JP2017219655A - Zoom lens and imaging device having the same - Google Patents

Zoom lens and imaging device having the same Download PDF

Info

Publication number
JP2017219655A
JP2017219655A JP2016113115A JP2016113115A JP2017219655A JP 2017219655 A JP2017219655 A JP 2017219655A JP 2016113115 A JP2016113115 A JP 2016113115A JP 2016113115 A JP2016113115 A JP 2016113115A JP 2017219655 A JP2017219655 A JP 2017219655A
Authority
JP
Japan
Prior art keywords
lens
refractive power
resin
lens group
zoom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016113115A
Other languages
Japanese (ja)
Inventor
聖 伊藤
Satoshi Ito
聖 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016113115A priority Critical patent/JP2017219655A/en
Publication of JP2017219655A publication Critical patent/JP2017219655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a zoom lens having a high variable power ratio, high optical performance over the whole zoom range, and little variations in a focus or aberrations even when an environmental temperature changes.SOLUTION: The zoom lens includes, successively from an object side to an image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a rear group composed of two lens groups; and the zoom lens includes at least one resin lens having a positive refractive power in the second lens group or succeeding groups, and at least one resin lens having a negative refractive power in the second lens group or succeeding groups. The refractive power of each resin lens is appropriately set by taking a temperature coefficient of the refractive index and a coefficient of linear expansion into consideration.SELECTED DRAWING: Figure 1

Description

本発明は、ズームレンズ及びそれを有する撮像装置に関し、特に、デジタルスチルカメラ、ビデオカメラ、写真用カメラ等の撮影光学系として好適なものである。   The present invention relates to a zoom lens and an image pickup apparatus having the same, and is particularly suitable as a photographing optical system such as a digital still camera, a video camera, and a photographic camera.

近年、一眼レフカメラ用交換レンズ等に用いる撮影光学系としては、高変倍比(高ズーム比)、大口径比でバックフォーカスが長く、しかも全ズーム範囲にわたり高い光学性能を有するレンズであることが要求されている。それらの要求に応えるレンズの1つとして、物体側に正の屈折力のレンズ群を配置したポジティブリード型のズームレンズが知られている。   In recent years, as a photographic optical system used for interchangeable lenses for single-lens reflex cameras, etc., the lens has a high zoom ratio, a large aperture ratio, a long back focus, and high optical performance over the entire zoom range. Is required. A positive lead type zoom lens in which a lens group having a positive refractive power is disposed on the object side is known as one of lenses that meet these requirements.

ポジティブリード型のズームレンズとして、物体側より像側へ順に、正負正負正の屈折力の5つのレンズ群で構成され、比較的高い変倍比のズームレンズが知られている(特許文献1参照)。   As a positive lead type zoom lens, a zoom lens having a comparatively high zoom ratio is known which is composed of five lens groups having positive, negative, positive and negative refractive powers in order from the object side to the image side (see Patent Document 1). ).

特開2010−237453号公報JP 2010-237453 A

近年の高変倍比、大口径比でバックフォーカスが長く、しかも全ズーム範囲にわたり高い光学性能を有するズームレンズには、低コスト化、軽量化、高性能化が求められている。   In recent years, zoom lenses having a high zoom ratio and a large aperture ratio and a long back focus and high optical performance over the entire zoom range are required to be low in cost, light in weight, and high in performance.

特許文献1のズームレンズにおいては、高い変倍比で全ズーム範囲にわたり高い光学性能を達成するために、高屈折率のガラスレンズを多く使用しているため、コスト面で不利である。また、比重の大きいガラスレンズを多く使用しているため、重量の増加が避けられない。   The zoom lens of Patent Document 1 is disadvantageous in terms of cost because many glass lenses having a high refractive index are used in order to achieve high optical performance over the entire zoom range with a high zoom ratio. Moreover, since many glass lenses with a large specific gravity are used, an increase in weight is inevitable.

光学素子に樹脂やプラスチック等の有機材料を用いることは、低コスト化、軽量化を実現する上で、非常に効果的である。また、有機材料の場合、非球面形状の製作がガラス材に比べ容易なため、高次収差補正による光学性能の向上を低コストで実現することが可能となる。   Use of an organic material such as resin or plastic for the optical element is very effective in realizing cost reduction and weight reduction. In the case of an organic material, since it is easier to manufacture an aspheric shape than a glass material, it is possible to improve optical performance by correcting higher-order aberrations at a low cost.

しかしながら、一般的に樹脂やプラスチック等の有機材料は温度変化による形状変化、屈折率変化が大きく、それらの変化の大きさはガラスと比較して10倍から100倍程度である。したがって、収差補正効果を持たせるために有機材料に強いパワーを持たせた光学素子を用いる場合、環境温度の変化に伴うピント位置のずれを軽減することが重要になってくる。環境温度の変化によるピント位置のずれを軽減するためには、環境温度の変化によるバックフォーカス変化量を小さくしておく必要がある。   However, organic materials such as resins and plastics generally have a large shape change and refractive index change due to temperature changes, and the magnitude of these changes is about 10 to 100 times that of glass. Therefore, in the case of using an optical element in which an organic material has a strong power in order to have an aberration correction effect, it is important to reduce a focus position shift accompanying a change in environmental temperature. In order to reduce the shift of the focus position due to the change in the environmental temperature, it is necessary to reduce the amount of change in the back focus due to the change in the environmental temperature.

本発明は、高変倍比で、広角端から望遠端における全ズーム範囲にわたり収差を良く補正し、全ズーム範囲において高い光学性能を有し、かつ環境温度の変化があっても、ピント変動や収差変動の少ないズームレンズを提供することを目的とする。   The present invention has a high zoom ratio, corrects aberrations well over the entire zoom range from the wide-angle end to the telephoto end, has high optical performance over the entire zoom range, and is capable of focusing fluctuations even if there is a change in environmental temperature. An object of the present invention is to provide a zoom lens with little aberration fluctuation.

上記の目的を達成するために、本発明に係るズームレンズは、
物体側より像側へ順に、正の屈折力の第1レンズ群と、負の屈折力の第2レンズ群と、正の屈折力の第3レンズ群と、2つのレンズ群よりなる後方群を有し、第2レンズ群以降に正の屈折力の樹脂レンズを少なくとも1枚含み、第2レンズ群以降に負の屈折力の樹脂レンズを少なくとも1枚含み、以下の条件式を満足することを特徴とする。
In order to achieve the above object, a zoom lens according to the present invention provides:
In order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a rear group composed of two lens groups. Including at least one resin lens having a positive refractive power after the second lens group and at least one resin lens having a negative refractive power after the second lens group, and satisfying the following conditional expression: Features.

ただし、物体側から第i番目の樹脂レンズをLPiとし、nは樹脂レンズLPiのd線に対する屈折率、dn/dTは樹脂レンズLPiの常温近辺における屈折率の温度係数、αは樹脂レンズLPiの線膨張率、φは樹脂レンズLPiの屈折力、φは広角端における全系の屈折力、β5Wは広角端における第5レンズ群の横倍率、β5Tは望遠端における第5レンズ群の横倍率である。 However, the LPi the i-th plastic lens from the object side, n i is the refractive index at the d-line of the resin lens LPi, dn i / dT is the temperature coefficient of the refractive index in the vicinity normal temperature of the resin lens LPi, alpha i is a resin The linear expansion coefficient of the lens LPi, φ i is the refractive power of the resin lens LPi, φ W is the refractive power of the entire system at the wide angle end, β 5W is the lateral magnification of the fifth lens group at the wide angle end, and β 5T is the first power at the telephoto end. This is the lateral magnification of the 5 lens group.

本発明によれば、高変倍比で、全ズーム範囲にわたり高い光学性能を有し、かつ環境温度の変化があっても、ピント変動や収差変動の少ないズームレンズが得られる。   According to the present invention, it is possible to obtain a zoom lens having a high zoom ratio, high optical performance over the entire zoom range, and little focus fluctuation and aberration fluctuation even when the environmental temperature changes.

実施例1のズームレンズの広角端における光学系断面図である。FIG. 3 is an optical system cross-sectional view at the wide angle end of the zoom lens according to the first exemplary embodiment. 実施例1のズームレンズの環境温度20℃での収差図である。FIG. 6 is an aberration diagram for the zoom lens of Example 1 at an environmental temperature of 20 ° C. 実施例1のズームレンズの環境温度0℃での収差図である。FIG. 6 is an aberration diagram for the zoom lens of Example 1 at an environmental temperature of 0 ° C. 実施例1のズームレンズの環境温度40℃での収差図である。FIG. 4 is an aberration diagram for the zoom lens of Example 1 at an environmental temperature of 40 ° C. 実施例2のズームレンズの広角端における光学系断面図である。6 is a cross-sectional view of an optical system at a wide angle end of a zoom lens according to Embodiment 2. FIG. 実施例2のズームレンズの環境温度20℃での収差図である。FIG. 6 is an aberration diagram for the zoom lens of Example 2 at an environmental temperature of 20 ° C. 実施例2のズームレンズの環境温度0℃での収差図である。FIG. 6 is an aberration diagram for the zoom lens of Example 2 at an environmental temperature of 0 ° C. 実施例2のズームレンズの環境温度40℃での収差図である。FIG. 6 is an aberration diagram for the zoom lens of Example 2 at an environmental temperature of 40 ° C. 実施例3のズームレンズの広角端における光学系断面図である。6 is a cross-sectional view of an optical system at a wide angle end of a zoom lens according to Embodiment 3. FIG. 実施例3のズームレンズの環境温度20℃での収差図である。FIG. 6 is an aberration diagram for the zoom lens of Example 3 at an environmental temperature of 20 ° C. 実施例3のズームレンズの環境温度0℃での収差図である。FIG. 6 is an aberration diagram for the zoom lens of Example 3 at an environmental temperature of 0 ° C. 実施例3のズームレンズの環境温度40℃での収差図である。FIG. 6 is an aberration diagram for the zoom lens of Example 3 at an environmental temperature of 40 ° C. 本発明のズームレンズを備えるカメラ(撮像装置)の要部概略図である。It is a principal part schematic of a camera (imaging device) provided with the zoom lens of the present invention.

以下に、本発明における各条件式について説明する。2つ以上のレンズ群に非球面形状を有する樹脂レンズを配置すれば、全ズーム範囲において高い光学性能を有することが、低コストで実現可能となる。ただし、環境温度の変化によるピント位置のずれを軽減するために、環境温度の変化によるバックフォーカスの変化量を小さくしておく必要がある。そのためには、環境温度の変化による全系の屈折力の変化量が小さくなるように、各樹脂レンズの屈折力を設定しなければならない。   Below, each conditional expression in this invention is demonstrated. If resin lenses having an aspherical shape are arranged in two or more lens groups, it is possible to realize high optical performance in the entire zoom range at low cost. However, in order to reduce the shift of the focus position due to the change in the environmental temperature, it is necessary to reduce the amount of change in the back focus due to the change in the environmental temperature. For this purpose, the refractive power of each resin lens must be set so that the amount of change in refractive power of the entire system due to changes in environmental temperature is small.

物体側から第i番目の樹脂レンズをLPiとし、nを樹脂レンズLPiのd線に対する屈折率、dn/dTを樹脂レンズLPiの常温近辺における屈折率の温度係数、αを樹脂レンズLPiの線膨張率とする。また、φを樹脂レンズLPiの屈折力、φを広角端における全系の屈折力とする。このとき、環境温度の変化ΔTによる、樹脂レンズLPiの屈折力の変化量Δφは、以下の式で与えられる。
And LPi the i-th plastic lens from the object side, a refractive index of n i the d-line of the resin lens LPi, the temperature coefficient of the refractive index dn i / dT in the vicinity normal temperature of the resin lens LPi, alpha i and resin lens LPi The linear expansion coefficient. Also, φ i is the refractive power of the resin lens LPi, and φ W is the refractive power of the entire system at the wide angle end. At this time, the change amount Δφ i of the refractive power of the resin lens LPi due to the change ΔT of the environmental temperature is given by the following equation.

一般的に樹脂やプラスチック等の有機材料では、屈折率の温度係数dn/dTは負の値であり、線膨張率αは正の値である。従って、上記の式の右辺括弧内は全体として負の値となる。環境温度の変化による全系の屈折力の変化量を小さくするためには、2つ以上の符号の異なった屈折力の樹脂レンズを用いることが必要となる。このため、各実施例のズームレンズは、
In general, in an organic material such as resin or plastic, the temperature coefficient dn i / dT of the refractive index is a negative value, and the linear expansion coefficient α i is a positive value. Therefore, the entire value in the right parenthesis of the above expression is a negative value. In order to reduce the amount of change in the refractive power of the entire system due to changes in the environmental temperature, it is necessary to use two or more resin lenses having different refractive powers. For this reason, the zoom lens of each embodiment is

なる条件を満足している。条件式(1)は環境温度の変化によって生じる全系の屈折力の変化量を規定したものであり、各樹脂レンズの屈折力を最適に設定するためのものである。条件式(1)の上限値を上回ると、環境温度の変化によるバックフォーカス変化量が大きくなり過ぎてしまうので良くない。 Is satisfied. Conditional expression (1) defines the amount of change in the refractive power of the entire system caused by a change in environmental temperature, and is for setting the refractive power of each resin lens optimally. If the upper limit value of conditional expression (1) is exceeded, the amount of change in back focus due to a change in environmental temperature becomes too large, which is not good.

条件式(2)は各樹脂レンズの屈折力を適切に規定するためのものである。条件式(2)の下限値を下回ると、樹脂レンズの屈折力が小さくなり過ぎてしまい、低次収差の補正効果が十分得られなくなるので良くない。β5Wを広角端における第5レンズ群の横倍率、β5Tを望遠端における第5レンズ群の横倍率とする。このとき、各実施例のズームレンズは、
Conditional expression (2) is for appropriately defining the refractive power of each resin lens. If the lower limit value of conditional expression (2) is not reached, the refractive power of the resin lens becomes too small, and the effect of correcting low-order aberrations cannot be obtained sufficiently. Let β 5W be the lateral magnification of the fifth lens group at the wide-angle end, and β 5T be the lateral magnification of the fifth lens group at the telephoto end. At this time, the zoom lens of each example is

なる条件を満足している。条件式(3)は第5レンズ群の変倍率に関するものであり、高変倍化を達成するためのものである。条件式(3)の下限値を下回ると、第5レンズ群L5が分担する変倍作用が小さくなり、高変倍化が困難になる。 Is satisfied. Conditional expression (3) relates to the zoom ratio of the fifth lens group, and is for achieving high zoom ratio. If the lower limit of conditional expression (3) is not reached, the zooming effect shared by the fifth lens unit L5 will be small, and it will be difficult to achieve high zooming.

次に、本発明の好ましい実施の形態について詳細に説明する。   Next, a preferred embodiment of the present invention will be described in detail.

本発明のズームレンズは、物体側より像側へ順に、正の屈折力(光学的パワー)の第1レンズ群と、負の屈折力の第2レンズ群と、正の屈折力の第3レンズ群と、2つのレンズ群よりなる後方群を有している。ここで、屈折力とは焦点距離の逆数のことである。また、レンズ群とは、単一または複数のレンズより成る集合体であり、変倍(ズーミング)に際して隣接するレンズ群とは独立に移動するものをいう。   The zoom lens according to the present invention includes, in order from the object side to the image side, a first lens group having a positive refractive power (optical power), a second lens group having a negative refractive power, and a third lens having a positive refractive power. And a rear group consisting of two lens groups. Here, the refractive power is the reciprocal of the focal length. The lens group is an aggregate composed of a single lens or a plurality of lenses, and is a lens group that moves independently of adjacent lens groups during zooming.

各実施例では、第iレンズ群Liと第i+1レンズ群Li+1との間隔を変えて変倍を行っており、広角端(短焦点距離端)から望遠端(長焦点距離端)への変倍に際して、各レンズ群を物体側へ移動させている。具体的には、広角端に比べて望遠端での第1レンズ群L1と第2レンズ群L2との間隔が大きくなるように第1レンズ群L1および第2レンズ群L2が移動する。また、第2レンズ群L2と第3レンズ群L3との間隔が小さく、第3レンズ群L3と第4レンズ群L4との間隔が大きく、第4レンズ群L4と第5レンズ群L5との間隔が小さくなるように、第3、第4、第5レンズ群が移動する。   In each embodiment, zooming is performed by changing the distance between the i-th lens unit Li and the (i + 1) -th lens unit Li + 1, and zooming from the wide-angle end (short focal length end) to the telephoto end (long focal length end). At this time, each lens group is moved to the object side. Specifically, the first lens unit L1 and the second lens unit L2 move so that the distance between the first lens unit L1 and the second lens unit L2 at the telephoto end is larger than that at the wide-angle end. The distance between the second lens group L2 and the third lens group L3 is small, the distance between the third lens group L3 and the fourth lens group L4 is large, and the distance between the fourth lens group L4 and the fifth lens group L5. The third, fourth, and fifth lens groups move so that becomes smaller.

なお、各実施例において、第3レンズ群L3と第5レンズ群L5を一体に物体側へ移動させている。これにより、鏡筒構造の簡素化を図っている。各実施例において、第3レンズ群L3と第5レンズ群L5をそれぞれ独立に移動させても良い。これによれば、変倍に際して、非点収差等の軸外収差の補正が容易になる。   In each embodiment, the third lens unit L3 and the fifth lens unit L5 are moved together to the object side. This simplifies the lens barrel structure. In each embodiment, the third lens unit L3 and the fifth lens unit L5 may be moved independently. This facilitates correction of off-axis aberrations such as astigmatism during zooming.

各実施例において、無限遠から至近にかけてのフォーカシングは第2レンズ群L2を物体側へ繰り出すことにより行っている。また、第4レンズ群L4の一部のレンズ成分L4aを光軸とは垂直方向にシフトさせることにより防振を行っている。   In each embodiment, focusing from infinity to close is performed by extending the second lens unit L2 toward the object side. Further, the image stabilization is performed by shifting a part of the lens component L4a of the fourth lens unit L4 in a direction perpendicular to the optical axis.

次に、各実施例の特徴について、添付の図面に基づいて詳細に説明する。   Next, features of each embodiment will be described in detail with reference to the accompanying drawings.

図1は本発明の実施例1のズームレンズの広角端における光学系断面図である。   FIG. 1 is a sectional view of the optical system at the wide-angle end of the zoom lens according to Embodiment 1 of the present invention.

図1に示した光学系断面図において、左方が前方(物体側、拡大側)で、右方が後方(像側、縮小側)である。実施例1のズームレンズは、物体側より像側へ順に、正の屈折力の第1レンズ群L1、負の屈折力の第2レンズ群L2、正の屈折力の第3レンズ群L3、負の屈折力の第4レンズ群L4、正の屈折力の第5レンズ群L5より成っている。   In the optical system cross-sectional view shown in FIG. 1, the left side is the front (object side, enlargement side), and the right side is the rear (image side, reduction side). The zoom lens according to the first exemplary embodiment includes, in order from the object side to the image side, a first lens unit L1 having a positive refractive power, a second lens unit L2 having a negative refractive power, a third lens unit L3 having a positive refractive power, and a negative lens unit. The fourth lens unit L4 has a refractive power of 5 and the fifth lens unit L5 has a positive refractive power.

SPは開口絞りであり、第3レンズ群L3中に配置されている。IPは像面であり、デジタルスチルカメラやビデオカメラの撮影光学系として使用する際にはCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面に相当する感光面が置かれる。   SP is an aperture stop, which is disposed in the third lens unit L3. IP is an image plane, and when used as a photographing optical system of a digital still camera or a video camera, a photosensitive surface corresponding to an imaging surface of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor is placed.

矢印は広角端から望遠端への変倍に際しての各レンズ群の移動軌跡を示している。図2(A)、(B)は、それぞれ実施例1のズームレンズの環境温度20℃での広角端、望遠端における収差図である。図3、4は、それぞれ実施例1のズームレンズの環境温度0℃、40℃での収差図である。環境温度変化後の光学系の性能は、樹脂レンズの曲率半径r、光軸上の面間隔d、d線に対する屈折率nd、各次数の非球面係数Aを以下の式に従い変化させ、評価を行った。
The arrows indicate the movement trajectory of each lens unit during zooming from the wide angle end to the telephoto end. 2A and 2B are aberration diagrams of the zoom lens of Example 1 at the wide-angle end and the telephoto end when the environmental temperature is 20 ° C., respectively. FIGS. 3 and 4 are aberration diagrams of the zoom lens of Example 1 at an environmental temperature of 0 ° C. and 40 ° C., respectively. The performance of the optical system after the environmental temperature change is evaluated by changing the curvature radius r of the resin lens, the surface distance d on the optical axis, the refractive index nd with respect to the d-line, and the aspheric coefficient A i of each order according to the following formulas. Went.

ここで、r´は温度変化後の樹脂レンズの曲率半径、d´は温度変化後の光軸上の面間隔、nd´は温度変化後のd線に対する屈折率、A´は温度変化後の各次数の非球面係数を表している。αは樹脂レンズの線膨張率、dn/dTは樹脂レンズの常温近辺における屈折率の温度係数、ΔTは環境温度の変化量を表している。また、光軸上の面間隔dは、像側の面に対して物体側の面を移動させることで変化させた。 Here, r ′ is the radius of curvature of the resin lens after temperature change, d ′ is the surface spacing on the optical axis after temperature change, nd ′ is the refractive index with respect to d-line after temperature change, and A i ′ is after temperature change. Represents the aspheric coefficient of each order. α represents the linear expansion coefficient of the resin lens, dn / dT represents the temperature coefficient of the refractive index near the normal temperature of the resin lens, and ΔT represents the amount of change in the environmental temperature. Further, the surface interval d on the optical axis was changed by moving the object side surface with respect to the image side surface.

収差図において、d、gはd線、g線を表している。また、M、Sはd線のメリジオナル像面、サジタル像面を表している。FnoはFナンバー、ωは半画角である。レンズ断面図、収差図は、それぞれ無限遠に合焦しているときの様子を示している。   In the aberration diagrams, d and g represent d-line and g-line. M and S represent the d-line meridional image surface and sagittal image surface. Fno is the F number, and ω is the half angle of view. Each of the lens cross-sectional view and the aberration diagram shows a state when focusing on infinity.

実施例1では、第2レンズ群L2に負の屈折力の樹脂レンズLP1、第3レンズ群L3に正の屈折力の樹脂レンズLP2、第4レンズ群L4に負の屈折力の樹脂レンズLP3、第5レンズ群L5に正の屈折力の樹脂レンズLP4を含んでいる。各樹脂レンズは前面、後面ともに非球面形状になっている。樹脂レンズLP1とLP4においては、広角端にて軸上光線と軸外光線が良く分離されているため、軸外光線に対する収差補正を効果的に行うことが可能となっている。   In Example 1, the second lens unit L2 has a negative refractive power resin lens LP1, the third lens unit L3 has a positive refractive power resin lens LP2, the fourth lens unit L4 has a negative refractive power resin lens LP3, The fifth lens unit L5 includes a resin lens LP4 having a positive refractive power. Each resin lens has an aspheric shape on both the front and rear surfaces. In the resin lenses LP1 and LP4, the on-axis light beam and the off-axis light beam are well separated at the wide-angle end, so that it is possible to effectively correct the aberration with respect to the off-axis light beam.

一方、樹脂レンズLP2とLP3においては、全ズーム範囲にわたり軸上光線の光束が軸外光線の光束より大きくなっているため、軸上光線に対する効果的な収差補正が可能となっている。これにより、実施例1のズームレンズは、高変倍比で全ズーム範囲にわたり高い光学性能を有し、かつ、環境温度の変化によるピント変動と収差変動が十分に抑制されたズームレンズとなっている。   On the other hand, in the resin lenses LP2 and LP3, since the light beam of the on-axis light beam is larger than the light beam of the off-axis light beam over the entire zoom range, effective aberration correction for the on-axis light beam is possible. As a result, the zoom lens of Example 1 has a high zoom ratio, high optical performance over the entire zoom range, and a zoom lens in which focus fluctuation and aberration fluctuation due to changes in environmental temperature are sufficiently suppressed. Yes.

図5は本発明の実施例2のズームレンズの広角端におけるレンズ断面図である。図6(A)、(B)は、それぞれ実施例2のズームレンズの環境温度20℃での広角端、望遠端における収差図である。図7、8は、それぞれ実施例2のズームレンズの環境温度0℃、40℃での収差図である。   FIG. 5 is a lens cross-sectional view at the wide-angle end of the zoom lens according to the second embodiment of the present invention. FIGS. 6A and 6B are aberration diagrams of the zoom lens of Example 2 at the wide-angle end and the telephoto end when the environmental temperature is 20 ° C., respectively. 7 and 8 are aberration diagrams of the zoom lens of Example 2 at environmental temperatures of 0 ° C. and 40 ° C., respectively.

実施例2では、第3レンズ群L3に正の屈折力の樹脂レンズLP1、第4レンズ群L4に負の屈折力の樹脂レンズLP2、第5レンズ群L5に負の屈折力の樹脂レンズLP3を含んでいる。樹脂レンズLP1においては、全ズーム範囲にわたり軸上光線の光束が軸外光線の光束より大きくなっているため、軸上光線に対する収差補正を効果的に行うことが可能となっている。   In Example 2, a resin lens LP1 having a positive refractive power is provided in the third lens group L3, a resin lens LP2 having a negative refractive power is provided in the fourth lens group L4, and a resin lens LP3 having a negative refractive power is provided in the fifth lens group L5. Contains. In the resin lens LP1, since the light beam of the axial light beam is larger than the light beam of the off-axis light beam over the entire zoom range, it is possible to effectively correct the aberration with respect to the axial light beam.

一方、樹脂レンズLP2とLP3においては、広角端にて軸上光線と軸外光線が良く分離されているため、軸外光線に対する効果的な収差補正が可能となっている。これにより、実施例2のズームレンズは、全ズーム範囲にわたり高い光学性能を有し、かつ、環境温度の変化によるピント変動と収差変動が十分に抑制されたズームレンズとなっている。   On the other hand, in the resin lenses LP2 and LP3, the on-axis light beam and the off-axis light beam are well separated at the wide-angle end, so that effective aberration correction for the off-axis light beam is possible. As a result, the zoom lens of Example 2 has high optical performance over the entire zoom range, and is a zoom lens in which focus fluctuation and aberration fluctuation due to changes in environmental temperature are sufficiently suppressed.

図9は本発明の実施例3のズームレンズの広角端におけるレンズ断面図である。図10(A)、(B)は、それぞれ実施例3のズームレンズの環境温度20℃での広角端、望遠端における収差図である。図11、12は、それぞれ実施例3のズームレンズの環境温度0℃、40℃での収差図である。   FIG. 9 is a lens cross-sectional view at the wide-angle end of the zoom lens according to Embodiment 3 of the present invention. FIGS. 10A and 10B are aberration diagrams of the zoom lens of Example 3 at the wide-angle end and the telephoto end at an environmental temperature of 20 ° C., respectively. 11 and 12 are aberration diagrams of the zoom lens of Example 3 at an environmental temperature of 0 ° C. and 40 ° C., respectively.

実施例3では、第3レンズ群L3に負の屈折力の樹脂レンズLP1、第5レンズ群L5に正の屈折力の樹脂レンズLP2を含んでいる。樹脂レンズLP1においては、全ズーム範囲にわたり軸上光線の光束が軸外光線の光束より大きくなっているため、軸上光線に対する収差補正を効果的に行うことが可能となっている。   In Example 3, the third lens unit L3 includes a resin lens LP1 having a negative refractive power, and the fifth lens unit L5 includes a resin lens LP2 having a positive refractive power. In the resin lens LP1, since the light beam of the axial light beam is larger than the light beam of the off-axis light beam over the entire zoom range, it is possible to effectively correct the aberration with respect to the axial light beam.

一方、樹脂レンズLP2においては、広角端にて軸上光線と軸外光線が良く分離されているため、軸外光線に対する効果的な収差補正が可能となっている。これにより、実施例3のズームレンズは、全ズーム範囲にわたり高い光学性能を有し、かつ、環境温度の変化によるピント変動と収差変動が十分に抑制されたズームレンズとなっている。   On the other hand, in the resin lens LP2, since the on-axis light beam and the off-axis light beam are well separated at the wide angle end, effective aberration correction for the off-axis light beam is possible. As a result, the zoom lens of Example 3 has high optical performance over the entire zoom range, and is a zoom lens in which focus fluctuation and aberration fluctuation due to changes in environmental temperature are sufficiently suppressed.

以下、実施例1〜3に対応する数値実施例1〜3の具体的な数値データを示す。各実施例の数値データにおいて、rは曲率半径、dは光軸上の面間隔、nd、vdは光学材料のd線に対する屈折率、アッベ数を表している。また、非球面形状は、Xを光軸方向の面頂点からの変位量、hを光軸と垂直な方向の光軸からの高さ、rを近軸曲率半径、Kを円錐定数、A、A、A,・・・を各次数の非球面係数としたとき、次式によって表される。
Hereinafter, specific numerical data of Numerical Examples 1 to 3 corresponding to Examples 1 to 3 will be shown. In the numerical data of each example, r represents a radius of curvature, d represents a surface interval on the optical axis, nd and vd represent a refractive index with respect to the d line of the optical material, and an Abbe number. Further, in the aspherical shape, X is the amount of displacement from the surface vertex in the optical axis direction, h is the height from the optical axis in the direction perpendicular to the optical axis, r is the paraxial radius of curvature, K is the conic constant, A 4 , A 6 , A 8 ,... Are represented by the following equations, where aspherical coefficients of respective orders are used.

なお、各非球面係数における「e±n」は「×10±n」を意味している。そして、前述の各条件式と数値実施例における諸数値との関係を表1乃至4に示す。

数値実施例1

単位 mm

面データ
面番号 r d nd vd 有効径
1 ∞ 1.50 62.40
2 126.570 2.00 1.80610 33.3 55.29
3 51.029 9.63 1.49700 81.5 49.89
4 -313.989 0.15 47.75
5 46.574 5.47 1.60311 60.6 43.00
6 203.470 (可変) 42.33
7 77.124 1.20 1.91082 35.3 25.32
8 14.889 5.71 19.95
9 -36.748 0.90 1.83481 42.7 19.37
10 24.964 0.15 18.52
11 23.747 6.30 1.80518 25.4 18.60
12 -22.637 0.52 18.03
13* -19.767 0.85 1.70000 56.0 17.43
14* 1058.136 (可変) 16.77
15(絞り) ∞ 0.50 16.05
16* 27.319 2.91 1.53110 55.9 16.90
17* 136.521 2.11 17.15
18* 43.043 1.11 1.63550 23.9 17.68
19* 30.976 0.20 17.51
20 24.680 4.65 1.49700 81.5 17.63
21 -36.757 (可変) 17.56
22 -41.428 0.70 1.71300 53.9 14.63
23 -450.579 1.03 1.80610 33.3 14.59
24 237.410 3.28 14.56
25 -45.084 1.10 1.83481 42.7 14.57
26 -58.725 (可変) 14.75
27 25.085 4.93 1.49700 81.5 19.47
28 -49.536 0.20 19.48
29* -137.408 5.91 1.53110 55.9 19.34
30* -16.609 0.20 19.11
31 -18.390 2.08 1.83481 42.7 18.75
32 -209.358 (可変) 19.43
像面 ∞

非球面データ
第13面
K = 0.00000e+000 A 4=-1.71187e-005 A 6= 7.61397e-007 A 8=-1.75792e-008
A10= 2.14417e-010 A12=-1.31439e-012 A14= 3.26122e-015

第14面
K = 0.00000e+000 A 4=-1.34050e-005 A 6= 6.08500e-007 A 8=-1.11831e-008
A10= 8.99998e-011 A12=-8.75432e-014 A14=-1.49853e-015

第16面
K = 0.00000e+000 A 4=-1.50822e-005 A 6= 2.18997e-007 A 8=-8.13233e-009
A10= 1.39032e-010 A12=-1.63424e-012 A14= 6.13104e-015

第17面
K = 0.00000e+000 A 4=-2.14463e-005 A 6= 2.99615e-007 A 8=-1.86468e-009
A10=-2.26394e-011 A12=-2.06772e-013 A14= 1.46553e-015

第18面
K = 0.00000e+000 A 4=-4.10558e-007 A 6= 5.32203e-007 A 8= 3.78845e-010
A10=-6.31146e-011 A12= 3.92274e-013 A14=-1.02398e-015

第19面
K = 0.00000e+000 A 4= 1.25738e-005 A 6= 4.74080e-007 A 8=-2.79081e-009
A10= 2.31700e-011 A12=-3.05783e-013 A14= 9.50446e-016

第29面
K = 0.00000e+000 A 4=-1.84149e-005 A 6= 4.76259e-008 A 8=-1.01073e-010
A10= 4.45368e-012 A12=-6.82727e-015 A14= 3.57211e-017

第30面
K = 0.00000e+000 A 4= 1.89546e-005 A 6= 5.81065e-008 A 8= 9.63476e-010
A10=-1.30471e-011 A12= 1.30497e-013 A14=-3.69029e-016

各種データ
ズーム比 10.38
広角 中間 望遠
焦点距離 18.60 49.08 193.00
F ナンバー 3.59 4.89 5.88
画角 36.29 15.55 4.05
像高 13.66 13.66 13.66
レンズ全長 145.04 172.07 200.21
BF 38.23 59.69 74.12

d 6 2.16 22.94 48.33
d14 29.01 14.89 2.85
d21 2.56 4.14 8.95
d26 7.78 5.11 0.66
d32 38.23 59.69 74.12

入射瞳位置 32.69 79.92 245.23
射出瞳位置 -40.39 -36.34 -32.11
前側主点位置 46.89 103.91 87.58
後側主点位置 19.63 10.61 -118.88

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 83.61 18.75 7.64 -5.01
2 7 -12.86 15.62 2.54 -8.28
3 15 24.94 11.49 4.50 -4.55
4 22 -39.70 6.11 0.50 -4.37
5 27 55.14 13.32 -2.77 -10.88

単レンズデータ
レンズ 始面 焦点距離
1 1 -107.34
2 3 89.10
3 5 98.85
4 7 -20.45
5 9 -17.69
6 11 15.32
7 13 -27.71
8 16 63.72
9 18 -180.34
10 20 30.48
11 22 -64.03
12 23 -192.76
13 25 -241.35
14 27 34.26
15 29 34.98
16 31 -24.27

数値実施例2

単位 mm

面データ
面番号 r d nd vd 有効径
1 ∞ 1.50 62.40
2 141.103 2.00 1.80610 33.3 55.67
3 58.909 9.05 1.49700 81.5 50.83
4 -279.517 0.17 49.92
5 50.475 5.86 1.60311 60.6 48.11
6 182.594 (可変) 47.40
7 120.593 1.20 1.83481 42.7 26.67
8 15.415 6.56 20.85
9 -40.246 1.98 1.77250 49.6 19.68
10 40.511 0.15 18.71
11 27.712 6.16 1.80518 25.4 18.68
12 -28.832 0.43 17.63
13 -23.374 0.85 1.77250 49.6 17.45
14 117.614 (可変) 16.71
15(絞り) ∞ 0.50 15.42
16* 21.943 3.87 1.53110 55.9 16.01
17* -69.158 0.75 15.97
18 66.924 0.90 1.84666 23.9 15.86
19 19.426 0.15 15.56
20 19.426 5.43 1.49700 81.5 15.65
21 -24.891 (可変) 15.70
22 -26.534 0.70 1.72916 54.7 13.76
23 19.720 2.61 1.80518 25.4 13.89
24 -557.711 3.00 14.18
25* -198.376 1.93 1.63550 23.9 15.26
26* 532.803 (可変) 15.89
27 27.632 4.51 1.49700 81.5 18.79
28 -51.851 0.24 18.80
29 -46.943 3.92 1.58313 59.4 18.77
30 -33.099 0.15 18.90
31* -37.571 2.05 1.63550 23.9 18.85
32* -346.694 (可変) 19.14
像面 ∞

非球面データ
第16面
K = 0.00000e+000 A 4=-7.10180e-006 A 6=-9.98860e-008 A 8= 1.79036e-009
A10=-1.67712e-011 A12= 1.00108e-013

第17面
K = 0.00000e+000 A 4= 1.76723e-005 A 6=-8.86840e-008 A 8= 2.00984e-009
A10=-1.73730e-011 A12= 1.02044e-013

第25面
K = 0.00000e+000 A 4=-4.69378e-005 A 6= 1.37484e-007 A 8=-1.12028e-009
A10= 5.31911e-011 A12=-4.64775e-013

第26面
K = 0.00000e+000 A 4=-6.78664e-005 A 6=-3.52746e-008 A 8= 3.00797e-009
A10=-9.16322e-012 A12=-1.07956e-013

第31面
K = 0.00000e+000 A 4=-1.45679e-005 A 6=-1.56848e-007 A 8= 1.57447e-009
A10=-8.88686e-012 A12= 1.64173e-014

第32面
K = 0.00000e+000 A 4= 2.64195e-005 A 6=-4.82876e-008 A 8= 3.74924e-010
A10=-2.65891e-013 A12=-5.61696e-015

各種データ
ズーム比 10.38
広角 中間 望遠
焦点距離 18.60 49.98 193.00
F ナンバー 3.60 5.08 5.88
画角 36.29 15.29 4.05
像高 13.66 13.66 13.66
レンズ全長 143.77 172.29 204.37
BF 38.23 62.40 74.56

d 6 2.16 23.00 53.75
d14 28.51 13.64 2.85
d21 2.50 4.13 5.96
d26 5.76 2.52 0.64
d32 38.23 62.40 74.56

入射瞳位置 33.52 78.22 285.07
射出瞳位置 -39.57 -34.05 -32.00
前側主点位置 47.68 102.30 128.50
後側主点位置 19.63 12.42 -118.44

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 90.97 18.58 6.93 -5.57
2 7 -13.01 17.32 3.24 -8.24
3 15 23.37 11.59 3.96 -4.76
4 22 -37.04 8.24 0.68 -5.25
5 27 56.49 10.86 0.19 -6.98

単レンズデータ
レンズ 始面 焦点距離
1 1 -126.83
2 3 98.77
3 5 113.77
4 7 -21.28
5 9 -25.86
6 11 18.45
7 13 -25.18
8 16 31.83
9 18 -32.61
10 20 22.88
11 22 -15.42
12 23 23.70
13 25 -227.23
14 27 36.97
15 29 174.31
16 31 -66.48

数値実施例3

単位 mm

面データ
面番号 r d nd vd 有効径
1 ∞ 1.50 62.40
2 120.134 2.00 1.80610 33.3 54.86
3 47.216 9.76 1.49700 81.5 49.04
4 -396.426 0.18 46.87
5 45.215 5.40 1.60311 60.6 40.76
6 258.748 (可変) 40.05
7 162.647 1.20 1.83481 42.7 25.76
8 15.118 5.65 20.03
9 -37.535 0.90 1.77250 49.6 19.49
10 43.591 0.15 18.79
11 33.351 5.99 1.80518 25.4 18.77
12 -23.085 0.32 17.96
13 -20.825 0.85 1.77250 49.6 17.56
14 159.641 (可変) 16.80
15(絞り) ∞ 0.50 16.11
16 32.373 3.38 1.48749 70.2 16.93
17 -88.769 0.18 17.18
18* 33.778 1.39 1.63550 23.9 17.38
19* 28.146 0.15 17.15
20 29.911 4.04 1.49700 81.5 17.16
21 -44.831 (可変) 17.02
22 -37.014 0.70 1.71300 53.9 14.36
23 -294.116 1.07 1.80610 33.3 14.35
24 603.359 3.00 14.34
25 -35.597 1.17 1.83481 42.7 14.36
26 -58.873 (可変) 14.63
27 31.363 6.25 1.49700 81.5 21.14
28 -25.096 0.15 21.33
29* -114.254 5.57 1.53110 55.9 20.81
30* -19.891 0.15 20.91
31 -20.465 2.06 1.83481 42.7 20.49
32 -181.579 (可変) 21.11
像面 ∞

非球面データ
第18面
K = 0.00000e+000 A 4= 1.00370e-007 A 6= 9.36423e-010 A 8= 1.50466e-010
A10= 8.94392e-013 A12= 1.58339e-015

第19面
K = 0.00000e+000 A 4= 1.01526e-006 A 6= 2.88174e-008 A 8= 1.56270e-011
A10= 9.01705e-013 A12= 1.09599e-014

第29面
K = 0.00000e+000 A 4=-3.35405e-005 A 6=-2.74797e-008 A 8=-7.41239e-010
A10= 8.43212e-012 A12=-6.82830e-014

第30面
K = 0.00000e+000 A 4=-5.16595e-006 A 6=-6.30529e-009 A 8=-7.00266e-011
A10= 1.41189e-012 A12=-2.94316e-014

各種データ
ズーム比 10.38
広角 中間 望遠
焦点距離 18.60 49.00 193.00
F ナンバー 3.49 4.75 5.88
画角 36.29 15.58 4.05
像高 13.66 13.66 13.66
レンズ全長 145.36 170.31 197.80
BF 39.27 60.90 76.13

d 6 2.16 21.72 45.58
d14 28.08 14.32 2.85
d21 2.50 3.90 8.56
d26 9.71 5.83 1.04
d32 39.27 60.90 76.13

入射瞳位置 32.76 77.17 226.81
射出瞳位置 -49.28 -39.40 -32.88
前側主点位置 47.45 102.23 78.10
後側主点位置 20.67 11.90 -116.87

ズームレンズ群データ
群 始面 焦点距離 レンズ構成長 前側主点位置 後側主点位置
1 1 80.14 18.84 8.06 -4.69
2 7 -12.70 15.06 2.67 -7.55
3 15 23.71 9.63 3.06 -3.83
4 22 -32.72 5.94 0.94 -3.66
5 27 44.58 14.18 -0.41 -9.34

単レンズデータ
レンズ 始面 焦点距離
1 1 -97.70
2 3 85.52
3 5 89.99
4 7 -20.04
5 9 -25.98
6 11 17.78
7 13 -23.80
8 16 49.11
9 18 -293.78
10 20 36.76
11 22 -59.45
12 23 -245.16
13 25 -110.38
14 27 29.12
15 29 44.44
16 31 -27.79
Note that “e ± n” in each aspheric coefficient means “× 10 ± n ”. Tables 1 to 4 show the relationship between the above-described conditional expressions and numerical values in the numerical examples.

Numerical example 1

Unit mm

Surface data surface number rd nd vd Effective diameter
1 ∞ 1.50 62.40
2 126.570 2.00 1.80610 33.3 55.29
3 51.029 9.63 1.49700 81.5 49.89
4 -313.989 0.15 47.75
5 46.574 5.47 1.60311 60.6 43.00
6 203.470 (variable) 42.33
7 77.124 1.20 1.91082 35.3 25.32
8 14.889 5.71 19.95
9 -36.748 0.90 1.83481 42.7 19.37
10 24.964 0.15 18.52
11 23.747 6.30 1.80518 25.4 18.60
12 -22.637 0.52 18.03
13 * -19.767 0.85 1.70000 56.0 17.43
14 * 1058.136 (variable) 16.77
15 (Aperture) ∞ 0.50 16.05
16 * 27.319 2.91 1.53110 55.9 16.90
17 * 136.521 2.11 17.15
18 * 43.043 1.11 1.63550 23.9 17.68
19 * 30.976 0.20 17.51
20 24.680 4.65 1.49700 81.5 17.63
21 -36.757 (variable) 17.56
22 -41.428 0.70 1.71300 53.9 14.63
23 -450.579 1.03 1.80610 33.3 14.59
24 237.410 3.28 14.56
25 -45.084 1.10 1.83481 42.7 14.57
26 -58.725 (variable) 14.75
27 25.085 4.93 1.49700 81.5 19.47
28 -49.536 0.20 19.48
29 * -137.408 5.91 1.53110 55.9 19.34
30 * -16.609 0.20 19.11
31 -18.390 2.08 1.83481 42.7 18.75
32 -209.358 (variable) 19.43
Image plane ∞

Aspherical data 13th surface
K = 0.00000e + 000 A 4 = -1.71187e-005 A 6 = 7.61397e-007 A 8 = -1.75792e-008
A10 = 2.14417e-010 A12 = -1.31439e-012 A14 = 3.26122e-015

14th page
K = 0.00000e + 000 A 4 = -1.34050e-005 A 6 = 6.08500e-007 A 8 = -1.11831e-008
A10 = 8.99998e-011 A12 = -8.75432e-014 A14 = -1.49853e-015

16th page
K = 0.00000e + 000 A 4 = -1.50822e-005 A 6 = 2.18997e-007 A 8 = -8.13233e-009
A10 = 1.39032e-010 A12 = -1.63424e-012 A14 = 6.13104e-015

17th page
K = 0.00000e + 000 A 4 = -2.14463e-005 A 6 = 2.99615e-007 A 8 = -1.86468e-009
A10 = -2.26394e-011 A12 = -2.06772e-013 A14 = 1.46553e-015

18th page
K = 0.00000e + 000 A 4 = -4.10558e-007 A 6 = 5.32203e-007 A 8 = 3.78845e-010
A10 = -6.31146e-011 A12 = 3.92274e-013 A14 = -1.02398e-015

19th page
K = 0.00000e + 000 A 4 = 1.25738e-005 A 6 = 4.74080e-007 A 8 = -2.79081e-009
A10 = 2.31700e-011 A12 = -3.05783e-013 A14 = 9.50446e-016

29th page
K = 0.00000e + 000 A 4 = -1.84149e-005 A 6 = 4.76259e-008 A 8 = -1.01073e-010
A10 = 4.45368e-012 A12 = -6.82727e-015 A14 = 3.57211e-017

30th page
K = 0.00000e + 000 A 4 = 1.89546e-005 A 6 = 5.81065e-008 A 8 = 9.63476e-010
A10 = -1.30471e-011 A12 = 1.30497e-013 A14 = -3.69029e-016

Various data Zoom ratio 10.38
Wide angle Medium telephoto focal length 18.60 49.08 193.00
F number 3.59 4.89 5.88
Angle of view 36.29 15.55 4.05
Image height 13.66 13.66 13.66
Total lens length 145.04 172.07 200.21
BF 38.23 59.69 74.12

d 6 2.16 22.94 48.33
d14 29.01 14.89 2.85
d21 2.56 4.14 8.95
d26 7.78 5.11 0.66
d32 38.23 59.69 74.12

Entrance pupil position 32.69 79.92 245.23
Exit pupil position -40.39 -36.34 -32.11
Front principal point position 46.89 103.91 87.58
Rear principal point position 19.63 10.61 -118.88

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 83.61 18.75 7.64 -5.01
2 7 -12.86 15.62 2.54 -8.28
3 15 24.94 11.49 4.50 -4.55
4 22 -39.70 6.11 0.50 -4.37
5 27 55.14 13.32 -2.77 -10.88

Single lens Data lens Start surface Focal length
1 1 -107.34
2 3 89.10
3 5 98.85
4 7 -20.45
5 9 -17.69
6 11 15.32
7 13 -27.71
8 16 63.72
9 18 -180.34
10 20 30.48
11 22 -64.03
12 23 -192.76
13 25 -241.35
14 27 34.26
15 29 34.98
16 31 -24.27

Numerical example 2

Unit mm

Surface data surface number rd nd vd Effective diameter
1 ∞ 1.50 62.40
2 141.103 2.00 1.80610 33.3 55.67
3 58.909 9.05 1.49700 81.5 50.83
4 -279.517 0.17 49.92
5 50.475 5.86 1.60311 60.6 48.11
6 182.594 (variable) 47.40
7 120.593 1.20 1.83481 42.7 26.67
8 15.415 6.56 20.85
9 -40.246 1.98 1.77250 49.6 19.68
10 40.511 0.15 18.71
11 27.712 6.16 1.80518 25.4 18.68
12 -28.832 0.43 17.63
13 -23.374 0.85 1.77250 49.6 17.45
14 117.614 (variable) 16.71
15 (Aperture) ∞ 0.50 15.42
16 * 21.943 3.87 1.53110 55.9 16.01
17 * -69.158 0.75 15.97
18 66.924 0.90 1.84666 23.9 15.86
19 19.426 0.15 15.56
20 19.426 5.43 1.49700 81.5 15.65
21 -24.891 (variable) 15.70
22 -26.534 0.70 1.72916 54.7 13.76
23 19.720 2.61 1.80518 25.4 13.89
24 -557.711 3.00 14.18
25 * -198.376 1.93 1.63550 23.9 15.26
26 * 532.803 (variable) 15.89
27 27.632 4.51 1.49700 81.5 18.79
28 -51.851 0.24 18.80
29 -46.943 3.92 1.58313 59.4 18.77
30 -33.099 0.15 18.90
31 * -37.571 2.05 1.63550 23.9 18.85
32 * -346.694 (variable) 19.14
Image plane ∞

Aspheric data 16th surface
K = 0.00000e + 000 A 4 = -7.10180e-006 A 6 = -9.98860e-008 A 8 = 1.79036e-009
A10 = -1.67712e-011 A12 = 1.00108e-013

17th page
K = 0.00000e + 000 A 4 = 1.76723e-005 A 6 = -8.86840e-008 A 8 = 2.00984e-009
A10 = -1.73730e-011 A12 = 1.02044e-013

25th page
K = 0.00000e + 000 A 4 = -4.69378e-005 A 6 = 1.37484e-007 A 8 = -1.12028e-009
A10 = 5.31911e-011 A12 = -4.64775e-013

26th page
K = 0.00000e + 000 A 4 = -6.78664e-005 A 6 = -3.52746e-008 A 8 = 3.00797e-009
A10 = -9.16322e-012 A12 = -1.07956e-013

No. 31
K = 0.00000e + 000 A 4 = -1.45679e-005 A 6 = -1.56848e-007 A 8 = 1.57447e-009
A10 = -8.88686e-012 A12 = 1.64173e-014

32nd page
K = 0.00000e + 000 A 4 = 2.64195e-005 A 6 = -4.82876e-008 A 8 = 3.74924e-010
A10 = -2.65891e-013 A12 = -5.61696e-015

Various data Zoom ratio 10.38
Wide angle Medium Telephoto focal length 18.60 49.98 193.00
F number 3.60 5.08 5.88
Angle of view 36.29 15.29 4.05
Image height 13.66 13.66 13.66
Total lens length 143.77 172.29 204.37
BF 38.23 62.40 74.56

d 6 2.16 23.00 53.75
d14 28.51 13.64 2.85
d21 2.50 4.13 5.96
d26 5.76 2.52 0.64
d32 38.23 62.40 74.56

Entrance pupil position 33.52 78.22 285.07
Exit pupil position -39.57 -34.05 -32.00
Front principal point position 47.68 102.30 128.50
Rear principal point position 19.63 12.42 -118.44

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 90.97 18.58 6.93 -5.57
2 7 -13.01 17.32 3.24 -8.24
3 15 23.37 11.59 3.96 -4.76
4 22 -37.04 8.24 0.68 -5.25
5 27 56.49 10.86 0.19 -6.98

Single lens Data lens Start surface Focal length
1 1 -126.83
2 3 98.77
3 5 113.77
4 7 -21.28
5 9 -25.86
6 11 18.45
7 13 -25.18
8 16 31.83
9 18 -32.61
10 20 22.88
11 22 -15.42
12 23 23.70
13 25 -227.23
14 27 36.97
15 29 174.31
16 31 -66.48

Numerical Example 3

Unit mm

Surface data surface number rd nd vd Effective diameter
1 ∞ 1.50 62.40
2 120.134 2.00 1.80610 33.3 54.86
3 47.216 9.76 1.49700 81.5 49.04
4 -396.426 0.18 46.87
5 45.215 5.40 1.60311 60.6 40.76
6 258.748 (variable) 40.05
7 162.647 1.20 1.83481 42.7 25.76
8 15.118 5.65 20.03
9 -37.535 0.90 1.77250 49.6 19.49
10 43.591 0.15 18.79
11 33.351 5.99 1.80518 25.4 18.77
12 -23.085 0.32 17.96
13 -20.825 0.85 1.77250 49.6 17.56
14 159.641 (variable) 16.80
15 (Aperture) ∞ 0.50 16.11
16 32.373 3.38 1.48749 70.2 16.93
17 -88.769 0.18 17.18
18 * 33.778 1.39 1.63550 23.9 17.38
19 * 28.146 0.15 17.15
20 29.911 4.04 1.49700 81.5 17.16
21 -44.831 (variable) 17.02
22 -37.014 0.70 1.71300 53.9 14.36
23 -294.116 1.07 1.80610 33.3 14.35
24 603.359 3.00 14.34
25 -35.597 1.17 1.83481 42.7 14.36
26 -58.873 (variable) 14.63
27 31.363 6.25 1.49700 81.5 21.14
28 -25.096 0.15 21.33
29 * -114.254 5.57 1.53110 55.9 20.81
30 * -19.891 0.15 20.91
31 -20.465 2.06 1.83481 42.7 20.49
32 -181.579 (variable) 21.11
Image plane ∞

Aspheric data 18th surface
K = 0.00000e + 000 A 4 = 1.00370e-007 A 6 = 9.36423e-010 A 8 = 1.50466e-010
A10 = 8.94392e-013 A12 = 1.58339e-015

19th page
K = 0.00000e + 000 A 4 = 1.01526e-006 A 6 = 2.88174e-008 A 8 = 1.56270e-011
A10 = 9.01705e-013 A12 = 1.09599e-014

29th page
K = 0.00000e + 000 A 4 = -3.35405e-005 A 6 = -2.74797e-008 A 8 = -7.41239e-010
A10 = 8.43212e-012 A12 = -6.82830e-014

30th page
K = 0.00000e + 000 A 4 = -5.16595e-006 A 6 = -6.30529e-009 A 8 = -7.00266e-011
A10 = 1.41189e-012 A12 = -2.94316e-014

Various data Zoom ratio 10.38
Wide angle Medium telephoto focal length 18.60 49.00 193.00
F number 3.49 4.75 5.88
Angle of view 36.29 15.58 4.05
Image height 13.66 13.66 13.66
Total lens length 145.36 170.31 197.80
BF 39.27 60.90 76.13

d 6 2.16 21.72 45.58
d14 28.08 14.32 2.85
d21 2.50 3.90 8.56
d26 9.71 5.83 1.04
d32 39.27 60.90 76.13

Entrance pupil position 32.76 77.17 226.81
Exit pupil position -49.28 -39.40 -32.88
Front principal point position 47.45 102.23 78.10
Rear principal point position 20.67 11.90 -116.87

Zoom lens group data group Start surface Focal length Lens configuration length Front principal point position Rear principal point position
1 1 80.14 18.84 8.06 -4.69
2 7 -12.70 15.06 2.67 -7.55
3 15 23.71 9.63 3.06 -3.83
4 22 -32.72 5.94 0.94 -3.66
5 27 44.58 14.18 -0.41 -9.34

Single lens Data lens Start surface Focal length
1 1 -97.70
2 3 85.52
3 5 89.99
4 7 -20.04
5 9 -25.98
6 11 17.78
7 13 -23.80
8 16 49.11
9 18 -293.78
10 20 36.76
11 22 -59.45
12 23 -245.16
13 25 -110.38
14 27 29.12
15 29 44.44
16 31 -27.79

次に、本発明のズームレンズを用いたカメラシステムの実施形態について説明する。   Next, an embodiment of a camera system using the zoom lens of the present invention will be described.

図13は本発明のズームレンズを備えるカメラ(撮像装置)の要部概略図である。   FIG. 13 is a schematic diagram of a main part of a camera (imaging device) including the zoom lens of the present invention.

レンズ鏡筒10には、実施例1、2、3に示したズームレンズ11が内蔵されている。カメラ本体20内には、ズームレンズ11によって取り込まれた光束を上方に反射するミラー21、ズームレンズ11によって被写体像が形成される焦点板22、焦点板22からの光束を正立像に変換するペンタダハプリズム23、焦点板22上に形成された被写体像を観察するための接眼レンズ24、ズームレンズ11からの光束を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)25等が設けられている。   The lens barrel 10 incorporates the zoom lens 11 shown in the first, second, and third embodiments. In the camera body 20, a mirror 21 that reflects upward the light beam captured by the zoom lens 11, a focusing plate 22 on which a subject image is formed by the zoom lens 11, and a pentagon that converts the light beam from the focusing plate 22 into an erect image. A roof prism 23, an eyepiece 24 for observing a subject image formed on the focusing screen 22, a solid-state image sensor (photoelectric conversion element) 25 such as a CCD sensor or a CMOS sensor for receiving a light beam from the zoom lens 11, and the like are provided. It has been.

図13は観察状態つまり撮影待機状態を表しているが、レリーズボタンを撮影者が操作することにより、ミラー21が図示の光路中から退避し、固体撮像素子25上に被写体像が取り込まれる。このように、実施例1〜3に示したズームレンズをカメラに用いることにより、高い光学性能を持つカメラを実現することができる。なお、本発明はミラー21のないカメラにも同様に適用することができる。   FIG. 13 shows an observation state, that is, a photographing standby state. When the photographer operates the release button, the mirror 21 is retracted from the illustrated optical path, and the subject image is captured on the solid-state image sensor 25. Thus, by using the zoom lens shown in Embodiments 1 to 3 for a camera, a camera having high optical performance can be realized. The present invention can be similarly applied to a camera without the mirror 21.

L1 第1レンズ群、L2 第2レンズ群、L3 第3レンズ群、L4 第4レンズ群、
L4a 防振レンズ成分、L5 第5レンズ群、LPi 樹脂レンズ、SP 絞り、
IP 像面、d d線、g g線、S サジタル光線、M メリジオナル光線、
Fno Fナンバー、ω 半画角
L1 first lens group, L2 second lens group, L3 third lens group, L4 fourth lens group,
L4a anti-vibration lens component, L5 fifth lens group, LPi resin lens, SP aperture,
IP image plane, dd line, g g line, S sagittal ray, M meridional ray,
Fno F number, ω half angle of view

Claims (5)

物体側より像側へ順に、
正の屈折力の第1レンズ群と、
負の屈折力の第2レンズ群と、
正の屈折力の第3レンズ群と、
2つのレンズ群よりなる後方群を有し、
第2レンズ群以降に正の屈折力の樹脂レンズを少なくとも1枚含み、
第2レンズ群以降に負の屈折力の樹脂レンズを少なくとも1枚含み、
以下の条件式を満足することを特徴とするズームレンズ。
ただし、
物体側から第i番目の樹脂レンズをLPiとし、
は樹脂レンズLPiのd線に対する屈折率、
dn/dTは樹脂レンズLPiの常温近辺における屈折率の温度係数、
αは樹脂レンズLPiの線膨張率、
φは樹脂レンズLPiの屈折力、
φは広角端における全系の屈折力、
β5Wは広角端における第5レンズ群の横倍率、
β5Tは望遠端における第5レンズ群の横倍率である。
From the object side to the image side,
A first lens unit having a positive refractive power;
A second lens unit having negative refractive power;
A third lens group having a positive refractive power;
It has a rear group consisting of two lens groups,
Including at least one resin lens having a positive refractive power after the second lens group;
Including at least one resin lens having a negative refractive power after the second lens group;
A zoom lens satisfying the following conditional expression:
However,
LPi is the i-th resin lens from the object side,
n i is the refractive index of the resin lens LPi with respect to the d-line,
dn i / dT is a temperature coefficient of the refractive index of the resin lens LPi near room temperature,
α i is the linear expansion coefficient of the resin lens LPi,
φ i is the refractive power of the resin lens LPi,
φ W is the refractive power of the entire system at the wide angle end,
β 5W is the lateral magnification of the fifth lens group at the wide-angle end,
β 5T is the lateral magnification of the fifth lens group at the telephoto end.
前記後方群が、物体側から像側へ順に、負の屈折力の第4レンズ群と、正の屈折力の第5レンズ群を有することを特徴とする請求項1に記載のズームレンズ。   2. The zoom lens according to claim 1, wherein the rear group includes a fourth lens group having a negative refractive power and a fifth lens group having a positive refractive power in order from the object side to the image side. 前記第3レンズ群に負の屈折力の樹脂レンズを含み、前記第5レンズ群に正の屈折力の樹脂レンズを含むことを特徴とする請求項1又は請求項2に記載のズームレンズ。   3. The zoom lens according to claim 1, wherein the third lens group includes a resin lens having a negative refractive power, and the fifth lens group includes a resin lens having a positive refractive power. 4. 前記第3レンズ群に正の屈折力の樹脂レンズを含み、前記第4レンズ群に負の屈折力の樹脂レンズを含み、前記第5レンズ群に負の屈折力の樹脂レンズを含むことを特徴とする請求項1乃至請求項3の何れか一項に記載のズームレンズ。   The third lens group includes a resin lens having a positive refractive power, the fourth lens group includes a resin lens having a negative refractive power, and the fifth lens group includes a resin lens having a negative refractive power. The zoom lens according to any one of claims 1 to 3. 前記第2レンズ群に負の屈折力の樹脂レンズを含み、前記第3レンズ群に正の屈折力の樹脂レンズを含み、前記第4レンズ群に負の屈折力の樹脂レンズを含み、前記第5レンズ群に正の屈折力の樹脂レンズを含むことを特徴とする請求項1乃至請求項3の何れか一項に記載のズームレンズ。   The second lens group includes a resin lens having a negative refractive power, the third lens group includes a resin lens having a positive refractive power, the fourth lens group includes a resin lens having a negative refractive power, The zoom lens according to any one of claims 1 to 3, wherein the five lens groups include a resin lens having a positive refractive power.
JP2016113115A 2016-06-07 2016-06-07 Zoom lens and imaging device having the same Pending JP2017219655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016113115A JP2017219655A (en) 2016-06-07 2016-06-07 Zoom lens and imaging device having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016113115A JP2017219655A (en) 2016-06-07 2016-06-07 Zoom lens and imaging device having the same

Publications (1)

Publication Number Publication Date
JP2017219655A true JP2017219655A (en) 2017-12-14

Family

ID=60656160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016113115A Pending JP2017219655A (en) 2016-06-07 2016-06-07 Zoom lens and imaging device having the same

Country Status (1)

Country Link
JP (1) JP2017219655A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110531505A (en) * 2019-10-29 2019-12-03 江西联创电子有限公司 Infrared optics imaging lens and imaging device
WO2020129837A1 (en) * 2018-12-21 2020-06-25 株式会社nittoh Imaging lens optical system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129837A1 (en) * 2018-12-21 2020-06-25 株式会社nittoh Imaging lens optical system
CN110531505A (en) * 2019-10-29 2019-12-03 江西联创电子有限公司 Infrared optics imaging lens and imaging device
CN110531505B (en) * 2019-10-29 2020-02-28 江西联创电子有限公司 Infrared optical imaging lens and imaging device

Similar Documents

Publication Publication Date Title
JP6452285B2 (en) Zoom lens and imaging apparatus having the same
JP6312518B2 (en) Zoom lens and imaging apparatus having the same
JP6562971B2 (en) Zoom lens and imaging apparatus having the same
JP6608259B2 (en) Zoom lens and imaging apparatus having the same
JP6300558B2 (en) Zoom lens and imaging apparatus having the same
JP2008089990A (en) Zoom lens and imaging apparatus
JP2005092056A (en) Zoom lens and image pickup device having same
JP2010032701A (en) Zoom lens, optical device having the same and method for varying magnification
JP2018097240A (en) Optical system, optical instrument and imaging apparatus
JP6406935B2 (en) Zoom lens and imaging apparatus having the same
JP2016224157A (en) Zoom lens and optical device having the same
JP2017134302A (en) Zoom lens and imaging device having the same
JP2019179057A (en) Zoom lens and optical device having the same
JP6628240B2 (en) Zoom lens and imaging device having the same
JP7146522B2 (en) ZOOM LENS AND IMAGING DEVICE HAVING THE SAME
JP5455998B2 (en) Zoom lens and imaging apparatus having the same
JP2017219655A (en) Zoom lens and imaging device having the same
JP2018025579A (en) Zoom lens and optical apparatus having the same
JP2019095640A (en) Zoom lens and imaging apparatus
JP2019090952A (en) Zoom lens and image capturing device having the same
JP2009042527A (en) Zoom lens and imaging apparatus with the same
JP5058634B2 (en) Zoom lens and imaging apparatus having the same
JP2007225822A (en) Zoom lens system and camera system having the same
JP6446820B2 (en) Magnification optical system and optical equipment
JP2002365547A (en) Zoom lens and optical equipment having the same