JP2017224554A - Secondary battery including separator of metal organic structure - Google Patents

Secondary battery including separator of metal organic structure Download PDF

Info

Publication number
JP2017224554A
JP2017224554A JP2016120621A JP2016120621A JP2017224554A JP 2017224554 A JP2017224554 A JP 2017224554A JP 2016120621 A JP2016120621 A JP 2016120621A JP 2016120621 A JP2016120621 A JP 2016120621A JP 2017224554 A JP2017224554 A JP 2017224554A
Authority
JP
Japan
Prior art keywords
secondary battery
separator
metal organic
organic structure
mof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016120621A
Other languages
Japanese (ja)
Inventor
周 豪慎
Goshin Shu
豪慎 周
松延 柏
Matsunobu Kashiwa
松延 柏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2016120621A priority Critical patent/JP2017224554A/en
Publication of JP2017224554A publication Critical patent/JP2017224554A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery including a novel configuration of a separator capable of suppressing capacity drop, even when using an active material of such a kind that may cause capacity drop due to shuttle phenomenon, like a lithium sulfur secondary battery.SOLUTION: A separator including a film of a metal organic structure (MOF) is used in a secondary battery. The film of the metal organic structure may be formed of a mixture of metal organic structure particles and adhesive or resin, and the separator may have a structure obtained by laminating or bonding a metal organic structure film to a porous support, or by laminating the metal organic structure film and a graphene oxide film, via an adhesive or not via the adhesive but directly, two layers or alternating three or more layers.SELECTED DRAWING: Figure 12

Description

本発明は、セパレータとして金属有機構造体の膜を含む二次電池に関する。より詳しくは、リチウム硫黄二次電池に例示されるような、シャトル現象による容量低下が問題となるような種類の活物質等を用いる場合においても、そのような容量低下を抑制することのできる二次電池に関する。   The present invention relates to a secondary battery including a metal organic structure film as a separator. More specifically, such a decrease in capacity can be suppressed even when an active material or the like of a type that causes a decrease in capacity due to the shuttle phenomenon, as exemplified by a lithium-sulfur secondary battery, is used. Next battery.

近年の環境・エネルギー問題から電気自動車(EV・HEV)の普及が進んでいる。現在のところ、電気自動車にはリチウムイオン電池が搭載されているが、その性能は十分とは言えず、より長距離の走行が可能な高性能蓄電池の開発が求められている(例えば、非特許文献1参照)。リチウム硫黄二次電池はリチウムイオン電池の発展型の蓄電池であり、理論的には現状の約2倍以上の重量エネルギー密度を持つ電池が期待できることから研究が進められている(例えば、非特許文献2参照)。
しかしながら、放電反応により生成した中間体の多硫化物は、電解液に容易に溶出する。溶出した多硫化物イオンは正極と負極の間を繰り返し往復移動して酸化還元反応が行われることにより、充放電サイクルの進行と共に、リチウム硫黄二次電池の容量が大幅に劣化する問題が残っている。(例えば、特許文献1〜3、非特許文献3〜5参照)。
Due to environmental and energy problems in recent years, electric vehicles (EV and HEV) are becoming popular. Currently, lithium-ion batteries are installed in electric vehicles, but their performance is not sufficient, and there is a need for the development of high-performance storage batteries that can travel longer distances (for example, non-patented Reference 1). Lithium-sulfur secondary batteries are advanced storage batteries for lithium-ion batteries, and are theoretically researched because they can expect batteries with a weight energy density that is about twice as high as the current level (for example, non-patent literature) 2).
However, the intermediate polysulfide produced by the discharge reaction is easily eluted into the electrolyte. The eluted polysulfide ions are repeatedly reciprocated between the positive electrode and the negative electrode, and the oxidation-reduction reaction is performed. As a result, the capacity of the lithium-sulfur secondary battery greatly deteriorates with the progress of the charge / discharge cycle. Yes. (For example, refer to Patent Documents 1 to 3 and Non-Patent Documents 3 to 5).

特表2015-507340号公報Special Table 2015-507340 WO2015/092959WO2015 / 092959 WO2015/083314WO2015 / 083314

Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature414, 359-367 (2001).Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries.Nature414, 359-367 (2001). Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2and Li-S batteries with high energy storage (vol 11, pg 19, 2012). Nat Mater11,19-29(2012).Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2and Li-S batteries with high energy storage (vol 11, pg 19, 2012). Nat Mater 11, 19-29 (2012). Pang Q, Kundu D, Cuisinier M, Nazar LF. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat Commun5, 4759(2014).Pang Q, Kundu D, Cuisinier M, Nazar LF.Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat Commun5, 4759 (2014). Yao HB, et al.Improving lithium-sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nat Commun5, 3943 (2014).Yao HB, et al. Improving lithium-sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface.Nat Commun5, 3943 (2014). Zhou GM, et al.A Graphene-Pure-Sulfur Sandwich Structure for Ultrafast, Long-Life Lithium-Sulfur Batteries. Adv Mater26, 625-631 (2014).Zhou GM, et al. A Graphene-Pure-Sulfur Sandwich Structure for Ultrafast, Long-Life Lithium-Sulfur Batteries. Adv Mater26, 625-631 (2014). Ji XL, Lee KT, Nazar LF. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater8, 500-506 (2009)Ji XL, Lee KT, Nazar LF.A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater8, 500-506 (2009) Yin YX, Xin S, Guo YG, Wan LJ. Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects. Angew Chem Int Edit52, 13186-13200 (2013).Yin YX, Xin S, Guo YG, Wan LJ. Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects.Angew Chem Int Edit52, 13186-13200 (2013). Park K, et al.Trapping lithium polysulfides of a Li-S battery by forming lithium bonds in a polymer matrix. Energ Environ Sci8, 2389-2395 (2015).Park K, et al. Trapping lithium polysulfides of a Li-S battery by forming lithium bonds in a polymer matrix.Energ Environ Sci8, 2389-2395 (2015). Mao YY, et al.General incorporation of diverse components inside metal-organic frameworkthin films at room temperature. Nat Commun5, 5532 (2014).Mao YY, et al. General incorporation of diverse components inside metal-organic frameworkthin films at room temperature.Nat Commun5, 5532 (2014). Dikin DA, et al.Preparation and characterization of graphene oxide paper. Nature448, 457-460 (2007).Dikin DA, et al. Preparation and characterization of graphene oxide paper.Nature448, 457-460 (2007). Huang JQ, Zhuang TZ, Zhang Q, Peng HJ, Chen CM, Wei F. Permselective Graphene Oxide Membrane for Highly Stable and Anti-Self-Discharge Lithium-Sulfur Batteries. Acs Nano9, 3002-3011 (2015).Huang JQ, Zhuang TZ, Zhang Q, Peng HJ, Chen CM, Wei F. Permselective Graphene Oxide Membrane for Highly Stable and Anti-Self-Discharge Lithium-Sulfur Batteries.Acs Nano9, 3002-3011 (2015). Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID. A chemically functionalizable nanoporous material [Cu-3(TMA)(2)(H2O)(3)](n). Science283, 1148-1150 (1999).Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID. A chemically functionalizable nanoporous material [Cu-3 (TMA) (2) (H2O) (3)] (n). Science283, 1148-1150 (1999). Zhu K, Qiu HL, Zhang YQ, Zhang D, Chen G, Wei YJ. Synergetic Effects of Al3+Doping and Graphene Modification on the Electrochemical Performance of V2O5Cathode Materials. Chemsuschem8, 1017-1025 (2015).Zhu K, Qiu HL, Zhang YQ, Zhang D, Chen G, Wei YJ.Synergetic Effects of Al3 + Doping and Graphene Modification on the Electrochemical Performance of V2O5Cathode Materials.Chemsuschem8, 1017-1025 (2015).

リチウム硫黄二次電池では、放電反応により生成した中間体の多硫化物は、電解液に容易に溶出する。溶出した多硫化物イオンは正極と負極の間を繰り返し往復移動して酸化還元反応が行われることにより、充放電サイクルの進行と共に、リチウム硫黄二次電池の容量が大幅に劣化する。同様のシャトル現象による容量劣化の問題は、有機正極材料を用いるリチウムイオン二次電池、不純物としての窒素化合物を含むニッケル水素二次電池などでも起こり得ることを本発明者は認識した。   In the lithium-sulfur secondary battery, the intermediate polysulfide produced by the discharge reaction is easily eluted into the electrolytic solution. The eluted polysulfide ions are repeatedly reciprocated between the positive electrode and the negative electrode to cause an oxidation-reduction reaction, so that the capacity of the lithium-sulfur secondary battery is significantly deteriorated with the progress of the charge / discharge cycle. The present inventor has recognized that the same capacity degradation problem due to the shuttle phenomenon can also occur in a lithium ion secondary battery using an organic positive electrode material, a nickel metal hydride secondary battery containing a nitrogen compound as an impurity, and the like.

本発明は、上述のような従来技術を背景としたものであり、上記のような問題を解決し得る、セパレータの構成として新奇なものを具備する二次電池を提供することを課題とする。
また、本発明は、リチウム硫黄二次電池、有機正極材料を用いるリチウムイオン二次電池、不純物としての窒素化合物を含むニッケル水素二次電池などのようなシャトル現象による容量低下が生起し得る種類の活物質等を用いる場合においても、そのような容量低下を抑制することのできる二次電池を提供することを課題とする。
また、本発明は、シャトル現象による容量低下を抑制することが可能なリチウム硫黄二次電池、有機正極材料を用いるリチウムイオン二次電池、ニッケル水素二次電池等を提供することを課題とする。
The present invention is based on the background of the prior art as described above, and it is an object of the present invention to provide a secondary battery having a novel separator configuration that can solve the above-described problems.
In addition, the present invention is of a type that can cause a capacity drop due to a shuttle phenomenon, such as a lithium-sulfur secondary battery, a lithium-ion secondary battery using an organic positive electrode material, and a nickel-hydrogen secondary battery containing a nitrogen compound as an impurity. Even when an active material or the like is used, it is an object to provide a secondary battery that can suppress such a decrease in capacity.
Another object of the present invention is to provide a lithium-sulfur secondary battery, a lithium-ion secondary battery using an organic positive electrode material, a nickel-hydrogen secondary battery, and the like that can suppress capacity reduction due to the shuttle phenomenon.

上述のような従来技術の問題を解決するために、従来では、基本的に正極からの多硫化物溶出の抑制技術を開発していた(特許文献1、非特許文献3〜8参照)。しかしながら、本発明者は、正極から多硫化物の溶出を完全に防ぐことは難しいと認識し、溶出した多硫化物を負極側に行かせない方法について検討した。従来技術では、セパレータとして陽イオン交換膜やスルホン基を有する高分子不織布を用いることも検討されたが(特許文献2、3参照)、本発明者は、それらのセパレータの構造では溶出した多硫化物の負極側への移動を完全に防止するには不十分であると認識した。そして、そのような検討過程で、従来、気体分子の吸着と分離に良く使われている分子ふるいである金属有機構造体に着目した。   In order to solve the problems of the conventional technology as described above, conventionally, a technology for suppressing polysulfide elution from the positive electrode has been basically developed (see Patent Document 1, Non-Patent Documents 3 to 8). However, the present inventor has recognized that it is difficult to completely prevent elution of polysulfide from the positive electrode, and studied a method for preventing the eluted polysulfide from going to the negative electrode side. In the prior art, the use of a cation exchange membrane or a polymer non-woven fabric having a sulfone group as a separator has been studied (see Patent Documents 2 and 3). It was recognized that this was insufficient to completely prevent the movement of the product to the negative electrode side. In such a study process, we focused on metal-organic structures, which are molecular sieves that have been commonly used for adsorption and separation of gas molecules.

金属有機構造体(Metal-Organic Framework、以下、「MOF」ということがある。)は、金属と有機リガンド(ligand、配位子)が相互作用することによる多孔質の配位ネットワーク構造をもつ材料である。その分子ふるいの効果を果たすのは、サイズが数オングストロームから数ナノまで制御可能な三次元的な微細孔である。本発明者は、多硫化物イオンより小さい微細孔を持つ金属有機構造体を選択し、リチウム硫黄二次電池のセパレータとして使用した。さらに結晶である金属有機構造体の割れやすい欠点を防ぐために、金属有機構造体層と酸化グラフェン層とを積層した複合金属有機構造体膜(=MOF@GO)を合成し、生成した柔軟性がある複合金属有機構造体膜をリチウム硫黄二次電池のセパレータに展開し、従来のシャトル現象を抑制し、充放電の容量減少とサイクル特性の劣化を防ぐことができた。長い時間に渡って安定な充放電サイクル特性が確認された。   Metal-organic framework (Metal-Organic Framework, hereinafter referred to as “MOF”) is a material with a porous coordination network structure by the interaction of metal and organic ligand (ligand). It is. The molecular sieving effect is a three-dimensional micropore whose size can be controlled from several angstroms to several nanometers. The inventor has selected a metal organic structure having fine pores smaller than polysulfide ions and used it as a separator for a lithium-sulfur secondary battery. Furthermore, in order to prevent the fragile defects of the metal organic structure which is a crystal, a composite metal organic structure film (= MOF @ GO) in which a metal organic structure layer and a graphene oxide layer are laminated is synthesized and the generated flexibility A composite metal organic structure film was developed on the separator of a lithium-sulfur secondary battery to suppress the conventional shuttle phenomenon and to prevent a decrease in charge / discharge capacity and deterioration of cycle characteristics. Stable charge / discharge cycle characteristics were confirmed over a long period of time.

本発明は、上記のような研究過程で得られた知見に基づいて完成するに至ったものであって、本件では、以下のような発明を提供する。
<1>セパレータが金属有機構造体の膜を含むものであることを特徴とする二次電池。
<2>前記金属有機構造体の膜が、金属有機構造体と接着剤又は樹脂とを含む混合物から形成されたものである<1>に記載の二次電池。
<3>セパレータがグラフェン層と金属有機構造体層を含む積層構造であることを特徴とする<1>に記載の二次電池。
<4>前記金属有機構造体は、その金属がCu、Ni、Zn、Mn、Co、Zrから選ばれたものであることを特徴とする<1>〜<3>のいずれか1項に記載の二次電池。
<5>前記金属有機構造体の金属がCuであることを特徴とする<4>に記載の二次電池。
<6>前記金属有機構造体は、三次元微細孔のサイズが数オングストロームから数ナノの範囲(3Å〜6nm)であることを特徴とする<1>〜<5>のいずれか1項に記載の二次電池。
<7>負極活物質として金属リチウム、正極活物質として硫黄を用いる、<1>〜<6>のいずれか1項に記載の二次電池。
<8>正極側電解液に溶解した中間生成物イオンSn 2-(4≦n≦8)の負極側への移動を防止する<7>に記載の二次電池。
The present invention has been completed based on the findings obtained in the above-described research process, and the present invention provides the following inventions.
<1> A secondary battery, wherein the separator includes a film of a metal organic structure.
<2> The secondary battery according to <1>, wherein the metal organic structure film is formed from a mixture including the metal organic structure and an adhesive or a resin.
<3> The secondary battery according to <1>, wherein the separator has a laminated structure including a graphene layer and a metal organic structure layer.
<4> The metal organic structure according to any one of <1> to <3>, wherein the metal is selected from Cu, Ni, Zn, Mn, Co, and Zr. Secondary battery.
<5> The secondary battery according to <4>, wherein the metal of the metal organic structure is Cu.
<6> The metal organic structure according to any one of <1> to <5>, wherein the size of the three-dimensional micropore is in a range of several angstroms to several nanometers (3 to 6 nm). Secondary battery.
<7> The secondary battery according to any one of <1> to <6>, wherein metallic lithium is used as the negative electrode active material and sulfur is used as the positive electrode active material.
<8> The secondary battery according to <7>, wherein the intermediate product ion Sn 2- (4 ≦ n ≦ 8) dissolved in the positive electrode side electrolyte is prevented from moving to the negative electrode side.

さらに、本発明は、次のような態様を含むことができる。
<9>前記セパレータが前記金属有機構造体の膜を支持する多孔性支持体を含むものである<1>又は<2>に記載の二次電池。
<10>前記金属有機構造体の膜は、接着剤を介して又は接着剤介さずに直接多孔性支持体上に形成されたものである<9>に記載の二次電池。
<11>複数の金属有機構造体の膜乃至層を含む<1>、<2>、<9>、又は、<10>に記載の二次電池。
<12>金属有機構造体層と酸化グラフェン層とが交互に3層以上形成されたセパレータを具備する<3>に記載の二次電池。
<13>金属有機構造体層と酸化グラフェン層とは接着剤を介して又は接着剤を介さずに積層されたものである<3>又は<12>に記載の二次電池。
<14>セパレータが金属有機構造体の膜を含むものであることを特徴とするリチウム硫黄二次電池。
<15>セパレータがグラフェン層と金属有機構造体層を含む積層構造であることを特徴とする<14>に記載のリチウム硫黄二次電池。
Furthermore, the present invention can include the following aspects.
<9> The secondary battery according to <1> or <2>, wherein the separator includes a porous support that supports the metal organic structure film.
<10> The secondary battery according to <9>, wherein the metal organic structure film is formed directly on the porous support with or without an adhesive.
<11> The secondary battery according to <1>, <2>, <9>, or <10>, including a plurality of metal organic structure films or layers.
<12> The secondary battery according to <3>, including a separator in which three or more metal organic structure layers and graphene oxide layers are alternately formed.
<13> The secondary battery according to <3> or <12>, wherein the metal organic structure layer and the graphene oxide layer are laminated with or without an adhesive.
<14> A lithium-sulfur secondary battery, wherein the separator includes a film of a metal organic structure.
<15> The lithium-sulfur secondary battery according to <14>, wherein the separator has a laminated structure including a graphene layer and a metal organic structure layer.

本発明の二次電池は、セパレータの構成、構造として新規な金属有機構造体(MOF)の膜乃至層を含んでおり、しかも、該セパレータは、充電、放電の際に必要なイオンの通過を許容するとともに、正極(乃至正極活物質)と負極(乃至負極活物質)との接触を防止することができるので、通常の二次電池と同様に、有効に機能することができる。
特に、リチウム硫黄二次電池、有機正極材料を用いるリチウムイオン二次電池、不純物としての窒素化合物を含むニッケル水素二次電池等のように、電極活物質の分解生成物等が電解液中に溶解し、シャトル現象等を引き起こす可能性がある二次電池に適用した場合には、一方の電極活物質の分解生成物等が他方の電極へ移動することが防止できるので、シャトル現象による容量低下を顕著に抑制することができ、良好なサイクル特性を得ることができる。
The secondary battery of the present invention includes a film or layer of a novel metal organic structure (MOF) as a structure and structure of the separator, and the separator passes ions necessary for charging and discharging. In addition to being allowed, contact between the positive electrode (or positive electrode active material) and the negative electrode (or negative electrode active material) can be prevented, so that it can function effectively in the same manner as a normal secondary battery.
In particular, decomposition products of electrode active materials dissolve in the electrolyte, such as lithium-sulfur secondary batteries, lithium-ion secondary batteries using organic cathode materials, nickel-hydrogen secondary batteries containing nitrogen compounds as impurities, etc. However, when applied to a secondary battery that may cause a shuttle phenomenon, the degradation product of one electrode active material can be prevented from moving to the other electrode. It can be remarkably suppressed and good cycle characteristics can be obtained.

本発明の実施例のリチウム硫黄二次電池を模式的に示す図面。BRIEF DESCRIPTION OF THE DRAWINGS Drawing which shows typically the lithium sulfur secondary battery of the Example of this invention. 本発明の実施例の二次電池に用いるセパレータの製造工程を模式的に示す図面。Drawing which shows typically the manufacturing process of the separator used for the secondary battery of the Example of this invention. 金属有機構造体の結晶構造(HKUST-1)とその微細孔を示す模式的図面。The schematic drawing which shows the crystal structure (HKUST-1) of a metal organic structure, and its micropore. 本発明の実施例のMOF@GOセパレータの粉末X線回折図。黒色線はMOF膜の理論計算値(Simulated)を、薄灰色線は充電前(Before Charged)を、濃灰色線は200サイクルの充電後(After Charged 200th cycles)を、それぞれ示す。The powder X-ray-diffraction figure of the MOF @ GO separator of the Example of this invention. The black line indicates the theoretical calculated value (Simulated) of the MOF film, the light gray line indicates before charging (Before Charged), and the dark gray line indicates after 200 cycles of charging (After Charged 200 th cycles). (a)は、本発明の実施例の二次電池に用いる多層MOF@GOセパレータの走査型電子顕微鏡写真(挿入図は光学写真)。(b)は、比較例のGOセパレータのGO層を示す走査電子顕微鏡写真(挿入図は光学写真)。(A) is a scanning electron micrograph of the multilayer MOF @ GO separator used in the secondary battery of the example of the present invention (inset is an optical photograph). (B) is a scanning electron micrograph showing the GO layer of the GO separator of the comparative example (inset is an optical photograph). セパレータの透過試験装置を示す図面。The figure which shows the permeation | transmission test apparatus of a separator. 本発明の実施例のMOF@GOセパレータの透過試験結果を示す図面。The figure which shows the permeation | transmission test result of the MOF @ GO separator of the Example of this invention. 本発明の比較例のGOセパレータの透過試験結果を示す図面。The figure which shows the permeation | transmission test result of the GO separator of the comparative example of this invention. 本発明の実施例のリチウム硫黄二次電池について、0.5Cの条件で500サイクルまで充放電を繰り返した際のサイクル進行に伴う放電容量とクーロン効率の推移を示す図面。The drawing which shows transition of the discharge capacity and coulomb efficiency accompanying cycle progress at the time of repeating charge / discharge to 500 cycles on 0.5 C conditions about the lithium sulfur secondary battery of the Example of this invention. 本発明の実施例(灰色線)と比較例(黒色線)のリチウム硫黄二次電池について、1Cの条件で1500サイクルまで充放電を繰り返した際のサイクル進行に伴う容量とクーロン効率の推移を示す図面。GOセパレータを有する比較例の二次電池と比較して示す。(なお、クーロン効率の推移の線は、実施例(灰色線)、比較例(黒色線)ともほぼ同じで重なって表示している。)About the lithium sulfur secondary battery of the Example (gray line) of the present invention and the comparative example (black line), it shows the transition of capacity and coulombic efficiency with the progress of the cycle when charging and discharging are repeated up to 1500 cycles under the condition of 1C. Drawing. It shows in comparison with a secondary battery of a comparative example having a GO separator. (In addition, the transition line of the Coulomb efficiency is substantially the same in the example (gray line) and the comparative example (black line) and is displayed overlapping.) 本発明の実施例のリチウム硫黄二次電池について、第1、第155、第250の各サイクルにおける充放電曲線を示す。(なお、第155サイクルと第250サイクルの充放電曲線はほぼ同じで重なって表示している。)The charge / discharge curves in the first, 155th, and 250th cycles of the lithium-sulfur secondary battery of the example of the present invention are shown. (Note that the charge / discharge curves of the 155th cycle and the 250th cycle are substantially the same and overlapped). 本発明の実施例(灰色線)と比較例(黒色線)のリチウム硫黄二次電池について、サイクル途中で電流条件を0.2C、0.5C、1C、2C、3C、0.2Cに順次変化させて60サイクルまで充放電を繰り返した際のレート性能(サイクル進行に伴う放電容量の推移)を示す図面。For the lithium-sulfur secondary batteries of the example (gray line) of the present invention and the comparative example (black line), the current conditions were sequentially changed to 0.2C, 0.5C, 1C, 2C, 3C, and 0.2C during the cycle. Drawing which shows the rate performance (change of the discharge capacity accompanying a cycle progress) at the time of repeating charging / discharging to a cycle. 本発明の比較例のリチウム硫黄二次電池について、0.1C、0.2C、0.5C、又は、1Cの電流条件で充放電した際の充放電曲線を示す。About the lithium sulfur secondary battery of the comparative example of this invention, the charging / discharging curve at the time of charging / discharging on 0.1C, 0.2C, 0.5C, or 1C electric current conditions is shown. 本発明の実施例のMOF@GOセパレータを具備するリチウム硫黄二次電池について、0.1C、0.2C、0.5C、又は、1Cの定電流条件で充放電した際の充放電曲線を示す。The charging / discharging curve at the time of charging / discharging on the constant current conditions of 0.1C, 0.2C, 0.5C, or 1C about the lithium sulfur secondary battery which comprises the MOF @ GO separator of the Example of this invention is shown.

本発明の二次電池は、セパレータの構成(乃至構造)として新奇な金属有機構造体(MOF)の膜を含むものを用いることを特徴とする。すなわち、MOFは、気体分子の吸着と分離を行う分子ふるいとして用いることは、従来から知られているものの、二次電池のセパレータの主要構成要素として用いることは全く知られていなかった。本発明者は、MOF膜が、充電、放電の際に必要なイオンの通過を許容するとともに、正極(乃至正極活物質)と負極(乃至負極活物質)との接触を防止することができること、特に、電解液中に溶解した多硫化物等を透過させないバリアとして機能することにより、シャトル現象による容量低下を顕著に抑制することができ、良好なサイクル特性を得ることができること等の知見を得て、本発明に到達したものである。   The secondary battery of the present invention is characterized in that a separator including a novel metal organic structure (MOF) film is used as the structure (or structure) of the separator. That is, although MOF has been conventionally used as a molecular sieve for adsorbing and separating gas molecules, it has not been known to be used as a main component of a secondary battery separator. The present inventor allows the MOF film to allow passage of necessary ions during charging and discharging, and can prevent contact between the positive electrode (or positive electrode active material) and the negative electrode (or negative electrode active material), In particular, by acting as a barrier that does not allow permeation of polysulfides dissolved in the electrolyte, capacity reduction due to the shuttle phenomenon can be remarkably suppressed, and good cycle characteristics can be obtained. Thus, the present invention has been achieved.

本発明におけるMOF膜を含むセパレータは、電解液が収容された二次電池を正極室と負極室とに仕切り、充電、放電の際に必要なイオンの通過を許容するとともに、正極(乃至正極活物質)と負極(乃至負極活物質)との接触を防止することができるものである。それ故、本発明は、通常のどのような二次電池にも適用することができるが、シャトル現象による容量低下が生起し得る種類の二次電池に適用した場合、シャトル現象による容量低下を効果的に防止し得るので、特に望ましい。
シャトル現象による容量低下が生起し得る種類の二次電池としては、限定するものではないが、リチウム硫黄二次電池、有機正極材料を用いるリチウムイオン二次電池、不純物としての窒素化合物を含むニッケル水素二次電池等が挙げられる。
The separator including the MOF membrane according to the present invention partitions the secondary battery containing the electrolyte into a positive electrode chamber and a negative electrode chamber, allows passage of ions necessary for charging and discharging, and positive electrode (or positive electrode active). Material) and the negative electrode (or negative electrode active material) can be prevented from contacting each other. Therefore, the present invention can be applied to any ordinary secondary battery, but when applied to a type of secondary battery in which capacity reduction due to the shuttle phenomenon can occur, the capacity reduction due to the shuttle phenomenon is effective. This is particularly desirable.
Examples of secondary batteries that can cause capacity reduction due to the shuttle phenomenon include, but are not limited to, lithium-sulfur secondary batteries, lithium-ion secondary batteries using organic cathode materials, and nickel metal hydride containing nitrogen compounds as impurities. A secondary battery etc. are mentioned.

本発明をリチウム硫黄二次電池に適用した場合の模式的構造を図1に示す。セパレータは、金属有機構造体の膜を含んでおり、その微細孔(この例では約9Åの微細孔)をリチウムイオン(Li)は通過できるが、正極室側の電解液に溶解した多硫化物イオン(S 2-)は、微細孔を通過することができず、負極に到達できない。それ故、多硫化物のシャトル現象による容量低下を効果的に抑制することができる。 A schematic structure when the present invention is applied to a lithium-sulfur secondary battery is shown in FIG. The separator includes a film of a metal organic structure, and lithium ions (Li + ) can pass through the micropores (in this example, about 9 mm), but the polysulfide dissolved in the electrolyte on the cathode chamber side Object ions (S n 2− ) cannot pass through the micropores and cannot reach the negative electrode. Therefore, the capacity reduction due to the polysulfide shuttle phenomenon can be effectively suppressed.

本発明における金属有機構造体は、その金属として、Cu、Ni、Zn、Mn、Co、Zrから選ばれたものを用いることができる。特に、Cuを用いると、その孔の大きさを約9Å程度にできるので、リチウム硫黄二次電池に適用した場合に、多硫化物の負極側への移動を阻止し、多硫化物のシャトル現象による容量低下を効果的に防止することができると考えられる。   As the metal organic structure in the present invention, a metal selected from Cu, Ni, Zn, Mn, Co, and Zr can be used. In particular, when Cu is used, the pore size can be reduced to about 9 mm. Therefore, when applied to lithium-sulfur secondary batteries, the migration of polysulfides to the negative electrode side is prevented, and the polysulfide shuttle phenomenon occurs. It is considered that the capacity reduction due to can be effectively prevented.

MOFは比較的もろいので、セパレータは、MOF膜補強用の材料を含むことができる。そのような補強用の材料としては、限定するものではないが、有機接着剤等の各種接着剤、樹脂材料、炭素材料等を用いることができる。
有機接着剤としては、例えば、反応硬化型接着剤、熱硬化型接着剤、紫外線硬化型接着剤などの各種硬化型接着剤を好適に用いることができる。
樹脂材料としては、限定するものではないが、エポキシ樹脂、メラミン樹脂、シリコン樹脂、不飽和ポリエステル樹脂等の硬化性樹脂や、フッ素樹脂等の耐熱性樹脂が好ましい。
炭素材料としては、例えば、炭素繊維織布又は不織布、グラフェンなどが挙げられるが、好ましくは、酸化グラフェン(graphene oxide、以下、「GO」ということがある。)膜である。
これらの補強用の材料は、MOF膜を支持する多孔性のフィルムやシートであってもよい。
GO膜を用いる場合、MOF膜とGO膜の2層、又は、それ以上の交互層のものとすることができる。
Since the MOF is relatively fragile, the separator can include a material for MOF membrane reinforcement. Such a reinforcing material is not limited, but various adhesives such as organic adhesives, resin materials, carbon materials, and the like can be used.
As the organic adhesive, for example, various curable adhesives such as a reactive curable adhesive, a thermosetting adhesive, and an ultraviolet curable adhesive can be suitably used.
The resin material is not limited, but is preferably a curable resin such as an epoxy resin, a melamine resin, a silicon resin, or an unsaturated polyester resin, or a heat resistant resin such as a fluororesin.
Examples of the carbon material include carbon fiber woven or non-woven fabric, graphene, and the like, and a graphene oxide (hereinafter sometimes referred to as “GO”) film is preferable.
These reinforcing materials may be porous films or sheets that support the MOF membrane.
When a GO film is used, the MOF film and the GO film can be formed in two layers or in alternating layers.

次に、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these Examples.

<MOF-GO複合体セパレータ、GOセパレータの製造>
本発明の実施例で用いたMOF-GO複合体(以下、「MOF@GO」ということがある。)セパレータの製造プロセスを図2に模式的に示す。
フィルター(Filter membrane、Millipore Co.Ltd.製、直径47mm、孔サイズ0.2μm)上に、最初に、MOF粒子の膜を形成した。MOF粒子は、非特許文献9、12と同様にして合成した。すなわち、硝酸銅(II)3水和物〔Cu(NO3)2・3H2O〕0.966g(4mmol)と1,3,5-ベンゼントリカルボン酸(BTC)0.42g(2mmol)を含む混合溶液をフィルター上で真空濾過した。この工程のより、結晶性MOF粒子が合成され、自己組織化してMOF膜が形成された。
次に、非特許文献10,11と同様にして、希釈された酸化グラフェン溶液(Diluted GO solutions)を供給、濾過することにより、フィルター上に形成されたMOF膜の上に、酸化グラフェン(GO)層を形成した。隣接するMOF層とGO層とは、フィルター上で強く接着された。酸化グラフェン(GO)は、グラファイト紛〔純度99.8%以上、Alfa Aesar(登録商標)〕からハンマー法(Hummers' method、非特許文献13)の改訂バージョン法により調製し、超音波処理で0.1mgmlに希釈して用いた。
良好なセパレータの製造のためには、その後、硝酸銅(II)とBTCの混合溶液(図2中「Ligand Solution」として表示)によるMOF層形成と、希釈GO溶液(図2中「GO」乃至「GO solution」として表示)によるGO層形成とからなるプロセスを2,3回繰り返すこともできる。その場合、MOFナノ粒子の絶え間ない成長により、空隙だった空間は埋められ、粒界に沿った明らかなギャップは無くなると考えられる。
最終的に、形成されたMOF-GO複合体(MOF@GO)は、フィルターから剥離することにより、自立性を有するセパレータが得られた。
比較例のGOセパレータは、MOF粒子を含ませずに、上記MOF@GOにおけるGO層形成と同様の操作をMOF@GOと同程度の膜厚になるまで行って製造した。
製造されたMOF@GOセパレータとGOセパレータは、それぞれ、フィルターから剥離した後、使用前まで適当な脱水環境下で保存した。
<Manufacture of MOF-GO composite separator and GO separator>
The manufacturing process of the MOF-GO composite (hereinafter sometimes referred to as “MOF @ GO”) separator used in the examples of the present invention is schematically shown in FIG.
A film of MOF particles was first formed on a filter (Filter membrane, manufactured by Millipore Co. Ltd., diameter 47 mm, pore size 0.2 μm). MOF particles were synthesized in the same manner as in Non-Patent Documents 9 and 12. That is, a mixed solution containing 0.966 g (4 mmol) of copper (II) nitrate trihydrate [Cu (NO 3 ) 2 · 3H 2 O] and 0.42 g (2 mmol) of 1,3,5-benzenetricarboxylic acid (BTC) Was vacuum filtered on a filter. Through this process, crystalline MOF particles were synthesized and self-assembled to form a MOF film.
Next, in the same manner as in Non-Patent Documents 10 and 11, by supplying and filtering a diluted graphene oxide solution (Diluted GO solutions), graphene oxide (GO) is formed on the MOF film formed on the filter. A layer was formed. Adjacent MOF and GO layers were strongly bonded on the filter. Graphene oxide (GO) is prepared from graphite powder (purity 99.8% or higher, Alfa Aesar (registered trademark)) by the revised version method of the hammer method (Hummers' method, Non-Patent Document 13), and is sonicated to 0.1 mg ml. Used diluted.
In order to manufacture a good separator, the MOF layer is then formed with a mixed solution of copper (II) nitrate and BTC (shown as “Ligand Solution” in FIG. 2), and the diluted GO solution (“GO” in FIG. The process consisting of GO layer formation by “GO solution” can be repeated 2 or 3 times. In that case, the continuous growth of MOF nanoparticles would fill the void space and eliminate the apparent gap along the grain boundary.
Finally, the formed MOF-GO composite (MOF @ GO) was peeled from the filter to obtain a self-supporting separator.
The GO separator of the comparative example was manufactured by performing the same operation as the GO layer formation in the MOF @ GO until the film thickness was about the same as that of the MOF @ GO without including MOF particles.
The manufactured MOF @ GO separator and GO separator were each separated from the filter and stored in a suitable dewatering environment until use.

<MOF@GOセパレータの構造的特徴>
MOF@GOセパレータについての粉末X線回折(PXRD)データは、X線回折装置(Bruker D8 Advanced diffractometer)を用い、X線源:CuKα線(λ=1.5418Å)を用い、加速電圧:40kV,加速電流:40mA、周囲温度下の条件で求めた。図4に、MOF膜の理論計算値のもの(黒色線)、充電前のもの(薄灰色線)、後述のような200サイクルの充放電を行った後のもの(濃灰色線)についてのそれぞれの粉末X線回折(PXRD)パターンを示す。セパレータ中のMOF粒子は、(001)方向に配向しているHKUST-1と同様のものであった。また、MOF@GO セパレータにおけるMOFの構造的骨格は、200サイクルを超える充電、放電工程を通してそのままであった。
<Structural features of MOF @ GO separator>
Powder X-ray diffraction (PXRD) data for the MOF @ GO separator was measured using an X-ray diffractometer (Bruker D8 Advanced diffractometer), using an X-ray source: CuKα ray (λ = 1.5418Å), acceleration voltage: 40 kV, acceleration Current: 40 mA, obtained under ambient temperature conditions. Fig. 4 shows the MOF film theoretically calculated (black line), before charging (light gray line), and after 200 cycles of charging / discharging (dark gray line) as described below. The powder X-ray diffraction (PXRD) pattern of is shown. The MOF particles in the separator were the same as HKUST-1 oriented in the (001) direction. In addition, the structural framework of MOF in the MOF @ GO separator remained unchanged throughout the charging and discharging processes over 200 cycles.

MOF@GOセパレータの多層構造の走査型電子顕微鏡写真(挿入図は光学写真)を図5(a)に示す。MOF粒子からなるMOF膜とGO層の積層構造であることが明らかである。MOF@GOセパレータについて、77K、大気圧下で窒素吸着等温線を測定し、非局所密度汎関数理論(non-local density functional theory、NLDFT)に基づいて解析したところ、その孔サイズ分布は約9Åと計算された。
GO積層体からなるGOセパレータの走査型電子顕微鏡写真(挿入図は光学写真)を図5(b)に示す。GOセパレータについては、後述のような200サイクルの充放電を行った後のものに剥離が観察された。そのようなGO積層体の剥離は、後述の透過試験の結果と一致している。可溶性の多硫化物(polysulfides)は、拡散してGO層間に幅広く侵入しボイドやクラックを生成するために、GOセパレータの機能を悪化させたと考えられる。リチウム多硫化物(Li2Sn, 4≦n≦8)のS-S鎖長は、2.09Åから2.39Åの範囲であり、LiとSとの結合長は2.6Åよりわずかに短いと考えられ、GO相互の空間距離により短いので、GOセパレータは、多硫化物分子に対するバリア機能が果たせない。
FIG. 5A shows a scanning electron micrograph (inset is an optical photograph) of the multilayer structure of the MOF @ GO separator. It is clear that the MOF film is composed of MOF particles and GO layer. For the MOF @ GO separator, the nitrogen adsorption isotherm was measured at 77K and atmospheric pressure and analyzed based on the non-local density functional theory (NLDFT). The pore size distribution was about 9 mm. It was calculated.
FIG. 5B shows a scanning electron micrograph (inset is an optical photograph) of a GO separator made of a GO laminate. Regarding the GO separator, peeling was observed after 200 cycles of charge / discharge as described below. Such peeling of the GO laminate is consistent with the results of the transmission test described below. Soluble polysulfides are thought to deteriorate the function of the GO separator because they diffuse and penetrate widely between GO layers to form voids and cracks. The SS chain length of lithium polysulfide (Li 2 S n , 4 ≦ n ≦ 8) is in the range of 2.09 mm to 2.39 mm, and the bond length between Li and S is considered to be slightly shorter than 2.6 mm, The GO separator cannot perform the barrier function against polysulfide molecules because it is shorter due to the spatial distance between GOs.

<MOF-GO複合セパレータの透過試験>
透過試験は、図6に示すような、V字状に配置した2つのガラス管と、該2つのガラス管に挟まれたMOF@GOセパレータ又はGOセパレータからなる自作の透過試験装置を用いて行った。各セパレータは、クラックや孔が無いことを注意深く調べた後、該セパレータを介して2つのガラス管が接続されるように、各ガラス管下端の20mmの開口部に透明瞬間接着剤で固定された。
透過試験では、左側のガラス管に深紅色の多硫化物溶液(0.1MのLi2S6を含む電解液)を、右側のガラス管に多硫化物を含まない透明な電解液を、それぞれ緩やかに導入し、液レベルを左右同じに維持して、0〜48時間の時間経過による多硫化物の左側ガラス管から右側ガラス管への透過(深紅色の拡散)の有無や程度を調べた。
実施例のMOF@GOセパレータを用いた透過試験結果を図7に、比較例のGOセパレータを用いた透過試験結果を図8に示す。
実施例のMOF@GOセパレータを用いた透過試験では、多硫化物は48時間以内にセパレータを全く透過することができず、MOF@GOセパレータは、イオンふるいとして多硫化物の透過阻止効果を明確に示した。
これに対し、比較例のGOセパレータを用いた透過試験では、多硫化物の透過阻止を十分に行うことができなかった。GOセパレータを透過した多硫化物は、1時間以内では僅かであったが、3時間で右側液の約1/8が深紅色の多硫化物溶液に占有され、その後、透過が加速度的に進行し、12時間で右側液全体まで拡散が進行した。
<Permeation test of MOF-GO composite separator>
The permeation test is performed using a self-made permeation test apparatus consisting of two glass tubes arranged in a V shape and a MOF @ GO separator or GO separator sandwiched between the two glass tubes, as shown in FIG. It was. Each separator was carefully inspected for cracks and holes, and then fixed with a transparent adhesive to the 20 mm opening at the bottom of each glass tube so that the two glass tubes were connected via the separator. .
In the transmission test, a crimson polysulfide solution (electrolyte containing 0.1M Li 2 S 6 ) is gently applied to the left glass tube, and a transparent electrolyte not containing polysulfide is gently added to the right glass tube. The liquid level was maintained at the same level on the left and right sides, and the presence / absence or degree of permeation of polysulfide from the left glass tube to the right glass tube (deep red color diffusion) over time of 0 to 48 hours was examined.
The permeation test result using the MOF @ GO separator of the example is shown in FIG. 7, and the permeation test result using the GO separator of the comparative example is shown in FIG.
In the permeation test using the MOF @ GO separator of the example, the polysulfide cannot permeate the separator at all within 48 hours, and the MOF @ GO separator clearly shows the permeation-preventing effect of the polysulfide as an ion sieve. It was shown to.
On the other hand, in the permeation test using the GO separator of the comparative example, permeation of polysulfides could not be sufficiently prevented. The polysulfide that permeated through the GO separator was slight within 1 hour, but about 1/8 of the right side liquid was occupied by the crimson polysulfide solution in 3 hours, and then the permeation accelerated. Then, the diffusion progressed to the entire right side liquid in 12 hours.

<リチウム硫黄二次電池の作製>
(正極の作製)
非特許文献6の記載と同様にしてCMK-3/S(シリカを鋳型にすることによって調製された周期的な構造を持つメソポーラスカーボンCMK-3内に硫黄を導入して作製されたカーボン・硫黄複合体)を調製した。調製したCMK-3/Sをカーボンブラック〔Super P(登録商標)〕、ポリフッ化ビニリデンバインダーと80:10:10の重量比でN-メチル-2-ピロリドン中で混合し、得られたスラリーを正極集電体に塗布、真空下で乾燥して正極を作製した。熱重量分析(TGA)による測定では、カーボン・硫黄複合体(CMK-3/S)における硫黄成分は、約70wt%、正極混合物の約56wt%であった。
<Production of lithium-sulfur secondary battery>
(Preparation of positive electrode)
CMK-3 / S (carbon / sulfur produced by introducing sulfur into mesoporous carbon CMK-3 having a periodic structure prepared by using silica as a template in the same manner as described in Non-Patent Document 6. Complex) was prepared. The prepared CMK-3 / S was mixed with carbon black [Super P (registered trademark)], polyvinylidene fluoride binder in a weight ratio of 80:10:10 in N-methyl-2-pyrrolidone, and the resulting slurry was mixed. The positive electrode current collector was coated and dried under vacuum to produce a positive electrode. As measured by thermogravimetric analysis (TGA), the sulfur component in the carbon-sulfur composite (CMK-3 / S) was about 70 wt% and about 56 wt% of the positive electrode mixture.

(リチウム硫黄二次電池の組立)
上記で得られたMOF@GOセパレータ又はGOセパレータと、上記正極と、リチウム金属フォイルの負極とを用い、アルゴンガスを満たしたグローブボックス内で、通常の2032型コイン電池を組み立てた。電解液としては、1,2-ジメトキシエタン(DME、東京化成工業株式会社製、純度99.8%)と1,3-ジオキソラン(DOL、東京化成工業株式会社製、純度99.8%)の1:1の体積比の混合溶媒中に1Mのリチウム-ビス(トリフルオロメタンスルホニル)イミド(LiTFSI、東京化成工業株式会社製、純度99.9%)と0.1MのLiNO3を含むものを用いた。セパレータは、直径16mmに切断し、グローブボックス内においてブランク電解液で洗浄してから用いた。
(Assembly of lithium-sulfur secondary battery)
A normal 2032 coin cell was assembled in a glove box filled with argon gas using the MOF @ GO separator or GO separator obtained above, the positive electrode, and a negative electrode of a lithium metal foil. As electrolytes, 1,2-dimethoxyethane (DME, manufactured by Tokyo Chemical Industry Co., Ltd., purity 99.8%) and 1,3-dioxolane (DOL, manufactured by Tokyo Chemical Industry Co., Ltd., purity 99.8%) are 1: 1. A mixture containing 1M lithium-bis (trifluoromethanesulfonyl) imide (LiTFSI, manufactured by Tokyo Chemical Industry Co., Ltd., purity 99.9%) and 0.1M LiNO 3 in a mixed solvent in a volume ratio was used. The separator was cut to a diameter of 16 mm and used after being washed with a blank electrolyte in a glove box.

<リチウム硫黄二次電池の性能試験1:放電容量、クーロン効率>
定電流サイクルテストは、充放電装置(北斗電工)を用いカットオフ電圧1.5〜3.0V(Li/Li)の範囲で行った。
リチウム硫黄二次電池では、正極中のカーボンキャリアと硫黄間の大きな中間接触面積のために、初期活性サイクルが必要である。より高い硫黄成分量と電子電導性のために、硫黄粒子間の密接な接続は、メソ孔性カーボン粒子の中でのイオン移送能力を改善するのに重要な役割を果たす。今回作製した二次電池では、約100サイクル程度の初期プロセスは、高可逆安定性の電気化学状態とするための活性化サイクルとなる。
<Performance test of lithium-sulfur secondary battery 1: discharge capacity, coulomb efficiency>
The constant current cycle test was performed in a range of a cut-off voltage of 1.5 to 3.0 V (Li + / Li) using a charge / discharge device (Hokuto Denko).
In a lithium-sulfur secondary battery, an initial active cycle is required due to the large intermediate contact area between the carbon carrier and sulfur in the positive electrode. Due to the higher sulfur content and electronic conductivity, the close connection between the sulfur particles plays an important role in improving the ion transport capability within the mesoporous carbon particles. In the secondary battery fabricated this time, the initial process of about 100 cycles is an activation cycle for achieving an electrochemical state with high reversible stability.

MOF@GOセパレータを有する二次電池は、500サイクル超まで0.5C(1C=1673mAg-1)の定電流条件で充放電した。その際のサイクル経過に伴う容量変化(灰色線)とクーロン効率変化(黒色線)を図9に示す。初期放電容量は、1126 mAhg-1であったが、100サイクルまでなだらかに低下した。しかしながら、第100サイクル目、第300サイクル目、第500サイクル目の放電容量は、依然としてそれぞれ、813 mAhg-1、807 mAhg-1、799 mAhg-1で、第100サイクル以降は優れた容量保持性を示した。しかも、第100サイクルから第500サイクルの範囲における消失容量は、14 mAhg-1以内に収まり、優れたサイクル安定性と、無視し得る程度の容量減衰であることを示している。一方、0.5Cでの定電流充放電における充放電電圧は、典型的なリチウム硫黄二次電池のものと一致した(図11参照)。 The secondary battery having the MOF @ GO separator was charged and discharged under a constant current condition of 0.5 C (1C = 1673 mAg −1 ) for more than 500 cycles. FIG. 9 shows the capacity change (gray line) and the Coulomb efficiency change (black line) as the cycle progresses. The initial discharge capacity was 1126 mAhg −1 , but gradually decreased to 100 cycles. However, the discharge capacities at the 100th, 300th and 500th cycles are still 813 mAhg -1 , 807 mAhg -1 and 799 mAhg -1 respectively, and excellent capacity retention after the 100th cycle. showed that. Moreover, the lost capacity in the range from the 100th cycle to the 500th cycle falls within 14 mAhg −1 , indicating excellent cycle stability and negligible capacity decay. On the other hand, the charge / discharge voltage in the constant current charge / discharge at 0.5 C coincided with that of a typical lithium-sulfur secondary battery (see FIG. 11).

また、実施例のMOF@GOセパレータと比較例のGOセパレータを有するそれぞれのリチウム硫黄二次電池について、1500サイクル超まで1Cの定電流条件で充放電した際のサイクル経過に伴う容量変化(下側の2本の線)とクーロン効率変化(上側のほぼ重なった2本の線)を図10に示す(灰色線が実施例、黒色線が比較例)。
GOセパレータの二次電池は、1000 mAhg-1の比較的大きな初期容量であったが、以降は、劇的な容量減衰を示した。第100サイクル目、第400サイクル目、第800サイクル目、第1000サイクル目の容量は、それぞれ、611 mAhg-1、363 mAhg-1、258 mAhg-1,234 mAhg-1で、容量保持率は約23%に過ぎなかった。このことは、GOセパレータのブロック効果が短時間であることによって説明できる。この結果は、上述の透過試験結果と一致している。
一方、MOF@GOセパレータを有する二次電池は、初期容量の1207mAhg-1、第100サイクルの容量の870mAhg-1であることから明らかなように、第100サイクルまでの容量減少が比較的なだらかである。この段階の容量減少は、二次電池の活性化プロセスとみられる。サイクル性能は、第100サイクル目から第1500サイクル目まで安定していて、約855 mAhg-1程度に保持されていた。容量保持率は約71%に達し、1500サイクルまでの1サイクル当たりの容量消失率は0.019%程度と小さく、本発明の二次電池の高い効率と動特性を示唆していると言える。
In addition, for each lithium-sulfur secondary battery having the MOF @ GO separator of the example and the GO separator of the comparative example, the capacity change with the cycle progress when charging / discharging under a constant current condition of 1 C up to more than 1500 cycles (lower side) 10) and the Coulomb efficiency change (the two lines almost overlapping on the upper side) are shown in FIG. 10 (the gray line is an example and the black line is a comparative example).
The GO separator secondary battery had a relatively large initial capacity of 1000 mAhg −1 , but thereafter showed dramatic capacity decay. The capacities of the 100th cycle, 400th cycle, 800th cycle and 1000th cycle are 611 mAhg -1 , 363 mAhg -1 , 258 mAhg -1 and 234 mAhg -1 respectively. It was only about 23%. This can be explained by the short blocking effect of the GO separator. This result is consistent with the transmission test results described above.
On the other hand, the secondary battery with the MOF @ GO separator has a relatively large capacity reduction up to the 100th cycle, as is evident from the initial capacity of 1207 mAhg- 1 and the capacity of the 100th cycle of 870 mAhg- 1. is there. The capacity reduction at this stage is considered as a secondary battery activation process. The cycle performance was stable from the 100th cycle to the 1500th cycle, and was maintained at about 855 mAhg- 1 . The capacity retention rate reaches about 71%, and the capacity loss rate per cycle up to 1500 cycles is as small as 0.019%, which suggests that the secondary battery of the present invention has high efficiency and dynamic characteristics.

<リチウム硫黄二次電池の性能試験2:レート特性と充放電電圧プロフィル>
比較例のGOセパレータと実施例のMOF@GOセパレータを具備するそれぞれのリチウム硫黄二次電池について、電流条件を0.2C、0.5C、1C、2C、3C、0.2Cに順次変化させたサイクル試験を行った。その際の、サイクル経過に伴う放電容量変化を図12に示す。
比較例のGOセパレータを具備したもの(黒色線)では、0.2Cでの初期容量は885 mAhg-1まで達したが、718 mAhg-1まで減少した。また、0.5C、1C、2C、3Cと高レートにすることにより452 mAhg-1、296 mAhg-1、141 mAhg-1、84 mAhg-1と劇的に放電容量が低下した。最後の0.2Cでは580 mAhg-1の回復に止まった。
これに対し、実施例のMOF@GOセパレータもの(灰色線)では、比較例よりも格段に優れたレート特性を示した。0.2Cでの初期容量が約1072 mAhg-1、保持容量が969 mAhg-1に達した。また、0.5C、1C、2C、3Cと高レートにした際の放電容量は、801 mAhg-1、612 mAhg-1、537 mAhg-1、488 mAhg-1で、最後の0.2Cでは876 mAhg-1に回復した。
<Performance test 2 of lithium-sulfur secondary battery: Rate characteristics and charge / discharge voltage profile>
For each lithium-sulfur secondary battery equipped with the GO separator of the comparative example and the MOF @ GO separator of the example, a cycle test was performed by sequentially changing the current conditions to 0.2C, 0.5C, 1C, 2C, 3C, 0.2C. went. FIG. 12 shows the change in discharge capacity as the cycle progresses.
In the comparative example equipped with the GO separator (black line), the initial capacity at 0.2 C reached 885 mAhg −1 but decreased to 718 mAhg −1 . In addition, the discharge capacities were dramatically reduced to 452 mAhg −1 , 296 mAhg −1 , 141 mAhg −1 , and 84 mAhg −1 by increasing the rate to 0.5C, 1C, 2C, and 3C. At the final 0.2C, the recovery was only 580 mAhg -1 .
In contrast, the MOF @ GO separator of the example (gray line) showed a rate characteristic far superior to that of the comparative example. The initial capacity at 0.2 C reached approximately 1072 mAhg −1 and the retention capacity reached 969 mAhg −1 . Further, 0.5C, 1C, 2C, the discharge capacity at the time of the 3C and high rate, 801 mAhg -1, 612 mAhg -1 , 537 mAhg -1, at 488 mAhg -1, the last 0.2C at 876 mAhg - Recovered to 1 .

比較例のGOセパレータ又は実施例のMOF@GOセパレータを具備するそれぞれのリチウム硫黄二次電池の所定の充放電サイクルにおいて、種々のレートで充放電した際の充放電電圧プロフィルを図13、図14に示す。どちらのセパレータの二次電池も、その放電カーブが、カーボン・硫黄複合体正極を備えたリチウム硫黄二次電池で典型的に観察されると同様の、2つの平坦域(plateaus)を示した。一方、MOF@GOセパレータを具備する実施例の二次電池では、0.1Cや0.2Cの低レート充電でも明確な2つの平坦域(plateaus)が観察されたが、高レートでは、不規則な充電電圧プロフィルが観察された。さらに、MOF@GOセパレータにおける充電時の平坦域は、GOセパレータにおけるほど明確ではなかった。



The charging / discharging voltage profiles when charging / discharging at various rates in a predetermined charging / discharging cycle of each lithium-sulfur secondary battery including the GO separator of the comparative example or the MOF @ GO separator of the example are shown in FIGS. Shown in Both separator secondary batteries showed two plateaus whose discharge curves were similar to those typically observed in lithium-sulfur secondary batteries with carbon-sulfur composite cathodes. On the other hand, in the secondary battery of the example equipped with the MOF @ GO separator, two distinct plateaus were observed even at low rate charging of 0.1C and 0.2C, but at high rates, irregular charging was observed. A voltage profile was observed. Furthermore, the flat area during charging in the MOF @ GO separator was not as clear as in the GO separator.



Claims (8)

セパレータが金属有機構造体の膜を含むものであることを特徴とする二次電池。   A secondary battery, wherein the separator includes a film of a metal organic structure. 前記金属有機構造体の膜が、金属有機構造体と接着剤又は樹脂とを含む混合物から形成されたものである請求項1に記載の二次電池。   The secondary battery according to claim 1, wherein the metal organic structure film is formed from a mixture including the metal organic structure and an adhesive or a resin. セパレータがグラフェン層と金属有機構造体層を含む積層構造であることを特徴とする請求項1に記載の二次電池。   The secondary battery according to claim 1, wherein the separator has a laminated structure including a graphene layer and a metal organic structure layer. 前記金属有機構造体は、その金属がCu、Ni、Zn、Mn、Co、Zrから選ばれたものであることを特徴とする請求項1〜3のいずれか1項に記載の二次電池。   The secondary battery according to any one of claims 1 to 3, wherein the metal organic structure is one in which the metal is selected from Cu, Ni, Zn, Mn, Co, and Zr. 前記金属有機構造体の金属がCuであることを特徴とする請求項4に記載の二次電池。   The secondary battery according to claim 4, wherein the metal of the metal organic structure is Cu. 前記金属有機構造体は、三次元微細孔のサイズが数オングストロームから数ナノの範囲(3Å〜6nm)であることを特徴とする請求項1〜5のいずれか1項に記載の二次電池。   6. The secondary battery according to claim 1, wherein the metal organic structure has a three-dimensional micropore size ranging from several angstroms to several nanometers (3 to 6 nm). 負極活物質として金属リチウム、正極活物質として硫黄を用いる、請求項1〜6のいずれか1項に記載の二次電池。   The secondary battery according to claim 1, wherein metallic lithium is used as the negative electrode active material and sulfur is used as the positive electrode active material. 正極側電解液に溶解した中間生成物イオンSn 2-(4≦n≦8)の負極側への移動を防止する請求項7に記載の二次電池。




The secondary battery according to claim 7, wherein intermediate product ions Sn 2− (4 ≦ n ≦ 8) dissolved in the positive electrode side electrolyte are prevented from moving to the negative electrode side.




JP2016120621A 2016-06-17 2016-06-17 Secondary battery including separator of metal organic structure Pending JP2017224554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016120621A JP2017224554A (en) 2016-06-17 2016-06-17 Secondary battery including separator of metal organic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016120621A JP2017224554A (en) 2016-06-17 2016-06-17 Secondary battery including separator of metal organic structure

Publications (1)

Publication Number Publication Date
JP2017224554A true JP2017224554A (en) 2017-12-21

Family

ID=60686409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016120621A Pending JP2017224554A (en) 2016-06-17 2016-06-17 Secondary battery including separator of metal organic structure

Country Status (1)

Country Link
JP (1) JP2017224554A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108063208A (en) * 2017-12-27 2018-05-22 山东大学 A kind of high-performance lithium battery porous septum and preparation method thereof
JP2018092831A (en) * 2016-12-06 2018-06-14 日本電信電話株式会社 Separator and lithium air secondary battery
CN108807798A (en) * 2018-08-01 2018-11-13 南京大学 Composite battery separator film and its preparation method and application based on metal-organic framework materials
CN108816284A (en) * 2018-06-21 2018-11-16 阜阳师范学院 A kind of NiCo metal organic framework nanosphere/graphene oxide composite material and its preparation method and application
CN109461873A (en) * 2018-09-30 2019-03-12 南京大学 Refractory metal-organic framework materials coating battery diaphragm and its preparation method and application
JP2019067502A (en) * 2017-09-28 2019-04-25 トヨタ自動車株式会社 Lithium ion secondary battery and manufacturing method thereof
CN109768237A (en) * 2018-12-24 2019-05-17 肇庆市华师大光电产业研究院 A kind of novel lithium sulfur battery anode material, preparation method and application
WO2020004197A1 (en) * 2018-06-26 2020-01-02 日本フッソ工業株式会社 Fluororesin-containing bakeable powder coating composition and liquid coating composition, and coating and coated body comprising this bakeable powder coating composition or liquid coating composition
CN111029515A (en) * 2019-12-25 2020-04-17 中国地质大学(武汉) Sulfonated graphene oxide-based single-ion polymer electrolyte membrane and preparation method and application thereof
CN111354905A (en) * 2020-02-10 2020-06-30 北京理工大学 Composite interlayer type diaphragm for aluminum-sulfur battery and preparation method thereof
CN111640943A (en) * 2020-06-09 2020-09-08 河北工业大学 Preparation method and application of metal organic framework ZIF-7 sheet-shaped film interlayer material
JP2021523534A (en) * 2018-10-26 2021-09-02 エルジー・ケム・リミテッド Functional separation membrane, its manufacturing method and lithium secondary battery containing it
CN113410575A (en) * 2021-06-24 2021-09-17 福建师范大学 Preparation method of metal organic framework material for lithium-sulfur battery diaphragm based on aperture segmentation strategy
CN113540686A (en) * 2020-04-20 2021-10-22 河北金力新能源科技股份有限公司 Functional diaphragm for lithium-sulfur battery and preparation method thereof
CN113708005A (en) * 2021-08-16 2021-11-26 电子科技大学 Lithium-intercalated MOF/graphene composite modified functional membrane and preparation method thereof
CN113991241A (en) * 2021-09-27 2022-01-28 洛阳师范学院 Multifunctional film for energy storage device and preparation method thereof
CN114006131A (en) * 2020-07-28 2022-02-01 宁德时代新能源科技股份有限公司 Diaphragm, electronic device comprising diaphragm and preparation method of electronic device
CN114069159A (en) * 2021-11-09 2022-02-18 广东工业大学 Membrane based on nitrogen-enriched column layer structure MOF and preparation method and application thereof
WO2022220063A1 (en) * 2021-04-16 2022-10-20 大原パラヂウム化学株式会社 Molded sheet containing porous metal complex
WO2023191198A1 (en) * 2022-04-01 2023-10-05 삼성에스디아이 주식회사 Sheet for rechargeable lithium battery and rechargeable lithium battery including same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018092831A (en) * 2016-12-06 2018-06-14 日本電信電話株式会社 Separator and lithium air secondary battery
JP2019067502A (en) * 2017-09-28 2019-04-25 トヨタ自動車株式会社 Lithium ion secondary battery and manufacturing method thereof
CN108063208A (en) * 2017-12-27 2018-05-22 山东大学 A kind of high-performance lithium battery porous septum and preparation method thereof
CN108816284A (en) * 2018-06-21 2018-11-16 阜阳师范学院 A kind of NiCo metal organic framework nanosphere/graphene oxide composite material and its preparation method and application
CN112262184A (en) * 2018-06-26 2021-01-22 日本扶桑工业株式会社 Powder coating composition and liquid coating composition for baking containing fluororesin, and film body containing the powder coating composition or liquid coating composition for baking
WO2020004197A1 (en) * 2018-06-26 2020-01-02 日本フッソ工業株式会社 Fluororesin-containing bakeable powder coating composition and liquid coating composition, and coating and coated body comprising this bakeable powder coating composition or liquid coating composition
JPWO2020004197A1 (en) * 2018-06-26 2020-07-02 日本フッソ工業株式会社 Baking powder coating composition and liquid coating composition containing fluororesin, coating film and coating body containing the baking powder coating composition or liquid coating composition
CN108807798A (en) * 2018-08-01 2018-11-13 南京大学 Composite battery separator film and its preparation method and application based on metal-organic framework materials
CN109461873A (en) * 2018-09-30 2019-03-12 南京大学 Refractory metal-organic framework materials coating battery diaphragm and its preparation method and application
JP7109593B2 (en) 2018-10-26 2022-07-29 エルジー エナジー ソリューション リミテッド Functional separation membrane, manufacturing method thereof, and lithium secondary battery including the same
JP2021523534A (en) * 2018-10-26 2021-09-02 エルジー・ケム・リミテッド Functional separation membrane, its manufacturing method and lithium secondary battery containing it
CN109768237A (en) * 2018-12-24 2019-05-17 肇庆市华师大光电产业研究院 A kind of novel lithium sulfur battery anode material, preparation method and application
CN111029515A (en) * 2019-12-25 2020-04-17 中国地质大学(武汉) Sulfonated graphene oxide-based single-ion polymer electrolyte membrane and preparation method and application thereof
CN111029515B (en) * 2019-12-25 2021-04-13 中国地质大学(武汉) Sulfonated graphene oxide-based single-ion polymer electrolyte membrane and preparation method and application thereof
CN111354905A (en) * 2020-02-10 2020-06-30 北京理工大学 Composite interlayer type diaphragm for aluminum-sulfur battery and preparation method thereof
CN113540686A (en) * 2020-04-20 2021-10-22 河北金力新能源科技股份有限公司 Functional diaphragm for lithium-sulfur battery and preparation method thereof
CN111640943A (en) * 2020-06-09 2020-09-08 河北工业大学 Preparation method and application of metal organic framework ZIF-7 sheet-shaped film interlayer material
CN114006131A (en) * 2020-07-28 2022-02-01 宁德时代新能源科技股份有限公司 Diaphragm, electronic device comprising diaphragm and preparation method of electronic device
WO2022021590A1 (en) * 2020-07-28 2022-02-03 宁德时代新能源科技股份有限公司 Separator, electrical device comprising separator, and preparation method therefor
WO2022220063A1 (en) * 2021-04-16 2022-10-20 大原パラヂウム化学株式会社 Molded sheet containing porous metal complex
CN113410575A (en) * 2021-06-24 2021-09-17 福建师范大学 Preparation method of metal organic framework material for lithium-sulfur battery diaphragm based on aperture segmentation strategy
CN113708005A (en) * 2021-08-16 2021-11-26 电子科技大学 Lithium-intercalated MOF/graphene composite modified functional membrane and preparation method thereof
CN113991241A (en) * 2021-09-27 2022-01-28 洛阳师范学院 Multifunctional film for energy storage device and preparation method thereof
CN114069159A (en) * 2021-11-09 2022-02-18 广东工业大学 Membrane based on nitrogen-enriched column layer structure MOF and preparation method and application thereof
CN114069159B (en) * 2021-11-09 2024-03-01 广东工业大学 Diaphragm based on nitrogen-rich column layer structure MOF, and preparation method and application thereof
WO2023191198A1 (en) * 2022-04-01 2023-10-05 삼성에스디아이 주식회사 Sheet for rechargeable lithium battery and rechargeable lithium battery including same

Similar Documents

Publication Publication Date Title
JP2017224554A (en) Secondary battery including separator of metal organic structure
He et al. The potential of electrolyte filled MOF membranes as ionic sieves in rechargeable batteries
Gao et al. The disordering-enhanced performances of the Al-MOF/graphene composite anodes for lithium ion batteries
Bai et al. A long-life lithium–sulphur battery by integrating zinc–organic framework based separator
Zhou et al. Metal-organic frameworks enable broad strategies for lithium-sulfur batteries
Xu et al. Carbon nanomaterials for advanced lithium sulfur batteries
Su et al. Toward high performance lithium–sulfur batteries based on Li2S cathodes and beyond: status, challenges, and perspectives
Song et al. Fe-N-doped carbon nanofiber and graphene modified separator for lithium-sulfur batteries
Liu et al. Janus conductive/insulating microporous ion-sieving membranes for stable Li–S batteries
Zhang et al. Carbon enables the practical use of lithium metal in a battery
Bai et al. Metal–organic framework-based separator for lithium–sulfur batteries
Mahmood et al. Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells
Huang et al. Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and prospects
US20200028203A1 (en) Metal sulfide composite materials for batteries
Chen et al. Configurational and structural design of separators toward shuttling-free and dendrite-free lithium-sulfur batteries: A review
Hyeon et al. Lithium metal storage in zeolitic imidazolate framework derived nanoarchitectures
Jiao et al. Interlayers for lithium-based batteries
US20230253545A1 (en) Anodes, cathodes, and separators for batteries and methods to make and use same
Kou et al. Patterned macroporous Fe 3 C/C membrane-induced high ionic conductivity for integrated Li–sulfur battery cathodes
KR20190119607A (en) Regenerated polysulfide-erasing layer enabling lithium-sulfur battery with high energy density and extended cycling life and method of manufacturing the same
KR102642864B1 (en) Water-based aluminum ion batteries, hybrid battery-capacitors, compositions of the batteries and battery-capacitors, and associated methods of making and using
Chen et al. Metal-organic frameworks containing solid-state electrolytes for lithium metal batteries and beyond
Liao et al. Novel flower-like hierarchical carbon sphere with multi-scale pores coated on PP separator for high-performance lithium-sulfur batteries
Li et al. Coating Fe2O3 with graphene oxide for high-performance sodium-ion battery anode
Jeoun et al. Lean-electrolyte lithium-sulfur batteries: recent advances in the design of cell components