JP2017225225A - Charging rate estimation device - Google Patents

Charging rate estimation device Download PDF

Info

Publication number
JP2017225225A
JP2017225225A JP2016117962A JP2016117962A JP2017225225A JP 2017225225 A JP2017225225 A JP 2017225225A JP 2016117962 A JP2016117962 A JP 2016117962A JP 2016117962 A JP2016117962 A JP 2016117962A JP 2017225225 A JP2017225225 A JP 2017225225A
Authority
JP
Japan
Prior art keywords
charge
constant voltage
battery
charging rate
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016117962A
Other languages
Japanese (ja)
Other versions
JP6696311B2 (en
Inventor
順一 波多野
Junichi Hatano
順一 波多野
隆広 都竹
Takahiro Tsutake
隆広 都竹
祐希 村松
Yuki Muramatsu
祐希 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2016117962A priority Critical patent/JP6696311B2/en
Publication of JP2017225225A publication Critical patent/JP2017225225A/en
Application granted granted Critical
Publication of JP6696311B2 publication Critical patent/JP6696311B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a charging rate estimation device which can estimate a battery charging rate if the reliability of a current integration value is low.SOLUTION: The charging rate estimation device includes: a charge control unit 31 which performs constant current and constant voltage charge control; and an estimation unit 32 which, in constant voltage charge control, acquires a constant voltage charge start charging rate when the voltage of a battery B reaches a target voltage to obtain, from the constant voltage charge start charging rate, an estimated time until reaching a charging rate at full charge, and to obtain, from the constant voltage charge start time, a ratio of the estimated time to a continuation time during which constant voltage charging continues, and obtain a difference between the charging rate at the full charge and the constant voltage charge start charging rate and add a value, obtained by multiplying the ratio by the difference, to the constant voltage charge start charging rate, so as to obtain an estimated charging rate.SELECTED DRAWING: Figure 2

Description

本発明は、電池の充電率を推定する充電率推定装置に関する。   The present invention relates to a charging rate estimation device that estimates a charging rate of a battery.

既存の充電率推定装置として、例えば、充電中の電池に流れる電流の積算値に基づいて、電池の充電率(電池の満充電容量に対する残容量の割合(百分率))を推定する技術が知られている。   As an existing charging rate estimation device, for example, a technology for estimating a charging rate of a battery (a ratio (percentage) of a remaining capacity to a full charging capacity of a battery) based on an integrated value of a current flowing through a battery being charged is known. ing.

また、既存の他の充電率推定装置として、例えば、充電中の電池の電圧が目標電圧に達した時刻で、電池の充電率を100[%]に設定するものがある。
関連する技術として、例えば、特許文献1及び特許文献2がある。
As another existing charging rate estimation device, for example, there is a device that sets the charging rate of a battery to 100 [%] at the time when the voltage of the battery being charged reaches a target voltage.
As related technologies, there are, for example, Patent Document 1 and Patent Document 2.

特開2015−118060号公報JP 2015-1118060 A 特開2013−011590号公報JP 2013-011590 A

しかしながら、電流積算値に基づいて充電率を推定する充電率推定装置では、電流検出部が異常状態(例えば、電流検出部の故障や計測配線の断線など)となり電池に流れる電流を検出できず電流積算値を求められない場合や、電流積算時間が長くなり電流積算値に基づいて求めた推定充電率の信頼性が低下した場合に、推定される充電率と実際の充電率とに大きなズレが生じる虞がある。   However, in the charging rate estimation device that estimates the charging rate based on the integrated current value, the current detection unit becomes abnormal (for example, the failure of the current detection unit or the disconnection of the measurement wiring), and the current flowing through the battery cannot be detected. When the accumulated value cannot be obtained or when the reliability of the estimated charge rate obtained based on the current accumulated value decreases due to the long current accumulation time, there is a large difference between the estimated charge rate and the actual charge rate. May occur.

本発明の一側面に係る目的は、電流積算値の信頼性が低い場合でも、電池の充電率を推定することができる充電率推定装置を提供することである。   An object of one aspect of the present invention is to provide a charging rate estimation device that can estimate the charging rate of a battery even when the reliability of the current integrated value is low.

本発明に係る一つの形態である充電率推定装置は、制御部と、推定部とを備える。
充電制御部は定電流定電圧充電制御する。推定部は、定電圧充電制御において、電池の電圧が目標電圧に達した場合に定電圧充電開始充電率を取得し、定電圧充電開始充電率から満充電時の充電率に達するまでの推定時間を求め、定電圧充電開始時刻から定電圧充電を継続している継続時間と推定時間との比を求め、満充電時の充電率と定電圧充電開始充電率との差を求め、比と差を乗算した値を、定電圧充電開始充電率に加算して推定充電率を求める。
The charging rate estimation apparatus which is one form which concerns on this invention is provided with a control part and an estimation part.
The charge control unit performs constant current constant voltage charge control. In the constant voltage charge control, the estimation unit obtains a constant voltage charge start charge rate when the battery voltage reaches the target voltage, and estimates the time from the constant voltage charge start charge rate until the charge rate at full charge is reached. Determine the ratio between the duration of constant voltage charging from the constant voltage charge start time and the estimated time, and determine the difference between the charge rate at full charge and the constant voltage charge start charge rate. Is added to the constant voltage charging start charging rate to obtain the estimated charging rate.

本発明によれば、電流積算値の信頼性が低い場合でも、電池の充電率を推定することができる。   According to the present invention, it is possible to estimate the charging rate of the battery even when the reliability of the current integrated value is low.

実施形態の充電率推定装置を含む電池パックの一例を示す図である。It is a figure which shows an example of the battery pack containing the charging rate estimation apparatus of embodiment. 制御部の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of a control part. 充電制御を説明するための図である。It is a figure for demonstrating charge control. 内部抵抗−定電圧充電開始充電率情報及び電流−定電圧充電開始充電率情報の一例を示す図である。It is a figure which shows an example of internal resistance-constant voltage charge start charge rate information and current-constant voltage charge start charge rate information. 電流−内部抵抗−定電圧充電開始充電率情報の一例を示す図である。It is a figure which shows an example of electric current-internal resistance-constant voltage charge start charge rate information. 電流−内部抵抗−推定時間情報の一例を示す図である。It is a figure which shows an example of electric current-internal resistance-estimated time information.

以下図面に基づいて実施形態について詳細を説明する。
図1は、実施形態の充電率推定装置を含む電池パックの一例を示す図である。
図1に示す電池パック1は、例えば、電動フォークリフトなどの車両に搭載され、走行モータを駆動するインバータなどの負荷へ電力を供給する。
Hereinafter, embodiments will be described in detail with reference to the drawings.
FIG. 1 is a diagram illustrating an example of a battery pack including the charging rate estimation apparatus according to the embodiment.
The battery pack 1 shown in FIG. 1 is mounted on a vehicle such as an electric forklift, for example, and supplies power to a load such as an inverter that drives a travel motor.

また、電池パック1は、複数の電池モジュール2と、制御部3と、記憶部4とを備える。なお、記憶部4は、例えば、RAM(Random Access Memory)やROM(Read Only Memory)などにより構成される。   In addition, the battery pack 1 includes a plurality of battery modules 2, a control unit 3, and a storage unit 4. The storage unit 4 is configured by, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), or the like.

電池モジュール2それぞれは、電池スタックSと、スイッチSWと、電流検出部21と、温度検出部22と、監視部23とを備える。なお、電池モジュール2それぞれの電池スタックSは、互いに並列接続され、組電池を構成する。なお、電池モジュール2は複数ではなく一つでもよい。   Each battery module 2 includes a battery stack S, a switch SW, a current detection unit 21, a temperature detection unit 22, and a monitoring unit 23. The battery stacks S of the battery modules 2 are connected in parallel to each other to form an assembled battery. The battery module 2 may be one instead of plural.

電池スタックSは、直列接続される複数の電池B(例えば、リチウムイオン電池、ニッケル水素電池、又は、電気二重層コンデンサ)により構成される。なお、電池スタックSそれぞれは、一つの電池Bで構成されてもよい。   The battery stack S is composed of a plurality of batteries B (for example, lithium ion batteries, nickel metal hydride batteries, or electric double layer capacitors) connected in series. Each of the battery stacks S may be composed of one battery B.

スイッチSWは、例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などの半導体リレーや電磁式リレーにより構成される。充電器Chから電池パック1へ電力が供給されているとき、スイッチSWがオン(導通)している電池モジュール2が有する電池Bが充電され、その電池Bの電圧が上昇する。   The switch SW is configured by, for example, a semiconductor relay such as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or an electromagnetic relay. When electric power is supplied from the charger Ch to the battery pack 1, the battery B included in the battery module 2 in which the switch SW is turned on (conductive) is charged, and the voltage of the battery B increases.

電流検出部21は、例えば、ホール素子やシャント抵抗により構成され、各電池Bに流れる電流Iを検出する。
温度検出部22は、例えば、サーミスタにより構成され、各電池Bの温度Tを検出する。
The current detection unit 21 includes, for example, a Hall element or a shunt resistor, and detects the current I flowing through each battery B.
The temperature detection part 22 is comprised by the thermistor, for example, and detects the temperature T of each battery B.

監視部23は、例えば、CPU(Central Processing Unit)又はプログラマブルディバイス(FPGA(Field Programmable Gate Array)やPLD(Programmable Logic Device)など)により構成される回路で、各電池Bの電圧Vを検出する。また、監視部23は、制御部3から送られてくる指示により、スイッチSWのオン、オフ(遮断)を制御する。また、監視部23は、各電池Bの電圧V、電流検出部21により検出される電流I、及び温度検出部22により検出される温度Tを示す電池状態情報を制御部3に送る。   The monitoring unit 23 is a circuit configured by, for example, a CPU (Central Processing Unit) or a programmable device (FPGA (Field Programmable Gate Array), PLD (Programmable Logic Device), etc.), and detects the voltage V of each battery B. In addition, the monitoring unit 23 controls on / off (shut-off) of the switch SW according to an instruction sent from the control unit 3. Further, the monitoring unit 23 sends battery state information indicating the voltage V of each battery B, the current I detected by the current detection unit 21, and the temperature T detected by the temperature detection unit 22 to the control unit 3.

制御部3は、定電流定電圧充電制御を行うことで各電池Bを充電させる充電制御部31と、各電池Bの充電率(SOC:State Of Charge)を推定する推定部32とを備える。また、制御部3は、充電停止後において、推定部32で推定した推定充電率を、車両側制御部5に送る。車両側制御部5は、制御部3から送られてくる充電率を、出力部6(例えば、ディスプレイ、モニタ、プリンタ)に出力(表示又は印刷)させる。なお、制御部3は、例えば、CPU又はプログラマブルディバイスにより構成される回路で、CPU又はプログラマブルディバイスが所定のプログラムを実行することによって、充電制御部31及び推定部32が実現される。また、充電率推定装置は、例えば、少なくとも充電制御部31及び推定部32を備えて構成される。   The control unit 3 includes a charge control unit 31 that charges each battery B by performing constant current and constant voltage charge control, and an estimation unit 32 that estimates a charge rate (SOC: State Of Charge) of each battery B. Further, the control unit 3 sends the estimated charging rate estimated by the estimation unit 32 to the vehicle-side control unit 5 after the charging is stopped. The vehicle-side control unit 5 causes the output unit 6 (for example, a display, a monitor, and a printer) to output (display or print) the charging rate sent from the control unit 3. In addition, the control part 3 is a circuit comprised by CPU or a programmable device, for example, and the charge control part 31 and the estimation part 32 are implement | achieved when CPU or a programmable device runs a predetermined | prescribed program. In addition, the charging rate estimation device includes, for example, at least a charging control unit 31 and an estimation unit 32.

制御部3の動作について説明する。
図2は、制御部3の動作を説明するためのフローチャートである。図3は、充電制御を説明するための図である。図3のAは電池Bの電圧Vの変動例を示す図であり、図3のBは電池Bに流れる電流Iの変動例を示す図であり、図3のCは電池Bの実際の充電率(一点鎖線:301)及び推定充電率(実線:302)の変動例を示す図である。なお、図3のAに示すグラフの横軸は時間を示し、縦軸は電池Bの電圧Vを示している。また、図3のBに示すグラフの横軸は時間を示し、縦軸は電池Bに流れる電流Iを示している。また、図3のCに示すグラフの横軸は時間を示し、縦軸は電池Bの充電率を示している。また、図3のAからCの各グラフの横軸は互いに同じ時間軸である。
The operation of the control unit 3 will be described.
FIG. 2 is a flowchart for explaining the operation of the control unit 3. FIG. 3 is a diagram for explaining the charging control. 3A is a diagram showing a variation example of the voltage V of the battery B, FIG. 3B is a diagram showing a variation example of the current I flowing through the battery B, and FIG. 3C is an actual charge of the battery B. It is a figure which shows the example of a fluctuation | variation of a rate (one-dot chain line: 301) and an estimated charging rate (solid line: 302). Note that the horizontal axis of the graph shown in FIG. 3A represents time, and the vertical axis represents the voltage V of the battery B. Also, the horizontal axis of the graph shown in FIG. 3B indicates time, and the vertical axis indicates the current I flowing through the battery B. Further, the horizontal axis of the graph shown in FIG. 3C indicates time, and the vertical axis indicates the charging rate of the battery B. The horizontal axes of the graphs A to C in FIG. 3 are the same time axis.

ステップS1では、制御部3の充電制御部31は定電流充電制御を開始する。まず、充電制御部31は、定電流充電制御を開始すると、図3に示す時刻t0から時刻t1において、電流Iを一定電流Icに保ちつつ、電圧Vが目標電圧Vtまで徐々に上昇するように、電流指令値を充電器Chに送信し、送信した電流指令値に基づいて各電池Bを充電させる。また、推定部32は、時刻t0から時刻t1において、電流Iの積算値に基づいて、推定充電率SOC1を求める。例えば、推定部32は、時刻t0から時刻t1において、推定充電率SOC1(=電流Iの積算値/満充電容量×100)を計算することにより、推定充電率SOC1を求める。なお、推定部32は、充電開始前に推定した電池Bの充電率を記憶部4に記憶しておき、その記憶した充電率を、時刻t0から時刻t1における推定充電率SOC1とする構成としてもよい。目標電圧Vtは、例えば、満充電電圧であるが、満充電電圧に限らず任意の電圧でもよい。   In step S1, the charging control unit 31 of the control unit 3 starts constant current charging control. First, when the constant current charging control is started, the charging control unit 31 gradually increases the voltage V to the target voltage Vt while maintaining the current I at a constant current Ic from time t0 to time t1 shown in FIG. The current command value is transmitted to the charger Ch, and each battery B is charged based on the transmitted current command value. Moreover, the estimation part 32 calculates | requires estimated charging rate SOC1 based on the integrated value of the electric current I from the time t0 to the time t1. For example, the estimation unit 32 calculates the estimated charging rate SOC1 by calculating the estimated charging rate SOC1 (= integrated value of current I / full charge capacity × 100) from time t0 to time t1. In addition, the estimation part 32 memorize | stores the charging rate of the battery B estimated before the start of charge in the memory | storage part 4, and let the memorize | stored charging rate be the estimated charging rate SOC1 from the time t0 to the time t1. Good. The target voltage Vt is, for example, a full charge voltage, but is not limited to a full charge voltage and may be an arbitrary voltage.

ステップS2では、充電制御部31が、電圧Vが目標電圧Vt以上であるか否かを判定し、電圧Vが目標電圧Vtよりも小さい場合(No)にはステップS2に移行し、電圧Vが目標電圧Vt以上で、充電制御部31により電流積算値の信頼性が低いことを検出されている場合(Yes)にはステップS3に移行する。ここで、電流積算値の信頼性が低い場合とは、電流検出部が異常状態(例えば、電流検出部の故障や計測配線の断線など)となり電池に流れる電流を検出できず電流積算値を求められない場合や、電流積算時間が長くなり電流積算値に基づいて求めた推定充電率の信頼性が低下した場合である。電流検出部の異常状態は、制御部3が電流Iや電圧Vや温度Tなどに基づいて検出する。電流積算時間が長いか否かは、制御部3が計測した電流積算をしている時間を合計した電流積算時間と、所定時間(電流積算の信頼性が低下したと見做すことができる時間)とを制御部3が比較して、電流積算時間が所定時間以上であれば電流積算値の信頼性が低下したと判定する。   In step S2, the charging control unit 31 determines whether or not the voltage V is equal to or higher than the target voltage Vt. If the voltage V is smaller than the target voltage Vt (No), the process proceeds to step S2, and the voltage V is If the charge control unit 31 detects that the reliability of the integrated current value is low at the target voltage Vt or higher (Yes), the process proceeds to step S3. Here, when the reliability of the current integration value is low, the current detection unit is in an abnormal state (for example, failure of the current detection unit or disconnection of the measurement wiring), the current flowing through the battery cannot be detected, and the current integration value is obtained. Or the reliability of the estimated charging rate obtained based on the current integrated value is reduced due to the long current integration time. An abnormal state of the current detection unit is detected by the control unit 3 based on the current I, voltage V, temperature T, and the like. Whether or not the current integration time is long is determined based on whether the current integration time measured by the control unit 3 is added to the current integration time and a predetermined time (a time in which the reliability of the current integration is reduced). ) And the controller 3 determines that the reliability of the current integrated value has decreased if the current integrated time is equal to or longer than a predetermined time.

なお、電流積算値の信頼性が高い場合にはステップS3に移行せず、充電制御部31は積算電流値を用いて充電率を求める。また、充電制御部31は計測した電圧V(=閉回路電圧)を用い、記憶部4に記憶されている閉回路電圧と充電率とが関連付けられた情報を参照して、電圧Vに対応する充電率を求めてもよい。   Note that when the reliability of the current integrated value is high, the process does not proceed to step S3, and the charging control unit 31 obtains the charging rate using the integrated current value. Further, the charge control unit 31 uses the measured voltage V (= closed circuit voltage), refers to the information associated with the charge rate and the closed circuit voltage stored in the storage unit 4, and corresponds to the voltage V. You may ask for a charge rate.

なお、ステップS2で、充電制御部31は電流積算値の信頼性が低いことを検出せず、電圧Vが目標電圧Vt以上か否かを判定するだけでもよいが、電流積算値の信頼性が低いことを検出した場合の方が、本発明を実施することでより信頼性の向上が望める。   In step S2, the charging control unit 31 does not detect that the reliability of the current integrated value is low and may only determine whether the voltage V is equal to or higher than the target voltage Vt. In the case where low is detected, it is possible to improve reliability by implementing the present invention.

ステップS3では、電流積算値の信頼性が低い場合、充電制御部31が(1)の処理を実行して、推定部32が(2)から(4)の処理を実行する。
(1)充電制御部31は、電圧Vが目標電圧Vt以上の場合、定電流充電制御を終了し、定電圧充電制御を開始する。
In step S3, when the reliability of the current integrated value is low, the charge control unit 31 executes the process (1), and the estimation unit 32 executes the processes (2) to (4).
(1) When the voltage V is equal to or higher than the target voltage Vt, the charging control unit 31 ends the constant current charging control and starts constant voltage charging control.

定電圧充電制御では、電圧Vを目標電圧Vtに保ちつつ、電流Iを徐々に減少させるために、充電制御部31は充電器Chに送信する電流指令値を徐々に減少させる。
(2)推定部32は定電圧充電開始充電率SOC0を取得する。図3の例では、時刻t1において定電圧充電開始充電率SOC0(例えば、80[%])を取得している。
In the constant voltage charge control, the charge control unit 31 gradually decreases the current command value transmitted to the charger Ch in order to gradually decrease the current I while maintaining the voltage V at the target voltage Vt.
(2) The estimation unit 32 acquires the constant voltage charge start charge rate SOC0. In the example of FIG. 3, the constant voltage charge start charge rate SOC0 (for example, 80 [%]) is acquired at time t1.

ここで、定電圧充電開始充電率SOC0は、例えば、電圧Vが目標電圧Vt以上になったときの実際の電池Bの充電率に近い値で、実験やシミュレーションにより求められ、記憶部4などに記憶されている。   Here, the constant voltage charging start charging rate SOC0 is obtained by experiment or simulation, for example, with a value close to the actual charging rate of the battery B when the voltage V becomes equal to or higher than the target voltage Vt. It is remembered.

また、定電圧充電開始充電率SOC0は、定電流充電制御を行っているときの電流指令値または電流Ichと、電池Bの内部抵抗をもとに算出してもよい。電圧Vが目標電圧Vtになり定電流充電制御から定電圧充電制御に変わるときの実際の電池Bの開回路電圧は、目標電圧Vtから(定電流充電制御を行っているときの電流指令値又は電流Ich)×(電池Bの内部抵抗)により決まる電圧を減算して求めた電圧に近いため、その求めた開回路電圧を用いて、開回路電圧−充電率特性曲線により算出した充電率を定電圧充電開始充電率SOC0とすることができる。なお、電池Bの内部抵抗は温度や劣化度によって変化するため、温度や劣化度を考慮して所定の充電率を求めてもよい。   The constant voltage charging start charging rate SOC0 may be calculated based on the current command value or current Ich when the constant current charging control is performed and the internal resistance of the battery B. The actual open circuit voltage of the battery B when the voltage V becomes the target voltage Vt and changes from the constant current charge control to the constant voltage charge control is determined from the target voltage Vt (the current command value when the constant current charge control is performed or Since it is close to the voltage obtained by subtracting the voltage determined by (current Ich) × (internal resistance of battery B), the charge rate calculated by the open circuit voltage-charge rate characteristic curve is determined using the obtained open circuit voltage. The voltage charging start charging rate SOC0 can be set. In addition, since the internal resistance of the battery B changes depending on the temperature and the degree of deterioration, the predetermined charging rate may be obtained in consideration of the temperature and the degree of deterioration.

また、定電圧充電開始充電率SOC0は、図4に示す内部抵抗−定電圧充電開始充電率情報401又は電流−定電圧充電開始充電率情報402の情報を用いて取得してもよい。図4は、内部抵抗−定電圧充電開始充電率情報401及び電流−定電圧充電開始充電率情報402の一例を示す図である。   Further, the constant voltage charge start charge rate SOC0 may be acquired using the information of the internal resistance-constant voltage charge start charge rate information 401 or the current-constant voltage charge start charge rate information 402 shown in FIG. FIG. 4 is a diagram illustrating an example of internal resistance-constant voltage charge start charge rate information 401 and current-constant voltage charge start charge rate information 402.

図4のAに示す内部抵抗−定電圧充電開始充電率情報401は、内部抵抗Rの範囲を示す情報「r1」「r2」「r3」などと、定電圧充電開始充電率SOC0の範囲を示す情報「SOCr1」「SOCr2」「SOCr3」などとが関連付けられたテーブルである。内部抵抗Rと定電圧充電開始充電率SOC0との関係は、電池Bの内部抵抗Rが大きい程、定電圧充電開始充電率SOC0が低く、内部抵抗Rが小さい程、定電圧充電開始充電率SOC0が高く設定されている。その理由は、電池Bの内部抵抗Rが大きいほど電池Bの閉回路電圧と実際の開回路電圧との差が大きくなるからである。   The internal resistance-constant voltage charging start charging rate information 401 shown in FIG. 4A indicates information “r1”, “r2”, “r3”, etc. indicating the range of the internal resistance R, and the range of the constant voltage charging starting charging rate SOC0. This is a table in which information “SOCr1”, “SOCr2”, “SOCr3”, and the like are associated with each other. The relationship between the internal resistance R and the constant voltage charge start charge rate SOC0 is that the larger the internal resistance R of the battery B, the lower the constant voltage charge start charge rate SOC0 and the smaller the internal resistance R, the constant voltage charge start charge rate SOC0. Is set high. This is because the difference between the closed circuit voltage of the battery B and the actual open circuit voltage increases as the internal resistance R of the battery B increases.

例えば、内部抵抗−定電圧充電開始充電率情報401を用いる場合、制御部3は内部抵抗Rを求め、求めた内部抵抗Rを用いて、内部抵抗−定電圧充電開始充電率情報401を参照し、内部抵抗Rに対応する定電圧充電開始充電率SOC0を取得する。例えば、内部抵抗Rが「r1」の範囲であれば、定電圧充電開始充電率SOC0として「SOCr1」が取得される。なお、内部抵抗Rを劣化度としてもよい。   For example, when using the internal resistance-constant voltage charge start charge rate information 401, the control unit 3 obtains the internal resistance R, and refers to the internal resistance-constant voltage charge start charge rate information 401 using the obtained internal resistance R. The constant voltage charging start charging rate SOC0 corresponding to the internal resistance R is acquired. For example, if the internal resistance R is in the range of “r1”, “SOCr1” is acquired as the constant voltage charge start charge rate SOC0. The internal resistance R may be set as the degree of deterioration.

図4のBに示す電流−定電圧充電開始充電率情報402は、電流Iの範囲を示す情報「i1」「i2」「i3」などと、定電圧充電開始充電率SOC0の範囲を示す情報「SOCi1」「SOCi2」「SOCi3」などとが関連付けられたテーブルである。電流Iと定電圧充電開始充電率SOC0との関係は、電池Bに流れる電流Iが大きい程、定電圧充電開始充電率SOC0が低く、電流Iが小さい程、定電圧充電開始充電率SOC0が高く設定されている。その理由は、電池Bに流れる電流Iが大きいほど電池Bの閉回路電圧と実際の開回路電圧との差が大きくなるからである。   The current-constant voltage charging start charging rate information 402 shown in FIG. 4B includes information “i1”, “i2”, “i3”, and the like indicating the range of the current I, and information “showing the range of the constant voltage charging starting charging rate SOC0”. This is a table in which SOCi1, “SOCi2,” “SOCi3” and the like are associated with each other. The relationship between the current I and the constant voltage charge start charge rate SOC0 is that the constant current charge start charge rate SOC0 is lower as the current I flowing through the battery B is larger, and the constant voltage charge start charge rate SOC0 is higher as the current I is smaller. Is set. This is because the difference between the closed circuit voltage of battery B and the actual open circuit voltage increases as current I flowing through battery B increases.

例えば、推定部32が、電流−定電圧充電開始充電率情報402を用いる場合、制御部3は電流Iを求め、求めた電流Iを用いて、電流−定電圧充電開始充電率情報402を参照し、電流Iに対応する定電圧充電開始充電率SOC0を取得する。電流Iが「i1」の範囲であれば、定電圧充電開始充電率SOC0として「SOCi1」が取得される。なお、電流Iに電流指令値や定電流充電制御時の一定電流Icを含めてもよい。   For example, when the estimation unit 32 uses the current-constant voltage charging start charging rate information 402, the control unit 3 obtains the current I and refers to the current-constant voltage charging start charging rate information 402 using the obtained current I. Then, the constant voltage charging start charging rate SOC0 corresponding to the current I is acquired. If the current I is in the range of “i1”, “SOCi1” is acquired as the constant voltage charge start charge rate SOC0. The current I may include a current command value and a constant current Ic during constant current charging control.

また、定電圧充電開始充電率SOC0は、電流検出部21が異常状態である場合、内部抵抗R及び電流Iが計測できないため、温度Tに基づいて定電圧充電開始充電率SOC0を取得してもよい。その場合、推定部32は、温度検出部22から取得した温度Tを示す情報に基づいて、電池Bの温度Tが低い程、定電圧充電開始充電率SOC0を低くし、電池Bの温度Tが高い程、定電圧充電開始充電率SOC0を高くする。その理由は、電池Bの温度Tが低いほど内部抵抗Rが大きくなり、内部抵抗Rが大きいほど電池Bの閉回路電圧と実際の開回路電圧との差が大きくなるからである。   Further, since the internal resistance R and the current I cannot be measured when the current detection unit 21 is in an abnormal state, the constant voltage charge start charge rate SOC0 is obtained even if the constant voltage charge start charge rate SOC0 is acquired based on the temperature T. Good. In that case, based on the information indicating the temperature T acquired from the temperature detection unit 22, the estimation unit 32 lowers the constant voltage charge start charging rate SOC <b> 0 as the temperature T of the battery B is lower, and the temperature T of the battery B becomes lower. The higher the constant voltage charging start charging rate SOC0 is, the higher it is. This is because the internal resistance R increases as the temperature T of the battery B decreases, and the difference between the closed circuit voltage of the battery B and the actual open circuit voltage increases as the internal resistance R increases.

更に、定電圧充電開始充電率SOC0は、図5に示す電流−温度−内部抵抗−定電圧充電開始充電率情報501の情報を用いて取得してもよい。図5は、電流−内部抵抗−定電圧充電開始充電率情報の一例を示す図である。   Further, the constant voltage charge start charge rate SOC0 may be obtained using information of current-temperature-internal resistance-constant voltage charge start charge rate information 501 shown in FIG. FIG. 5 is a diagram illustrating an example of current-internal resistance-constant voltage charge start charge rate information.

図5に示す電流−内部抵抗−定電圧充電開始充電率情報501は、電流Iの範囲を示す情報「i1」「i2」「i3」などと、内部抵抗Rの値を示す情報「r1」「r2」「r3」などと、定電圧充電開始充電率SOC0の値を示す情報「SOC11」「SOC12」「SOC13」「SOC21」「SOC22」「SOC23」「SOC31」「SOC32」「SOC33」などとが関連付けられたテーブルである。例えば、電流−内部抵抗−定電圧充電開始充電率情報501を用いる場合、推定部32は、計測した電流Iと、求めた内部抵抗Rとを用いて、電流−内部抵抗−定電圧充電開始充電率情報501を参照し、電流Iと内部抵抗Rに対応する定電圧充電開始充電率SOC0を取得する。例えば、電流Iが「i1」で内部抵抗Rが「r1」であれば、定電圧充電開始充電率SOC0として「SOC11」が取得される。なお、電流Iに電流指令値や定電流充電制御時の一定電流Icを含めてもよい。
(3)推定部32は推定時間t(図3の時刻t1から時刻t2)を求める。定電圧充電開始充電率SOC0から満充電時の充電率(=100[%])に達するまでにかかると推定される時間で、実験やシミュレーションにより求められ、記憶部4などに記憶されている。すなわち、定電圧充電制御を開始した時刻t1から、電池Bが満充電時の充電率に達する時刻t2を推定し、時刻t1から時刻t2までの時間を推定時間tとする。なお、時刻は日時又は年月日時を含んでもよい。
The current-internal resistance-constant voltage charging start charging rate information 501 shown in FIG. 5 includes information “i1”, “i2”, “i3”, etc. indicating the range of the current I, and information “r1”, “ “r2”, “r3”, etc., and information “SOC11”, “SOC12”, “SOC13”, “SOC21”, “SOC22”, “SOC23”, “SOC31”, “SOC32”, “SOC33”, etc. indicating the value of the constant voltage charging start charging rate SOC0. Associated table. For example, when using the current-internal resistance-constant voltage charge start charge rate information 501, the estimation unit 32 uses the measured current I and the obtained internal resistance R to charge current-internal resistance-constant voltage charge start charge. Referring to rate information 501, constant voltage charge start charge rate SOC0 corresponding to current I and internal resistance R is acquired. For example, if the current I is “i1” and the internal resistance R is “r1”, “SOC11” is acquired as the constant voltage charge start charge rate SOC0. The current I may include a current command value and a constant current Ic during constant current charging control.
(3) The estimation unit 32 obtains the estimated time t (from time t1 to time t2 in FIG. 3). The time estimated to take from the constant voltage charge start charge rate SOC0 to the full charge rate (= 100 [%]) is obtained by experiments and simulations and stored in the storage unit 4 or the like. That is, from the time t1 when the constant voltage charging control is started, the time t2 when the battery B reaches the full charge rate is estimated, and the time from the time t1 to the time t2 is set as the estimated time t. The time may include date / time or year / month / date / time.

推定時間tは、内部抵抗Rあるいは電流Iに応じて推定時間tを変更してもよい。内部抵抗Rと推定時間tとの関係は、電池Bの内部抵抗Rが低い程、推定時間tが短く、内部抵抗Rが高い程、推定時間tが長く設定されている。なお、内部抵抗Rを劣化度としてもよい。また、電流Iと推定時間tとの関係は、電池Bに流れる電流Iが大きい程、推定時間tが短く、電流Iが小さい程、推定時間tが長く設定されている。なお、電流Iに電流指令値や定電流充電制御時の一定電流Icを含めてもよい。   The estimated time t may be changed according to the internal resistance R or current I. Regarding the relationship between the internal resistance R and the estimated time t, the estimated time t is set shorter as the internal resistance R of the battery B is lower, and the estimated time t is set longer as the internal resistance R is higher. The internal resistance R may be set as the degree of deterioration. The relationship between the current I and the estimated time t is set such that the larger the current I flowing through the battery B, the shorter the estimated time t, and the smaller the current I, the longer the estimated time t. The current I may include a current command value and a constant current Ic during constant current charging control.

更に、推定時間tは、図6に示す電流−内部抵抗−推定時間情報601を用いて求めてもよい。すなわち、電流Iと内部抵抗Rに応じて決めて推定時間tを求めてもよい。図6は、電流−内部抵抗−推定時間情報の一例を示す図である。   Further, the estimated time t may be obtained using the current-internal resistance-estimated time information 601 shown in FIG. That is, the estimated time t may be obtained by determining according to the current I and the internal resistance R. FIG. 6 is a diagram illustrating an example of current-internal resistance-estimated time information.

図6に示す電流−内部抵抗−推定時間情報601は、電流Iの範囲を示す情報「i1」「i2」「i3」などと、内部抵抗Rの値を示す情報「r1」「r2」「r3」などと、推定時間tの値を示す情報「t11」「t12」「t13」「t21」「t22」「t23」「t31」「t32」「t33」などとが関連付けられたテーブルである。例えば、電流−内部抵抗−推定時間情報601を用いる場合、推定部32は、計測した電流Iと求めた内部抵抗Rとを用いて、電流−内部抵抗−推定時間情報601を参照し、電流Iと内部抵抗Rに対応する推定時間tを求める。例えば、電流Iが「i1」で内部抵抗Rが「r1」であれば、推定時間tとして「t11」が求められる。なお、電流Iに電流指令値や定電流充電制御時の一定電流Icを含めてもよい。   The current-internal resistance-estimated time information 601 shown in FIG. 6 includes information “i1”, “i2”, “i3” indicating the range of the current I, and information “r1” “r2” “r3” indicating the value of the internal resistance R. , Etc., and information “t11”, “t12”, “t13”, “t21”, “t22”, “t23”, “t31”, “t32”, “t33”, and the like indicating the value of the estimated time t. For example, when using the current-internal resistance-estimated time information 601, the estimating unit 32 refers to the current-internal resistance-estimated time information 601 using the measured current I and the obtained internal resistance R, and determines the current I And an estimated time t corresponding to the internal resistance R is obtained. For example, if the current I is “i1” and the internal resistance R is “r1”, “t11” is obtained as the estimated time t. The current I may include a current command value and a constant current Ic during constant current charging control.

また、推定時間tは、電流検出部21が異常状態である場合、内部抵抗R及び電流Iが計測できないため、温度Tに基づいて推定時間tを取得してもよい。その場合、推定部32は、温度検出部22から取得した温度Tを示す情報に基づいて、電池Bの温度Tが低い程、推定時間tを短くし、電池Bの温度Tが高い程、推定時間tを長くする。
(4)推定部32は継続時間tcの計測を開始する。継続時間tcは、定電圧充電制御開始時刻t1から定電圧充電制御を継続している現在の時刻までの時間である。
Further, the estimated time t may be acquired based on the temperature T because the internal resistance R and the current I cannot be measured when the current detector 21 is in an abnormal state. In that case, based on the information indicating the temperature T acquired from the temperature detection unit 22, the estimation unit 32 shortens the estimation time t as the temperature T of the battery B is low, and estimates as the temperature T of the battery B is high. Increase the time t.
(4) The estimation unit 32 starts measuring the duration tc. The duration tc is the time from the constant voltage charge control start time t1 to the current time when the constant voltage charge control is continued.

ステップS4では、推定部32が推定充電率SOC1を求める。推定部32は、定電圧充電制御開始時刻t1から定電圧充電制御を継続している継続時間tcと推定時間tとの比D(=tc/t)を求め、満充電時の充電率(=100[%])と定電圧充電開始充電率SOC0との差Sub(=100−SOC0)を求め、比Dと差Subを乗算した値(=D×Sub)を、定電圧充電開始充電率SOC0に加算して推定充電率SOC1(=SOC0+D×Sub)を求める。式1を参照。   In step S4, the estimation part 32 calculates | requires estimated charging rate SOC1. The estimation unit 32 obtains a ratio D (= tc / t) between the duration tc in which constant voltage charge control has been continued from the constant voltage charge control start time t1 and the estimated time t, and a charge rate at full charge (= 100 [%]) and the constant voltage charge start charge rate SOC0, a difference Sub (= 100−SOC0) is obtained, and a value obtained by multiplying the ratio D and the difference Sub (= D × Sub) is obtained as the constant voltage charge start charge rate SOC0. To obtain an estimated charging rate SOC1 (= SOC0 + D × Sub). See Equation 1.

SOC1=SOC0+(tc/t)×(100−SOC0) (式1)
ステップS5では、充電制御部31が、継続時間tcが推定時間tを経過した時刻であるか否かを判定し、継続時間tcが推定時間tを経過した時刻でない場合(No)には定電圧充電制御を継続するためステップS4に移行し、継続時間tcが推定時間tを経過した時刻である場合(Yes)にはステップS6に移行する。
SOC1 = SOC0 + (tc / t) × (100−SOC0) (Formula 1)
In step S5, the charge control unit 31 determines whether or not the duration tc is the time when the estimated time t has elapsed, and if the duration tc is not the time when the estimated time t has elapsed (No), the constant voltage In order to continue charge control, it transfers to step S4, and when the continuation time tc is the time when the estimated time t passed (Yes), it transfers to step S6.

ステップS6では、充電制御部31が、継続時間tcが推定時間tを経過している場合、定電圧充電制御を終了する。充電制御部31は、定電圧充電制御を終了すると、充電器Chに充電停止指示を送信するとともに、すべてのスイッチSWをオンからオフに切り替え、各電池Bの充電を停止させる。また、充電制御部31は、電流指令値が所定の電流指令値以下になると、充電器Chに充電停止指示を送信するとともに、すべてのスイッチSWをオンからオフに切り替え、各電池Bの充電を停止させるように構成してもよい。なお、充電器Chは、充電停止指示を受け取ると、電池パック1への電力供給を停止する。   In step S6, when the duration tc has passed the estimated time t, the charging control unit 31 ends the constant voltage charging control. When the constant voltage charging control is finished, the charging control unit 31 transmits a charging stop instruction to the charger Ch, and switches all the switches SW from on to off to stop charging of each battery B. In addition, when the current command value becomes equal to or less than the predetermined current command value, the charge control unit 31 transmits a charge stop instruction to the charger Ch and switches all the switches SW from on to off to charge each battery B. You may comprise so that it may stop. The charger Ch stops the power supply to the battery pack 1 when receiving the charge stop instruction.

また、推定部32は、継続時間tcが推定時間tを経過した時刻になると、各電池Bのうちで最も電圧Vが高い満充電電池の推定充電率を100[%]に設定する。また、各電池Bのうち、満充電電池以外の未満充電電池の推定充電率を、充電が停止したときの未満充電電池の電圧Vに基づいて推定してもよい。従って、充電停止後の各電池Bの充電率の推定精度を向上させることができる。例えば、少なくとも一つの電池Bの推定充電率が100[%]になると、組電池の充電率として100[%]がユーザに対して出力され、少なくとも一つの電池Bの推定充電率が0[%]になると、組電池の充電率として0[%]がユーザに対して出力される場合、各電池Bの実際の充電率と、ユーザに対して出力される組電池の充電率とのズレを抑えることができるため、ユーザに違和感を覚えさせないようにすることができる。   Moreover, the estimation part 32 will set the estimated charge rate of the fully charged battery with the highest voltage V among each battery B to 100 [%], when the continuation time tc becomes the time which passed the estimated time t. Moreover, you may estimate the estimated charge rate of less charge batteries other than a full charge battery among each battery B based on the voltage V of the less charge battery when charge stops. Therefore, the estimation accuracy of the charging rate of each battery B after stopping charging can be improved. For example, when the estimated charging rate of at least one battery B is 100 [%], 100 [%] is output to the user as the charging rate of the assembled battery, and the estimated charging rate of at least one battery B is 0 [%]. ], If 0 [%] is output to the user as the charging rate of the assembled battery, the difference between the actual charging rate of each battery B and the charging rate of the assembled battery output to the user is Since it can suppress, it can prevent a user from feeling uncomfortable.

実施形態によれば、各電池Bの定電流定電圧充電中において、電圧Vが目標電圧Vt以上になったときに式1を用いて推定充電率SOC1を求めることで、電流検出部21が異常状態になるなどして電池Bに流れる電流を検出できず電流積算値を求められない場合や、電流積算時間が長くなり電流積算値に基づいて求めた推定充電率の信頼性が低下した場合でも、電池Bの充電率を推定することができる。   According to the embodiment, during the constant current and constant voltage charging of each battery B, when the voltage V becomes equal to or higher than the target voltage Vt, the current detection unit 21 is abnormal by obtaining the estimated charging rate SOC1 using Equation 1. Even when the current flowing through the battery B cannot be detected due to a state, etc., and the current integrated value cannot be obtained, or when the reliability of the estimated charging rate obtained based on the current integrated value is reduced due to a long current integrating time The charging rate of the battery B can be estimated.

また、実際の電池Bの充電率に近い推定充電率SOC1を求めることができる。
従来は、電流積算値が求められない場合、充電中の電池Bの電圧Vが目標電圧Vtに達した時刻t1になると、電池Bの推定充電率SOC1を100[%]に設定していた。
Further, an estimated charging rate SOC1 close to the actual charging rate of the battery B can be obtained.
Conventionally, when the integrated current value cannot be obtained, the estimated charging rate SOC1 of the battery B is set to 100 [%] when the voltage V of the battery B being charged reaches the target voltage Vt at time t1.

しかし、本実施形態では、定電圧充電制御開始時刻t1において定電圧充電開始充電率SOC0を取得し、式1に基づいて推定充電率SOC1を求めているので、時刻t1から時刻t2(推定時間t)において推定充電率SOC1は図3のCに示す一次直線302(実線)のようになる。従って、式1を用いて求めた一次直線302は、従来のように時刻t1から時刻t2(推定時間t)において推定充電率SOC1を100[%]に設定した場合より、図3のCに示す実際の電池Bの充電率を示す曲線301(一点鎖線)に近づけることができる。また、一次直線302は曲線301に近いため、定電圧充電制御中に充電を停止した場合でも、従来の100[%]に設定した推定充電率SOC1より、実際の電池Bの充電率に近づけることができる。   However, in the present embodiment, the constant voltage charge start charge rate SOC0 is acquired at the constant voltage charge control start time t1, and the estimated charge rate SOC1 is obtained based on Equation 1, so that the time t1 to the time t2 (estimated time t2 ), The estimated charging rate SOC1 is as shown by a primary straight line 302 (solid line) shown in FIG. Accordingly, the linear line 302 obtained using Equation 1 is shown in FIG. 3C from the case where the estimated charging rate SOC1 is set to 100 [%] from time t1 to time t2 (estimated time t) as in the prior art. It can be approximated to a curve 301 (one-dot chain line) indicating the actual charging rate of the battery B. Further, since the primary straight line 302 is close to the curve 301, even when the charging is stopped during the constant voltage charging control, the charging rate of the battery B is made closer to the actual charging rate than the conventional estimated charging rate SOC1 set to 100 [%]. Can do.

また、ステップS3の(2)(3)の処理に示したように、内部抵抗R、電流I、劣化度、温度Tに応じて、定電圧充電開始充電率SOC0及び推定時間tを変更し、式1を用いて推定充電率SOC1を求めることで、一次直線302を曲線301に更に近づけることができる。   Further, as shown in the processes of (2) and (3) of step S3, the constant voltage charge start charging rate SOC0 and the estimated time t are changed according to the internal resistance R, current I, deterioration degree, and temperature T, The primary straight line 302 can be made closer to the curve 301 by obtaining the estimated charging rate SOC1 using Equation 1.

なお、上記ステップS3の(2)の処理において、充電制御部31は定電圧充電開始充電率SOC0を取得し、ステップS4において式1を用いて推定充電率SOC1を求めているが、ステップS3の(2)の処理において、定電圧充電開始充電率SOC0を推定充電率SOC1に設定して、その後にステップS4において式1を用いて推定充電率SOC1を求めてもよい。   In the process of step S3 (2), the charge control unit 31 obtains the constant voltage charge start charge rate SOC0 and obtains the estimated charge rate SOC1 using equation 1 in step S4. In the process (2), the constant voltage charging start charging rate SOC0 may be set to the estimated charging rate SOC1, and then the estimated charging rate SOC1 may be obtained using Equation 1 in step S4.

また、本発明は、上記実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で種々の改良、変更が可能である。   Further, the present invention is not limited to the above-described embodiment, and various improvements and changes can be made without departing from the gist of the present invention.

1 電池パック
2 電池モジュール
3 制御部
4 記憶部
5 車両側制御部
6 出力部
21 電流検出部
22 温度検出部
23 監視部
31 充電制御部
32 推定部
Ch 充電器
S 電池スタック
B 電池
SW スイッチ
DESCRIPTION OF SYMBOLS 1 Battery pack 2 Battery module 3 Control part 4 Memory | storage part 5 Vehicle side control part 6 Output part 21 Current detection part 22 Temperature detection part 23 Monitoring part 31 Charge control part 32 Estimation part Ch Charger S Battery stack B Battery SW switch

Claims (4)

定電流定電圧充電制御する充電制御部と、
定電圧充電制御において、電池の電圧が目標電圧に達した場合に定電圧充電開始充電率を取得し、前記定電圧充電開始充電率から満充電時の充電率に達するまでの推定時間を求め、定電圧充電開始時刻から定電圧充電を継続している継続時間と前記推定時間との比を求め、前記満充電時の充電率と前記定電圧充電開始充電率との差を求め、前記比と前記差を乗算した値を、前記定電圧充電開始充電率に加算して推定充電率を求める推定部と、
を備える充電率推定装置。
A charge control unit for controlling constant current and constant voltage charge;
In constant voltage charge control, when the voltage of the battery reaches the target voltage, obtain a constant voltage charge start charge rate, obtain an estimated time from the constant voltage charge start charge rate until reaching the full charge rate, Obtain the ratio between the duration of constant voltage charging from the constant voltage charge start time and the estimated time, determine the difference between the charge rate at the time of full charge and the constant voltage charge start charge rate, and An estimation unit for obtaining an estimated charging rate by adding a value obtained by multiplying the difference to the constant voltage charging start charging rate;
A charging rate estimation device comprising:
請求項1に記載の充電率推定装置であって、
前記推定部は、
前記電池の内部抵抗が大きい程、前記定電圧充電開始充電率を低くし、前記電池の内部抵抗が小さい程、前記定電圧充電開始充電率を高くする、
ことを特徴とする充電率推定装置。
The charging rate estimation device according to claim 1,
The estimation unit includes
The larger the internal resistance of the battery, the lower the constant voltage charge start charging rate, and the smaller the internal resistance of the battery, the higher the constant voltage charge start charging rate,
The charge rate estimation apparatus characterized by the above-mentioned.
請求項1又は請求項2に記載の充電率推定装置であって、
前記推定部は、
前記電池に流れる電流が大きい程、前記定電圧充電開始充電率を低くし、前記電池に流れる電流が小さい程、前記定電圧充電開始充電率を高くする、
ことを特徴とする充電率推定装置。
The charging rate estimation device according to claim 1 or 2,
The estimation unit includes
The larger the current flowing through the battery, the lower the constant voltage charging start charging rate, and the smaller the current flowing through the battery, the higher the constant voltage charging starting charging rate.
The charge rate estimation apparatus characterized by the above-mentioned.
請求項1に記載の充電率推定装置であって、
前記電池に流れる電流と前記電池の内部抵抗に応じて前記推定時間を変更することを特徴とする充電率推定装置。
The charging rate estimation device according to claim 1,
The charging rate estimation apparatus characterized by changing the said estimation time according to the electric current which flows through the said battery, and the internal resistance of the said battery.
JP2016117962A 2016-06-14 2016-06-14 Charging rate estimation device Expired - Fee Related JP6696311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016117962A JP6696311B2 (en) 2016-06-14 2016-06-14 Charging rate estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016117962A JP6696311B2 (en) 2016-06-14 2016-06-14 Charging rate estimation device

Publications (2)

Publication Number Publication Date
JP2017225225A true JP2017225225A (en) 2017-12-21
JP6696311B2 JP6696311B2 (en) 2020-05-20

Family

ID=60687160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016117962A Expired - Fee Related JP6696311B2 (en) 2016-06-14 2016-06-14 Charging rate estimation device

Country Status (1)

Country Link
JP (1) JP6696311B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110534827A (en) * 2019-08-23 2019-12-03 江西优特汽车技术有限公司 A kind of charging method of series-connected cell group
WO2020021728A1 (en) * 2018-07-25 2020-01-30 京セラ株式会社 Electric tool, and communication device
JP2021034268A (en) * 2019-08-27 2021-03-01 株式会社Gsユアサ Method for correcting state-of-charge estimation value of power storage element, management device of power storage element, and power storage device
JP2021087320A (en) * 2019-11-29 2021-06-03 カシオ計算機株式会社 Charge control device, correction method of remaining battery capacity, and program
JP2022536446A (en) * 2020-02-17 2022-08-17 エルジー エナジー ソリューション リミテッド Battery device and current sensor diagnostic method
JP7352333B2 (en) 2018-06-06 2023-09-28 株式会社Subaru Power system control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02273038A (en) * 1989-04-14 1990-11-07 Integuran Kk Charging device
JPH11250939A (en) * 1998-03-02 1999-09-17 Toshiba Battery Co Ltd Secondary battery charging control device
JP2012247339A (en) * 2011-05-30 2012-12-13 Renesas Electronics Corp Semiconductor integrated circuit and operation method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02273038A (en) * 1989-04-14 1990-11-07 Integuran Kk Charging device
JPH11250939A (en) * 1998-03-02 1999-09-17 Toshiba Battery Co Ltd Secondary battery charging control device
JP2012247339A (en) * 2011-05-30 2012-12-13 Renesas Electronics Corp Semiconductor integrated circuit and operation method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7352333B2 (en) 2018-06-06 2023-09-28 株式会社Subaru Power system control device
WO2020021728A1 (en) * 2018-07-25 2020-01-30 京セラ株式会社 Electric tool, and communication device
CN110534827A (en) * 2019-08-23 2019-12-03 江西优特汽车技术有限公司 A kind of charging method of series-connected cell group
JP2021034268A (en) * 2019-08-27 2021-03-01 株式会社Gsユアサ Method for correcting state-of-charge estimation value of power storage element, management device of power storage element, and power storage device
JP7228118B2 (en) 2019-08-27 2023-02-24 株式会社Gsユアサ METHOD OF CORRECTING ESTIMATED STATE OF CHARGE OF ELECTRICAL STORAGE ELEMENT, MANAGEMENT DEVICE FOR ELECTRICAL STORAGE ELEMENT, AND ELECTRICAL STORAGE DEVICE
JP2021087320A (en) * 2019-11-29 2021-06-03 カシオ計算機株式会社 Charge control device, correction method of remaining battery capacity, and program
JP2022536446A (en) * 2020-02-17 2022-08-17 エルジー エナジー ソリューション リミテッド Battery device and current sensor diagnostic method
JP7351489B2 (en) 2020-02-17 2023-09-27 エルジー エナジー ソリューション リミテッド Diagnosis method for battery devices and current sensors

Also Published As

Publication number Publication date
JP6696311B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
JP6696311B2 (en) Charging rate estimation device
JP5492291B2 (en) Secondary battery deterioration diagnosis method and deterioration diagnosis device
JP6119402B2 (en) Internal resistance estimation device and internal resistance estimation method
CN110914696A (en) Method and system for estimating battery open cell voltage, state of charge, and state of health during operation of a battery
JP2008253129A (en) Method for quick charging lithium-based secondary battery and electronic equipment using same
JP4821363B2 (en) Battery pack control apparatus and battery pack control method
JP7145865B2 (en) Rechargeable battery short-circuit prediction device and rechargeable battery short-circuit prediction method
JP2012032267A (en) Remaining capacitance detection apparatus and battery control ic
CN109616704B (en) Device for battery management and method for managing charging of a battery
US11095130B2 (en) Power storage apparatus for estimating an open-circuit voltage
JP6733515B2 (en) Battery expansion estimation device
JP5598869B2 (en) Secondary battery state detection device and secondary battery state detection method
JP2006194789A (en) Residual capacity detecting method of buttery, and power supply device
WO2012169061A1 (en) Battery control device and battery system
TWI613454B (en) Full charge capacity (fcc) calibration method
US11313911B2 (en) Secondary battery parameter estimation device, secondary battery parameter estimation method, and program
JP2016176780A (en) Battery residual amount prediction device and battery pack
KR20150024561A (en) Battery management system and driving method thereof
JP2023543779A (en) Battery management system, battery pack, electric vehicle and battery management method
JP2013121242A (en) Soc estimation device and battery pack
JP2013148452A (en) Soh estimation device
JP2022044621A (en) Rechargeable battery liquid decrease detection device and rechargeable battery liquid decrease detection method
JP2018048910A (en) Power storage device
JP5851514B2 (en) Battery control device, secondary battery system
JP2015118060A (en) State-of-charge estimation apparatus and state-of-charge estimation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200305

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200406

R151 Written notification of patent or utility model registration

Ref document number: 6696311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees