JP2017224969A - Piezoelectric element and piezoelectric converter - Google Patents

Piezoelectric element and piezoelectric converter Download PDF

Info

Publication number
JP2017224969A
JP2017224969A JP2016118557A JP2016118557A JP2017224969A JP 2017224969 A JP2017224969 A JP 2017224969A JP 2016118557 A JP2016118557 A JP 2016118557A JP 2016118557 A JP2016118557 A JP 2016118557A JP 2017224969 A JP2017224969 A JP 2017224969A
Authority
JP
Japan
Prior art keywords
piezoelectric
polarization
piezoelectric layer
electric field
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016118557A
Other languages
Japanese (ja)
Inventor
隆彦 柳谷
Takahiko Yanagiya
隆彦 柳谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University filed Critical Waseda University
Priority to JP2016118557A priority Critical patent/JP2017224969A/en
Publication of JP2017224969A publication Critical patent/JP2017224969A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric element which can switch resonant frequency in a wide frequency range and can be made compact, and to provide a piezoelectric converter using the piezoelectric element.SOLUTION: A piezoelectric element 10 includes: a first piezoelectric layer 111 composed of a first piezoelectric material and having polarization in the thickness direction; a second piezoelectric layer 112 laminated on the first piezoelectric layer 111, and composed of a second piezoelectric material having a polarization inversion electric field value smaller than that of the first piezoelectric material; and a pair of electrodes (first electrode 121, second electrode 122) sandwiching the first piezoelectric layer 111 and the second piezoelectric layer 112 in the lamination direction. A piezoelectric converter 20 includes: the piezoelectric element 10; a polarization control voltage application unit (first DC power supply 211, second DC power supply 212) for applying a polarization control voltage of DC voltage between the pair of electrodes, so as to generate an electric field having a value smaller than the polarization inversion electric field value of the first piezoelectric material but larger than the polarization inversion electric field value of the second piezoelectric material, in the first piezoelectric layer 111 and the second piezoelectric layer 112; and a polarization control voltage inversion unit (first switch 221, second switch 222) for switching positive/negative of the polarization control voltage.SELECTED DRAWING: Figure 1

Description

本発明は、通信機器における周波数フィルタや、超音波を送信及び/又は受信する超音波素子等に用いられる圧電素子及び圧電変換装置に関する。   The present invention relates to a frequency filter in a communication device, a piezoelectric element used for an ultrasonic element that transmits and / or receives ultrasonic waves, and a piezoelectric transducer.

圧電体は、交流の電気信号が入力されると機械振動が生じ、機械振動が入力されると交流の電気信号が生じる。圧電素子は、この圧電体の性質を利用して、圧電体薄膜によって電気信号と機械振動を相互に変換するものであり、無線通信で用いる周波数フィルタや超音波素子等として利用される。周波数フィルタでは、圧電体薄膜の共振周波数を中心とする所定の狭帯域周波数の信号のみを通過させる。通常、1台の無線通信機器には通過帯域周波数が異なる複数個の圧電素子が用いられている。   The piezoelectric body generates mechanical vibration when an alternating electrical signal is input, and generates an alternating electrical signal when the mechanical vibration is input. Piezoelectric elements convert electrical signals and mechanical vibrations with a piezoelectric thin film by utilizing the properties of the piezoelectric body, and are used as frequency filters, ultrasonic elements, etc. used in wireless communication. In the frequency filter, only a signal having a predetermined narrow band frequency centering on the resonance frequency of the piezoelectric thin film is passed. Usually, a plurality of piezoelectric elements having different passband frequencies are used in one wireless communication device.

一方、圧電体薄膜に直流バイアス電圧を印加すると、その大きさにより圧電体薄膜の電気機械結合係数が変化し、それによって圧電体薄膜の共振周波数も変化することが知られている。ここで電気機械結合係数は、電気のエネルギーと機械振動のエネルギーの変換効率の目安を表す係数である。非特許文献1には、BiFeO3とBaTiO3の混晶系である0.67BiFeO3-0.33BaTiO3において、直流バイアス電圧を変化させることによって共振周波数が約4.4%変化することが記載されている。このように圧電体薄膜の共振周波数を可変にすることにより、1個の圧電素子で使用可能な周波数帯を広くすることができる。 On the other hand, it is known that when a DC bias voltage is applied to a piezoelectric thin film, the electromechanical coupling coefficient of the piezoelectric thin film changes depending on the magnitude thereof, and the resonance frequency of the piezoelectric thin film also changes accordingly. Here, the electromechanical coupling coefficient is a coefficient representing a standard of the conversion efficiency between the energy of electricity and the energy of mechanical vibration. Non-Patent Document 1 describes that in 0.67 BiFeO 3 -0.33BaTiO 3 , which is a mixed crystal system of BiFeO 3 and BaTiO 3 , the resonance frequency changes by about 4.4% by changing the DC bias voltage. Thus, by making the resonance frequency of the piezoelectric thin film variable, the frequency band that can be used by one piezoelectric element can be widened.

しかしながら、今後、さらに無線通信機器の数が増加すると予想されることから、各無線通信機器にもより広帯域化が求められる。しかし、非特許文献1の圧電素子のように直流バイアス電圧を変化させることにより共振周波数を変化させる場合、その共振周波数の変化の範囲は限られており、広い周波数範囲で共振周波数を切り替えることは困難である。   However, since the number of wireless communication devices is expected to increase further in the future, each wireless communication device is required to have a wider bandwidth. However, when the resonance frequency is changed by changing the DC bias voltage as in the piezoelectric element of Non-Patent Document 1, the range of change in the resonance frequency is limited, and switching the resonance frequency in a wide frequency range is not possible. Have difficulty.

非特許文献2には、同じ材料から成る2つの圧電体層を積層したものであってそれら2層の分極が同じ向きである部分(分極非反転部)と該2層の分極が互いに逆向きである部分(分極反転部)を有する積層体を備える圧電素子が記載されている。この圧電素子では、分極非反転部を挟む第1電極対と、分極反転部を挟む第2電極対が独立に設けられている(なお、それら2つの電極対における一方の電極は共通のものを用いることができる)。第1電極対に交流電圧を印加すると、2つの圧電体層が同じ向きに振動し、積層体全体で厚みの2倍の共振波長を有する共振が生じるのに対して、第2電極対に交流電圧を印加すると、2つの圧電体層が逆向きに振動し、積層体全体で厚みと同じ長さの共振波長を有する共振が生じる。このように、1個の圧電素子において交流電圧を印加する電極を切り替えることにより、2つの共振周波数を使用することができる。そして、第1電極対と第2電極対にそれぞれ直流バイアス電圧を印加し、それら直流バイアス電圧の値を変化させることで、特許文献1の構成よりも広い周波数範囲で共振周波数を切り替えることができる。   Non-Patent Document 2 includes a laminate of two piezoelectric layers made of the same material, where the two layers have the same polarization (polarization non-inversion portion) and the two layers have opposite polarizations. A piezoelectric element including a laminated body having a portion (a polarization inversion portion) is described. In this piezoelectric element, a first electrode pair sandwiching the polarization non-inversion part and a second electrode pair sandwiching the polarization inversion part are provided independently (note that one of the two electrode pairs is common) Can be used). When an AC voltage is applied to the first electrode pair, the two piezoelectric layers vibrate in the same direction, and a resonance having a resonance wavelength twice the thickness of the entire laminate occurs, whereas an AC voltage is applied to the second electrode pair. When a voltage is applied, the two piezoelectric layers vibrate in opposite directions, and a resonance having a resonance wavelength having the same length as the thickness occurs in the entire laminate. In this way, two resonance frequencies can be used by switching the electrode to which the AC voltage is applied in one piezoelectric element. Then, by applying a DC bias voltage to each of the first electrode pair and the second electrode pair and changing the values of these DC bias voltages, the resonance frequency can be switched in a wider frequency range than the configuration of Patent Document 1. .

A. Vorobiev 他4名、"Intrinsically tunable 0.67BiFeO3-0.33BaTiO3 thin film bulk acoustic wave resonators"、APPLIED PHYSICS LETTERS、(米国)、American Institute of Physics(米国物理学協会)発行、2012年12月4日、第101巻第232903-1〜232903-5頁A. Vorobiev and 4 others, “Intrinsically tunable 0.67BiFeO3-0.33BaTiO3 thin film bulk acoustic wave resonators”, APPLIED PHYSICS LETTERS, (USA), American Institute of Physics, December 4, 2012, Volume 101 Pages 239033-1 to 232903-5 片田克吉、柳谷隆彦 他2名、「PbTiO3エピタキシャル薄膜を用いた二次モード分極反転共振子」、電子情報通信学会技術研究報告、一般社団法人電子情報通信学会発行、2014年10月15日、第114巻第263号第29〜34頁Katsukichi Katada, Takahiko Yanagiya and two others, "Second-order mode polarization inversion resonator using PbTiO3 epitaxial thin film", IEICE technical report, published by the Institute of Electronics, Information and Communication Engineers, October 15, 2014, No. 1 Volume 114 Number 263 Pages 29-34

非特許文献2に記載の圧電素子は、1つの共振周波数を使用する際には分極非反転部と分極反転部のいずれか一方しか動作しない。そのため、素子の大きさを従来の2倍にしなければならず、携帯電話等の小型の通信機器等に組み込む際に不利となる。   The piezoelectric element described in Non-Patent Document 2 operates only one of the polarization non-inversion part and the polarization inversion part when one resonance frequency is used. For this reason, the size of the element has to be doubled compared to the conventional size, which is disadvantageous when incorporated into a small communication device such as a mobile phone.

本発明が解決しようとする課題は、広い周波数範囲で共振周波数を切り替えることができ、且つ小型化が可能な圧電素子及び該圧電素子を用いた圧電変換装置を提供することである。   The problem to be solved by the present invention is to provide a piezoelectric element that can switch the resonance frequency in a wide frequency range and can be miniaturized, and a piezoelectric transducer using the piezoelectric element.

上記課題を解決するために成された本発明に係る圧電素子は、
a) 第1圧電材料から成り厚み方向の分極を有する第1圧電体層と、
b) 前記第1圧電体層に積層して設けられた、前記第1圧電材料よりも分極反転電界値が小さい第2圧電材料から成る第2圧電体層と、
c) 前記第1圧電体層及び前記第2圧電体層を前記積層の方向に挟む1対の電極と
を備えることを特徴とする。
The piezoelectric element according to the present invention, which has been made to solve the above problems,
a) a first piezoelectric layer made of a first piezoelectric material and having polarization in the thickness direction;
b) a second piezoelectric layer made of a second piezoelectric material provided on the first piezoelectric layer and having a polarization reversal electric field value smaller than that of the first piezoelectric material;
c) A pair of electrodes sandwiching the first piezoelectric layer and the second piezoelectric layer in the stacking direction.

本発明に係る圧電変換装置は、
a) 第1圧電材料から成り厚み方向の分極を有する第1圧電体層と、
b) 前記第1圧電体層に積層して設けられた、前記第1圧電材料よりも分極反転電界値が小さい第2圧電材料から成る第2圧電体層と、
c) 前記第1圧電体層及び前記第2圧電体層を前記積層の方向に挟む1対の電極と、
d) 前記第1圧電体層及び前記第2圧電体層に、前記第1圧電材料の分極反転電界値よりも小さく且つ前記第2圧電材料の分極反転電界値よりも大きい値の電界を生成するよう、前記1対の電極間に直流電圧である分極制御電圧を印加する分極制御電圧印加部と、
e) 前記分極制御電圧の正負を切り替える分極制御電圧反転部と
を備えることを特徴とする。
The piezoelectric transducer according to the present invention is
a) a first piezoelectric layer made of a first piezoelectric material and having polarization in the thickness direction;
b) a second piezoelectric layer made of a second piezoelectric material provided on the first piezoelectric layer and having a polarization reversal electric field value smaller than that of the first piezoelectric material;
c) a pair of electrodes sandwiching the first piezoelectric layer and the second piezoelectric layer in the stacking direction;
d) An electric field having a value smaller than a polarization reversal electric field value of the first piezoelectric material and larger than a polarization reversal electric field value of the second piezoelectric material is generated in the first piezoelectric layer and the second piezoelectric layer. A polarization control voltage application unit that applies a polarization control voltage that is a DC voltage between the pair of electrodes,
e) A polarization control voltage inverting unit that switches between positive and negative of the polarization control voltage.

分極反転電界値とは、圧電材料に対して分極とは逆方向の電界を印加した際に、分極の反転が生じる電界の強度の最小値をいう。すなわち、圧電材料に対して分極反転電界値よりも強い電界を分極とは逆方向に印加すれば、分極の反転が生じる。なお、分極が正から負へ反転するときの分極反転電界値の絶対値と、分極が負から正へ反転するときの分極反転電界値の絶対値の和を抗電界値という。圧電体の特性を示す指標としては抗電界値の方が一般的に用いられているが、本発明では、分極制御電圧印加部が印加する電圧を規定するために、上記分極反転電界値を定義して用いる。   The polarization reversal electric field value refers to the minimum value of the electric field strength at which polarization reversal occurs when an electric field in the opposite direction to the polarization is applied to the piezoelectric material. That is, if an electric field stronger than the polarization reversal electric field value is applied to the piezoelectric material in the direction opposite to the polarization, the reversal of polarization occurs. The sum of the absolute value of the polarization inversion electric field value when the polarization is inverted from positive to negative and the absolute value of the polarization inversion electric field value when the polarization is inverted from negative to positive is referred to as a coercive electric field value. The coercive electric field value is generally used as an index indicating the characteristics of the piezoelectric body. However, in the present invention, the polarization inversion electric field value is defined in order to define the voltage applied by the polarization control voltage application unit. And use.

本発明に係る圧電素子は、第1圧電材料から成る第1圧電体層と、第1圧電材料よりも分極反転電界値が小さい第2圧電材料から成る第2圧電体層を積層した構成を有するため、第1圧電材料の分極反転電界値よりも小さく且つ前記第2圧電材料の分極反転電界値よりも大きい値の電界を生成するように前記1対の電極間に電圧を印加することにより、第1圧電体層の分極の方向はそのままで第2圧電体層の分極の方向のみを制御することができる。すなわち、第1圧電体層の分極と第2圧電体層の分極が同方向である状態と、第1圧電体層の分極と第2圧電体層の分極が逆方向の状態という、2つの状態の間で切り替えを行うことができる。この切り替えにより、本発明に係る圧電素子は、異なる2つの共振周波数を使用することができる。このような切り替えを行うために、本発明に係る圧電変換装置は、前記分極制御電圧印加部及び前記分極制御電圧反転部を有している。   The piezoelectric element according to the present invention has a configuration in which a first piezoelectric layer made of a first piezoelectric material and a second piezoelectric layer made of a second piezoelectric material having a polarization inversion electric field value smaller than that of the first piezoelectric material are laminated. Therefore, by applying a voltage between the pair of electrodes so as to generate an electric field having a value smaller than a polarization reversal electric field value of the first piezoelectric material and larger than a polarization reversal electric field value of the second piezoelectric material, Only the direction of polarization of the second piezoelectric layer can be controlled while maintaining the direction of polarization of the first piezoelectric layer. That is, there are two states: a state in which the polarization of the first piezoelectric layer and the polarization of the second piezoelectric layer are in the same direction, and a state in which the polarization of the first piezoelectric layer and the polarization of the second piezoelectric layer are in opposite directions. Can be switched between. By this switching, the piezoelectric element according to the present invention can use two different resonance frequencies. In order to perform such switching, the piezoelectric transducer according to the present invention includes the polarization control voltage application unit and the polarization control voltage inversion unit.

圧電材料には、(1)電界が印加されていないときにも分極が維持され、分極とは逆方向に分極反転電界値よりも強い電界を印加すれば分極が反転するもの、(2)電界が印加されていないときにも分極が維持され、分極とは逆方向の電界を印加しても分極が反転しない(分極反転電界値が非常に大きい)もの、(3)電界が印加されている間のみ分極が維持され、電界の方向を変化させれば分極も該方向に変化するもの(分極反転電界値が0。「電歪材料」ともいう。)がある。本発明では、第1圧電材料には(1)又は(2)を、第2圧電材料には(1)又は(3)を、それぞれ用いることができる。(1)の例として、PbTiO3(チタン酸鉛)、PbTiO3におけるTi(チタン)の一部がZr(ジルコニウム)に置換されたPbZrxTi1-xO3(チタン酸ジルコン酸鉛)等が挙げられる。(2)の例として、ZnO(酸化亜鉛)、AlN(窒化アルミニウム)、AlNにおけるAlの一部がSc(スカンジウム)に置換されたScxAl1-xN等が挙げられる。(3)の例として、SrTiO3(チタン酸ストロンチウム)におけるSr(ストロンチウム)の一部がBa(バリウム)に置換されたBaxSr1-xTiO3等が挙げられる。 In piezoelectric materials, (1) polarization is maintained even when no electric field is applied, and polarization is reversed if an electric field stronger than the polarization inversion electric field value is applied in the opposite direction to the polarization, (2) electric field Polarization is maintained even when no electric field is applied, and polarization does not reverse even when an electric field in the opposite direction to the polarization is applied (the polarization inversion electric field value is very large), (3) An electric field is applied There is a material in which polarization is maintained only during the period, and if the direction of the electric field is changed, the polarization also changes in that direction (the polarization inversion electric field value is 0. Also referred to as “electrostrictive material”). In the present invention, (1) or (2) can be used for the first piezoelectric material, and (1) or (3) can be used for the second piezoelectric material. Examples of (1) include PbTiO 3 (lead titanate), PbZr x Ti 1-x O 3 (lead zirconate titanate) in which part of Ti (titanium) in PbTiO 3 is replaced with Zr (zirconium), etc. Is mentioned. Examples of (2) include ZnO (zinc oxide), AlN (aluminum nitride), and Sc x Al 1-x N in which a part of Al in AlN is replaced by Sc (scandium). Examples of (3) include Ba x Sr 1-x TiO 3 in which a part of Sr (strontium) in SrTiO 3 (strontium titanate) is replaced with Ba (barium).

本発明に係る圧電素子及び圧電変換装置では、前記2つの状態のいずれにおいても第1圧電体層及び第2圧電体層の全体を動作させることができるため、非特許文献2に記載の圧電素子よりも小型化することができる。   In the piezoelectric element and the piezoelectric conversion device according to the present invention, the whole of the first piezoelectric layer and the second piezoelectric layer can be operated in any of the two states. Can be made smaller.

分極制御電圧は、前記2つの状態の間で切り替えを行う時点で印加すればよく、第2圧電体層の分極が反転した後はその印加を停止しても第2圧電体層の分極はその状態(反転した状態)が維持される。従って、この切り替えの時点以外には、第1圧電材料及び第2圧電材料に、それらの分極反転電界値よりも小さい値の直流電界を生成する直流バイアス電圧を印加し、該直流バイアス電圧の大きさを変化させることにより、共振周波数を制御することができる。そのために、前記圧電変換装置は、前記第2圧電材料の分極反転電界値よりも小さい電界を生成するよう、前記1対の電極間に直流電圧である共振周波数制御電圧を印加する共振周波数制御電圧印加部を備えることが望ましい。   The polarization control voltage may be applied at the time of switching between the two states. Even if the application is stopped after the polarization of the second piezoelectric layer is reversed, the polarization of the second piezoelectric layer is not changed. The state (inverted state) is maintained. Accordingly, except for this switching time, a DC bias voltage that generates a DC electric field having a value smaller than the polarization inversion electric field value is applied to the first piezoelectric material and the second piezoelectric material, and the magnitude of the DC bias voltage is increased. By changing the height, the resonance frequency can be controlled. Therefore, the piezoelectric conversion device applies a resonance frequency control voltage, which is a DC voltage, between the pair of electrodes so as to generate an electric field smaller than the polarization reversal electric field value of the second piezoelectric material. It is desirable to provide an application unit.

本発明に係る圧電素子及び圧電変換装置は、最低限、前記第1圧電体層及び前記第2圧電体層を有していればよいが、前記分極制御電圧の印加により分極が反転しない分極反転電界値を有する圧電材料から成る圧電体層(第1圧電体層を含む)と、該分極制御電圧の印加により分極が反転する分極反転電界値を有する圧電材料から成る圧電体層(第2圧電体層を含む)を交互に、合計3層以上有していてもよい。この場合、2つの共振周波数の一方は他方よりも、圧電体層の数と同じ数の倍数で大きくなる。   The piezoelectric element and the piezoelectric conversion device according to the present invention may have at least the first piezoelectric layer and the second piezoelectric layer, but the polarization inversion does not invert the polarization by the application of the polarization control voltage. A piezoelectric layer (including the first piezoelectric layer) made of a piezoelectric material having an electric field value, and a piezoelectric layer (second piezoelectric layer) made of a piezoelectric material having a polarization reversal electric field value whose polarization is reversed by application of the polarization control voltage 3 layers or more in total, including body layers). In this case, one of the two resonance frequencies is larger than the other by a multiple of the same number as the number of piezoelectric layers.

本発明に係る圧電素子及び圧電変換装置により、広い周波数範囲で共振周波数を切り替えることができ、且つ小型化が可能になる。   With the piezoelectric element and the piezoelectric transducer according to the present invention, the resonance frequency can be switched over a wide frequency range, and the size can be reduced.

本発明に係る圧電素子及び圧電変換装置の一実施形態を示す概略構成図。1 is a schematic configuration diagram showing an embodiment of a piezoelectric element and a piezoelectric conversion device according to the present invention. 本実施形態の圧電素子の製造方法を示す概略図。Schematic which shows the manufacturing method of the piezoelectric element of this embodiment. 本実施形態の圧電素子及び圧電変換装置の動作を示す概略図。Schematic which shows operation | movement of the piezoelectric element and piezoelectric conversion apparatus of this embodiment. 本実施形態の圧電素子における共振波長を示す概略図。Schematic which shows the resonant wavelength in the piezoelectric element of this embodiment. 予備実験として、本実施形態の圧電素子で用いた第1圧電体層のみを1対の電極で挟んだ圧電素子と、第2圧電体層のみを1対の電極で挟んだ圧電素子についてそれぞれ、印加直流電圧を変化させながら1次モードの共振の変換損失を測定した結果を示すグラフ。As a preliminary experiment, a piezoelectric element in which only the first piezoelectric layer used in the piezoelectric element of the present embodiment is sandwiched between a pair of electrodes and a piezoelectric element in which only the second piezoelectric layer is sandwiched between a pair of electrodes, The graph which shows the result of having measured the conversion loss of the resonance of the primary mode, changing the applied DC voltage. 本実施形態の圧電素子において、印加直流電圧を変化させながら1次モード及び2次モードの共振の変換損失を測定した結果を示すグラフ。The graph which shows the result of having measured the conversion loss of the resonance of the primary mode and the secondary mode, changing the applied DC voltage in the piezoelectric element of this embodiment. 本実施形態の圧電素子において、外部から入力する交流電圧の周波数を変化させながら挿入損失を測定した結果を示すグラフ。The graph which shows the result of having measured the insertion loss, changing the frequency of the alternating voltage input from the outside in the piezoelectric element of this embodiment. 本発明に係る圧電素子の他の実施形態である、圧電体層を4層有する例を示す概略構成図。The schematic block diagram which shows the example which has four piezoelectric material layers which are other embodiment of the piezoelectric element which concerns on this invention. 本発明に係る圧電素子の他の実施形態を示す、圧電体層を3層有する例を示す概略構成図。The schematic block diagram which shows the other embodiment of the piezoelectric element which concerns on this invention, and shows the example which has three piezoelectric material layers. 本発明に係る圧電素子の他の実施形態であるFBARを示す概略構成図。The schematic block diagram which shows FBAR which is other embodiment of the piezoelectric element which concerns on this invention.

図1〜図10を用いて、本発明に係る圧電素子及び圧電変換装置の実施形態を説明する。
図1は、本実施形態の圧電素子10及び圧電変換装置20の概略構成図である。圧電素子10では、PbTiO3から成る第1圧電体層111と、PbTiO3におけるTiの一部がZrに置換されたPbZrxTi1-xO3から成る第2圧電体層112が積層している。ここでxは、0よりも大きく1以下の範囲内の任意の値を取り得るが、本実施形態では0.53とした。抗電界値2Ecは、第1圧電体層111(PbTiO3)では470kV/cm、第2圧電体層112(PbZrxTi1-xO3)では220kV/cmであり、それらの分極反転電界値は抗電界値2Ecの1/2であるEcで近似される。第1圧電体層111及び第2圧電体層112の厚みは、本実施形態では前者を580nm、後者を1070nmとしたが、本発明ではこれらの厚みには限定されない。
Embodiments of a piezoelectric element and a piezoelectric transducer according to the present invention will be described with reference to FIGS.
FIG. 1 is a schematic configuration diagram of the piezoelectric element 10 and the piezoelectric transducer 20 of the present embodiment. In the piezoelectric element 10, the first piezoelectric layer 111 made of PbTiO 3, the second piezoelectric layer 112 made of PbZr x Ti 1-x O 3 where part of Ti in PbTiO 3 has been replaced by Zr is laminated Yes. Here, x can take any value within the range of greater than 0 and less than or equal to 1, but is set to 0.53 in the present embodiment. The coercive electric field value 2Ec is 470 kV / cm for the first piezoelectric layer 111 (PbTiO 3 ) and 220 kV / cm for the second piezoelectric layer 112 (PbZr x Ti 1-x O 3 ). Is approximated by Ec which is 1/2 of the coercive electric field value 2Ec. The thickness of the first piezoelectric layer 111 and the second piezoelectric layer 112 is 580 nm for the former and 1070 nm for the latter in this embodiment, but is not limited to these thicknesses in the present invention.

本実施形態の圧電素子10はさらに、第1電極121及び第2電極122を有する。これら第1電極121及び第2電極122は、第1圧電体層111及び第2圧電体層112をそれらの積層方向に挟むように設けられている。第1電極121は第1圧電体層111側に、第2圧電体層112は第2圧電体層112側に、それぞれ配置されている。第1電極121には、SrTiO3にLaを少量(3.73質量%)ドープした単結晶を、表面が(001)面となるように研磨したものを用いた。ここで、LaはSrTiO3に導電性を付与するためにドープしている。一方、第2電極122には金から成る電極を用いた。なお、第1電極121の材料と第2電極122の材料を入れ替えてもよいし、第1電極121及び/又は第2電極122に他の材料を用いてもよい。第2電極122は接地されている。 The piezoelectric element 10 of this embodiment further includes a first electrode 121 and a second electrode 122. The first electrode 121 and the second electrode 122 are provided so as to sandwich the first piezoelectric layer 111 and the second piezoelectric layer 112 in the stacking direction thereof. The first electrode 121 is disposed on the first piezoelectric layer 111 side, and the second piezoelectric layer 112 is disposed on the second piezoelectric layer 112 side. As the first electrode 121, a single crystal obtained by doping SrTiO 3 with a small amount (3.73 mass%) of La and polished so that the surface becomes a (001) plane was used. Here, La is doped to impart conductivity to SrTiO 3 . On the other hand, an electrode made of gold was used for the second electrode 122. Note that the material of the first electrode 121 and the material of the second electrode 122 may be interchanged, and another material may be used for the first electrode 121 and / or the second electrode 122. The second electrode 122 is grounded.

第1圧電体層111は、予め第1電極121側を正とし該第1圧電体層111の分極反転電界値よりも高い値の電界を印加することにより、第1電極121側を正とする向きの分極が形成されている。第2圧電体層112の分極の向きは、後述のように分極制御電圧印加部21及び分極制御電圧反転部22によって制御され、一定ではない。   The first piezoelectric layer 111 is positive on the first electrode 121 side by applying an electric field having a value higher than the polarization reversal electric field value of the first piezoelectric layer 111 in advance. Directional polarization is formed. The polarization direction of the second piezoelectric layer 112 is controlled by the polarization control voltage application unit 21 and the polarization control voltage inversion unit 22 as described later, and is not constant.

本実施形態の圧電変換装置20は、上記圧電素子10に加えて、分極制御電圧印加部21及び分極制御電圧反転部22を有する。分極制御電圧印加部21は第1直流電源211及び第2直流電源212から成り、分極制御電圧反転部22は第1スイッチ221及び第2スイッチ222から成る。第1直流電源211は、負極が第1電極121に、正極が第2電極122に、それぞれ接続されており、該負極と第1電極121の間に第1スイッチ221が設けられている。第2直流電源212は、正極が第1電極121に、負極が第2電極122に、それぞれ接続されており、該正極と第1電極121の間に第2スイッチ222が設けられている。第1直流電源211及び第2直流電源212が第1電極121と第2電極122の間に印加する分極制御電圧の大きさはいずれも30Vである。この分極制御電圧の大きさは、実際に第1電極121と第2電極122の間に直流電圧を印加して該電圧の値を変化させてゆく実験を行い(後述の図6参照)、第1圧電体層111の分極は反転せず且つ第2圧電体層112の分極が反転した電圧の範囲内で定めた。   The piezoelectric conversion device 20 according to the present embodiment includes a polarization control voltage application unit 21 and a polarization control voltage inversion unit 22 in addition to the piezoelectric element 10. The polarization control voltage application unit 21 includes a first DC power supply 211 and a second DC power supply 212, and the polarization control voltage inversion unit 22 includes a first switch 221 and a second switch 222. The first DC power supply 211 has a negative electrode connected to the first electrode 121 and a positive electrode connected to the second electrode 122, and a first switch 221 is provided between the negative electrode and the first electrode 121. The second DC power supply 212 has a positive electrode connected to the first electrode 121 and a negative electrode connected to the second electrode 122, and a second switch 222 is provided between the positive electrode and the first electrode 121. The magnitude of the polarization control voltage applied between the first electrode 121 and the second electrode 122 by the first DC power supply 211 and the second DC power supply 212 is 30V. The magnitude of this polarization control voltage is measured by actually applying a DC voltage between the first electrode 121 and the second electrode 122 to change the value of the voltage (see FIG. 6 to be described later) The polarization of the first piezoelectric layer 111 was determined within the voltage range in which the polarization of the second piezoelectric layer 112 was not reversed.

圧電変換装置20には更に、共振周波数制御電圧印加部23が設けられている。共振周波数制御電圧印加部23は、可変直流電圧電源231と第3スイッチ232から成る。可変直流電圧電源231は直流電圧を出力し、その出力電圧を変化させることができる電源である。可変直流電圧電源231により出力電圧を変化させる範囲は、第2圧電体層112の分極が反転しないように定める。   The piezoelectric transducer 20 is further provided with a resonance frequency control voltage application unit 23. The resonance frequency control voltage application unit 23 includes a variable DC voltage power source 231 and a third switch 232. The variable DC voltage power source 231 is a power source that can output a DC voltage and change the output voltage. The range in which the output voltage is changed by the variable DC voltage power source 231 is determined so that the polarization of the second piezoelectric layer 112 is not reversed.

図2を用いて、本実施形態の圧電素子10の製造方法を説明する。
まず、SrTiO3にLaをドープした(Sr, La)TiO3の単結晶を用意し、表面が(001)面となるように研磨することにより、第1電極121を作製する。次に、第1電極121の上に、RFマグネトロンスパッタ法によりPbTiO3を成膜する(図2(a))ことにより、第1圧電体層111を作製する(同(b))。ここで(Sr, La)TiO3とPbTiO3は格子定数の差が小さいため、第1圧電体層111のPbTiO3は第1電極121上にエピタキシャル成長する。続いて、第1圧電体層111の上に、RFマグネトロンスパッタ法によりPbZrxTi1-xO3を成膜する(同(c))ことにより、第2圧電体層112を作製する(同(d))。ここで第2圧電体層112のPbZrxTi1-xO3もまた、第1圧電体層111のPbTiO3上にエピタキシャル成長する。このように、第1圧電体層111及び第2圧電体層112には、両者が強固に接合されたエピタキシャル接合構造が形成される。ここでエピタキシャル接合構造は、2つの層の一方における面内方向の結晶方位と、他方における結晶方位が一致するように接合している構造をいう。例えば、c軸方向に成長した2つの層が接合されている(c軸が層に垂直な場合)では、それら2つの層に平行な軸(例えばa軸)が同じ方向を向いている場合に、エピタキシャル接合構造であるといえる。
The manufacturing method of the piezoelectric element 10 of this embodiment is demonstrated using FIG.
First, a single crystal of (Sr, La) TiO 3 in which SrTiO 3 is doped with La is prepared, and the first electrode 121 is manufactured by polishing so that the surface becomes a (001) plane. Next, a PbTiO 3 film is formed on the first electrode 121 by RF magnetron sputtering (FIG. 2A), thereby producing the first piezoelectric layer 111 (FIG. 2B). Here, since the difference in lattice constant between (Sr, La) TiO 3 and PbTiO 3 is small, PbTiO 3 in the first piezoelectric layer 111 is epitaxially grown on the first electrode 121. Subsequently, PbZr x Ti 1-x O 3 is formed on the first piezoelectric layer 111 by RF magnetron sputtering ((c)), thereby producing the second piezoelectric layer 112 (same as above). (d)). Here, PbZr x Ti 1-x O 3 of the second piezoelectric layer 112 is also epitaxially grown on the PbTiO 3 of the first piezoelectric layer 111. Thus, the first piezoelectric layer 111 and the second piezoelectric layer 112 are formed with an epitaxial junction structure in which both are firmly joined. Here, the epitaxial junction structure refers to a structure in which the crystal orientation in the in-plane direction in one of the two layers is matched with the crystal orientation in the other. For example, when two layers grown in the c-axis direction are joined (when the c-axis is perpendicular to the layer), the axis parallel to the two layers (for example, the a-axis) points in the same direction It can be said that this is an epitaxial junction structure.

続いて、第2圧電体層112の上に金を蒸着する(同(e))ことで第2電極122を作製する(同(f))ことにより、圧電素子10を構成する各層が完成する。   Subsequently, gold is vapor-deposited on the second piezoelectric layer 112 (same (e)) to produce the second electrode 122 (same (f)), whereby each layer constituting the piezoelectric element 10 is completed. .

その後、第1電極121側が負であって、第1圧電体層111内に該第1圧電体層111の分極反転電界値よりも大きい電界を生成するように、第1電極121と第2電極122の間に電圧を印加する(図2(g))ことにより、第2電極122から第1電極121に向かう電界Eを生成し、それにより第1電極121側が正である分極を第1圧電体層111及び第2圧電体層112に形成する(同(h))。こうして圧電素子10が完成する。   Thereafter, the first electrode 121 and the second electrode are generated so that an electric field that is negative on the first electrode 121 side and is larger than the polarization reversal electric field value of the first piezoelectric layer 111 is generated in the first piezoelectric layer 111. By applying a voltage between the two electrodes 122 (FIG. 2 (g)), an electric field E directed from the second electrode 122 to the first electrode 121 is generated, whereby the first electrode 121 side has a positive polarization. Formed on the body layer 111 and the second piezoelectric layer 112 ((h)). Thus, the piezoelectric element 10 is completed.

図3及び図4を用いて、本実施形態の圧電素子10及び圧電変換装置20の動作を説明する。   The operation of the piezoelectric element 10 and the piezoelectric conversion device 20 according to the present embodiment will be described with reference to FIGS. 3 and 4.

まず、図3(a)に示すように、共振周波数制御電圧印加部23の第3スイッチ232をOFFとしたうえで、分極制御電圧反転部22の第1スイッチ221をON、第2スイッチ222をOFFにした場合について説明する。この場合、第2圧電体層112内に、第2電極122から第1電極121に向かう電界Eが生成され、第2圧電体層112の分極Pが第1電極121側を正とする向きになる。なお、この際には第1圧電体層111内にも第2圧電体層112内と同じ大きさの電界が生成されるが、この電界の値が第1圧電体層111のPbTiO3の分極反転電界値よりも小さいため、第1圧電体層111内の分極Pの向きには影響が及ばない。この段階において第1圧電体層111内の分極Pと第2圧電体層112内の分極Pが同じ向きになることから、外部から電気的又は機械的振動が付与されると、図4(a)中の右側の図に示すように、第1圧電体層111の厚みd1と第2圧電体層112の厚みd2を合わせた厚みdを1/2波長とする共振が生成される。以下では、この共振を「1次モード」の共振と呼ぶ。 First, as shown in FIG. 3 (a), the third switch 232 of the resonance frequency control voltage applying unit 23 is turned OFF, the first switch 221 of the polarization control voltage inverting unit 22 is turned ON, and the second switch 222 is turned ON. The case where it is turned off will be described. In this case, an electric field E from the second electrode 122 toward the first electrode 121 is generated in the second piezoelectric layer 112, and the polarization P of the second piezoelectric layer 112 is in a direction in which the first electrode 121 side is positive. Become. At this time, an electric field having the same magnitude as that in the second piezoelectric layer 112 is also generated in the first piezoelectric layer 111, and the value of this electric field is the polarization of PbTiO 3 in the first piezoelectric layer 111. Since it is smaller than the reversal electric field value, the direction of the polarization P in the first piezoelectric layer 111 is not affected. At this stage, the polarization P in the first piezoelectric layer 111 and the polarization P in the second piezoelectric layer 112 are in the same direction. Therefore, when electrical or mechanical vibration is applied from the outside, FIG. ) as shown on the right side of FIG in resonance to the thickness d 1 of the first piezoelectric layer 111 1/2 wavelength thickness d of the thickness d 2 combined in the second piezoelectric layer 112 is produced. Hereinafter, this resonance is referred to as “first-order mode” resonance.

このように第1圧電体層111と第2圧電体層112の分極Pを同じ向きに設定した後、第1スイッチ221をOFFにし、第3スイッチ232をONにする(図3(b))。この状態で、可変直流電圧電源231から印加する直流電圧の大きさを調整することにより、厚みdを1/2波長とする共振波長に対応する共振周波数を、数%の範囲で変化させることができる。   Thus, after setting the polarization P of the first piezoelectric layer 111 and the second piezoelectric layer 112 in the same direction, the first switch 221 is turned off and the third switch 232 is turned on (FIG. 3B). . In this state, by adjusting the magnitude of the DC voltage applied from the variable DC voltage power source 231, the resonance frequency corresponding to the resonance wavelength with the thickness d being ½ wavelength can be changed within a range of several percent. it can.

次に、図3(c)に示すように、共振周波数制御電圧印加部23の第3スイッチ232をOFFとしたうえで、分極制御電圧反転部22の第1スイッチ221をOF、第2スイッチ222をONにした場合について説明する。この場合、第2圧電体層112内に、第1電極121から第2電極122に向かう電界Eが生成され、第2圧電体層112の分極Pが第1電極121側を負とする向きになる。一方、この電界Eの値は第1圧電体層111のPbTiO3の分極反転電界値よりも小さいため、第1圧電体層111内の分極Pは第1電極121側を正とする向きのままである。従って、第1圧電体層111内の分極Pと第2圧電体層112内の分極Pが逆向きとなることから、外部から電気的又は機械的振動が付与されると、図4(b)中の右側の図に示すように、厚みdを1波長とする共振が生成される。以下では、この共振を「2次モード」の共振と呼ぶ。2次モードの共振は、前述の1次モードの共振と比較して、共振波長が1/2であって共振周波数が2倍である。 Next, as shown in FIG. 3C, the third switch 232 of the resonance frequency control voltage applying unit 23 is turned OFF, the first switch 221 of the polarization control voltage inverting unit 22 is set to OF, and the second switch 222 is set. The case where is turned on will be described. In this case, an electric field E from the first electrode 121 toward the second electrode 122 is generated in the second piezoelectric layer 112, and the polarization P of the second piezoelectric layer 112 is in a direction in which the first electrode 121 side is negative. Become. On the other hand, since the value of the electric field E is smaller than the polarization inversion electric field value of PbTiO 3 in the first piezoelectric layer 111, the polarization P in the first piezoelectric layer 111 remains in a direction in which the first electrode 121 side is positive. It is. Accordingly, since the polarization P in the first piezoelectric layer 111 and the polarization P in the second piezoelectric layer 112 are opposite to each other, when electrical or mechanical vibration is applied from the outside, FIG. As shown in the diagram on the right side, a resonance having a thickness d of one wavelength is generated. Hereinafter, this resonance is referred to as “second-order mode” resonance. In the secondary mode resonance, the resonance wavelength is ½ and the resonance frequency is twice that of the above-described primary mode resonance.

このように第1圧電体層111と第2圧電体層112の分極Pを逆向きに設定した後、第2スイッチ222をOFFにし、第3スイッチ232をONにする(図3(d))。この状態で、可変直流電圧電源231から印加する直流電圧の大きさを調整することにより、厚みdを1波長とする共振波長に対応する共振周波数を、数%の範囲で変化させることができる。   After setting the polarization P of the first piezoelectric layer 111 and the second piezoelectric layer 112 in the opposite directions as described above, the second switch 222 is turned off and the third switch 232 is turned on (FIG. 3 (d)). . In this state, by adjusting the magnitude of the DC voltage applied from the variable DC voltage power source 231, the resonance frequency corresponding to the resonance wavelength with the thickness d being one wavelength can be changed within a range of several percent.

以上のように、厚みdを1/2波長とする共振波長に対応する共振周波数と、厚みdを1波長とする共振波長に対応する共振周波数のそれぞれについて、数%の範囲で変化させることができるため、従来よりも広い周波数範囲で共振周波数を切り替えることができる。   As described above, each of the resonance frequency corresponding to the resonance wavelength having the thickness d of 1/2 wavelength and the resonance frequency corresponding to the resonance wavelength having the thickness d of 1 wavelength can be changed within a range of several percent. Therefore, it is possible to switch the resonance frequency in a wider frequency range than before.

以下、本実施形態の圧電素子10についての実験結果を示す。まず、予備実験として、第1圧電体層111のみを1対の電極で挟んだ圧電素子と、第2圧電体層112のみを1対の電極で挟んだ圧電素子についてそれぞれ、1次モードの共振の変換損失を測定した。その結果を図5に示す。同図中の「PT単独」は第1圧電体層111のみを1対の電極で挟んだ圧電素子を指し、「PZT単独」は第2圧電体層112のみを1対の電極で挟んだ圧電素子を指す。また、同図中の細矢印は、電極間に印加する単位長さ当たりの直流電圧を変化させながら変換損失を測定した際の、該直流電圧の変化の方向を示している。「PT単独」では、単位長さ当たりの直流電圧が-160kV/cm付近と+310kV/cm付近という2つの電圧において変換損失がピークになっている。これは、それら2つの電圧において、分極の方向が揃っておらず、分極が反転する過程にあることを意味している。「PT単独」の抗電界値2Ecは470kV/cmである。同様に、「PZT単独」では、単位長さ当たりの直流電圧が-100kV/cm付近と+120kV/cm付近という2つの電圧において変換損失がピークになっており、抗電界値2Ecは220kV/cmである。これら「PZT単独」における変換損失の2つのピークの外側であって、且つ「PT単独」における変換損失の2つのピークの内側の領域の直流電圧では、第1圧電体層111の分極は反転せず且つ第2圧電体層112の分極は反転すると考えられる。   Hereinafter, the experimental result about the piezoelectric element 10 of this embodiment is shown. First, as a preliminary experiment, resonance in the first mode is performed for a piezoelectric element in which only the first piezoelectric layer 111 is sandwiched between a pair of electrodes and a piezoelectric element in which only the second piezoelectric layer 112 is sandwiched between a pair of electrodes. The conversion loss of was measured. The result is shown in FIG. In the figure, “PT alone” indicates a piezoelectric element in which only the first piezoelectric layer 111 is sandwiched between a pair of electrodes, and “PZT alone” indicates a piezoelectric in which only the second piezoelectric layer 112 is sandwiched between a pair of electrodes. Refers to an element. The thin arrows in the figure indicate the direction of change in the DC voltage when the conversion loss is measured while changing the DC voltage per unit length applied between the electrodes. In “PT alone”, the conversion loss peaks at two voltages with a DC voltage per unit length of around −160 kV / cm and around +310 kV / cm. This means that in these two voltages, the polarization directions are not aligned and the polarization is in the process of reversing. The coercive electric field value 2Ec of “PT alone” is 470 kV / cm. Similarly, with “PZT alone”, the conversion loss peaks at two voltages, the DC voltage per unit length is around -100 kV / cm and +120 kV / cm, and the coercive field value 2Ec is 220 kV / cm. It is. The polarization of the first piezoelectric layer 111 is reversed by a DC voltage outside the two peaks of conversion loss in “PZT alone” and inside the two peaks of conversion loss in “PT alone”. The polarization of the second piezoelectric layer 112 is considered to be reversed.

図6に、本実施形態の圧電素子10について、第1電極121と第2電極122の間に印加する直流電圧の大きさ及び向きを変化させながら変換損失を測定した結果を示す。この測定では、第1電極121と第2電極122の間の直流電圧の大きさは、単位長さ当たりの直流電圧が、上記のように第1圧電体層111の分極は反転せず且つ第2圧電体層112の分極は反転する範囲内で変化させた。図6中の○印のデータは1次モードの共振の変換損失を示し、△印のデータは2次モードの変換損失を示している。この図によれば、単位長さあたりの印加電圧を徐々に変化させながら約+100kV/cm及び約-100kV/cmに達したときに、変換効率の急変が生じる。そして、単位長さあたりの印加電圧が約-100kV/cmよりも小さい(絶対値では大きい)ときには、1次モードの振動の損失が2次モードよりも小さくなり、単位長さあたりの印加電圧が約+100kV/cmよりも大きいときには、2次モードの振動の損失が1次モードより小さくなる。これらの結果は、単位長さあたりの印加電圧が約-100kV/cmよりも小さい(絶対値では大きい)電圧を印加すれば2次モードから1次モードへの変換が生じ、単位長さあたりの印加電圧が約+100kV/cmよりも大きい電圧を印加すれば1次モードから2次モードへの変換が生じることを意味している。   FIG. 6 shows the result of measuring the conversion loss while changing the magnitude and direction of the DC voltage applied between the first electrode 121 and the second electrode 122 for the piezoelectric element 10 of the present embodiment. In this measurement, the magnitude of the DC voltage between the first electrode 121 and the second electrode 122 is such that the DC voltage per unit length does not reverse the polarization of the first piezoelectric layer 111 as described above. The polarization of the two piezoelectric layers 112 was changed within the range of inversion. In FIG. 6, the data with ◯ indicates the conversion loss of resonance in the primary mode, and the data with △ indicates the conversion loss in the secondary mode. According to this figure, when the applied voltage per unit length is gradually changed and reaches about +100 kV / cm and about -100 kV / cm, a sudden change in conversion efficiency occurs. When the applied voltage per unit length is smaller than about -100 kV / cm (large in absolute value), the loss of vibration in the primary mode is smaller than in the secondary mode, and the applied voltage per unit length is When it is larger than about +100 kV / cm, the vibration loss of the secondary mode is smaller than that of the primary mode. These results show that when a voltage applied per unit length is smaller than about -100kV / cm (large in absolute value), the conversion from the secondary mode to the primary mode occurs and the unit length per unit length This means that if a voltage greater than about +100 kV / cm is applied, conversion from the primary mode to the secondary mode occurs.

図7に、本実施形態の圧電素子10について、分極制御電圧として-30V(1次モードの場合)又は+30V(2次モードの場合)の直流電圧を第1電極121と第2電極122の間に印加しつつ、外部から入力する交流電圧の周波数を変化させながら挿入損失を測定した結果を示す。ここで挿入損失とは、高周波回路に挿入された素子において1つの端子からもう1つの端子に高周波電力が伝播する際に生じる高周波電力の損失をいう。挿入損失が小さい(その絶対値が小さい)ところは、2次モードでは1次モードよりも周波数が2倍程度になっている。この結果は、本実施形態の圧電素子10は、共振周波数が2倍程度異なる1次モードと2次モードの双方で使用することができることを意味している。   In FIG. 7, for the piezoelectric element 10 of this embodiment, a direct current voltage of −30 V (in the primary mode) or +30 V (in the secondary mode) is applied to the first electrode 121 and the second electrode 122 as the polarization control voltage. The result of having measured insertion loss, changing the frequency of the alternating voltage input from the outside, applying between them. Here, the insertion loss refers to a loss of high-frequency power that occurs when high-frequency power propagates from one terminal to another terminal in an element inserted in the high-frequency circuit. Where the insertion loss is small (its absolute value is small), the frequency in the secondary mode is about twice that in the primary mode. This result means that the piezoelectric element 10 of the present embodiment can be used in both the primary mode and the secondary mode whose resonance frequencies are different by about twice.

図8に、本発明に係る圧電素子の他の実施形態を示す。同図に示した圧電素子10Aは、PbTiO3から成る第1圧電体層111A、PbZrxTi1-xO3から成る第2圧電体層112A、PbTiO3から成る第3圧電体層113A、及びPbZrxTi1-xO3から成る第4圧電体層114Aの4層をこの順に積層し、それら4層を積層方向に第1電極121A及び第2電極122Aで挟んだ構成を有する。この圧電素子10Aでは、第1圧電体層111A及び第3圧電体層113Aの分極反転電界値よりも小さく、且つ第2圧電体層112A及び第4圧電体層114Aの分極反転電界値よりも大きい電界が生成されるように第1電極121Aと第2電極122Aの間に分極制御電圧を印加することにより、2つの振動状態の間で切り替えを行う。第1振動状態では、第1圧電体層111Aから第4圧電体層114Aまでを合わせた厚みdを1/2波長とする1次モードの振動が生じ(図8(a))、第2振動状態では、厚みdを2波長とする4次モードの振動が生じる(同(b))。 FIG. 8 shows another embodiment of the piezoelectric element according to the present invention. The piezoelectric element 10A shown in the figure, the first piezoelectric layer 111A, the second piezoelectric layer 112A composed of PbZr x Ti 1-x O 3 , the third piezoelectric layer 113A made of PbTiO 3 consisting of PbTiO 3, and, Four layers of the fourth piezoelectric layer 114A made of PbZr x Ti 1-x O 3 are stacked in this order, and the four layers are sandwiched between the first electrode 121A and the second electrode 122A in the stacking direction. In this piezoelectric element 10A, the polarization inversion electric field value of the first piezoelectric layer 111A and the third piezoelectric layer 113A is smaller than that of the second piezoelectric layer 112A and the fourth piezoelectric layer 114A. Switching between the two vibration states is performed by applying a polarization control voltage between the first electrode 121A and the second electrode 122A so that an electric field is generated. In the first vibration state, a primary mode vibration is generated in which the total thickness d from the first piezoelectric layer 111A to the fourth piezoelectric layer 114A is ½ wavelength (FIG. 8A), and the second vibration is generated. In the state, a fourth-order mode vibration having a thickness d of 2 wavelengths occurs ((b)).

また、図9に示すように、圧電体層の数は奇数個であってもよい。同図の圧電素子10Bは、PbTiO3から成る第1圧電体層111B、PbZrxTi1-xO3から成る第2圧電体層112B、及びPbTiO3から成る第3圧電体層113Bをこの順に積層し、それら3層を積層方向に第1電極121B及び第2電極122Bで挟んだ構成を有する。圧電素子10Bにおいても他の例と同様に第1電極121Bと第2電極122Bの間に分極制御電圧を印加することにより、2つの振動状態の間で切り替えを行う。第1振動状態では、第1圧電体層111Bから第3圧電体層113Bまでを合わせた厚みdを1/2波長とする1次モードの振動が生じ(図9(a))、第2振動状態では、厚みdを3/2波長とする3次モードの振動が生じる(同(b))。 Further, as shown in FIG. 9, the number of piezoelectric layers may be an odd number. The piezoelectric element 10B in the figure, the first piezoelectric layer 111B made of PbTiO 3, the second piezoelectric layer 112B composed of PbZr x Ti 1-x O 3 , and a third piezoelectric layer 113B made of PbTiO 3 in this order The three electrodes are stacked and sandwiched between the first electrode 121B and the second electrode 122B in the stacking direction. In the piezoelectric element 10B as well, switching between the two vibration states is performed by applying a polarization control voltage between the first electrode 121B and the second electrode 122B as in the other examples. In the first vibration state, primary mode vibrations having a thickness d that is a total of 1/2 wavelength from the first piezoelectric layer 111B to the third piezoelectric layer 113B are generated (FIG. 9 (a)), and the second vibration is generated. In the state, the vibration of the third-order mode with the thickness d of 3/2 wavelength is generated ((b)).

本発明に係る圧電素子は、図10に示すように、圧電体層及び電極が支持部13で支持された構成を取ることができる。図10に示した圧電素子は、FBAR(Film Bulk Acoustic Resonator)と呼ばれる薄膜共振子フィルタである。このFBAR10Cの支持部13は、板状部材に、その中央を刳り抜いて空洞131が設けられたものである。第1電極121C、第1圧電体層111C、第2圧電体層112C、及び第2電極122Cの積層体は、その一部のみが支持部13の板状部材に支えられ、残りの部分は支持部13の空洞131上にある。この空洞131上にある部分は、支持部13の制約を受けずに振動することができる。   As shown in FIG. 10, the piezoelectric element according to the present invention can take a configuration in which a piezoelectric layer and an electrode are supported by a support portion 13. The piezoelectric element shown in FIG. 10 is a thin film resonator filter called FBAR (Film Bulk Acoustic Resonator). The support portion 13 of the FBAR 10C is a plate-like member provided with a cavity 131 by hollowing out the center. In the laminated body of the first electrode 121C, the first piezoelectric layer 111C, the second piezoelectric layer 112C, and the second electrode 122C, only a part thereof is supported by the plate-like member of the support part 13, and the remaining part is supported. It is on the cavity 131 of the part 13. The portion on the cavity 131 can vibrate without being restricted by the support portion 13.

本発明に係る圧電変換装置は、通信機器で用いる周波数フィルタや、超音波トランスデューサ、ダイヤフラム型空中超音波素子(pMUT)、圧電トランス、エネルギーハーベスタ、圧電アクチュエータ、圧電モータ、医療機器や超音波顕微鏡等の測定装置における超音波プロープ等に用いることができる。   The piezoelectric transducer according to the present invention includes a frequency filter used in communication equipment, an ultrasonic transducer, a diaphragm-type airborne ultrasonic element (pMUT), a piezoelectric transformer, an energy harvester, a piezoelectric actuator, a piezoelectric motor, a medical device, an ultrasonic microscope, and the like. It can be used for an ultrasonic probe or the like in the measuring apparatus.

超音波顕微鏡における超音波プロープでは、一般に、圧電素子で生成される超音波を超音波レンズで収束して測定対象に照射し、測定対象からの応答である超音波を該超音波レンズで収集して該圧電素子で検出する。このような超音波レンズを用いることから、圧電素子の圧電体層の面積が大きいほど、超音波レンズで収束される超音波の音圧が大きくなるため、超音波顕微鏡のS/N比を高くすることができる。しかしながら、圧電体層の面積を大きくするだけでは圧電素子のインピーダンスが小さくなり、それによって測定システムのインピーダンス(通常は50Ω)との間にインピーダンス不整合が生じ、その結果、圧電素子に入力される高周波電圧や、検出した超音波が圧電素子で変換されて測定システムに出力される高周波電圧が小さくなってしまう。圧電体層の面積を大きくするのに合わせて圧電体層を厚くすれば、圧電素子のインピーダンスの値を測定システムのインピーダンスに合わせることが可能であるが、その場合には共振周波数が小さく(共振波長が長く)なってしまう。それに対して本発明に係る圧電素子では、分極制御電圧で切り替えられる2つの状態のうち高次モードの振動状態のときに、圧電体層の面積及び厚みが等しい従来の圧電素子よりも共振周波数を大きく(共振波長を短く)することができる。そのため、本発明に係る圧電素子及び圧電変換装置を超音波顕微鏡に適用すれば、該圧電素子のインピーダンスを測定システムのインピーダンスに合わせつつ、圧電体層の面積(及び厚み)を大きくすることができ、それによって超音波顕微鏡のS/N比を高くすることができる。   In an ultrasonic probe in an ultrasonic microscope, in general, ultrasonic waves generated by a piezoelectric element are converged by an ultrasonic lens and irradiated to a measurement target, and ultrasonic waves that are responses from the measurement target are collected by the ultrasonic lens. Detecting with the piezoelectric element. Since such an ultrasonic lens is used, the larger the area of the piezoelectric layer of the piezoelectric element, the greater the sound pressure of the ultrasonic wave converged by the ultrasonic lens, so the S / N ratio of the ultrasonic microscope is increased. can do. However, simply increasing the area of the piezoelectric layer reduces the impedance of the piezoelectric element, thereby creating an impedance mismatch with the impedance of the measurement system (usually 50Ω), which is then input to the piezoelectric element. The high-frequency voltage or the detected ultrasonic wave is converted by the piezoelectric element and the high-frequency voltage output to the measurement system becomes small. If the piezoelectric layer is made thicker as the area of the piezoelectric layer is increased, the impedance value of the piezoelectric element can be adjusted to the impedance of the measurement system. The wavelength becomes long). On the other hand, in the piezoelectric element according to the present invention, the resonance frequency is higher than that of a conventional piezoelectric element having the same area and thickness of the piezoelectric layer in the high-order mode vibration state among the two states switched by the polarization control voltage. It can be increased (resonance wavelength is shortened). Therefore, if the piezoelectric element and the piezoelectric transducer according to the present invention are applied to an ultrasonic microscope, the area (and thickness) of the piezoelectric layer can be increased while matching the impedance of the piezoelectric element with the impedance of the measurement system. Thereby, the S / N ratio of the ultrasonic microscope can be increased.

また、本発明に係る圧電素子及び圧電変換装置を備える超音波顕微鏡では、高次モードから1次モードに切り替えることにより、異なる2つの共振周波数で測定を行うことが可能になる。例えば、例えば試料の傷を探索する際に、超音波を照射すると傷から高調波が生じることがある。その場合には、圧電素子から1次モードで試料に超音波を照射し、それによって試料に生じる高調波が圧電素子に到達する前に圧電素子の振動状態を高次モードに切り替え、該高調波を該圧電素子で検出することができる。   Further, in an ultrasonic microscope including the piezoelectric element and the piezoelectric transducer according to the present invention, it is possible to perform measurement at two different resonance frequencies by switching from the higher order mode to the primary mode. For example, when searching for scratches on a sample, for example, if an ultrasonic wave is irradiated, harmonics may be generated from the scratches. In that case, the piezoelectric element is irradiated with ultrasonic waves in the first-order mode, thereby switching the vibration state of the piezoelectric element to a higher-order mode before the harmonics generated in the sample reach the piezoelectric element. Can be detected by the piezoelectric element.

本発明は上記実施形態には限定されない。例えば、上記実施形態ではPbTiO3から成る圧電体層とPbZrxTi1-xO3から成る圧電体層を交互に積層したが、圧電体層の材料はこれらには限られず、分極反転電界値が異なり且つ隣接する圧電体層を接合することが可能であれば、任意の圧電体を組み合わせることができる。また、圧電体層を3層以上用いる場合に、上記実施形態では材料が異なる2種類の圧電体層を交互に積層したが、分極反転電界値が所定の電界の値(分極制御電圧により生成される電界の値)よりも高いものと低いものを交互に積層しさえすれば、材料が異なる3種類以上の圧電体層を用いることもできる。さらには、上記実施形態では圧電体層が2〜4層の場合について説明したが、圧電体層が5層以上であってもよい。 The present invention is not limited to the above embodiment. For example, in the above embodiment, piezoelectric layers made of PbTiO 3 and piezoelectric layers made of PbZr x Ti 1-x O 3 are alternately laminated, but the material of the piezoelectric layers is not limited to these, and the polarization inversion electric field value Any piezoelectric body can be combined as long as the piezoelectric layers are different and can adjoin adjacent piezoelectric layers. In addition, when three or more piezoelectric layers are used, in the above embodiment, two types of piezoelectric layers of different materials are alternately stacked, but the polarization inversion electric field value is generated by a predetermined electric field value (generated by the polarization control voltage). 3 or more types of piezoelectric layers of different materials can be used as long as the higher and lower electric field values are alternately stacked. Furthermore, although the case where the piezoelectric layer has 2 to 4 layers has been described in the above embodiment, the number of piezoelectric layers may be 5 or more.

10、10A、10B…圧電素子
10C…FBAR
111、111A、111B、111C…第1圧電体層
112、112A、112B、112C…第2圧電体層
113A、113B…第3圧電体層
114A…第4圧電体層
121、121A、121B、121C…第1電極
122、122A、122B、122C…第2電極
13…支持部
131…空洞
20…圧電変換装置
21…分極制御電圧印加部
211…第1直流電源
212…第2直流電源
22…分極制御電圧反転部
221…第1スイッチ
222…第2スイッチ
23…共振周波数制御電圧印加部
231…可変直流電圧電源
232…第3スイッチ
10, 10A, 10B ... Piezoelectric element 10C ... FBAR
111, 111A, 111B, 111C ... first piezoelectric layers 112, 112A, 112B, 112C ... second piezoelectric layers 113A, 113B ... third piezoelectric layers 114A ... fourth piezoelectric layers 121, 121A, 121B, 121C ... First electrode 122, 122A, 122B, 122C ... second electrode 13 ... support 131 ... cavity 20 ... piezoelectric transducer 21 ... polarization control voltage application unit 211 ... first DC power supply 212 ... second DC power supply 22 ... polarization control voltage Inversion unit 221 ... first switch 222 ... second switch 23 ... resonance frequency control voltage application unit 231 ... variable DC voltage power source 232 ... third switch

Claims (5)

a) 第1圧電材料から成り厚み方向の分極を有する第1圧電体層と、
b) 前記第1圧電体層に積層して設けられた、前記第1圧電材料よりも分極反転電界値が小さい第2圧電材料から成る第2圧電体層と、
c) 前記第1圧電体層及び前記第2圧電体層を前記積層の方向に挟む1対の電極と
を備えることを特徴とする圧電素子。
a) a first piezoelectric layer made of a first piezoelectric material and having polarization in the thickness direction;
b) a second piezoelectric layer made of a second piezoelectric material provided on the first piezoelectric layer and having a polarization reversal electric field value smaller than that of the first piezoelectric material;
c) A piezoelectric element comprising: a pair of electrodes sandwiching the first piezoelectric layer and the second piezoelectric layer in the direction of the lamination.
請求項1に記載の圧電素子であって、
前記第1圧電体層及び前記第2圧電体層がエピタキシャル接合構造を備えることを特徴とする圧電素子。
The piezoelectric element according to claim 1,
The piezoelectric element, wherein the first piezoelectric layer and the second piezoelectric layer have an epitaxial junction structure.
a) 第1圧電材料から成り厚み方向の分極を有する第1圧電体層と、
b) 前記第1圧電体層に積層して設けられた、前記第1圧電材料よりも分極反転電界値が小さい第2圧電材料から成る第2圧電体層と、
c) 前記第1圧電体層及び前記第2圧電体層を前記積層の方向に挟む1対の電極と、
d) 前記第1圧電体層及び前記第2圧電体層に、前記第1圧電材料の分極反転電界値よりも小さく且つ前記第2圧電材料の分極反転電界値よりも大きい値の電界を生成するよう、前記1対の電極間に直流電圧である分極制御電圧を印加する分極制御電圧印加部と、
e) 前記分極制御電圧の正負を切り替える分極制御電圧反転部と
を備えることを特徴とする圧電変換装置。
a) a first piezoelectric layer made of a first piezoelectric material and having polarization in the thickness direction;
b) a second piezoelectric layer made of a second piezoelectric material provided on the first piezoelectric layer and having a polarization reversal electric field value smaller than that of the first piezoelectric material;
c) a pair of electrodes sandwiching the first piezoelectric layer and the second piezoelectric layer in the stacking direction;
d) An electric field having a value smaller than a polarization reversal electric field value of the first piezoelectric material and larger than a polarization reversal electric field value of the second piezoelectric material is generated in the first piezoelectric layer and the second piezoelectric layer. A polarization control voltage application unit that applies a polarization control voltage that is a DC voltage between the pair of electrodes,
e) A piezoelectric conversion device comprising a polarization control voltage reversing unit that switches between positive and negative of the polarization control voltage.
請求項3に記載の圧電変換装置であって、
前記第2圧電材料の分極反転電界値よりも小さい値の電界を生成するよう、前記1対の電極間に直流電圧である共振周波数制御電圧を印加する共振周波数制御電圧印加部を備えることを特徴とする圧電変換装置。
The piezoelectric conversion device according to claim 3,
A resonance frequency control voltage applying unit that applies a resonance frequency control voltage, which is a DC voltage, between the pair of electrodes so as to generate an electric field having a value smaller than a polarization reversal electric field value of the second piezoelectric material. A piezoelectric transducer.
請求項3又は4に記載の圧電変換装置であって、
前記第1圧電体層及び前記第2圧電体層がエピタキシャル接合構造を備えることを特徴とする圧電変換装置。
The piezoelectric conversion device according to claim 3 or 4,
The piezoelectric conversion device, wherein the first piezoelectric layer and the second piezoelectric layer have an epitaxial junction structure.
JP2016118557A 2016-06-15 2016-06-15 Piezoelectric element and piezoelectric converter Pending JP2017224969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016118557A JP2017224969A (en) 2016-06-15 2016-06-15 Piezoelectric element and piezoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016118557A JP2017224969A (en) 2016-06-15 2016-06-15 Piezoelectric element and piezoelectric converter

Publications (1)

Publication Number Publication Date
JP2017224969A true JP2017224969A (en) 2017-12-21

Family

ID=60687137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016118557A Pending JP2017224969A (en) 2016-06-15 2016-06-15 Piezoelectric element and piezoelectric converter

Country Status (1)

Country Link
JP (1) JP2017224969A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026611A1 (en) * 2018-07-30 2020-02-06 株式会社村田製作所 Piezoelectric device
EP4216434A1 (en) * 2022-01-11 2023-07-26 Qorvo US, Inc. Bulk acoustic wave resonators with tunable electromechanical coupling
EP4216433A1 (en) * 2022-01-11 2023-07-26 Qorvo US, Inc. Acoustic wave resonator using multilayer ferroelectric transduction materials with low/zero coupling border region
JP7525876B2 (en) 2020-05-28 2024-07-31 学校法人早稲田大学 Frequency Filters

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026611A1 (en) * 2018-07-30 2020-02-06 株式会社村田製作所 Piezoelectric device
US11784629B2 (en) 2018-07-30 2023-10-10 Murata Manufacturing Co., Ltd. Piezoelectric device
JP7525876B2 (en) 2020-05-28 2024-07-31 学校法人早稲田大学 Frequency Filters
EP4216434A1 (en) * 2022-01-11 2023-07-26 Qorvo US, Inc. Bulk acoustic wave resonators with tunable electromechanical coupling
EP4216433A1 (en) * 2022-01-11 2023-07-26 Qorvo US, Inc. Acoustic wave resonator using multilayer ferroelectric transduction materials with low/zero coupling border region

Similar Documents

Publication Publication Date Title
US8981618B2 (en) Devices having a tunable acoustic path length and methods for making same
KR101764787B1 (en) Wide-band acoustically coupled thin-film baw filter
KR100897707B1 (en) Acoustic resonator
US7786825B2 (en) Bulk acoustic wave device with coupled resonators
JP2024029118A (en) Bulk ultrasound (BAW) resonator
JP4053504B2 (en) Tunable filter
TWI399921B (en) Bulk acoustic wave device
JP2017224969A (en) Piezoelectric element and piezoelectric converter
US20130193808A1 (en) Film bulk acoustic resonator with multi-layers of different piezoelectric materials and method of making
JP5945674B2 (en) Component impedance matching device based on perovskite-type materials with a filter with matching impedance
Uchino Piezoelectric ceramics for transducers
Koohi et al. Negative piezoelectric-based electric-field-actuated mode-switchable multilayer ferroelectric FBARs for selective control of harmonic resonances without degrading K eff ²
Bedair et al. Low loss micromachined lead zirconate titanate, contour mode resonator with 50Ω termination
Ponge et al. Theoretical and experimental analyses of tunable Fabry-Perot resonators using piezoelectric phononic crystals
JP3860695B2 (en) Piezoelectric resonator and filter
US20210384887A1 (en) Bulk acoustic wave resonators employing materials with piezoelectric and negative piezoelectric coefficients
JP7525876B2 (en) Frequency Filters
Rudy et al. Piezoelectric disk flexure resonator with 1 dB loss
Sis Ferroelectric-on-Silicon Switchable Bulk Acoustic Wave Resonators and Filters for RF Applications.
Mo et al. Intrinsically switchable dual‐band scandium‐aluminum nitride Lamb‐wave filter
US10862457B2 (en) Filter
Sherrit et al. Electrostrictive materials: characterization and applications for ultrasound
WO2024187579A1 (en) Bulk acoustic wave resonator and manufacturing method therefor
US20240106412A1 (en) Filter circuitry using ferroelectric tunable acoustic resonator
Dubus et al. Highly tunable Fabry-Perot resonators using piezoelectric phononic crystals

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160628