membrane fouling substance concentration in the concentrated water from the membrane separator is known in order to avoid a decrease in the permeation flux of the separation membrane in advance (Patent Document 1). In this method, the concentration of the membrane fouling substance, particularly the alkylphenyl ether type nonionic surfactant, is determined from the sample calibration curve from the fluorescence intensity of the concentrated water.

特開2008-194560号公報JP 2008-194560 A

「三次元分光蛍光光度計による天然水腐食物質の蛍光特性の直接分析法」、分析化学Vol.46,No.5(1997)“Direct analysis of fluorescence characteristics of natural water corrosive substances using a three-dimensional spectrofluorometer”, Analytical Chemistry Vol. 46, no. 5 (1997)

洗浄効果の確認法として、洗浄後の膜に通水して透過水量の回復を確認する方法のほかに、膜面を蛍光X線分析で元素分析して洗浄の効果を確認する方法がある。RO膜はポリスルホンの基材とポリアミドや酢酸セルロースの層のように有機膜から構成されている場合が多く、蛍光X線分析では、RO膜自体の炭素とバイオファウリングとなる有機物由来の炭素の区別なく、炭素として検出されてしまい、洗浄効果の確認は難しい。また、リンや窒素等のバイオファウリングとなる有機物特有の元素についても、微量のため蛍光X線分析では分析は困難である。
特許文献1のような濃縮液の測定は、バイオファウリングの状態確認には適用できない。
このように、バイオファウリングを引き起こしている有機物を把握することはRO膜等の再生にとって重要であり、簡便、確実に把握する方法が求められている。
As a method for confirming the cleaning effect, there is a method for confirming the cleaning effect by elemental analysis of the membrane surface by fluorescent X-ray analysis in addition to a method for confirming the recovery of the permeated water amount by passing water through the cleaned membrane. RO membranes are often composed of a polysulfone substrate and an organic membrane such as a polyamide or cellulose acetate layer. In fluorescent X-ray analysis, the RO membrane itself is composed of carbon derived from organic matter that becomes biofouling. It is detected as carbon without distinction, and it is difficult to confirm the cleaning effect. In addition, organic elements peculiar to organic matter such as phosphorus and nitrogen are difficult to analyze by fluorescent X-ray analysis because they are trace amounts.
The measurement of the concentrated solution as in Patent Document 1 cannot be applied to confirm the state of biofouling.
As described above, grasping the organic matter causing biofouling is important for the regeneration of the RO membrane and the like, and a method for grasping simply and reliably is required.

本発明では、簡便、確実にRO膜等の有機材料を用いた分離膜表面の汚染状態を把握する方法を提供する。すなわち、本発明は以下の態様を有する。
(1)有機分離膜表面の有機物付着状態を評価する方法であって、蛍光光度計にて膜面の三次元スペクトルを測定し、該有機分離膜の使用前と使用後の三次元スペクトルの比較により、膜面の有機物の付着を評価する方法。
(2)有機分離膜表面に付着した有機物を薬品洗浄により除去する方法であって、蛍光光度計にて膜面の三次元スペクトルを測定し、該有機分離膜の洗浄前と洗浄後の三次元スペクトルの比較により薬品洗浄の効果を確認することを含む方法。
The present invention provides a method for easily and reliably grasping the contamination state of the separation membrane surface using an organic material such as an RO membrane. That is, this invention has the following aspects.
(1) A method for evaluating the state of organic matter adhesion on the surface of an organic separation membrane by measuring the three-dimensional spectrum of the membrane surface with a fluorometer and comparing the three-dimensional spectrum before and after use of the organic separation membrane A method for evaluating the adhesion of organic substances on the film surface.
(2) A method of removing organic substances adhering to the surface of the organic separation membrane by chemical cleaning, measuring a three-dimensional spectrum of the membrane surface with a fluorometer, and three-dimensional before and after cleaning the organic separation membrane A method comprising confirming the effect of chemical cleaning by comparing spectra.

本発明の一態様によれば、有機分離膜表面のバイオファウリングの状態を簡単に精度よく確認できる。
また、本発明の一態様によれば、有機分離膜の汚染に適した洗浄薬品の選定と、洗浄効果の確認が可能となる。
According to one aspect of the present invention, the state of biofouling on the surface of the organic separation membrane can be easily and accurately confirmed.
Moreover, according to one aspect of the present invention, it is possible to select a cleaning chemical suitable for contamination of the organic separation membrane and to confirm the cleaning effect.

RO膜の分析フロー図。RO membrane analysis flow diagram. RO膜の薬品洗浄フロー図。RO membrane chemical cleaning flowchart. 新品RO膜面の三次元蛍光スペクトル図。The three-dimensional fluorescence spectrum figure of a new RO membrane surface. バイオファウリングの確認されたRO膜面の三次元蛍光スペクトル図。The three-dimensional fluorescence spectrum figure of the RO membrane surface by which biofouling was confirmed. MF膜面の三次元蛍光スペクトル図。The three-dimensional fluorescence spectrum figure of MF film | membrane surface. NF膜面の三次元蛍光スペクトル図。The three-dimensional fluorescence spectrum figure of NF film | membrane surface. アルカリ洗浄後のRO膜の三次元蛍光スペクトル図。The three-dimensional fluorescence spectrum figure of RO membrane after alkali washing. 洗浄方法の違いによる励起波長280nmの二次元蛍光スペクトル図。The two-dimensional fluorescence spectrum figure of excitation wavelength 280nm by the difference in the washing | cleaning method.

本発明の対象となる有機分離膜としては、逆浸透膜(RO膜)の他、精密ろ過膜(MF膜)、ナノろ過膜(NF膜)、限外ろ過膜(UF膜)など有機材料を用いた分離膜が挙げられる。特に、本発明では、2枚の平膜がスペーサーを挟み込んで円筒型に倦回されたスパイラル型エレメントを対象とする。   Organic separation membranes subject to the present invention include organic materials such as reverse osmosis membranes (RO membranes), microfiltration membranes (MF membranes), nanofiltration membranes (NF membranes), and ultrafiltration membranes (UF membranes). The separation membrane used is mentioned. In particular, the present invention is directed to a spiral element in which two flat membranes are wound into a cylindrical shape with a spacer interposed therebetween.

以下、主にRO膜を代表例として、本発明の実施形態について説明するが、本発明はこれに限定されず、他の分離膜についても適用できるものである。
実機装置では、RO膜が複数本使用されており、薬品による洗浄は現地で実施される。現地で効果的な洗浄を実施するために、数本抜き取り、解体後に付着物の定性分析を行い、薬品で洗浄した後、洗浄効果を確認する。RO膜の閉塞が進行する前に定期的に現地で薬品洗浄を実施することで、安定した処理水量の確保が可能となる。本評価法は、膜面を直接蛍光光度法にて測定することで、バイオファウリング発生の有無や進行状況の確認が可能であり、薬品洗浄後の膜性能の回復度の評価も可能である。また排水回収のシステムにおいては、膜面にバイオファウリングの発生防止を目的に、スライムコントロール剤が使用されるが、スライムコントロール剤の効果を確認する評価法としても有効な技術となる。
Hereinafter, although an embodiment of the present invention will be described mainly using an RO membrane as a representative example, the present invention is not limited to this and can be applied to other separation membranes.
In the actual equipment, multiple RO membranes are used, and chemical cleaning is carried out locally. In order to carry out effective cleaning in the field, several samples are extracted, and after dismantling, qualitative analysis of deposits is performed, and after cleaning with chemicals, the cleaning effect is confirmed. It is possible to ensure a stable amount of treated water by regularly performing chemical cleaning on site before the RO membrane is blocked. In this evaluation method, the presence or absence of biofouling and the progress status can be confirmed by measuring the membrane surface directly by fluorometry, and the degree of recovery of membrane performance after chemical cleaning can also be evaluated. . In the wastewater recovery system, a slime control agent is used for the purpose of preventing the occurrence of biofouling on the membrane surface, but this is an effective technique as an evaluation method for confirming the effect of the slime control agent.

図1において、膜面より付着物の採取が困難な場合(B)、有機物分析2(109)において、膜面を蛍光光度法により直接測定する。また、膜面より付着物が採取される場合(A)も、膜面の蛍光光度法による測定を実施することにより評価の精度が向上する。
膜面を蛍光光度法により測定する場合、解体した平膜から所定の大きさのサンプル膜を切り出し、これを石英板で挟んでセルを作製し、蛍光光度計にて蛍光光度を測定する。蛍光光度計としては、様々な励起波長による蛍光を示す三次元蛍光スペクトルを測定可能な装置を使用する。特に、本発明では、励起波長250〜300nmの波長範囲において、300〜400nmの蛍光波長のスペクトルに着目する。この波長範囲の蛍光スペクトルは、タンパク質やアミノ酸などのバイオファウリングに特有の有機物の蛍光スペクトルである。環境分野においては水溶液中の有機物の定性法として蛍光光度法による評価が行われており、この波長域に現れる蛍光ピークは、タンパク質やアミノ酸由来のものである(参考文献:「三次元分光蛍光光度計による天然水腐食物質の蛍光特性の直接分析法」、分析化学Vol.46,No.5(1997))。RO膜を構成するポリスルホン酸、ポリアミド、酢酸セルロールなどは、励起波長300〜360nmの波長範囲で350〜400nmの波長領域にスペクトルピークを示す。
蛍光光度計による膜面の直接測定では、膜面に付着した微量の有機物の存在確認を確実にするため、励起側及び蛍光側のスリット幅、ホトマル電圧等を適宜調整することが好ましい。たとえば、液体測定時よりもスリット幅を狭くする、あるいはホトマル電圧を高くするなどが挙げられる。
In FIG. 1, when it is difficult to collect deposits from the film surface (B), in the organic matter analysis 2 (109), the film surface is directly measured by a fluorometric method. Also, when the deposit is collected from the film surface (A), the accuracy of the evaluation is improved by performing the measurement of the film surface by the fluorometric method.
When the film surface is measured by a fluorometric method, a sample film of a predetermined size is cut out from the disassembled flat film, and a cell is produced by sandwiching it with a quartz plate, and the fluorescence is measured with a fluorometer. As the fluorometer, an apparatus capable of measuring a three-dimensional fluorescence spectrum showing fluorescence by various excitation wavelengths is used. In particular, in the present invention, attention is focused on a fluorescence wavelength spectrum of 300 to 400 nm in an excitation wavelength range of 250 to 300 nm. The fluorescence spectrum in this wavelength range is a fluorescence spectrum of organic substances peculiar to biofouling such as proteins and amino acids. In the environmental field, fluorometric evaluation has been carried out as a qualitative method for organic substances in aqueous solution, and the fluorescence peaks appearing in this wavelength range are derived from proteins and amino acids (Reference: “Three-dimensional spectrofluorimetry) Method for Direct Analysis of Fluorescence Properties of Natural Water Corrosive Substances by Meter ”, Analytical Chemistry Vol. 46, No. 5 (1997)). Polysulfonic acid, polyamide, cellulose acetate, etc. constituting the RO membrane show a spectral peak in the wavelength region of 350 to 400 nm in the wavelength range of excitation wavelength of 300 to 360 nm.
In direct measurement of the film surface with a fluorometer, it is preferable to appropriately adjust the slit width, the photomultiplier voltage, and the like on the excitation side and the fluorescence side in order to ensure the presence of a small amount of organic matter attached to the film surface. For example, the slit width is made narrower than that during liquid measurement, or the photovoltage is increased.

使用前(新品)のRO膜と使用後のRO膜との膜面の蛍光スペクトルを比較することで、バイオファウリングの発生が確認できる。また、薬品洗浄前と薬品洗浄後の蛍光スペクトルを確認することで、薬品洗浄の効果が確認できる。
付着物同定後の洗浄確認のフローを図2に示す。従来法では蛍光X線分析による定性分析での確認を実施していたが、蛍光光度法での評価を実施することで、バイオファウリングに対する洗浄効果を直接確認することが可能となる。
図2では、付着物の同定後、まず、洗浄前の膜面を蛍光光度法で測定(201)する。次に、平膜での薬品洗浄(202)を行う。薬品洗浄後、平膜通水試験(203)及び洗浄後の膜面を蛍光光度法で測定(204)する。平膜での薬品洗浄は、洗浄時間や薬品の種類などの洗浄条件を様々に変えて、最適な洗浄条件を求める。薬品洗浄の効果が確認された後、実機のスパイラル型エレメントに対して実際の洗浄(205)を行う。
The occurrence of biofouling can be confirmed by comparing the fluorescence spectra of the membrane surfaces of the RO membrane before use (new) and the RO membrane after use. Moreover, the effect of chemical cleaning can be confirmed by checking the fluorescence spectrum before and after chemical cleaning.
FIG. 2 shows a flow of cleaning confirmation after the identification of deposits. In the conventional method, confirmation by qualitative analysis by fluorescent X-ray analysis is performed. However, it is possible to directly confirm the cleaning effect on biofouling by performing evaluation by the fluorometric method.
In FIG. 2, after identifying the deposit, first, the film surface before cleaning is measured (201) by a fluorometric method. Next, chemical cleaning with a flat membrane (202) is performed. After the chemical cleaning, the flat membrane water passing test (203) and the membrane surface after the cleaning are measured by a fluorometric method (204). For chemical cleaning with flat membranes, optimum cleaning conditions are obtained by changing the cleaning conditions such as cleaning time and type of chemicals in various ways. After the effect of chemical cleaning is confirmed, actual cleaning (205) is performed on the spiral element of the actual machine.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples.

(実施例1)
蛍光光度法による分析条件は以下の条件で行った。
測定機器:分光蛍光光度計 F−7000 (日立製)
測定条件:励起開始波長 200nm
励起終了波長 600nm
蛍光開始波長 200nm
蛍光終了波長 600nm
スキャンスピード 60000nm/min
励起側スリット 5.0nm
蛍光側スリット 5.0nm
ホトマル電圧 400V
Example 1
The analysis conditions by the fluorescence photometry were performed under the following conditions.
Measuring instrument: Spectrofluorometer F-7000 (manufactured by Hitachi)
Measurement conditions: excitation start wavelength 200 nm
Excitation end wavelength 600nm
Fluorescence start wavelength 200nm
Fluorescence end wavelength 600nm
Scanning speed 60000nm / min
Excitation side slit 5.0nm
Fluorescent side slit 5.0nm
Photomultiplier voltage 400V

図1に示すフローに従ってRO膜を解体し、従来の顕微鏡観察、蛍光X線定性分析、FTIRの測定結果よりバイオファウリングを確認した。図3には使用前(新品)のRO膜面の三次元蛍光スペクトルを、図4にバイオファウリングが確認されたRO膜の三次元蛍光スペクトルを示す。図4の三次元スペクトルには励起波長280nm、蛍光波長330nm付近に図3にはない蛍光ピークが見られる。
バイオファウリングが進行初期の膜は、付着物が少ないため分析が困難である。例えばFTIRで分析を実施した場合には、直接膜表面を顕微ATR反射法等で測定を実施するが、膜の基材の情報が結果として出るため、バイオファウリングの同定はできない。本発明で使用する蛍光光度法では、図4に示すように膜基材のピーク(実線)とは別に付着物のピーク(点線)が確認できることから、微量の有機付着物の分析に有効であることが確認された。
The RO membrane was disassembled in accordance with the flow shown in FIG. FIG. 3 shows the three-dimensional fluorescence spectrum of the RO membrane surface before use (new), and FIG. 4 shows the three-dimensional fluorescence spectrum of the RO membrane where biofouling has been confirmed. In the three-dimensional spectrum of FIG. 4, a fluorescence peak not shown in FIG. 3 is seen near the excitation wavelength of 280 nm and the fluorescence wavelength of 330 nm.
Analysis of the membrane in the early stage of biofouling is difficult because there are few deposits. For example, when the analysis is performed by FTIR, the film surface is directly measured by the microscopic ATR reflection method or the like, but since the information on the film substrate is obtained as a result, biofouling cannot be identified. In the fluorometric method used in the present invention, as shown in FIG. 4, since the peak of adhering matter (dotted line) can be confirmed in addition to the peak of the film substrate (solid line), it is effective for analysis of a small amount of organic adhering matter. It was confirmed.

また図5にMF膜、図6にNF膜の蛍光三次元スペクトルを示す。MF膜の付着物は採取できない場合が多く、蛍光光度法による評価法が特に有効である。
MF膜は、分離孔径0.01μm〜10μmで主として液体中の微生物や微粒子を除去対象とする膜であり、NF膜は水和半径の大きいイオン(2価イオン)や糖類など大きめの有機膜などを阻止対象とする膜であり、RO膜と同様に水処理システムにて使用される膜である。
図4〜図6には、励起波長250〜300nmの波長範囲において、300〜400nmの蛍光波長のスペクトルが見られ、バイオファウリングとなる有機物の存在が確認された。
FIG. 5 shows the three-dimensional fluorescence spectrum of the MF film and FIG. 6 shows the NF film. In many cases, MF film deposits cannot be collected, and an evaluation method using a fluorometric method is particularly effective.
The MF membrane has a separation pore size of 0.01 μm to 10 μm and is mainly intended for removal of microorganisms and fine particles in the liquid. The NF membrane is a large organic membrane such as ions (divalent ions) or saccharides having a large hydration radius. Is a membrane used in a water treatment system in the same manner as an RO membrane.
In FIGS. 4-6, the spectrum of the fluorescence wavelength of 300-400 nm was seen in the wavelength range of excitation wavelength 250-300 nm, and presence of the organic substance used as biofouling was confirmed.

(実施例2)
図7にバイオファウリングの確認されたRO膜を水酸化ナトリウムでアルカリ洗浄した後の膜面の三次元蛍光スペクトルを示す。図4で検出された励起波長280nm、蛍光波長330nm付近のピークが洗浄でほぼ消失していることがわかる。洗浄後のRO膜の透過水量の変化と蛍光光度法による評価法にて、薬品洗浄の効果の確認が可能となる。図8に洗浄前の膜、純水洗浄後の膜、アルカリ洗浄後の膜の励起波長280nmの二次元スペクトルの比較を示す。新品膜の透過水量を1とした時、洗浄前の膜の透過水量は0.6、純水洗浄後の透過水量は0.7、アルカリ洗浄後の透過水量は0.9となり、洗浄により性能は回復する。蛍光強度の比較は、膜自体の蛍光ピークである励起波長320nm、蛍光波長370nm付近の蛍光強度を1として規格化して比較を行った。図8の結果から、透過水量の回復と同様、純水洗浄よりアルカリ洗浄の洗浄効果が高いことが確認できる。
バイオファウリングしたRO膜面の薬品洗浄の効果と同様にスライムコントロール剤の有効性に関しても、蛍光光度法による評価で確認できる。
(Example 2)
FIG. 7 shows the three-dimensional fluorescence spectrum of the membrane surface after the alkali-washed RO membrane with biofouling is washed with sodium hydroxide. It can be seen that the peaks near the excitation wavelength of 280 nm and the fluorescence wavelength of 330 nm detected in FIG. The effect of the chemical cleaning can be confirmed by the change in the amount of permeated water of the RO membrane after the cleaning and the evaluation method by the fluorescence photometry. FIG. 8 shows a comparison of two-dimensional spectra at an excitation wavelength of 280 nm of a film before cleaning, a film after pure water cleaning, and a film after alkali cleaning. When the permeated water amount of a new membrane is 1, the permeated water amount of the membrane before cleaning is 0.6, the permeated water amount after pure water cleaning is 0.7, and the permeated water amount after alkali cleaning is 0.9. Recovers. The comparison of the fluorescence intensities was performed by standardizing the fluorescence intensities near the excitation wavelength of 320 nm and the fluorescence wavelength of 370 nm, which are the fluorescence peaks of the film, as 1. From the result of FIG. 8, it can be confirmed that the cleaning effect of the alkali cleaning is higher than that of the pure water cleaning as in the recovery of the permeated water amount.
The effectiveness of the slime control agent as well as the chemical cleaning effect on the bio-fouled RO membrane surface can be confirmed by evaluation using a fluorometric method.

101 外観観察
102 通水試験
103 解体
104 付着物採取
105 顕微鏡観察
106 組成分析1
107 有機物分析1
108 膜面の組成分析
109 有機物分析2
DESCRIPTION OF SYMBOLS 101 Appearance observation 102 Water flow test 103 Dismantling 104 Deposit collection 105 Microscopic observation 106 Composition analysis 1
107 Organic matter analysis 1
108 Composition analysis of membrane surface 109 Organic matter analysis 2

Claims (6)

有機分離膜表面の有機物付着状態を評価する方法であって、蛍光光度計にて膜面の三次元スペクトルを測定し、該有機分離膜の使用前と使用後の三次元スペクトルの比較により、膜面の有機物の付着を評価する方法。   A method for evaluating the state of organic matter adhesion on the surface of an organic separation membrane, measuring a three-dimensional spectrum of the membrane surface with a fluorometer, and comparing the three-dimensional spectrum before and after use of the organic separation membrane, A method to evaluate the adhesion of organic matter on the surface. 前記有機物は、励起波長250〜300nmの波長範囲において、300〜400nmの蛍光波長のスペクトルの存在の有無で確認される、請求項1に記載の方法。   The method according to claim 1, wherein the organic substance is identified by the presence or absence of a spectrum having a fluorescence wavelength of 300 to 400 nm in a wavelength range of excitation wavelength of 250 to 300 nm. 前記有機分離膜は、平膜を倦回して得られるスパイラル型エレメントであり、該スパイラル型エレメントを解体後、前記平膜から切り出したサンプル膜面を蛍光光度計にて測定する、請求項1又は2に記載の方法。   The organic separation membrane is a spiral element obtained by winding a flat membrane, and after disassembling the spiral element, the sample membrane surface cut out from the flat membrane is measured with a fluorometer. 2. The method according to 2. 有機分離膜表面に付着した有機物を薬品洗浄により除去する方法であって、蛍光光度計にて膜面の三次元スペクトルを測定し、該有機分離膜の洗浄前と洗浄後の三次元スペクトルの比較により薬品洗浄の効果を確認することを含む方法。   A method for removing organic substances adhering to the surface of an organic separation membrane by chemical cleaning, measuring the three-dimensional spectrum of the membrane surface with a fluorimeter, and comparing the three-dimensional spectrum before and after cleaning the organic separation membrane And confirming the effect of chemical cleaning by 前記有機物は、励起波長250〜300nmの波長範囲において、300〜400nmの蛍光波長のスペクトルの存在の有無で確認される、請求項4に記載の方法。   The method according to claim 4, wherein the organic substance is confirmed by the presence or absence of a spectrum having a fluorescence wavelength of 300 to 400 nm in a wavelength range of excitation wavelength of 250 to 300 nm. 前記有機分離膜は、平膜を倦回して得られるスパイラル型エレメントであり、該スパイラル型エレメントを解体後、前記平膜から切り出したサンプル膜を用いて洗浄効果を確認し、得られた結果を実機のスパイラル型エレメントの洗浄に適用する、請求項4又は5に記載の方法。   The organic separation membrane is a spiral type element obtained by winding a flat membrane, and after disassembling the spiral type element, the cleaning effect is confirmed using a sample membrane cut out from the flat membrane, and the obtained results are obtained. The method according to claim 4 or 5, which is applied to cleaning of a spiral element of a real machine.
JP2016125129A 2016-06-24 2016-06-24 Method for cleaning organic separation membrane of water treatment device Active JP6719291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016125129A JP6719291B2 (en) 2016-06-24 2016-06-24 Method for cleaning organic separation membrane of water treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016125129A JP6719291B2 (en) 2016-06-24 2016-06-24 Method for cleaning organic separation membrane of water treatment device

Publications (2)

Publication Number Publication Date
JP2017227575A true JP2017227575A (en) 2017-12-28
JP6719291B2 JP6719291B2 (en) 2020-07-08

Family

ID=60889177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016125129A Active JP6719291B2 (en) 2016-06-24 2016-06-24 Method for cleaning organic separation membrane of water treatment device

Country Status (1)

Country Link
JP (1) JP6719291B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110451706A (en) * 2019-05-13 2019-11-15 上海晶宇环境工程股份有限公司 The separating technology and special equipment of high-enriched organics and salt during strong brine zero-emission
CN113552105A (en) * 2021-07-21 2021-10-26 苏州苏净环保工程有限公司 Method for detecting organic membrane pollution
CN113919723A (en) * 2021-10-19 2022-01-11 山东大学 Constructed wetland system blocking risk assessment method
CN114660035A (en) * 2022-03-28 2022-06-24 广州大学 Front surface fluorescence probe device for membrane pollution monitoring
CN115636472A (en) * 2022-09-07 2023-01-24 中国科学院青海盐湖研究所 Method for determining key influence factors of nanofiltration membrane pollution in process of extracting lithium from brine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089081A (en) * 2008-09-09 2010-04-22 Nitto Denko Corp Supply-side passage material and spiral separation membrane element
US20120001094A1 (en) * 2006-10-27 2012-01-05 University Of South Florida Deep-uv led and laser induced fluorescence detection and monitoring of trace organics in potable liquids
JP2012192315A (en) * 2011-03-15 2012-10-11 Toshiba Corp Fouling prediction method, and membrane filtration system
US20130075331A1 (en) * 2010-06-10 2013-03-28 Ramila Hishantha Peiris Method for fluorescence-based fouling forecasting and optimization in membrane filtration operations
JP2013223835A (en) * 2012-04-20 2013-10-31 Nitto Denko Corp Method for evaluating membrane fouling and method for washing separation membrane
US20160122201A1 (en) * 2014-10-29 2016-05-05 Horiba Instruments Incorporated Determination of water treatment parameters based on absorbance and fluorence
JP2016107235A (en) * 2014-12-10 2016-06-20 水ing株式会社 Analysis method for contaminated condition of separation membrane, evaluation method for water quality of filtration object water using the same, and filtration system for performing analysis method for contaminated condition of separation membrane

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120001094A1 (en) * 2006-10-27 2012-01-05 University Of South Florida Deep-uv led and laser induced fluorescence detection and monitoring of trace organics in potable liquids
JP2010089081A (en) * 2008-09-09 2010-04-22 Nitto Denko Corp Supply-side passage material and spiral separation membrane element
US20130075331A1 (en) * 2010-06-10 2013-03-28 Ramila Hishantha Peiris Method for fluorescence-based fouling forecasting and optimization in membrane filtration operations
JP2012192315A (en) * 2011-03-15 2012-10-11 Toshiba Corp Fouling prediction method, and membrane filtration system
JP2013223835A (en) * 2012-04-20 2013-10-31 Nitto Denko Corp Method for evaluating membrane fouling and method for washing separation membrane
US20160122201A1 (en) * 2014-10-29 2016-05-05 Horiba Instruments Incorporated Determination of water treatment parameters based on absorbance and fluorence
JP2016107235A (en) * 2014-12-10 2016-06-20 水ing株式会社 Analysis method for contaminated condition of separation membrane, evaluation method for water quality of filtration object water using the same, and filtration system for performing analysis method for contaminated condition of separation membrane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110451706A (en) * 2019-05-13 2019-11-15 上海晶宇环境工程股份有限公司 The separating technology and special equipment of high-enriched organics and salt during strong brine zero-emission
CN110451706B (en) * 2019-05-13 2023-10-27 上海晶宇环境工程股份有限公司 Separation process of high-concentration organic matters and salt in zero-emission process of strong brine and special equipment
CN113552105A (en) * 2021-07-21 2021-10-26 苏州苏净环保工程有限公司 Method for detecting organic membrane pollution
CN113919723A (en) * 2021-10-19 2022-01-11 山东大学 Constructed wetland system blocking risk assessment method
CN114660035A (en) * 2022-03-28 2022-06-24 广州大学 Front surface fluorescence probe device for membrane pollution monitoring
CN115636472A (en) * 2022-09-07 2023-01-24 中国科学院青海盐湖研究所 Method for determining key influence factors of nanofiltration membrane pollution in process of extracting lithium from brine

Also Published As

Publication number Publication date
JP6719291B2 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
JP6719291B2 (en) Method for cleaning organic separation membrane of water treatment device
Korenak et al. Efficiency and economic feasibility of forward osmosis in textile wastewater treatment
JP4867413B2 (en) Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus
JP6567274B2 (en) Method for analyzing contamination state of separation membrane, and method for evaluating water quality of filtration target water using the method
JP6768889B2 (en) Contaminated state analysis method of separation membrane and water quality evaluation method of filtered water using the method
Malczewska et al. Structural changes and operational deterioration of the Uf polyethersulfone (Pes) membrane due to chemical cleaning
US20200096438A1 (en) In-line quantification and characterization of membrane fouling
JP5079372B2 (en) Membrane separation method and membrane separation apparatus
CA2957927A1 (en) Intelligent fluid filtration management system
WO2012124538A1 (en) Fouling prediction method, and membrane filtration system
JP6679439B2 (en) Reverse osmosis membrane supply water membrane clogging evaluation method, membrane clogging evaluation apparatus, and water treatment apparatus operation management method using the membrane clogging evaluation method
JP2008194560A (en) Evaluation method of water to be treated in membrane separation device, water treatment method, and water treatment device
Krahnstöver et al. Comparison of methods to assess the integrity and separation efficiency of ultrafiltration membranes in wastewater reclamation processes
Koo et al. Use and development of fouling index in predicting membrane fouling
Yamamura et al. Solid-phase fluorescence excitation emission matrix for in-situ monitoring of membrane fouling during microfiltration using a polyvinylidene fluoride hollow fiber membrane
Rachman et al. Assessment of silt density index (SDI) as fouling propensity parameter in reverse osmosis (RO) desalination systems
WO2014156694A1 (en) Particulate-measuring method, particulate-measuring system, and system for manufacturing ultrapure water
Yamamura et al. Transition in fouling mechanism in microfiltration of a surface water
JP2007014878A (en) Diagnostic method of contamination conditions of membrane separation apparatus, diagnostic apparatus and washing method of membrane separation apparatus
Busch et al. Ultrafiltration pretreatment to reverse osmosis for seawater desalination—three years field experience in the Wangtan Datang power plant
Zhan et al. Application of fouling index for forward osmosis hybrid system: A pilot demonstration
Jang et al. Response surface methodology to investigate the effects of operational parameters on membrane fouling and organic matter rejection in hard-shell encased hollow-fiber membrane
Jung et al. Autopsy study of irreversible foulants on polyvinylidene fluoride hollow-fiber membranes in an immersed microfiltration system operated for five years
Peiris et al. Development of a species specific fouling index using principal component analysis of fluorescence excitation–emission matrices for the ultrafiltration of natural water and drinking water production
Jeong et al. In situ real-time monitoring technologies for fouling detection in membrane processes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200616

R150 Certificate of patent or registration of utility model

Ref document number: 6719291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250