JP2017222993A - Column-beam junction structure - Google Patents

Column-beam junction structure Download PDF

Info

Publication number
JP2017222993A
JP2017222993A JP2016117386A JP2016117386A JP2017222993A JP 2017222993 A JP2017222993 A JP 2017222993A JP 2016117386 A JP2016117386 A JP 2016117386A JP 2016117386 A JP2016117386 A JP 2016117386A JP 2017222993 A JP2017222993 A JP 2017222993A
Authority
JP
Japan
Prior art keywords
column
joint
main bar
mechanical
reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016117386A
Other languages
Japanese (ja)
Inventor
悟史 掛
Satoshi Kake
悟史 掛
裕次 石川
Yuji Ishikawa
裕次 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2016117386A priority Critical patent/JP2017222993A/en
Publication of JP2017222993A publication Critical patent/JP2017222993A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structure that prevents the destruction of a column-beam junction caused by deterioration of adhesion between concrete and a main reinforcement.SOLUTION: A column-beam junction structure includes a junction 10 having an arranged column main reinforcement 22 of a reinforced concrete column 20 and an arranged beam main reinforcement 32 of a reinforced concrete beam 30, and a bearing member (mechanical joint 40) to produce a bearing force, disposed on the column main reinforcement 22 or the beam main reinforcement 32.SELECTED DRAWING: Figure 1

Description

本発明は、柱梁の接合部構造に関する。   The present invention relates to a joint structure of column beams.

特許文献1に示された柱梁仕口部構造では、柱梁仕口部(柱梁接合部)に打設されるコンクリートに繊維補強材を混入してコンクリートの強度を向上させている。   In the column beam joint structure disclosed in Patent Document 1, fiber reinforcing material is mixed into the concrete cast in the column beam joint (column beam joint) to improve the strength of the concrete.

特開平10−8551号公報Japanese Patent Laid-Open No. 10-8551

しかし、コンクリートの強度を向上させても、柱と梁の曲げ耐力比が小さい場合、梁の曲げ降伏が早期に発生し、その後接合部内まで主筋降伏が進展し、主筋とコンクリートとの付着力劣化が生じて接合部が破壊されることがある。   However, even if the strength of the concrete is improved, if the bending strength ratio between the column and the beam is small, the bending yield of the beam will occur at an early stage, and then the main bar yield will progress into the joint, resulting in a deterioration in the adhesion between the main bar and the concrete. May occur and the joint may be destroyed.

本発明は上記事実を考慮して、コンクリートと主筋の付着力劣化に伴う柱梁の接合部の破壊を抑制することを目的とする。   In view of the above fact, an object of the present invention is to suppress the destruction of the joint portion of the column beam due to the deterioration of the adhesion between the concrete and the main reinforcement.

請求項1に記載の柱梁の接合部構造は、鉄筋コンクリート製柱の柱主筋と鉄筋コンクリート製梁の梁主筋とが配筋された接合部と、前記柱主筋又は前記梁主筋に設けられ支圧力を発生させる支圧部材と、を有する。   The column beam joint structure according to claim 1 is provided with a joint portion in which a column main bar of a reinforced concrete column and a beam main bar of a reinforced concrete beam are arranged, and a support pressure provided on the column main bar or the beam main bar. A bearing member to be generated.

請求項1に記載の柱梁の接合部構造では、梁主筋又は柱主筋に引張力が作用したとき、支圧部材に発生する支圧力と梁主筋又は柱主筋とコンクリートの付着力とで抵抗するため、コンクリートに対する梁主筋又は柱主筋のすべり量が減少する。これにより、コンクリートと主筋の付着力劣化に伴う接合部のひび割れを抑制できる。したがって、柱梁の接合部の破壊が抑制される。   In the joint structure of the column beam according to claim 1, when a tensile force is applied to the beam main bar or the column main bar, it resists by the support pressure generated in the support member and the adhesion between the beam main bar or the column main bar and the concrete. Therefore, the slip amount of the beam main bar or column main bar with respect to the concrete decreases. Thereby, the crack of the junction part accompanying the adhesive force deterioration of concrete and a main reinforcement can be suppressed. Therefore, destruction of the joint part of the column beam is suppressed.

請求項2に記載の柱梁の接合部構造は、前記支圧部材は、前記接合部に設けられた又は前記接合部の外側に設けられた機械式継手である。   The joint structure of the column beam according to claim 2 is a mechanical joint in which the bearing member is provided at the joint or outside the joint.

請求項2に記載の柱梁の接合部構造では、梁主筋又は柱主筋に引張力が作用したとき、機械式継手の小口(端面)から支圧力を得ることができる。また、機械式継手は柱主筋及び梁主筋への取付けが容易である。   In the column beam joint structure according to the second aspect, when a tensile force acts on the beam main bar or the column main bar, a supporting pressure can be obtained from the small opening (end face) of the mechanical joint. Further, the mechanical joint can be easily attached to the column main bar and the beam main bar.

請求項3に記載の柱梁の接合部構造は、前記支圧部材は機械式定着具とされ、支圧発生面が前記梁主筋の前記接合部の中央部に位置している。   In the column beam joint structure according to claim 3, the bearing member is a mechanical fixing tool, and the bearing generation surface is located at the center of the joint of the beam main bar.

請求項3に記載の柱梁の接合部構造では、梁主筋又は柱主筋に引張力が作用したとき、接合部の隅部から反対側の隅部に向かって、及び接合部の中央部の支圧発生面から接合部の隅部に向かって、複数の圧縮ストラッド(圧縮束)が発生し、接合部の耐力が向上する。   In the beam-column joint structure according to claim 3, when a tensile force is applied to the beam main bar or the column main bar, the beam is supported from the corner of the joint toward the opposite corner and at the center of the joint. A plurality of compression strads (compression bundles) are generated from the pressure generating surface toward the corners of the joint, and the yield strength of the joint is improved.

請求項4に記載の柱梁の接合部構造は、前記柱主筋に前記支圧部材が設けられた場合は前記梁主筋がX字状に交差し、前記梁主筋に前記支圧部材が設けられた場合は前記柱主筋がX字状に交差している。   The column beam joint structure according to claim 4, wherein when the supporting member is provided on the column main bar, the beam main bar intersects in an X shape, and the supporting member is provided on the beam main bar. In this case, the column main bars intersect in an X shape.

請求項4に記載の柱梁の接合部構造では、梁主筋又は柱主筋をX字状に交差させることにより、接合部に作用する斜め方向の引張力に抵抗することができる。このため、接合部に発生する斜めひび割れを抑制できる。   In the joint structure of the column beam according to the fourth aspect, the beam main bars or the column main bars can be crossed in an X shape to resist an oblique tensile force acting on the joint. For this reason, the diagonal crack which generate | occur | produces in a junction part can be suppressed.

請求項5に記載の柱梁の接合部構造は、前記柱主筋に前記支圧部材が設けられ、前記梁主筋の周囲にせん断補強筋が巻き付けられている。   In the joint structure of the column beam according to claim 5, the supporting member is provided on the column main bar, and a shear reinforcement bar is wound around the beam main bar.

請求項5に記載の柱梁の接合部構造では、柱主筋の周囲にせん断補強筋を巻き付ける代わりに、梁主筋の周囲にせん断補強筋を巻き付ける。このため、支圧部材から接合部に支圧力が作用した際に、梁主筋が接合部の外方向へ変位することを抑制できる。   In the column beam joint structure according to claim 5, instead of wrapping the shear reinforcement bars around the column main bars, the shear reinforcement bars are wound around the beam main bars. For this reason, when a supporting pressure acts on a junction part from a bearing member, it can control that a beam main bar displaces to the outside of a junction part.

請求項6に記載の柱梁の接合部構造は、鉄筋コンクリート製柱の柱主筋と鉄筋コンクリート製梁の梁主筋とが配筋された接合部を備え、前記接合部の柱主筋が柱部の柱主筋より大径とされている。   The column beam joint structure according to claim 6 includes a joint portion in which a column main bar of a reinforced concrete column and a beam main bar of a reinforced concrete beam are arranged, and the column main bar of the joint portion is a column main bar of the column portion. The diameter is larger.

請求項6に記載の柱梁の接合部構造では、接合部の柱主筋の径を柱部の柱主筋より大径とすることで、コンクリートに入力される付着応力が低減され、コンクリートの斜めひび割れが抑制される。また、接合部の柱主筋の降伏強度が大きくなるので、柱梁曲げ耐力比が大きくなる。   In the beam-column joint structure according to claim 6, by making the diameter of the column main reinforcement of the connection portion larger than the diameter of the column main reinforcement of the column part, the adhesion stress input to the concrete is reduced, and the oblique crack of the concrete Is suppressed. Moreover, since the yield strength of the column main reinforcement at the joint is increased, the column beam bending strength ratio is increased.

本発明によると、コンクリートと主筋の付着力劣化に伴う柱梁の接合部の破壊を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, destruction of the junction part of a column beam accompanying the adhesive force deterioration of concrete and a main reinforcement can be suppressed.

(A)は本発明の第1実施形態に係る柱梁の接合部構造が適用された柱梁の接合部を示す断面図であり、(B)は梁主筋に設けられた機械式継手部材を示す斜視図である。(A) is sectional drawing which shows the junction part of the column beam to which the junction part structure of the column beam which concerns on 1st Embodiment of this invention was applied, (B) is a mechanical coupling member provided in the beam main reinforcement. It is a perspective view shown. (A)は本発明の第2実施形態に係る柱梁の接合部構造が適用された柱梁の接合部を示す断面図であり、(B)は(A)において梁が柱の片側に接合された例を示す断面図である。(A) is sectional drawing which shows the junction part of the column beam to which the junction part structure of the column beam which concerns on 2nd Embodiment of this invention was applied, (B) is a beam joined to the one side of the column in (A). It is sectional drawing which shows the done example. 本発明の第3実施形態に係る柱梁の接合部構造が適用された柱梁の接合部を示す断面図である。It is sectional drawing which shows the junction part of the column beam to which the junction part structure of the column beam which concerns on 3rd Embodiment of this invention was applied. (A)は本発明の第4実施形態に係る柱梁の接合部構造が適用された柱梁の接合部を示す断面図であり、(B)は(A)において梁が柱の片側に接合された例を示す断面図である。(A) is sectional drawing which shows the junction part of the column beam to which the junction part structure of the column beam which concerns on 4th Embodiment of this invention was applied, (B) is a beam joined to the one side of the column in (A). It is sectional drawing which shows the done example. 本発明の第5実施形態に係る柱梁の接合部構造が適用された柱梁の接合部を示す断面図である。It is sectional drawing which shows the junction part of the column beam to which the junction part structure of the column beam which concerns on 5th Embodiment of this invention was applied. (A)は本発明の第6実施形態に係る柱梁の接合部構造が適用された柱梁の接合部を示す断面図であり、(B)は梁主筋に固定された機械式定着具を示す側面図である。(A) is sectional drawing which shows the junction part of the column beam to which the junction part structure of the column beam concerning 6th Embodiment of this invention was applied, (B) is a mechanical fixing tool fixed to the beam main reinforcement. FIG. 本発明の第7実施形態に係る柱梁の接合部構造が適用された柱梁の接合部を示す断面図である。It is sectional drawing which shows the junction part of the column beam to which the junction part structure of the column beam which concerns on 7th Embodiment of this invention was applied. (A)は本発明の第8実施形態に係る柱梁の接合部構造が適用された柱梁の接合部を示す断面図であり、(B)は(A)において柱梁の接合部内にあばら筋が配筋された例を示す断面図である。(A) is sectional drawing which shows the junction part of the column beam to which the junction part structure of the column beam which concerns on 8th Embodiment of this invention was applied, (B) is scattered in the junction part of a column beam in (A). It is sectional drawing which shows the example by which the streak was arranged.

[第1実施形態]
(構成)
図1(A)に示すように、第1実施形態に係る柱梁の接合部構造は、鉄筋コンクリート製の柱20と鉄筋コンクリート製の梁30との接合部(仕口部)10に適用される。接合部10、柱20及び梁30を形成するコンクリートはそれぞれ現場打ちコンクリートとされ、接合部10には柱主筋22及び梁主筋32が配筋されている。
[First Embodiment]
(Constitution)
As shown in FIG. 1 (A), the column beam joint structure according to the first embodiment is applied to a joint (joint part) 10 between a reinforced concrete column 20 and a reinforced concrete beam 30. The concrete forming the joint 10, the column 20, and the beam 30 is a cast-in-place concrete, and the column main bar 22 and the beam main bar 32 are arranged in the joint 10.

具体的には、柱20の柱主筋22が接合部10を上下方向(略鉛直方向)に貫通し、梁30の梁主筋32の端部が、接合部10内で接合部10内に埋設された機械式継手40によって接続されている。なお、機械式継手40は本発明における支圧部材の一例である。   Specifically, the column main reinforcement 22 of the column 20 penetrates the joint portion 10 in the vertical direction (substantially vertical direction), and the end portion of the beam main reinforcement 32 of the beam 30 is embedded in the joint portion 10 in the joint portion 10. Connected by a mechanical joint 40. The mechanical joint 40 is an example of a bearing member in the present invention.

なお、接合部10とは柱20における梁30の上端面から下端面までの部分のことであり以下の説明において、柱20における接合部10以外の部分は柱部20Aと称する。   In addition, the junction part 10 is a part from the upper end surface of the beam 30 in the pillar 20 to a lower end surface, and in the following description, parts other than the junction part 10 in the pillar 20 are called pillar part 20A.

図1(B)に示すように、機械式継手40は柱主筋22よりも高剛性の鋼材で形成され、機械式継手40の支圧部面積(機械式継手40の端面40EがコンクリートCと接する面積)は、梁主筋32の断面積の3倍以上とされている。換言すると、機械式継手40と梁主筋32との支圧面積比をR(=機械式継手40の支圧部面積/梁主筋32の断面積)として、R≧3.0とされている。   As shown in FIG. 1B, the mechanical joint 40 is formed of a steel material having rigidity higher than that of the column main reinforcement 22, and the bearing portion area of the mechanical joint 40 (the end surface 40E of the mechanical joint 40 is in contact with the concrete C). The area) is set to be three times or more the cross-sectional area of the beam main bar 32. In other words, R ≧ 3.0, where R is the bearing area ratio between the mechanical joint 40 and the beam main bar 32 (= the bearing area of the mechanical joint 40 / the cross-sectional area of the beam main bar 32).

柱主筋22にはフープ筋(せん断補強筋)24が所定のピッチで巻き付けられており、図示しない結束線で互いに固定されている。フープ筋24は接合部10の内部にも配設されており、接合部10の外部と同ピッチとされている。なお、接合部10の内部と外部におけるフープ筋24のピッチは変更してもよい。   Hoop bars (shear reinforcement bars) 24 are wound around the column main bars 22 at a predetermined pitch, and are fixed to each other by binding wires (not shown). The hoop lines 24 are also arranged inside the joint 10 and have the same pitch as the outside of the joint 10. Note that the pitch of the hoop lines 24 inside and outside the joint 10 may be changed.

同様に、梁主筋32にはあばら筋(せん断補強筋)34が所定のピッチで巻き掛けられており、図示しない結束線で互いに固定されている。   Similarly, rib bars (shear reinforcement bars) 34 are wound around the beam main bars 32 at a predetermined pitch, and are fixed to each other by a binding wire (not shown).

(作用・効果)
第1実施形態に係る柱梁の接合部構造によると、図1(A)に示すように、梁30にモーメントMが作用して梁主筋32に引張力Nが作用すると、引張力を受ける側の機械式継手40の端面40Eに支圧力Pが作用する。このため、引張力Nに対して、梁主筋32の外周面とコンクリートCとの間の付着力と、機械式継手40の端面40EとコンクリートCとの間の支圧力Pとによって抵抗することができる。
(Action / Effect)
According to the joint structure of the column beam according to the first embodiment, as shown in FIG. 1A, when the moment M acts on the beam 30 and the tensile force N acts on the beam main bar 32, the side receiving the tensile force. The supporting pressure P acts on the end face 40E of the mechanical joint 40. Therefore, the tensile force N can be resisted by the adhesion force between the outer peripheral surface of the beam main bar 32 and the concrete C and the support pressure P between the end surface 40E of the mechanical joint 40 and the concrete C. it can.

したがって、接合部10において梁主筋32に機械式継手40が設けられていない場合と比較して、梁主筋32はコンクリートCに対してすべりにくい。このため、梁主筋32とコンクリートCとの付着力の低下による接合部10のひび割れを抑制できる。   Therefore, compared to the case where the mechanical joint 40 is not provided on the beam main bar 32 in the joint portion 10, the beam main bar 32 is less likely to slide against the concrete C. For this reason, the crack of the junction part 10 by the fall of the adhesive force of the beam main reinforcement 32 and the concrete C can be suppressed.

また、機械式継手40と梁主筋32との支圧面積比Rが、R≧3.0とされている。このため、梁主筋32に引張力が作用した際に機械式継手40の端面40Eと当接する部分を頂点として円錐状にコンクリートCが破壊されるコーン状破壊領域Vの大きさが、R<3.0の場合と比較して大きい。このため、R<3.0の場合と比較してコーン状破壊に至るまでの強度が大きい。したがって、接合部10が破壊しにくい。   The bearing area ratio R between the mechanical joint 40 and the beam main bar 32 is R ≧ 3.0. For this reason, when a tensile force is applied to the beam main bar 32, the size of the cone-shaped fracture region V where the concrete C is broken in a conical shape with the portion contacting the end surface 40E of the mechanical joint 40 as a vertex is R <3. Larger than that of 0.0. For this reason, compared with the case of R <3.0, the intensity | strength until it reaches a cone-shaped fracture is large. Therefore, the joint 10 is difficult to break.

なお、コーン状破壊を考慮する必要がない場合などは、支圧面積比Rを、R<3.0とすることもできる。支圧面積比Rを小さくすれば機械式継手40を小さくできるので、接合部10の内部に配筋し易い。   In addition, when there is no need to consider cone-shaped fracture, the bearing area ratio R can be set to R <3.0. If the bearing area ratio R is reduced, the mechanical joint 40 can be reduced, so that the bars are easily arranged inside the joint 10.

[第2実施形態]
第1実施形態に係る柱梁の接合部構造においては、梁主筋32の端部が接合部10内で機械式継手40によって接合され、柱主筋22が接合部10を上下方向に貫通しているものとしたが、第2実施形態に係る柱梁の接合部構造においては、図2(A)に示すように、柱主筋22の端部を接合部10内で機械式継手42で接続し、梁主筋32が接合部10を左右方向(略水平方向)に貫通している。なお、図2(B)に示すように、梁30が柱20の片側のみに設けられている場合は、梁主筋32は接合部10を貫通しなくてもよい。
[Second Embodiment]
In the joint structure of the column beam according to the first embodiment, the end of the beam main bar 32 is joined by the mechanical joint 40 in the joint 10, and the column main bar 22 penetrates the joint 10 in the vertical direction. However, in the joint structure of the column beam according to the second embodiment, as shown in FIG. 2 (A), the end of the column main bar 22 is connected by a mechanical joint 42 in the joint 10, The main beam 32 penetrates the joint portion 10 in the left-right direction (substantially horizontal direction). As shown in FIG. 2B, when the beam 30 is provided only on one side of the column 20, the beam main bar 32 does not need to penetrate the joint portion 10.

このように柱主筋22を機械式継手42で接続した場合、例えば柱20にモーメントMが作用して柱主筋22に引張力Nが作用すると、引張力Nを受ける側の機械式継手42の端面42Eに支圧力Pが作用する。このため、引張力Nに対して、柱主筋22の外周面とコンクリートCとの間の付着力と、機械式継手42の端面42EとコンクリートCとの間の支圧力Pとによって抵抗することができる。したがって、このような構成によっても、柱主筋22とコンクリートCとの付着力の低下による接合部10のひび割れを抑制できる。   When the column main bars 22 are connected by the mechanical joints 42 in this way, for example, when a moment M acts on the columns 20 and a tensile force N acts on the column main bars 22, the end face of the mechanical joint 42 on the side receiving the tensile forces N The support pressure P acts on 42E. For this reason, the tensile force N can be resisted by the adhesion force between the outer peripheral surface of the columnar reinforcement 22 and the concrete C and the support pressure P between the end surface 42E of the mechanical joint 42 and the concrete C. it can. Therefore, even with such a configuration, it is possible to suppress cracking of the joint portion 10 due to a decrease in the adhesive force between the column main bars 22 and the concrete C.

さらに、柱主筋22を機械式継手42で接続した場合、機械式継手42と柱主筋22との支圧面積比Rを3.0以上とすることで、コーン状破壊に至るまでの強度を大きくして、接合部10の破壊を抑制することができる。   Furthermore, when the column main bars 22 are connected by the mechanical joints 42, the strength until reaching the cone-like fracture is increased by setting the bearing area ratio R between the mechanical joints 42 and the column main bars 22 to 3.0 or more. Thus, the breakage of the joint portion 10 can be suppressed.

[第3実施形態]
また、第1実施形態に係る柱梁の接合部構造においては、梁主筋32の端部が接合部10内で機械式継手40によって接続されているものとしたが、第3実施形態に係る柱梁の接合部構造においては、図3に示すように、梁主筋32を、接合部10の外部すなわち梁30の内部に埋設した機械式継手44によって接続している。
[Third Embodiment]
Moreover, in the column-beam joint structure according to the first embodiment, the end of the beam main bar 32 is connected by the mechanical joint 40 in the joint 10, but the column according to the third embodiment. In the joint structure of the beam, as shown in FIG. 3, the beam main bars 32 are connected by a mechanical joint 44 embedded outside the joint 10, that is, inside the beam 30.

このような構成によっても、梁主筋32に作用した引張力Nに対して機械式継手44の端面44EとコンクリートCとの間に発生する支圧力Pによって、接合部10のひび割れを抑制できる。また、機械式継手44の端面が梁30の端面と一致するように機械式継手44を梁30に埋設すれば、接合部10と柱部20Aとが一体化された柱20と、接合部10に接合される梁30とをそれぞれプレキャストコンクリートにより形成することができる。この場合、接合部10の側面から突出した梁主筋32Aに対して、梁30の端面に開口した機械式継手44を挿入する。   Even with such a configuration, cracking of the joint portion 10 can be suppressed by the support pressure P generated between the end surface 44E of the mechanical joint 44 and the concrete C with respect to the tensile force N applied to the beam main bar 32. Further, if the mechanical joint 44 is embedded in the beam 30 so that the end surface of the mechanical joint 44 coincides with the end surface of the beam 30, the column 20 in which the joint portion 10 and the column portion 20A are integrated, and the joint portion 10 are combined. The beams 30 to be joined to each other can be formed of precast concrete. In this case, a mechanical joint 44 opened at the end face of the beam 30 is inserted into the beam main reinforcing bar 32A protruding from the side surface of the joint portion 10.

[第4実施形態]
第4実施形態に係る柱梁の接合部構造においては、図4(A)、(B)に示すように、柱主筋22を接合部10の外部すなわち柱部20Aに埋設した機械式継手46によって接続している。
[Fourth Embodiment]
In the joint structure of the column beam according to the fourth embodiment, as shown in FIGS. 4A and 4B, the column main reinforcement 22 is formed by a mechanical joint 46 embedded in the outside of the joint portion 10, that is, in the pillar portion 20A. Connected.

このような構成によっても、柱主筋22に作用した引張力Nに対して機械式継手46の端面46EとコンクリートCとの間に発生する支圧力Pによって、接合部10のひび割れを抑制できる。また、機械式継手46の端面が接合部10の端面10Eと接するように機械式継手46を柱部20Aに埋設すれば、接合部10と一体化された梁30と、接合部10に接合される柱部20Aとを、それぞれプレキャストコンクリートにより形成することができる。この場合、接合部10の上下面からそれぞれ突出した柱主筋22Aに対して、柱部20Aの端面に開口した機械式継手46を挿入する。   Even with such a configuration, cracking of the joint portion 10 can be suppressed by the support pressure P generated between the end surface 46E of the mechanical joint 46 and the concrete C with respect to the tensile force N applied to the columnar reinforcement 22. Further, if the mechanical joint 46 is embedded in the column portion 20A so that the end face of the mechanical joint 46 is in contact with the end face 10E of the joint portion 10, the beam 30 integrated with the joint portion 10 and the joint portion 10 are joined. Each column portion 20A can be formed of precast concrete. In this case, the mechanical joint 46 opened at the end surface of the column portion 20A is inserted into the column main reinforcing bars 22A protruding from the upper and lower surfaces of the joint portion 10, respectively.

このように、第3実施形態及び第4実施形態に係る柱梁の接合部構造は、現場打ちコンクリートを用いた柱20、梁30の接合部10の他、プレキャストコンクリートを用いた柱20、梁30の接合部10にも適用することができる。なお、柱20、梁30は鉄筋コンクリート製とされているが、これを鉄骨鉄筋コンクリート製とすることもできる。   As described above, the column-beam joint structure according to the third and fourth embodiments includes the column 20 using the cast-in-place concrete and the joint 10 of the beam 30, the column 20 using the precast concrete, and the beam. It can also be applied to 30 joints 10. In addition, although the column 20 and the beam 30 are made of reinforced concrete, they can be made of steel reinforced concrete.

[第5実施形態]
第4実施形態に係る柱梁の接合部構造においては、接合部10に埋設された柱主筋22Aと、柱部20Aに埋設された柱主筋22Bとは同径とされているものとしたが、第5実施形態に係る柱梁の接合部構造においては、図5に示すように、柱主筋22Aが、柱主筋22Bよりも大径あるいは高強度とされている。柱主筋22Aを柱主筋22Bよりも大径とする場合は、同鋼種の異形鉄筋を用いて、例えばJIS G3112に規定された規格呼び径の2サイズ差までとする。
[Fifth Embodiment]
In the column beam joint structure according to the fourth embodiment, the column main reinforcement 22A embedded in the connection portion 10 and the column main reinforcement 22B embedded in the column portion 20A have the same diameter. In the column beam joint structure according to the fifth embodiment, as shown in FIG. 5, the column main reinforcement 22A has a larger diameter or higher strength than the column main reinforcement 22B. When the column main reinforcing bar 22A has a larger diameter than the column main reinforcing bar 22B, a deformed reinforcing bar of the same steel type is used, for example, up to two size differences of standard nominal diameters defined in JIS G3112.

このようにすることで、柱主筋22に引張力Nが作用した際の柱主筋22Bの伸びが小さくなる。このためコンクリートCに作用する付着応力が低減され、接合部10のひび割れを抑制できる。   By doing in this way, the elongation of the column main reinforcement 22B when the tensile force N acts on the column main reinforcement 22 becomes small. For this reason, the adhesion stress which acts on concrete C is reduced, and the crack of the junction part 10 can be suppressed.

なお、図1(A)、(B)に示した第1実施形態に係る機械式継手40及び図2(A)、(B)に示した第2実施形態に係る機械式継手42は、両端面から接合部10のコンクリートCに支圧力を与えるため、両端面が接合部10から突出しない長さとする必要がある。一方、図3に示した第3実施形態に係る機械式継手44及び図4(A)、(B)、図5に示した第4、5実施形態に係る機械式継手46は、接合部10の外側から接合部10のコンクリートに支圧力を与えるため、長さは問わない。このため、接合部10の寸法が小さい場合などは、機械式継手44又は機械式継手46を用いることが好適である。   Note that the mechanical joint 40 according to the first embodiment shown in FIGS. 1A and 1B and the mechanical joint 42 according to the second embodiment shown in FIGS. In order to apply a supporting pressure from the surface to the concrete C of the joint portion 10, it is necessary that the both end surfaces have a length that does not protrude from the joint portion 10. On the other hand, the mechanical joint 44 according to the third embodiment shown in FIG. 3 and the mechanical joint 46 according to the fourth and fifth embodiments shown in FIGS. 4 (A) and 4 (B) and FIG. Since the supporting pressure is applied to the concrete of the joint portion 10 from the outside, the length is not limited. For this reason, when the dimension of the junction 10 is small, it is preferable to use the mechanical joint 44 or the mechanical joint 46.

[第6実施形態]
(構成)
第6実施形態に係る柱梁の接合部構造では図6(A)に示すように、第1実施形態に係る柱梁の接合部構造における機械式継手40(図1(A)参照)に代えて、機械式定着具50が用いられている。機械式定着具50は接合部10の中央部に埋設されており、機械式定着具50の内部を梁主筋32が貫通している。なお、機械式定着具50は本発明における支圧部材の一例である。
[Sixth Embodiment]
(Constitution)
In the column beam joint structure according to the sixth embodiment, as shown in FIG. 6A, the mechanical joint 40 (see FIG. 1A) in the column beam joint structure according to the first embodiment is replaced. A mechanical fixing device 50 is used. The mechanical fixing device 50 is embedded in the central portion of the joint 10, and the main beam 32 passes through the inside of the mechanical fixing device 50. The mechanical fixing device 50 is an example of a supporting member in the present invention.

図6(B)に示すように、機械式定着具50は円筒状の本体部50Aの軸方向端部からフランジ50Bが径方向に張出した形状とされており、ねじ節鉄筋又は異形鉄筋とされた梁主筋32が貫通している。また、機械式定着具50と梁主筋32とは、梁主筋32と本体部50Aとの隙間に注入されたグラウト材により固定されている。機械式定着具50のフランジ50Bの支圧部面積は、第1実施形態における機械式継手40の支圧部面積と同様、梁主筋32の断面積の3倍以上とされ、支圧発生面が梁主筋32の接合部10の略中央に配置されている。   As shown in FIG. 6B, the mechanical fixing device 50 has a shape in which a flange 50B projects radially from the axial end of the cylindrical main body 50A, and is a threaded bar or deformed bar. The main beam 32 is penetrated. Further, the mechanical fixing tool 50 and the beam main bar 32 are fixed by a grout material injected into a gap between the beam main bar 32 and the main body 50A. The area of the bearing portion of the flange 50B of the mechanical fixing tool 50 is set to be three times or more the cross-sectional area of the beam main bar 32 as in the area of the bearing portion of the mechanical joint 40 in the first embodiment. It is arranged at the approximate center of the joint 10 of the beam main bar 32.

その他の構成は図1(A)に示した第1実施形態に係る柱梁の接合部構造と等しく、説明は省略する。なお、本実施形態において機械式定着具50はフランジ50Bを備えた形状とされているが、本発明の実施形態はこれに限らない。例えばフランジ50Bを備えない円筒形状の機械式定着具を用いることもできる。   The other configuration is the same as the column beam joint structure according to the first embodiment shown in FIG. In the present embodiment, the mechanical fixing device 50 has a shape including the flange 50B, but the embodiment of the present invention is not limited thereto. For example, a cylindrical mechanical fixing device without the flange 50B may be used.

(作用・効果)
第6実施形態に係る柱梁の接合部構造によると、図6(A)に示すように、梁30にモーメントMが作用して梁主筋32に引張力Nが作用すると、機械式定着具50が引張力を受け、接合部10のコンクリートCは、機械式定着具50により矢印C1で示す方向から押圧される。また、コンクリートCは引張力Nを受ける側と反対側の梁30からは矢印C2で示す方向から押圧される。これにより、接合部10の隅部から反対側の隅部に向かって、及び、接合部10の中央部の支圧発生面から接合部10の隅部に向かって、それぞれ網掛けで示す圧縮ストラッドS1、S2が発生し、接合部10の耐力が向上する。
(Action / Effect)
According to the joint structure of column beams according to the sixth embodiment, as shown in FIG. 6A, when a moment M acts on the beam 30 and a tensile force N acts on the beam main bar 32, a mechanical fixing device 50 is provided. Receives the tensile force, and the concrete C of the joint 10 is pressed by the mechanical fixing device 50 from the direction indicated by the arrow C1. Moreover, the concrete C is pressed from the direction opposite to the side receiving the tensile force N from the direction indicated by the arrow C2. As a result, the compression struts indicated by hatching from the corner of the joint 10 toward the opposite corner and from the bearing-bearing surface at the center of the joint 10 toward the corner of the joint 10 respectively. S1 and S2 occur, and the yield strength of the joint 10 is improved.

これに対して、例えば梁主筋32に機械式定着具50が固定されていない場合、接合部10の中央部から圧縮ストラッドS2は発生しない。このため、梁主筋32に機械式定着具50が固定されている本実施形態に係る柱梁の接合部構造と、梁主筋32に機械式定着具50が固定されていない構造とを比較すると、本実施形態に係る柱梁の接合部構造のほうが、接合部10の耐力が高い。   On the other hand, for example, when the mechanical fixing tool 50 is not fixed to the beam main bar 32, the compression straddle S2 does not occur from the central portion of the joint portion 10. For this reason, comparing the joint structure of the column beam according to the present embodiment in which the mechanical fixing tool 50 is fixed to the beam main bar 32 and the structure in which the mechanical fixing tool 50 is not fixed to the beam main bar 32, The joint structure of the column beam according to the present embodiment has higher proof strength of the joint 10.

また、引張力Nに対しては、梁主筋32の外周面とコンクリートCとの間の付着力と、機械式定着具50とコンクリートCとの間の支圧力とによって抵抗することができる。したがって、梁主筋32とコンクリートCとの付着力の低下による接合部10のひび割れを抑制できる。   Further, the tensile force N can be resisted by the adhesion force between the outer peripheral surface of the beam main bar 32 and the concrete C and the support pressure between the mechanical fixing device 50 and the concrete C. Therefore, the crack of the junction part 10 by the fall of the adhesive force of the beam main reinforcement 32 and the concrete C can be suppressed.

さらに、機械式定着具50と梁主筋32との支圧面積比が3倍以上とされている。したがってコンクリートCのコーン状破壊が生じにくい。なお、コーン状破壊を考慮する必要がない場合などは、支圧面積比を、3未満とすることもできる。支圧面積比を小さくすれば機械式定着具50を小さくできるので、接合部10の内部に配筋し易い。   Furthermore, the bearing area ratio between the mechanical fixing device 50 and the beam main bar 32 is set to be three times or more. Therefore, the cone-like destruction of the concrete C hardly occurs. In addition, when it is not necessary to consider cone-shaped fracture, the bearing area ratio can be set to less than 3. If the bearing area ratio is reduced, the mechanical fixing device 50 can be reduced, so that the bars are easily arranged inside the joint 10.

[第7実施形態]
第6実施形態に係る柱梁の接合部構造においては、柱主筋22は接合部10の内部において直線状に配置されているものとした、第7実施形態に係る柱梁の接合部構造においては、図7に示すように、柱20の一方の側面寄りの柱主筋22Cと他方の側面寄りの柱主筋22Dとが、接合部10の内部においてX字状に交差している。
[Seventh Embodiment]
In the column beam joint structure according to the sixth embodiment, the column main bars 22 are arranged linearly inside the joint 10. In the column beam joint structure according to the seventh embodiment, As shown in FIG. 7, the column main reinforcing bars 22 </ b> C near one side surface of the column 20 and the column main reinforcing bars 22 </ b> D near the other side surface intersect with each other in an X shape inside the joint 10.

このような構成にすることで、例えば梁主筋32に引張力Nが作用した際に接合部10の中央部に、接合部10の隅部の対角線Kに沿って発生しようとする斜めひび割れCRの方向に対して、柱主筋22が交差する。このため、斜めひび割れCRの発生を抑制することができる。   With such a configuration, for example, when the tensile force N is applied to the beam main bar 32, the diagonal crack CR that is to be generated along the diagonal K at the corner of the joint 10 is formed at the center of the joint 10. The column main bars 22 intersect with the direction. For this reason, generation | occurrence | production of the diagonal crack CR can be suppressed.

[第8実施形態]
第6、7実施形態に係る柱梁の接合部構造においては、梁主筋32に機械式定着具50を固定するものとしたが、第8実施形態に係る柱梁の接合部構造においては、図8(A)に示すように、梁主筋32には機械式定着具50を固定せず、柱主筋22に機械式定着具50が固定されている。なお、梁主筋32及び柱主筋22の双方に機械式定着具50を固定してもよい。
[Eighth Embodiment]
In the beam-column joint structure according to the sixth and seventh embodiments, the mechanical fixing device 50 is fixed to the beam main bar 32. However, in the beam-column joint structure according to the eighth embodiment, as shown in FIG. As shown in FIG. 8A, the mechanical fixing tool 50 is not fixed to the beam main bar 32 but the mechanical fixing tool 50 is fixed to the column main bar 22. The mechanical fixing device 50 may be fixed to both the beam main bar 32 and the column main bar 22.

柱主筋22に機械式定着具52を固定した場合、柱20にモーメントMが作用して柱主筋22に作用する引張力Nにより、接合部10のコンクリートCは、機械式定着具50との間で発生する支圧力により矢印C1で示す方向から押圧される。また、引張力Nを受ける側と反対側の部分には圧縮力が作用し、矢印C2で示す方向から押圧される。これにより、接合部10の隅部から反対側の隅部に向かって、及び、接合部10の隅部から接合部10の中央部に向かって、それぞれ網掛けで示す圧縮ストラッドS1、S2が発生し、接合部10の耐力が向上する。   When the mechanical fixing device 52 is fixed to the column main reinforcement 22, the concrete C of the joint portion 10 is connected to the mechanical fixing device 50 by the tensile force N applied to the column main reinforcement 22 by the moment M acting on the column 20. It is pressed from the direction shown by the arrow C1 by the support pressure generated at. Further, a compressive force acts on a portion opposite to the side receiving the tensile force N and is pressed from the direction indicated by the arrow C2. Thereby, compression struts S1 and S2 indicated by shading are generated from the corner of the joint 10 toward the opposite corner and from the corner of the joint 10 toward the center of the joint 10, respectively. And the proof stress of the junction part 10 improves.

また、柱主筋22に機械式定着具50を固定した場合においては、図8(B)に示すように、接合部10の内部において柱主筋22に巻き付けるフープ筋24に代えて、梁主筋32に巻き付けるあばら筋34を配置することができる。接合部10の内部にあばら筋34をこのように配筋することで、梁主筋32が破線Hで示したように変形することを抑制できる。   Further, when the mechanical fixing device 50 is fixed to the column main reinforcement 22, the beam main reinforcement 32 is replaced with the hoop reinforcement 24 wound around the column main reinforcement 22 inside the joint portion 10 as shown in FIG. A loose stirrup 34 can be arranged. By arranging the streaks 34 inside the joint 10 in this way, it is possible to prevent the beam main bars 32 from being deformed as indicated by the broken line H.

なお、図8(A)、(B)において梁主筋32は接合部10の内部において直線状に配置されているが、本発明の実施形態はこれに限らない。例えば図7に示した第7実施形態に係る柱梁の接合部構造の柱主筋22A、22Bと同様に、梁30の上面寄りの梁主筋(上端筋)32と下面寄りの梁主筋(下端筋)32とを接合部10の内部においてX字状に交差させてもよい。   8A and 8B, the beam main bars 32 are linearly arranged inside the joint portion 10, but the embodiment of the present invention is not limited to this. For example, similarly to the column main bars 22A and 22B of the column beam joint structure according to the seventh embodiment shown in FIG. 7, the beam main bar (upper bar) 32 near the upper surface of the beam 30 and the beam main bar (lower bar) near the lower surface. ) 32 may be crossed in an X shape inside the joint 10.

さらに、このように柱主筋22又は梁主筋32を接合部10の内部においてX字状に交差させる構成は、図1(A)に示した第1実施形態に係る柱梁の接合部構造及び図2(A)、(B)、図3、図4(A)、(B)に示した各種の実施形態、すなわち機械式継手40、42、44、46を用いた構成に適用することもできる。   Further, the structure in which the column main bars 22 or the beam main bars 32 intersect in the X shape inside the joint portion 10 as described above is the joint structure and diagram of the column beam according to the first embodiment shown in FIG. 2 (A), (B), FIG. 3, FIG. 4 (A), (B) can be applied to various embodiments, that is, configurations using mechanical joints 40, 42, 44, 46. .

柱主筋22又は梁主筋32を接合部10の内部においてX字状に交差させる構成をこれらの実施形態に適用しても、斜めひび割れCRの発生を抑制することができる。このように、本発明における各実施形態に示した構成は適宜組み合わせて用いることができる。   Even if the configuration in which the column main bars 22 or the beam main bars 32 intersect in the X shape inside the joint portion 10 is applied to these embodiments, the occurrence of the oblique crack CR can be suppressed. As described above, the configurations shown in the embodiments of the present invention can be used in appropriate combination.

10 接合部
20 柱(鉄筋コンクリート製柱)
20A 柱部
22 柱主筋
22A 柱主筋(接合部の柱主筋)
22B 柱主筋(柱部の柱主筋)
20 梁(鉄筋コンクリート製梁)
32 梁主筋
34 あばら筋(せん断補強筋)
40、42、44、46 機械式継手(支圧部材)
50 機械式定着具(支圧部材)
10 joint 20 pillar (steel reinforced concrete pillar)
20A Column 22 Column main bar 22A Column main bar (column main bar of joint)
22B Column main bar (column main bar of column part)
20 beams (steel reinforced concrete beams)
32 Beam main bar 34 Stirrup (shear reinforcement)
40, 42, 44, 46 Mechanical coupling (supporting member)
50 Mechanical fixing device (supporting member)

Claims (6)

鉄筋コンクリート製柱の柱主筋と鉄筋コンクリート製梁の梁主筋とが配筋された接合部と、
前記柱主筋又は前記梁主筋に設けられ支圧力を発生させる支圧部材と、
を有する柱梁の接合部構造。
A joint in which the column reinforcement of a reinforced concrete column and the beam reinforcement of a reinforced concrete beam are arranged;
A supporting member that is provided in the column main bar or the beam main bar and generates a supporting pressure;
Column beam joint structure with
前記支圧部材は、前記接合部に設けられた又は前記接合部の外側に設けられた機械式継手である請求項1に記載の柱梁の接合部構造。   2. The beam-column joint structure according to claim 1, wherein the bearing member is a mechanical joint provided at the joint or outside the joint. 3. 前記支圧部材は機械式定着具とされ、支圧発生面が前記梁主筋の前記接合部の中央部に位置している請求項1に記載の柱梁の接合部構造。   2. The column beam joint structure according to claim 1, wherein the bearing member is a mechanical fixing tool, and a bearing generating surface is located at a central portion of the joint of the beam main bar. 前記柱主筋に前記支圧部材が設けられた場合は前記梁主筋がX字状に交差し、前記梁主筋に前記支圧部材が設けられた場合は前記柱主筋がX字状に交差している、請求項1〜3の何れか1項に記載の柱梁の接合部構造。   When the supporting member is provided on the column main bar, the beam main bar intersects in an X shape, and when the supporting member is provided on the beam main bar, the column main bar crosses in an X shape. The joint structure of a column beam according to any one of claims 1 to 3. 前記柱主筋に前記支圧部材が設けられ、前記梁主筋の周囲にせん断補強筋が巻き付けられている、請求項1〜3の何れか1項に記載の柱梁の接合部構造。   The joint structure of a column beam according to any one of claims 1 to 3, wherein the supporting member is provided on the column main bar, and a shear reinforcement bar is wound around the beam main bar. 鉄筋コンクリート製柱の柱主筋と鉄筋コンクリート製梁の梁主筋とが配筋された接合部を備え、前記接合部の柱主筋が柱部の柱主筋より大径とされている、柱梁の接合部構造。   A column beam joint structure comprising a joint in which a column reinforcement of a reinforced concrete column and a beam reinforcement of a reinforced concrete beam are arranged, and the column reinforcement of the joint is larger in diameter than the column reinforcement of the column .
JP2016117386A 2016-06-13 2016-06-13 Column-beam junction structure Pending JP2017222993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016117386A JP2017222993A (en) 2016-06-13 2016-06-13 Column-beam junction structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016117386A JP2017222993A (en) 2016-06-13 2016-06-13 Column-beam junction structure

Publications (1)

Publication Number Publication Date
JP2017222993A true JP2017222993A (en) 2017-12-21

Family

ID=60686280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016117386A Pending JP2017222993A (en) 2016-06-13 2016-06-13 Column-beam junction structure

Country Status (1)

Country Link
JP (1) JP2017222993A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108385835A (en) * 2018-03-14 2018-08-10 青岛理工大学 Shaped steel runs through the novel beam-to-column joint structure of cast-type concrete frame

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108385835A (en) * 2018-03-14 2018-08-10 青岛理工大学 Shaped steel runs through the novel beam-to-column joint structure of cast-type concrete frame

Similar Documents

Publication Publication Date Title
JP2015004229A (en) Pc earthquake-poof joining structure and pc earthquake-proof joining method of column-beam of using steel frame pin
JP5118594B2 (en) Structure of pedestal paragraph
JP2015014096A (en) Reinforcement structure and construction method for the same
JP2017222993A (en) Column-beam junction structure
JP2015014097A (en) Reinforcement structure and construction method for the same
JP5483055B2 (en) Mixed structural beam
JP2008280786A (en) Joint structure of wooden building member
JP7243007B2 (en) Wooden beam joint structure
JP6428027B2 (en) Column rebar connection panel and rebar structure
JP2017222996A (en) Column-beam junction structure
JP6057490B1 (en) Seismic reinforcement structure for existing or new steel structures
JP6508866B2 (en) Column-beam frame
JP6438213B2 (en) Reinforced structure and reinforced concrete structure
JP5840393B2 (en) Concrete structures and shear reinforcement members
JP4547875B2 (en) Concrete reinforcing structure and reinforcing method
JP2009215748A (en) Composite structure beam, and building structure having composite structure beam
JP5492163B2 (en) Reinforced concrete wall column
JP2015028291A (en) Joining structure of mutual columns and building
JP5694596B1 (en) Seismic reinforcement structure for existing buildings and seismic reinforcement method for existing buildings
JP6368547B2 (en) Joint structure of precast concrete wall and beam
JP6876384B2 (en) Beam-column joint structure
JP6126455B2 (en) Method for producing prestressed concrete member and concrete member
JP2016223092A (en) Pile foundation structure
JP6909561B2 (en) Beam-column joint structure
JP2008031699A (en) Joining structure of column-beam connection part